35339 [3M]

diode; 二极管
35339
型号: 35339
厂家: 3M ELECTRONICS    3M ELECTRONICS
描述:

diode
二极管

二极管
文件: 总18页 (文件大小:359K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1206  
250mA/60MHz Current  
Feedback Amplifier  
FeaTures  
DescripTion  
n
250mA Minimum Output Drive Current  
TheLT®1206isacurrentfeedbackamplifierwithhighoutput  
currentdrivecapabilityandexcellentvideocharacteristics.  
The LT1206 is stable with large capacitive loads, and can  
easily supply the large currents required by the capacitive  
loading. A shutdown feature switches the device into a  
high impedance, low current mode, reducing dissipation  
when the device is not in use. For lower bandwidth ap-  
plications, the supply current can be reduced with a single  
external resistor. The low differential gain and phase, wide  
bandwidth, and the 250mA minimum output current drive  
make the LT1206 well suited to drive multiple cables in  
video systems.  
n
60MHz Bandwidth, A = 2, R = 100Ω  
V
L
n
n
n
n
n
n
n
n
n
900V/µs Slew Rate, A = 2, R = 50Ω  
V
L
0.02% Differential Gain, A = 2, R = 30Ω  
V
L
0.17° Differential Phase, A = 2, R = 30Ω  
V
L
High Input Impedance, 10MΩ  
Wide Supply Range, 5V to 15V  
Shutdown Mode: I < 200µA  
S
Adjustable Supply Current  
Stable with C = 10,000p  
L
Available in 8-Pin DIP and SO and 7-Pin DD and  
TO-220 Packages  
The LT1206 is manufactured on Linear Technology’s pro-  
prietary complementary bipolar process.  
applicaTions  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
n
Technology Corporation. All other trademarks are the property of their respective owners.  
Video Amplifiers  
n
Cable Drivers  
n
RGB Amplifiers  
n
Test Equipment Amplifiers  
n
Buffers  
Typical applicaTion  
Noninverting Amplifier with Shutdown  
Large-Signal Response, CL = 10,000pF  
15V  
V
+
IN  
V
LT1206 COMP  
OUT  
S/D**  
C
COMP  
0.01µF*  
–15V  
R
R
F
15V  
*OPTIONAL, USE WITH CAPACITIVE LOADS  
**GROUND SHUTDOWN PIN FOR  
NORMAL OPERATION  
G
5V  
24k  
ENABLE  
±206 TA0±b  
74C906  
V
R
R
= ±±1V  
G
= ∞  
100ns/DIV  
S
L
L
1206 TA01  
= R = 3k  
1206fb  
1
LT1206  
absoluTe MaxiMuM raTings (Note 1)  
Supply Voltage........................................................ 18V  
Input Current........................................................ 15mA  
Output Short-Circuit Duration (Note 2) .........Continuous  
Specified Temperature Range (Note 3) ........ 0°C to 70°C  
Operating Temperature Range .................–40°C to 85°C  
Junction Temperature ........................................... 150°C  
Storage Temperature Range .................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)...................300°C  
pin conFiguraTion  
TOP VIEW  
TOP VIEW  
+
+
+
NC  
–IN  
1
2
3
4
V
V
1
2
3
4
8
7
6
5
V
8
7
6
5
OUT  
–IN  
+IN  
OUT  
+IN  
V
V
S/D*  
COMP  
S/D*  
COMP  
N8 PACKAGE  
8-LEAD PLASTIC DIP  
= 100°C/W  
S8 PACKAGE  
8-LEAD PLASTIC SO  
= 60°C/W  
θ
JA  
θ
JA  
FRONT VIEW  
FRONT VIEW  
OUT  
V
OUT  
V
7
6
5
4
3
2
1
7
6
5
4
3
2
1
COMP  
COMP  
+
+
V
V
S/D*  
+IN  
–IN  
S/D*  
+IN  
–IN  
TAB IS  
TAB IS  
+
+
V
V
T7 PACKAGE  
7-LEAD PLASTIC TO-220  
R PACKAGE  
7-LEAD PLASTIC DD  
θ
JA  
= 5°C/W  
θ
JA  
= 30°C/W  
orDer inForMaTion  
LEAD FREE FINISH  
LTC1206CN8#PBF  
LT1206CS8#PBF  
LT1206CR#PBF  
TAPE AND REEL  
LTC1206CN8#TRPBF  
LT1206CS8#TRPBF  
LT1206CR#TRPBF  
LT1206CT7#TRPBF  
TAPE AND REEL  
LTC1206CN8#TR  
LT1206CS8#TR  
PART MARKING*  
PACKAGE DESCRIPTION  
8-Lead Plastic DIP  
8-Lead Plastic SO  
TEMPERATURE RANGE  
–40°C to 85°C  
LT1206  
1206  
–40°C to 85°C  
LT1206  
LT1206  
PART MARKING*  
LT1206  
1206  
7-Lead Plastic DD  
–40°C to 85°C  
LT1206CT7#PBF  
7-Lead Plastic TO-220  
PACKAGE DESCRIPTION  
8-Lead Plastic DIP  
8-Lead Plastic SO  
–40°C to 85°C  
LEAD BASED FINISH  
TEMPERATURE RANGE  
–40°C to 85°C  
LTC1206CN8  
LT1206CS8**  
–40°C to 85°C  
LT1206CR  
LT1206CR#TR  
LT1206  
LT1206  
7-Lead Plastic DD  
–40°C to 85°C  
LT1206CT7  
LT1206CT7#TR  
7-Lead Plastic TO-220  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
**Ground shutdown pin for normal operation. See Note 3.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
1206fb  
2
LT1206  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCM = 0, 5V ꢀ VS ꢀ 15V, pulse tested, VS/D = 0V, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP MAX UNITS  
V
Input Offset Voltage  
3
10  
15  
mV  
mV  
µV/°C  
OS  
l
l
Input Offset Voltage Drift  
Noninverting Input Current  
10  
2
+
I
I
8
25  
60  
100  
µA  
µA  
µA  
µA  
IN  
l
l
Inverting Input Current  
10  
IN  
e
+i  
–i  
Input Noise Voltage Density  
Input Noise Current Density  
Input Noise Current Density  
Input Resistance  
f = 10kHz, R = 1k, R = 10Ω, R = 0Ω  
f = 10kHz, R = 1k, R = 10Ω, R = 10k  
F G S  
3.6  
2
30  
10  
5
nV/√Hz  
pA/√Hz  
pA/√Hz  
n
F
G
S
n
f = 10kHz, R = 1k, R = 10Ω, R = 10k  
n
F
G
S
l
l
R
V
V
=
=
12V, V = 15V  
1.5  
0.5  
MΩ  
MΩ  
IN  
IN  
IN  
S
2V, V = 5V  
S
C
Input Capacitance  
V = 15V  
S
2
pF  
IN  
l
l
Input Voltage Range  
V = 15V  
S
12  
2
13.5  
3.5  
V
V
S
V = 5V  
l
l
CMRR  
PSRR  
Common Mode Rejection Ratio  
V = 15V, V  
S
=
=
12V  
2V  
12V  
2V  
55  
50  
62  
60  
0.1  
0.1  
77  
30  
dB  
dB  
µA/V  
µA/V  
dB  
nA/V  
S
CM  
V = 5V, V  
=
CM  
l
l
Inverting Input Current Common Mode  
Rejection  
Power Supply Rejection Ratio  
Noninverting Input Current Power Supply  
Rejection  
Inverting Input Current Power Supply Rejection V = 5V to 15V  
V = 15V, V  
10  
10  
S
S
CM  
V = 5V, V  
=
CM  
l
l
V = 5V to 15V  
60  
S
V = 5V to 15V  
S
500  
5
l
0.7  
µA/V  
S
l
l
A
Large-Signal Voltage Gain  
V = 15V, V  
=
10V, R = 50Ω  
55  
55  
100  
75  
71  
68  
260  
200  
dB  
dB  
kΩ  
kΩ  
V
S
OUT  
L
V = 5V, V  
=
2V, R = 25Ω  
S
OUT  
L
l
l
R
Transresistance, ΔV /ΔI  
V = 15V, V  
=
10V, R = 50Ω  
OL  
OUT  
IN  
S
OUT  
L
V = 5V, V  
S
= 2V, R = 25Ω  
OUT  
L
V
Maximum Output Voltage Swing  
V = 15V, R = 50Ω  
11.5  
10.0  
12.5  
V
V
OUT  
S
L
l
V = 15V, R = 25Ω  
2.5  
2.0  
250  
3.0  
V
V
mA  
S
L
l
l
I
I
Maximum Output Current  
Supply Current  
R = 1Ω  
L
500 1200  
OUT  
S
V = 15V, V = 0V  
20  
30  
35  
mA  
mA  
S
S/D  
l
Supply Current, R = 51k (Note 4)  
V = 15V  
V = 15V, V = 15V  
S S/D  
12  
17  
200  
10  
mA  
µA  
µA  
V/µs  
%
Deg  
MHz  
MHz  
MHz  
MHz  
S/D  
S
l
l
Positive Supply Current, Shutdown  
Output Leakage Current, Shutdown  
Slew Rate (Note 5)  
Differential Gain (Note 6)  
Differential Phase (Note 6)  
Small-Signal Bandwidth  
V = 15V, V = 15V  
S
S/D  
SR  
A = 2  
400  
900  
0.02  
0.17  
60  
52  
43  
V
V = 15V, R = 560Ω, R = 560Ω, R = 30Ω  
S F G L  
V = 15V, R = 560Ω, R = 560Ω, R = 30Ω  
S
F
G
L
BW  
V = 15V, Peaking ≤ 0.5dB, R = R = 620Ω, R = 100Ω  
S F G L  
V = 15V, Peaking ≤ 0.5dB, R = R = 649Ω, R = 50Ω  
S
F
G
L
V = 15V, Peaking ≤ 0.5dB, R = R = 698Ω, R = 30Ω  
S
F
G
L
V = 15V, Peaking ≤ 0.5dB, R = R = 825Ω, R = 10Ω  
S
27  
F
G
L
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 3: Commercial grade parts are designed to operate over the  
temperature range of –40°C to 85°C but are neither tested nor guaranteed  
beyond 0°C to 70°C. Industrial grade parts tested over –40°C to 85°C are  
available on special request. Consult factory.  
Note 2: Applies to short circuits to ground only. A short circuit between  
the output and either supply may permanently damage the part when  
operated on supplies greater than 10V.  
Note 4: R is connected between the shutdown pin and ground.  
S/D  
Note 5: Slew rate is measured at 5V on a 10V output signal while  
operating on 15V supplies with R = 1.5k, R = 1.5k and R = 400Ω.  
F
G
L
Note 6: NTSC composite video with an output level of 2V.  
1206fb  
3
LT1206  
sMall-signal banDwiDTh  
I = 20mA Typical, Peaking ꢀ 0.1dB  
S
–3dB BW  
(MHz)  
–0.1dB BW  
(MHz)  
–3dB BW  
(MHz)  
–0.1dB BW  
(MHz)  
A
V
R
R
R
A
V
R
R
R
G
L
F
G
L
F
V = 5V, R = 0Ω  
V = 15V, R = 0Ω  
S S/D  
S
S/D  
–1  
1
150  
30  
562  
649  
732  
562  
649  
732  
48  
34  
22  
21.4  
17  
–1  
1
150  
681  
768  
887  
681  
768  
887  
50  
35  
24  
19.2  
17  
30  
10  
10  
12.5  
12.3  
150  
30  
10  
619  
715  
806  
54  
36  
22.4  
22.3  
17.5  
11.5  
150  
30  
10  
768  
909  
1k  
66  
37  
23  
22.4  
17.5  
12  
2
150  
30  
10  
576  
649  
750  
576  
649  
750  
48  
35  
22.4  
20.7  
18.1  
11.7  
2
150  
30  
10  
665  
787  
931  
665  
787  
931  
55  
36  
22.5  
23  
18.5  
11.8  
10  
150  
30  
10  
442  
511  
649  
48.7  
56.2  
71.5  
40  
31  
20  
19.2  
16.5  
10.2  
10  
150  
30  
10  
487  
590  
768  
536  
64.9  
84.5  
44  
33  
20.7  
20.7  
17.5  
10.8  
I = 10mA Typical, Peaking ꢀ 0.1dB  
S
–3dB BW  
(MHz)  
–0.1dB BW  
(MHz)  
–3dB BW  
(MHz)  
–0.1dB BW  
(MHz)  
A
V
R
R
R
A
V
R
R
R
G
L
F
G
L
F
V = 5V, R = 10.2k  
V = 15V, R = 60.4k  
S S/D  
S
S/D  
–1  
1
150  
30  
576  
681  
750  
576  
681  
750  
35  
25  
17  
12.5  
8.7  
–1  
1
150  
634  
768  
866  
634  
768  
866  
41  
26.5  
17  
19.1  
14  
30  
10  
10  
16.4  
9.4  
150  
30  
10  
665  
768  
845  
37  
25  
16.5  
17.5  
12.6  
8.2  
150  
30  
10  
768  
909  
1k  
44  
28  
16.8  
18.8  
14.4  
8.3  
2
150  
30  
10  
590  
681  
768  
590  
681  
768  
35  
25  
16.2  
16.8  
13.4  
8.1  
2
150  
30  
10  
649  
787  
931  
649  
787  
931  
40  
27  
16.5  
18.5  
14.1  
8.1  
10  
150  
30  
10  
301  
392  
499  
33.2  
43.2  
54.9  
31  
23  
15  
15.6  
11.9  
7.8  
10  
150  
30  
10  
301  
402  
590  
33.2  
44.2  
64.9  
33  
25  
15.3  
15.6  
13.3  
7.4  
I = 5mA Typical, Peaking ꢀ 0.1dB  
S
–3dB BW  
(MHz)  
–0.1dB BW  
(MHz)  
–3dB BW  
(MHz)  
–0.1dB BW  
(MHz)  
A
V
R
R
R
A
V
R
R
R
G
L
F
G
L
F
V = 5V, R = 22.1k  
V = 15V, R = 121k  
S S/D  
S
S/D  
–1  
1
150  
30  
604  
715  
681  
604  
715  
681  
21  
10.5  
7.4  
–1  
1
150  
619  
787  
825  
619  
787  
825  
25  
12.5  
8.5  
14.6  
10.5  
30  
10  
15.8  
10.5  
10  
6.0  
5.4  
150  
30  
10  
768  
866  
825  
20  
14.1  
9.8  
9.6  
6.7  
5.1  
150  
30  
10  
845  
1k  
1k  
23  
15.3  
10  
10.6  
7.6  
5.2  
2
150  
30  
10  
634  
750  
732  
634  
750  
732  
20  
14.1  
9.6  
9.6  
7.2  
5.1  
2
150  
30  
10  
681  
845  
866  
681  
845  
866  
23  
15  
10  
10.2  
7.7  
5.4  
10  
150  
30  
10  
100  
100  
100  
11.1  
11.1  
11.1  
16.2  
13.4  
9.5  
5.8  
7.0  
4.7  
10  
150  
30  
10  
100  
100  
100  
11.1  
11.1  
11.1  
15.9  
13.6  
9.6  
4.5  
6
4.5  
1206fb  
4
LT1206  
Typical perForMance characTerisTics  
Bandwidth and Feedback Resistance  
vs Capacitive Load for 0.5dB Peak  
Bandwidth vs Supply Voltage  
Bandwidth vs Supply Voltage  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
10k  
100  
PEAKING ≤ 0.5dB  
PEAKING ≤ 5dB  
A
= 2  
A
= 2  
= 100Ω  
PEAKING ≤ 0.5dB  
PEAKING ≤ 5dB  
V
L
V
L
BANDWIDTH  
R
= 10Ω  
R
R = 560Ω  
F
R
F
= 470Ω  
R
= 560Ω  
F
R = 750Ω  
F
R
F
= 680Ω  
1k  
10  
R = 1k  
F
R
= 750Ω  
F
FEEDBACK RESISTOR  
R = 2k  
F
A
= 2  
V
L
S
R
= 1k  
F
R
= ∞  
V
C
= 15V  
COMP  
R
= 1.5k  
16  
F
= 0.01µF  
100  
1
4
12  
14  
4
12  
14  
16  
1
10 100  
1000  
10000  
6
8
10  
18  
6
8
10  
18  
CAPACITIVE LOAD (pF)  
SUPPLY VOLTAGE ( Vꢀ  
SUPPLY VOLTAGE ( Vꢀ  
1206 G03  
1206 G01  
1206 G02  
Bandwidth and Feedback Resistance  
vs Capacitive Load for 5dB Peak  
Bandwidth vs Supply Voltage  
Bandwidth vs Supply Voltage  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
10k  
100  
A
= 10  
= 100Ω  
A = 10  
V
R = 10Ω  
L
PEAKING ≤ 0.5dB  
PEAKING ≤ 5dB  
PEAKING ≤ 0.5dB  
PEAKING ≤ 5dB  
V
L
R
BANDWIDTH  
R =390Ω  
F
R = 330Ω  
F
R = 560Ω  
F
1k  
10  
R = 680Ω  
F
R = 470Ω  
F
R = 1k  
F
R = 680Ω  
F
A
= +2  
= ∞  
V
L
FEEDBACK RESISTOR  
R = 1.5k  
F
R
V
= 15V  
S
R = 1.5k  
F
C
= 0.01µF  
COMP  
100  
1
10k  
4
12  
14  
16  
4
12  
14  
16  
6
8
10  
18  
6
8
10  
18  
1
10  
100  
1k  
CAPACITIVE LOAD (pF)  
SUPPLY VOLTAGE ( Vꢀ  
SUPPLY VOLTAGE ( Vꢀ  
1206 G04  
1206 G05  
1206 G06  
Differential Phase  
vs Supply Voltage  
Differential Gain  
vs Supply Voltage  
Spot Noise Voltage and Current  
vs Frequency  
100  
10  
1
0.50  
0.40  
0.30  
0.10  
0.08  
0.06  
R = R = 560  
Ω
R = R = 560Ω  
F
G
F
G
A
= 2  
A
= 2  
V
V
R = 15Ω  
N PACKAGE  
L
N PACKAGE  
R = 15Ω  
L
–i  
n
R = 30Ω  
L
R = 30Ω  
L
0.20  
0.10  
0
0.04  
0.02  
0
R = 50Ω  
L
e
i
n
R = 50Ω  
L
n
R = 150Ω  
L
R = 150Ω  
L
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
5
7
9
11  
13  
15  
5
7
9
11  
13  
15  
SUPPLY VOLTAGE ( Vꢀ  
SUPPLY VOLTAGE ( Vꢀ  
1206 G09  
1206 G07  
1206 G08  
1206fb  
5
LT1206  
Typical perForMance characTerisTics  
Supply Current vs Ambient  
Temperature, VS = 5V  
Supply Current vs Ambient  
Temperature, VS = 15V  
Supply Current vs Supply Voltage  
24  
22  
20  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
A
= 1  
V
= 0V  
A
= 1  
V
L
S/D  
V
L
R
= ∞  
T = –40°C  
R
= ∞  
R
= 0Ω  
J
SD  
N PACKAGE  
R
= 0Ω  
N PACKAGE  
SD  
T = 25°C  
J
18  
16  
14  
R
R
= 10.2k  
= 22.1k  
R
R
= 60.4k  
= 121k  
SD  
SD  
T = 85°C  
J
SD  
SD  
T = 125°C  
J
12  
10  
0
0
4
12  
14  
16  
125  
6
8
10  
18  
–50  
0
50  
TEMPERATURE (C)  
25  
75 100  
–25  
–50  
0
25  
50  
75 100 125  
–25  
SUPPLY VOLTAGE ( Vꢀ  
TEMPERATURE (C)  
1206 G10  
1206 G12  
1206 G11  
Supply Current  
Input Common Mode Limit  
vs Junction Temperature  
Output Short-Circuit Current  
vs Junction Temperature  
vs Shutdown Pin Current  
+
V
20  
18  
16  
14  
12  
10  
8
1.0  
0.9  
V
= 15V  
S
– 0.5  
–1.0  
–1.5  
–2.0  
2.0  
0.8  
0.7  
0.6  
0.5  
0.4  
SOURCING  
SINKING  
1.5  
6
1.0  
4
0.5  
2
V
0.3  
0
0
100  
SHUTDOWN PIN CURRENT (µA)  
200  
300  
400  
500  
–50 –25  
0
100 125  
–50 –25  
0
25  
50  
TEMPERATURE (C)  
75  
100 125  
25  
50  
75  
TEMPERATURE (C)  
1206 G13  
1206 G14  
1206 G15  
Output Saturation Voltage  
vs Junction Temperature  
Power Supply Rejection Ratio  
vs Frequency  
Supply Current vs Large-Signal  
Output Frequency (No Load)  
+
V
70  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
V
= 15V  
R
V
F
= 50Ω  
S
A
= 2  
L
S
V
L
S
R
L
= 2k  
=
15V  
R
V
= ∞  
–1  
–2  
–3  
–4  
4
NEGATIVE  
POSITIVE  
R = R = 1k  
=
15V  
= 20V  
G
V
OUT  
P-P  
R
L
= 50Ω  
R
R
= 50Ω  
= 2k  
L
3
2
L
1
V
10k  
100k  
1M  
10M  
100M  
–50 –25  
0
100 125  
10k  
100k  
1M  
10M  
25  
50  
75  
FREQUENCY (Hz)  
TEMPERATURE (C)  
FREQUENCY (Hz)  
1206 G17  
1206 G16  
1206 G18  
1206fb  
6
LT1206  
Typical perForMance characTerisTics  
Output Impedance in Shutdown  
vs Frequency  
2nd and 3rd Harmonic Distortion  
vs Frequency  
Output Impedance vs Frequency  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
100  
10  
100k  
10k  
V
V
=
15V  
P-P  
V
I
=
1ꢀV  
A
= 1  
S
O
S
O
V
F
S
= 2V  
= 0mA  
R = 1k  
V
= 1ꢀV  
R
= 121k  
2nd  
S/D  
R
= 10Ω  
L
3rd  
2nd  
R
S/D  
= 0Ω  
1
1k  
R
= 30Ω  
L
3rd  
0.1  
100  
0.01  
100k  
10  
100k  
1
2
3
4
5
6
7 8 9 10  
1M  
10M  
100M  
1M  
10M  
100M  
FREQUENCY (MHz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1206 G21  
1206 G19  
1206 G20  
3rd Order Intercept vs Frequency  
Test Circuit for 3rd Order Intercept  
60  
50  
40  
30  
V
R
=
15V  
S
L
= 50Ω  
+
R = 590Ω  
F
G
P
LT1206  
O
R
= 64.9Ω  
590Ω  
50Ω  
65Ω  
MEASURE INTERCEPT AT P  
O
1206 TC01  
20  
10  
0
10  
15  
20  
25  
30  
5
FREQUENCY (MHz)  
1206 G22  
1206fb  
7
LT1206  
siMpliFieD scheMaTic  
+
V
TO ALL  
CURRENT  
SOURCES  
Q5  
Q10  
Q2  
D1  
Q11  
Q6  
Q15  
Q18  
Q1  
Q17  
Q9  
V
1.25k  
+IN  
50Ω  
COMP  
V
C
C
–IN  
R
C
OUTPUT  
+
V
SHUTDOWN  
+
V
Q12  
Q3  
Q8  
Q16  
Q14  
D2  
Q4  
Q13  
Q7  
V
1206 SS  
applicaTions inForMaTion  
TheLT1206isacurrentfeedbackamplifierwithhighoutput  
current drive capability. The device is stable with large  
capacitive loads and can easily supply the high currents  
required by capacitive loads. The amplifier will drive low  
impedance loads such as cables with excellent linearity  
at high frequencies.  
line when the response has 0.5dB to 5dB of peaking. The  
curves stop where the response has more than 5dB of  
peaking.  
For resistive loads, the COMP pin should be left open (see  
section on capacitive loads).  
Capacitive Loads  
Feedback Resistor Selection  
The LT1206 includes an optional compensation network  
for driving capacitive loads. This network eliminates most  
of the output stage peaking associated with capacitive  
loads, allowing the frequency response to be flattened.  
Figure 1 shows the effect of the network on a 200pF load.  
Without the optional compensation, there is a 5dB peak  
at 40MHz caused by the effect of the capacitance on the  
outputstage.Addinga0.01µFbypasscapacitorbetweenthe  
outputandtheCOMPpinsconnectsthecompensationand  
completelyeliminatesthepeaking. Alowervaluefeedback  
resistor can now be used, resulting in a response which  
The optimum value for the feedback resistors is a function  
of the operating conditions of the device, the load imped-  
ance and the desired flatness of response. The Typical AC  
Performance tables give the values which result in the  
highest 0.1dB and 0.5dB bandwidths for various resistive  
loads and operating conditions. If this level of flatness is  
not required, a higher bandwidth can be obtained by use  
of a lower feedback resistor. The characteristic curves of  
Bandwidth vs Supply Voltage indicate feedback resistors  
for peaking up to 5dB. These curves use a solid line when  
the response has less than 0.5dB of peaking and a dashed  
1206fb  
8
LT1206  
applicaTions inForMaTion  
12  
capacitor and the supply current is typically 100µA. The  
shutdown pin is referenced to the positive supply through  
an internal bias circuit (see the simplified schematic). An  
easy way to force shutdown is to use open drain (collec-  
tor) logic. The circuit shown in Figure 2 uses a 74C904  
buffer to interface between 5V logic and the LT1206. The  
switching time between the active and shutdown states  
is less than 1µs. A 24k pull-up resistor speeds up the  
turn-off time and insures that the LT1206 is completely  
turned off. Because the pin is referenced to the positive  
supply, the logic used should have a breakdown voltage  
of greater than the positive supply voltage. No other  
circuitry is necessary as the internal circuit limits the  
shutdown pin current to about 500µA. Figure 3 shows  
the resulting waveforms.  
V
= 1ꢀV  
S
10  
8
R = 1.2k  
F
COMPENSATION  
6
4
2
R = 2k  
F
NO COMPENSATION  
0
R = 2k  
F
–2  
–4  
–6  
–8  
COMPENSATION  
1
10  
100  
FREQUENCY (MHz)  
1206 F01  
Figure 1  
is flat to 0.35dB to 30MHz. The network has the greatest  
effect for C in the range of 0pF to 1000pF. The graph of  
L
15V  
Maximum Capacitive Load vs Feedback Resistor can be  
used to select the appropriate value of feedback resistor.  
The values shown are for 0.5dB and 5dB peaking at a gain  
of 2 with no resistive load. This is a worst case condition,  
as the amplifier is more stable at higher gains and with  
some resistive load in parallel with the capacitance. Also  
shownisthe3dBbandwidthwiththesuggestedfeedback  
resistor vs the load capacitance.  
V
+
IN  
V
LT1206  
OUT  
S/D  
–15V  
R
R
F
15V  
24k  
G
5V  
ENABLE  
Although the optional compensation works well with ca-  
pacitive loads, it simply reduces the bandwidth when it is  
connected with resistive loads. For instance, with a 30Ω  
load, the bandwidth drops from 55MHz to 35MHz when  
thecompensationisconnected. Hence, thecompensation  
wasmadeoptional. Todisconnecttheoptionalcompensa-  
tion, leave the COMP pin open.  
1206 F02  
74C906  
Figure 2. Shutdown Interface  
Shutdown/Current Set  
V
OUT  
If the shutdown feature is not used, the SHUTDOWN pin  
must be connected to ground or V .  
The shutdown pin can be used to either turn off the bias-  
ing for the amplifier, reducing the quiescent current to  
less than 200µA, or to control the quiescent current in  
normal operation.  
ENABLE  
1206 F03  
A
= 1  
1µs/DIV  
V
F
L
R = 825Ω  
ThetotalbiascurrentintheLT1206iscontrolledbythecur-  
rent flowing out of the shutdown pin. When the shutdown  
pin is open or driven to the positive supply, the part is shut  
down. In the shutdown mode, the output looks like a 40pF  
R
R
= 50Ω  
= 24k  
PU  
IN  
V
= 1V  
P-P  
Figure 3. Shutdown Operation  
1206fb  
9
LT1206  
applicaTions inForMaTion  
For applications where the full bandwidth of the amplifier  
is not required, the quiescent current of the device may be  
reduced by connecting a resistor from the shutdown pin  
to ground. The quiescent current will be approximately 40  
Slew Rate  
Unlike a traditional op amp, the slew rate of a current  
feedback amplifier is not independent of the amplifier gain  
configuration. There are slew rate limitations in both the  
input stage and the output stage. In the inverting mode,  
and for higher gains in the noninverting mode, the signal  
amplitude on the input pins is small and the overall slew  
rate is that of the output stage. The input stage slew rate  
is related to the quiescent current and will be reduced as  
the supply current is reduced. The output slew rate is set  
by the value of the feedback resistors and the internal  
capacitance.Largerfeedbackresistorswillreducetheslew  
rate as will lower supply voltages, similar to the way the  
bandwidth is reduced. The photos (Figures 5a, 5b and 5c)  
show the large-signal response of the LT1206 for various  
gain configurations. The slew rate varies from 860V/µs  
for a gain of 1, to 1400V/µs for a gain of 1.  
times the current in the shutdown pin. The voltage across  
+
the resistor in this condition is V – 3V . For example, a  
BE  
60k resistor will set the quiescent supply current to 10mA  
with V = 15V.  
S
Thephotos(Figures4aand4b)showtheeffectofreducing  
thequiescentsupplycurrentonthelarge-signalresponse.  
Thequiescentcurrentcanbereducedto5mAintheinvert-  
ing configuration without much change in response. In  
noninverting mode, however, the slew rate is reduced as  
the quiescent current is reduced.  
1206 F04a  
R = 750Ω  
50ns/DIV  
F
R
= 50Ω  
L
Q
I
= 5mA, 10mA, 20mA  
= 15V  
V
S
±206 F05a  
Figure 4a. Large-Signal Response vs IQ, AV = –1  
R = 825  
20ns/DIV  
F
R
= 50Ω  
L
V
= ±±5V  
S
Figure 5a. Large-Signal Response, AV = 1  
1206 F04b  
R = 750Ω  
50ns/DIV  
F
R
= 50Ω  
L
Q
±206 F05b  
I
= 5mA, 10mA, 20mA  
R = R = 750Ω  
20ns/DIV  
F
L
S
G
V
=
15V  
R
= 50Ω  
S
V
= ±±5V  
Figure 4b. Large-Signal Response vs IQ, AV = 2  
Figure 5b. Large-Signal Response, AV = –1  
1206fb  
10  
LT1206  
applicaTions inForMaTion  
the maximum allowable input voltage. To allow for some  
margin, it is recommended that the input signal be less  
than 5V when the device is shut down.  
Capacitance on the Inverting Input  
Currentfeedbackamplifiersrequireresistivefeedbackfrom  
the output to the inverting input for stable operation. Take  
care to minimize the stray capacitance between the output  
and the inverting input. Capacitance on the inverting input  
to ground will cause peaking in the frequency response  
(and overshoot in the transient response), but it does not  
degrade the stability of the amplifier.  
1206 F05c  
R = 750Ω  
L
20ns/DIV  
F
R
= 50Ω  
Figure 5c. Large-Signal Response, AV = 2  
Power Supplies  
When the LT1206 is used to drive capacitive loads, the  
available output current can limit the overall slew rate. In  
the fastest configuration, the LT1206 is capable of a slew  
rate of over 1V/ns. The current required to slew a capaci-  
tor at this rate is 1mA per picofarad of capacitance, so  
10,000pF would require 10A! The photo (Figure 6) shows  
The LT1206 will operate from single or split supplies from  
5V (10V total) to 15V (30V total). It is not necessary to  
use equal value split supplies, however the offset voltage  
and inverting input bias current will change. The offset  
voltagechangesabout500µVpervoltofsupplymismatch.  
The inverting bias current can change as much as 5µA per  
volt of supply mismatch, though typically the change is  
less than 0.5µA per volt.  
the large signal behavior with C = 10,000pF. The slew rate  
L
isabout60V/µs,determinedbythecurrentlimitof600mA.  
Thermal Considerations  
The LT1206 contains a thermal shutdown feature which  
protectsagainstexcessiveinternal(junction)temperature.  
If the junction temperature of the device exceeds the pro-  
tection threshold, the device will begin cycling between  
normal operation and an off state. The cycling is not  
harmful to the part. The thermal cycling occurs at a slow  
rate, typically 10ms to several seconds, which depends  
on the power dissipation and the thermal time constants  
of the package and heat sinking. Raising the ambient  
temperature until the device begins thermal shutdown  
gives a good indication of how much margin there is in  
the thermal design.  
±206 G06  
V
R
R
= ±±1V  
G
= ∞  
100ns/DIV  
S
L
L
= R = 3k  
Figure 6. Large-Signal Response, CL = 10,000pF  
Differential Input Signal Swing  
For surface mount devices heat sinking is accomplished  
by using the heat spreading capabilities of the PC board  
and its copper traces. Experiments have shown that the  
heat spreading copper layer does not need to be electri-  
cally connected to the tab of the device. The PCB material  
can be very effective at transmitting heat between the pad  
area attached to the tab of the device, and a ground or  
The differential input swing is limited to about 6V by  
an ESD protection device connected between the inputs.  
In normal operation, the differential voltage between the  
input pins is small, so this clamp has no effect; however,  
in the shutdown mode the differential swing can be the  
same as the input swing. The clamp voltage will then set  
1206fb  
11  
LT1206  
applicaTions inForMaTion  
power plane layer either inside or on the opposite side of  
the board. Although the actual thermal resistance of the  
PCB material is high, the length/area ratio of the thermal  
resistancebetweenthelayerissmall.Copperboardstiffen-  
ers and plated through holes can also be used to spread  
the heat generated by the device.  
Calculating Junction Temperature  
The junction temperature can be calculated from the  
equation:  
T = (P × θ ) + T  
J
D
JA  
A
where:  
Tables 1 and 2 list thermal resistance for each package.  
For the TO-220 package, thermal resistance is given for  
junction-to-caseonlysincethispackageisusuallymounted  
to a heat sink. Measured values of thermal resistance for  
several different board sizes and copper areas are listed  
for each surface mount package. All measurements were  
taken in still air on 3/32" FR-4 board with 1oz copper. This  
datacanbeusedasaroughguidelineinestimatingthermal  
resistance.Thethermalresistanceforeachapplicationwill  
beaffectedbythermalinteractionswithothercomponents  
as well as board size and shape.  
T = Junction Temperature  
J
T = Ambient Temperature  
A
P = Device Dissipation  
D
θ
= Thermal Resistance (Junction-to Ambient)  
JA  
As an example, calculate the junction temperature for the  
circuitinFigure7fortheN8,S8,andRpackagesassuming  
a 70°C ambient temperature.  
15V  
39mA  
I
+
Table 1. R Package, 7-Lead DD  
12V  
LT1206  
S/D  
COPPER AREA  
330Ω  
–12V  
THERMAL RESISTANCE  
f = 2MHz  
0.01µF  
2k  
TOPSIDE*  
BACKSIDE  
BOARD AREA (JUNCTION-TO-AMBIENT)  
2k  
300pF  
2500 sq. mm 2500 sq. mm 2500 sq. mm  
1000 sq. mm 2500 sq. mm 2500 sq. mm  
125 sq. mm 2500 sq. mm 2500 sq. mm  
*Tab of device attached to topside copper.  
25°C/W  
27°C/W  
35°C/W  
–15V  
1206 F07  
Figure 7. Thermal Calculation Example  
The device dissipation can be found by measuring the  
supply currents, calculating the total dissipation, and  
then subtracting the dissipation in the load and feedback  
network.  
Table 2. S8 Package, 8-Lead Plastic SO  
COPPER AREA  
THERMAL RESISTANCE  
TOPSIDE*  
BACKSIDE  
BOARD AREA (JUNCTION-TO-AMBIENT)  
2500 sq. mm 2500 sq. mm 2500 sq. mm  
1000 sq. mm 2500 sq. mm 2500 sq. mm  
225 sq. mm 2500 sq. mm 2500 sq. mm  
100 sq. mm 2500 sq. mm 2500 sq. mm  
100 sq. mm 1000 sq. mm 2500 sq. mm  
100 sq. mm 225 sq. mm 2500 sq. mm  
100 sq. mm 100 sq. mm 2500 sq. mm  
*Pins 1 and 8 attached to topside copper.  
60°C/W  
62°C/W  
65°C/W  
69°C/W  
73°C/W  
80°C/W  
83°C/W  
2
P = (39mA × 30V) – (12V) /(2k||2k) = 1.03W  
D
Then:  
T = (1.03W × 100°C/W) + 70°C = 173°C  
J
for the N8 package.  
T = (1.03W × 65°C/W) × + 70°C = 137°C  
J
for the S8 with 225 sq. mm topside heat sinking.  
T = (1.03W × 35°C/W) × + 70°C = 106°C  
J
Y Package, 7-Lead TO-220  
Thermal Resistance (Junction-to-Case) = 5°C/W  
for the R package with 100 sq. mm topside heat  
sinking.  
N8 Package, 8-Lead DIP  
Since the maximum junction temperature is 150°C, the  
N8 package is clearly unacceptable. Both the S8 and R  
packages are usable.  
Thermal Resistance (Junction-to-Ambient) = 100°C/W  
1206fb  
12  
LT1206  
applicaTions inForMaTion  
Precision ×10 Hi Current Amplifier  
CMOS Logic to Shutdown Interface  
15V  
V
+
IN  
LT1097  
+
+
LT1206  
COMP  
S/D  
24k  
OUT  
LT1206  
S/D  
0.01µF  
500pF  
1206 TA03  
5V  
–15V  
330Ω  
3k  
10k  
2N3904  
10k  
1206 TA02  
OUTPUT OFFSET: < 500µV  
SLEW RATE: 2V/µs  
1k  
BANDWIDTH: 4MHz  
STABLE WITH C < 10nF  
L
Low Noise ×10 Buffered Line Driver  
Distribution Amplifier  
15V  
1µF  
15V  
1µF  
V
+
IN  
75Ω CABLE  
+
75Ω  
+
+
LT1206  
S/D  
75Ω  
LT1115  
+
75Ω  
R
R
OUTPUT  
F
LT1206  
S/D  
1µF  
75Ω  
75Ω  
+
0.01µF  
R
L
1206 TA05  
–15V  
G
1µF  
68pF  
+
–15V  
560Ω  
909Ω  
560Ω  
1206 TA04  
100Ω  
R
O
= 32Ω  
L
V
= 5V  
RMS  
THD + NOISE = 0.0009% AT 1kHz  
= 0.004% AT 20kHz  
SMALL SIGNAL 0.1dB BANDWIDTH = 600kHz  
Buffer AV = 1  
V
+
IN  
LT1206  
COMP  
S/D  
V
OUT  
*OPTIONAL, USE WITH CAPACITIVE LOADS  
**VALUE OF R DEPENDS ON SUPPLY  
F
0.01µF*  
VOLTAGE AND LOADING. SELECT  
FROM TYPICAL AC PERFORMANCE  
TABLE OR DETERMINE EMPIRICALLY  
R **  
F
1206 TA06  
1206fb  
13  
LT1206  
package DescripTion  
N8 Package  
8-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510)  
.400*  
(10.160)  
MAX  
8
7
6
5
4
.255 .015*  
(6.477 0.381)  
1
2
3
.130 .005  
.300 – .325  
.045 – .065  
(3.302 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
.065  
(1.651)  
TYP  
.008 – .015  
(0.203 – 0.381)  
.120  
.020  
(0.508)  
MIN  
(3.048)  
MIN  
+.035  
.325  
–.015  
.018 .003  
(0.457 0.076)  
.100  
(2.54)  
BSC  
+0.889  
8.255  
(
)
N8 1002  
–0.381  
NOTE:  
INCHES  
1. DIMENSIONS ARE  
MILLIMETERS  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
1206fb  
14  
LT1206  
package DescripTion  
R Package  
7-Lead Plastic DD Pak  
(Reference LTC DWG # 05-08-1462 Rev E)  
.060  
(1.524)  
TYP  
.390 – .415  
(9.906 – 10.541)  
.060  
(1.524)  
.256  
(6.502)  
.165 – .180  
(4.191 – 4.572)  
.045 – .055  
(1.143 – 1.397)  
15° TYP  
.060  
(1.524)  
+.008  
.004  
.183  
(4.648)  
–.004  
.059  
(1.499)  
TYP  
.330 – .370  
(8.382 – 9.398)  
+0.203  
–0.102  
0.102  
(
)
.095 – .115  
(2.413 – 2.921)  
.075  
(1.905)  
.300  
(7.620)  
.050  
(1.27)  
BSC  
.050 ± .012  
(1.270 ± 0.305)  
.013 – .023  
(0.330 – 0.584)  
+.012  
.143  
–.020  
.026 – .035  
(0.660 – 0.889)  
TYP  
BOTTOM VIEW OF DD PAK  
HATCHED AREA IS SOLDER PLATED  
COPPER HEAT SINK  
+0.305  
3.632  
(
)
–0.508  
.420  
.276  
.080  
.420  
.350  
.325  
.205  
.320  
.585  
.585  
.090  
.035  
.090  
.035  
.050  
.050  
RECOMMENDED SOLDER PAD LAYOUT  
NOTE:  
RECOMMENDED SOLDER PAD LAYOUT  
FOR THICKER SOLDER PASTE APPLICATIONS  
R (DD7) 0710 REV E  
1. DIMENSIONS IN INCH/(MILLIMETER)  
2. DRAWING NOT TO SCALE  
1206fb  
15  
LT1206  
package DescripTion  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
.045 .005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.160 .005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 .005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
T7 Package  
7-Lead Plastic TO-220 (Standard)  
(Reference LTC DWG # 05-08-1422)  
.165 – .180  
(4.191 – 4.572)  
.147 – .155  
(3.734 – 3.937)  
DIA  
.390 – .415  
(9.906 – 10.541)  
.045 – .055  
(1.143 – 1.397)  
.230 – .270  
(5.842 – 6.858)  
.570 – .620  
(14.478 – 15.748)  
.620  
(15.75)  
TYP  
.460 – .500  
(11.684 – 12.700)  
.330 – .370  
(8.382 – 9.398)  
.700 – .728  
(17.780 – 18.491)  
.095 – .115  
(2.413 – 2.921)  
.155 – .195*  
(3.937 – 4.953)  
SEATING PLANE  
.152 – .202  
(3.860 – 5.130)  
.260 – .320  
(6.604 – 8.128)  
.013 – .023  
(0.330 – 0.584)  
.050  
BSC  
.026 – .036  
(0.660 – 0.914)  
(1.27)  
.135 – .165  
(3.429 – 4.191)  
*MEASURED AT THE SEATING PLANE  
T7 (TO-220) 0801  
1206fb  
16  
LT1206  
revision hisTory (Revision history begins at Rev B)  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
B
3/11  
Updated note on Table 2 in the Applications Information section.  
12  
1206fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
17  
LT1206  
relaTeD parTs  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1010  
High Speed Buffer  
High Power, High Speed Buffer  
Adjustable Supply Current, Shutdown  
Adjustable Supply Current, Shutdown  
0.1dB Gain Flatness to 100MHz  
S6 Version Features Programmable Supply Current  
LT1207  
Dual 250mA Out, 900V/µs, 60MHz Current Feedback Amplifier  
1.1A, 35MHz, 900V/µs Current Feedback Amplifier  
Single 400MHz Current Feedback Amplifier  
LT1210  
LT1395  
LT1815  
6.5mA, 220MHz, 1.5V/ns Operational Amplifier with  
Programmable Current  
LT1818  
400MHz, 2500V/µs, 9mA Single Operational Amplifier  
High Speed, Low Noise, Low Distortion, Low Offset  
1206fb  
LT 0311 REV B • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
18  
LINEAR TECHNOLOGY CORPORATION 1993  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

35339-1211

2.50mm (.098") Pitch Wire-to-Board Header, 1.27mm (.050") Tab, Right Angle, ComboType , 12 Circuits, Black
MOLEX

353391216

2.50mm (.098") Pitch Wire-to-Board Header, 1.27mm (.050") Tab, Right Angle, ComboType , 12 Circuits, Green
MOLEX

35339126

2.50mm (.098") Pitch Wire-to-Board Header, 1.27mm (.050") Tab, Right Angle, ComboType , 12 Circuits, Green
MOLEX

3534

PHOTO ELECTRIC CELL
NXP

3534

Adapter BNC (Female-Male) Right Angle
POMONA

3534

Adapter BNC (Female-Male) Right Angle
3M

35340-0210

FSM Bulb Connector Header
MOLEX

353481

This specification covers the requirements for product performance
MACOM

353482

This specification covers the requirements for product performance
MACOM

3535

LCR HiTESTER
ASM-SENSOR

3535

Adapter BNC (Male) To “N” (Female)
POMONA

3535-0707-01

Cable Assembly
WINCHESTER