TP1541NA [3PEAK]

Stable 1.3MHz, Precision, RRIO, Op Amps;
TP1541NA
型号: TP1541NA
厂家: 3PEAK    3PEAK
描述:

Stable 1.3MHz, Precision, RRIO, Op Amps

文件: 总18页 (文件大小:1647K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TP1541A/ TP1541NA/TP1542A/TP1544A  
3PEAK  
Stable 1.3MHz, Precision, RRIO, Op Amps  
Description  
Features  
TP154xA series are CMOS single/dual/quad  
op-amps with low offset, stable high frequency  
response, low power, low supply voltage, and  
rail-to-rail inputs and outputs. They incorporate  
3PEAKs proprietary and patented design  
techniques to achieve best in-class performance  
among all micro-power CMOS amplifiers in its  
power class. The TP154xA family can be used as  
plug-in replacements for many commercially  
available op-amps to reduce power and improve  
input/output range and performance.  
Stable 1.3MHz GBWP Over Temperature Range  
Stable 1.3MHz GBWP in VCM from 0V to VDD  
0.7V/μs Slew Rate  
Only 80μA of Supply Current per Amplifier  
Excellent EMIRR: 80dB(1GHz)  
Offset Voltage: 400uV Maximum  
Offset Voltage Temperature Drift: 1uV/°C  
Input Bias Current: 1pA Typical  
THD+Noise: -105dB at 1kHz, -90dB at 10kHz  
High CMRR/PSRR: 95dB/90dB  
TP154xA are unity gain stable with Any Capacitive  
load with a constant 1.3MHz GBWP, 0.7V/μs slew  
rate while consuming only 80μA of quiescent current  
per amplifier. Analog trim and calibration routine  
reduce input offset voltage to below 0.4mV, and  
proprietary precision temperature compensation  
technique makes offset voltage temperature drift at  
Beyond the Rails Input Common-Mode Range  
High Output Current: 100mA  
No Phase Reversal for Overdriven Inputs  
Drives 2kΩ Resistive Loads  
1μV/°C.  
Adaptive  
biasing  
and  
dynamic  
Shutdown Current: 0.2μA (TP1541NA)  
Single +2.1V to +6.0V Supply Voltage Range  
40°C to 125°C Operation Temperature Range  
compensation enables the TP154xA to achieve  
„THD+Noisefor 1kHz/10kHz 2VPP signal at -105dB  
and -90dB, respectively. Beyond the rails input and  
rail-to-rail output characteristics allow the full  
power-supply voltage to be used for signal range.  
ESD Rating:  
Robust 8KV HBM, 2KV CDM and 500V MM  
This combination of features makes the TP154xA  
ideal choices for battery-powered applications  
because they minimize errors due to power supply  
voltage variations over the lifetime of the battery and  
maintain high CMRR even for a rail-to-rail input  
op-amp. General audio output, remote battery-  
powered sensors, and smoke detector can benefit  
from the features of the TP154xA op-amps.  
Green, Popular Type Package  
Applications  
Audio Output  
Active Filters, ASIC Input or Output Amplifier  
Portable Instruments and Mobile Equipment  
Battery or Solar Powered Systems  
Smoke/Gas/Environment Sensors  
Piezo Electrical Transducer Amplifier  
Medical Equipment  
For applications that require power-down, the  
TP1541NA in popular type packages has  
a
low-power shutdown mode that reduces supply current  
to 0.2μA, and forces the output into a high-impedance  
state.  
PCMCIA Cards  
3PEAK and the 3PEAK logo are registered trademarks of  
3PEAK INCORPORATED. All other trademarks are the property  
of their respective owners.  
Pin Configuration(Top View)  
TP1541A  
TP1542A  
8-Pin SOIC/TSSOP/MSOP  
5-Pin SOT23/SC70  
(-T and -C Suffixes)  
(-S, -T and -V Suffixes)  
TP1544A  
14-Pin SOIC/TSSOP  
1
5
4
Out  
Vs  
1
2
3
4
8
Out A  
Vs  
(-S and -T Suffixes)  
2
3
In A  
7
6
5
Vs  
Out B  
In B  
In B  
A
1
2
3
4
5
6
7
14  
13 In D  
Out A  
In A  
In A  
Vs  
Out D  
+In  
-In  
In A  
Vs  
B
A
B
D
C
12  
11  
In D  
Vs  
TP1541NA  
6-Pin SC70  
(-C Suffix)  
TP1542A  
8-Pin DFN  
10 In C  
In B  
In B  
Out B  
(-F Suffix)  
9
8
In C  
1
6
+In  
-VS  
-In  
+VS  
Out C  
8
7
6
5
Vs  
1
Out A  
In A  
In A  
2
3
5
4
SHDN  
Out  
2
3
4
Out B  
In B  
In B  
Vs  
www.3peakic.com.cn  
Rev. B.04  
1
TP1541A/TP1541NA/TP1542A/TP1544A  
Stable 1.3MHz, Precision, RRIO, Op Amps  
Note 1  
Absolute Maximum Ratings  
Supply Voltage: V+ V....................................7.0V  
Input Voltage............................. V0.3 to V+ + 0.3  
Input Current: +IN, IN, SHDN Note 2.............. ±10mA  
Output Short-Circuit Duration Note 3............ Infinite  
Operating Temperature Range.......40°C to 125°C  
Maximum Junction Temperature................... 150°C  
Storage Temperature Range.......... 65°C to 150°C  
Lead Temperature (Soldering, 10 sec) ......... 260°C  
Differential Input Voltage................................ ±7V  
SHDN Pin Voltage……………………………Vto V+  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any  
Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.  
Note 2: The inputs are protected by ESD protection diodes to each power supply. If the input extends more than 500mV beyond the power  
supply, the input current should be limited to less than 10mA.  
Note 3: A heat sink may be required to keep the junction temperature below the absolute maximum. This depends on the power supply  
voltage and how many amplifiers are shorted. Thermal resistance varies with the amount of PC board metal connected to the package. The  
specified values are for short traces connected to the leads.  
ESD, Electrostatic Discharge Protection  
Symbol  
HBM  
Parameter  
Human Body Model ESD  
Machine Model ESD  
Condition  
Minimum Level  
Unit  
kV  
MIL-STD-883H Method 3015.8  
JEDEC-EIA/JESD22-A115  
JEDEC-EIA/JESD22-C101E  
8
MM  
500  
2
V
CDM  
Charged Device Model ESD  
kV  
Order Information  
Marking  
Information  
Model Name  
Order Number  
Package  
Transport Media, Quantity  
Tape and Reel, 3000  
TP1541A  
TP1541A-TR  
TP1541NA-CR  
TP1542A-SR  
TP1542A-VR  
TP1542A-FR  
TP1544A-SR  
TP1544A-TR  
5-Pin SOT23  
6-Pin SC70  
8-Pin SOIC  
8-Pin MSOP  
8-Pin DFN  
541  
54N  
TP1541NA  
Tape and Reel, 3000  
Tape and Reel, 4000  
Tape and Reel, 3000  
Tape and Reel, 3000  
Tape and Reel, 2500  
Tape and Reel, 3000  
1542A  
1542A  
542  
TP1542A  
TP1544A  
14-Pin SOIC  
14-Pin TSSOP  
1544A  
1544A  
Rev. B.04  
www.3peakic.com.cn  
2
TP1541A/TP1541NA/TP1542A/TP1544A  
Stable 1.3MHz, Precision, RRIO, Op Amps  
Electrical Characteristics  
The specifications are at TA = 27° C. VS = 5V, VCM = 2.5V, RL = 2kΩ, CL =100pF, Unless otherwise noted.  
SYMBOL  
PARAMETER  
Input Offset Voltage  
CONDITIONS  
VCM = 0V to 3V  
MIN  
TYP  
MAX  
UNITS  
VOS  
-400  
± 50  
1
+400  
μV  
μV/° C  
pA  
VOS TC  
Input Offset Voltage Drift  
-40°C to 125°C  
TA = 27 °C  
1
10  
IB  
Input Bias Current  
25  
0.001  
7
TA = 85 °C  
pA  
IOS  
Vn  
Input Offset Current  
Input Voltage Noise  
pA  
f = 0.1Hz to 10Hz  
f = 1kHz  
μVPP  
27  
en  
in  
Input Voltage Noise Density  
Input Current Noise  
nV/√Hz  
f = 1kHz  
2
fA/√Hz  
Differential  
Common Mode  
7.76  
6.87  
CIN  
CMRR  
VCM  
Input Capacitance  
pF  
dB  
V
Common Mode Rejection Ratio  
VCM = 0.1V to 2.6V  
85  
95  
Common-mode Input Voltage  
Range  
V-0.3  
V++0.3  
PSRR  
AVOL  
VOL, VOH  
ROUT  
RO  
Power Supply Rejection Ratio  
Open-Loop Large Signal Gain  
Output Swing from Supply Rail  
Closed-Loop Output Impedance  
Open-Loop Output Impedance  
Output Short-Circuit Current  
Output Current  
VCM = 2.5V, VS = 3V to 5V  
RLOAD = 10kΩ  
77  
98  
90  
120  
3
dB  
dB  
mV  
Ω
RLOAD = 10kΩ  
6
G = 1, f =1kHz, IOUT = 0  
f = 1kHz, IOUT = 0  
0.002  
125  
100  
50  
Ω
ISC  
Sink or source current  
Sink or source current, Output 1V Drop  
90  
mA  
mA  
V
IO  
VDD  
Supply Voltage  
2.1  
6.0  
IQ  
Quiescent Current per Amplifier  
Phase Margin  
VS = 5V  
80  
65  
15  
1.3  
110  
μA  
°
PM  
RLOAD = 1kΩ, CLOAD = 60pF  
RLOAD = 1kΩ, CLOAD = 60pF  
f = 1kHz  
GM  
Gain Margin  
dB  
MHz  
GBWP  
Gain-Bandwidth Product  
AV = 1, VOUT = 1.5V to 3.5V, CLOAD = 60pF,  
RLOAD = 1kΩ  
SR  
tS  
Slew Rate  
0.7  
V/μs  
μs  
Settling Time, 0.1%  
Settling Time, 0.01%  
Total Harmonic Distortion and  
Noise  
3.7  
4.9  
AV = 1, VOUT = 1V Step  
THD+N  
f = 1kHz, AV =1, RL = 2kΩ, VOUT = 1Vp-p  
-105  
dB  
Xtalk  
Channel Separation  
f = 1kHz, RL = 2kΩ  
VS = 5V  
110  
0.2  
dB  
μA  
μA  
μA  
pA  
pA  
V
IQ(OFF)  
Supply Current in Shutdown  
VSHDN = 0.5V  
-0.15  
-0.15  
-20  
ISHDN  
Shutdown Pin Current  
VSHDN = 1.5V  
VSHDN = 0V, VOUT = 0V  
VSHDN = 0V, VOUT = 5V  
Disable  
Output Leakage Current in  
Shutdown  
ILEAK  
20  
VIL  
VIH  
tON  
SHDN Input Low Voltage  
SHDN Input High Voltage  
Turn-On Time  
0.5  
Enable  
1.0  
V
SHDN Toggle from 0V to 5V  
SHDN Toggle from 5V to 0V  
20  
20  
ms  
ms  
tOFF  
Turn-Off Time  
www.3peakic.com.cn  
Rev. B.04  
3
TP1541A/TP1541NA/TP1542A/TP1544A  
Stable 1.3MHz, Precision, RRIO, Op Amps  
Typical Performance Characteristics  
VS = ±2.75V, VCM = 0V, RL = Open, unless otherwise specified.  
Offset Voltage Production Distribution  
Unity Gain Bandwidth vs. Temperature  
2.0  
1.8  
1.5  
1.3  
1.0  
0.8  
0.5  
0.3  
0.0  
3000  
Number =46247pcs  
2500  
2000  
1500  
1000  
500  
0
-50  
0
50  
100  
150  
Offset Voltage(μV)  
Temperature()  
Open-Loop Gain and Phase  
Input Voltage Noise Spectral Density  
1000  
100  
10  
140  
120  
100  
80  
200  
150  
100  
50  
Phase  
60  
40  
Gain  
0
20  
0
-50  
-100  
-150  
-20  
-40  
-60  
1
1
10  
100  
1k  
10k  
100k  
1M  
0.1  
10  
1k  
100k  
10M  
1000M  
Frequency(Hz)  
Frequency (Hz)  
Input Bias Current vs. Temperature  
Input Bias Current vs. Input Common Mode Voltage  
50  
0
40  
30  
20  
10  
0
-5  
-10  
-15  
-20  
-25  
-10  
-40  
-20  
0
20  
40  
60  
80  
100 120  
0
1
2
3
4
5
Temperature()  
Common Mode Voltage(V)  
Rev. B.04  
www.3peakic.com.cn  
4
TP1541A/TP1541NA/TP1542A/TP1544A  
Stable 1.3MHz, Precision, RRIO, Op Amps  
Typical Performance Characteristics  
VS = ±2.75V, VCM = 0V, RL = Open, unless otherwise specified. (Continued)  
Common Mode Rejection Ratio  
CMRR vs. Frequency  
160  
140  
120  
100  
80  
140  
120  
100  
80  
60  
60  
40  
40  
20  
20  
0
0
0
1
2
3
4
5
1
10  
100  
1k  
10k  
100k  
1M  
Common-mode Voltage(V)  
Frequency(Hz)  
Quiescent Current vs. Temperature  
Short Circuit Current vs. Temperature  
120  
140  
120  
100  
80  
VCM= 2.5V  
100  
80  
60  
40  
20  
0
I
SOURCE  
VCM= 5.0V  
VCM= 0V  
I
SINK  
60  
40  
20  
0
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Temperature()  
Temperature()  
Power-Supply Rejection Ratio  
Quiescent Current vs. Supply Voltage  
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
PSRR+  
PSRR-  
-20  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0.1  
10  
1k  
100k  
Supply Voltage (V)  
Frequency(Hz)  
www.3peakic.com.cn  
Rev. B.04  
5
TP1541A/TP1541NA/TP1542A/TP1544A  
Stable 1.3MHz, Precision, RRIO, Op Amps  
Typical Performance Characteristics  
VS = ±2.75V, VCM = 0V, RL = Open, unless otherwise specified. (Continued)  
PSRR vs. Temperature  
CMRR vs. Temperature  
140  
120  
100  
80  
120  
100  
80  
60  
40  
20  
0
60  
40  
20  
0
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Temperature()  
Temperature()  
EMIRR IN+ vs. Frequency  
Large-Scale Step Response  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Gain =1  
RL = 10kΩ  
1
10  
100  
1000  
Time (50μs/div)  
Frequency (MHz)  
Negative Over-Voltage Recovery  
Positive Over-Voltage Recovery  
Gain =+10  
Gain =+10  
±V=±2.5V  
±V=±2.5V  
Time (50μs/div)  
Time (50μs/div)  
Rev. B.04  
www.3peakic.com.cn  
6
TP1541A/TP1541NA/TP1542A/TP1544A  
Stable 1.3MHz, Precision, RRIO, Op Amps  
Typical Performance Characteristics  
VS = ±2.75V, VCM = 0V, RL = Open, unless otherwise specified. (Continued)  
0.1 Hz TO 10 Hz Input Voltage Noise  
Offset Voltage vs Common-Mode Voltage  
200  
100  
0
-100  
-200  
-300  
-400  
-500  
-600  
-700  
-800  
-900  
0
1
2
3
4
5
Time (1s/div)  
Common-mode voltage(V)  
Positive Output Swing vs. Load Current  
Negative Output Swing vs. Load Current  
120  
0
25℃  
-40℃  
125℃  
-20  
-40  
100  
80  
60  
40  
20  
0
-60  
-80  
-100  
-120  
-140  
25  
-40℃  
125℃  
0
1
2
3
4
5
0
1
2
3
4
5
Vout Dropout (V)  
Vout Dropout (V)  
Offset Voltage vs. Temperature  
80  
70  
60  
50  
40  
30  
20  
10  
0
-50  
0
50  
100  
150  
Temperature()  
www.3peakic.com.cn  
Rev. B.04  
7
TP1541A/TP1541NA/TP1542A/TP1544A  
Stable 1.3MHz, Precision, RRIO, Op Amps  
Pin Functions  
IN: Inverting Input of the Amplifier. Voltage range  
-VS: Negative Power Supply. It is normally tied to  
ground. It can also be tied to a voltage other than  
ground as long as the voltage between V+ and Vis  
from 2.1V to 6V. If it is not connected to ground,  
bypass it with a capacitor of 0.1μF as close to the  
part as possible.  
of this pin can go from V0.3V to V+ + 0.3V.  
+IN: Non-Inverting Input of Amplifier. This pin has  
the same voltage range as IN.  
+VS: Positive Power Supply. Typically the voltage is  
from 2.1V to 6V. Split supplies are possible as long  
as the voltage between V+ and Vis between 2.1V  
and 6V. A bypass capacitor of 0.1μF as close to the  
part as possible should be used between power  
supply pins or between supply pins and ground.  
SHDN: Active Low Shutdown. Shutdown threshold  
is 1.0V above negative supply rail. If unconnected,  
the amplifier is automatically enabled.  
OUT: Amplifier Output. The voltage range extends  
to within millivolts of each supply rail.  
N/C: No Connection.  
Operation  
The TP154xA family input signal range extends  
beyond the negative and positive power supplies.  
The output can even extend all the way to the  
negative supply. The input stage is comprised of  
two CMOS differential amplifiers, a PMOS stage  
and NMOS stage that are active over different  
ranges of common mode input voltage. The  
Class-AB control buffer and output bias stage uses  
a proprietary compensation technique to take full  
advantage of the process technology to drive very  
high capacitive loads. This is evident from the  
transient over shoot measurement plots in the  
Typical Performance Characteristics.  
Applications Information  
Low Supply Voltage and Low Power Consumption  
The TP154xA family of operational amplifiers can operate with power supply voltages from 2.1V to 6.0V. Each  
amplifier draws only 80μA quiescent current. The low supply voltage capability and low supply current are ideal  
for portable applications demanding HIGH CAPACITIVE LOAD DRIVING CAPABILITY and CONSTANT WIDE  
BANDWIDTH. The TP154xA family is optimized for wide bandwidth low power applications. They have an  
industry leading high GBWP to power ratio and are unity gain stable for ANY CAPACITIVE load. When the load  
capacitance increases, the increased capacitance at the output pushed the non-dominant pole to lower frequency  
in the open loop frequency response, lowering the phase and gain margin. Higher gain configurations tend to  
have better capacitive drive capability than lower gain configurations due to lower closed loop bandwidth and  
hence higher phase margin.  
Low Input Referred Noise  
The TP154xA family provides a low input referred noise density of 27nV/Hz at 1kHz. The voltage noise will  
grow slowly with the frequency in wideband range, and the input voltage noise is typically 7μVP-P at the frequency  
of 0.1Hz to 10Hz.  
Low Input Offset Voltage  
The TP154xA family has a low offset voltage of 400μV maximum which is essential for precision applications. The  
offset voltage is trimmed with a proprietary trim algorithm to ensure low offset voltage for precision signal  
processing requirement.  
Rev. B.04  
www.3peakic.com.cn  
8
TP1541A/TP1541NA/TP1542A/TP1544A  
Stable 1.3MHz, Precision, RRIO, Op Amps  
Low Input Bias Current  
The TP154xA family is a CMOS OPA family and features very low input bias current in pA range. The low input  
bias current allows the amplifiers to be used in applications with high resistance sources. Care must be taken to  
minimize PCB Surface Leakage. See below section on “PCB Surface Leakage” for more details.  
PCB Surface Leakage  
In applications where low input bias current is critical, Printed Circuit Board (PCB) surface leakage effects need to  
be considered. Surface leakage is caused by humidity, dust or other contamination on the board. Under low  
humidity conditions, a typical resistance between nearby traces is 1012Ω. A 5V difference would cause 5pA of  
current to flow, which is greater than the TP154xA OPA‟s input bias current at +27°C (±1pA, typical). It is  
recommended to use multi-layer PCB layout and route the OPA‟s -IN and +IN signal under the PCB surface.  
The effective way to reduce surface leakage is to use a guard ring around sensitive pins (or traces). The guard  
ring is biased at the same voltage as the sensitive pin. An example of this type of layout is shown in Figure 1 for  
Inverting Gain application.  
1. For Non-Inverting Gain and Unity-Gain Buffer:  
a) Connect the non-inverting pin (VIN+) to the input with a wire that does not touch the PCB surface.  
b) Connect the guard ring to the inverting input pin (VIN). This biases the guard ring to the Common Mode input voltage.  
2. For Inverting Gain and Trans-impedance Gain Amplifiers (convert current to voltage, such as photo detectors):  
a) Connect the guard ring to the non-inverting input pin (VIN+). This biases the guard ring to the same reference voltage as  
the op-amp (e.g., VDD/2 or ground).  
b) Connect the inverting pin (VIN) to the input with a wire that does not touch the PCB surface.  
Guard Ring  
VIN+  
VIN-  
+VS  
Figure 1  
Ground Sensing and Rail to Rail Output  
The TP154xA family has excellent output drive capability, delivering over 100mA of output drive current. The  
output stage is a rail-to-rail topology that is capable of swinging to within 10mV of either rail. Since the inputs can  
go 300mV beyond either rail, the op-amp can easily perform „true ground‟ sensing.  
The maximum output current is a function of total supply voltage. As the supply voltage to the amplifier increases,  
the output current capability also increases. Attention must be paid to keep the junction temperature of the IC  
below 150°C when the output is in continuous short-circuit. The output of the amplifier has reverse-biased ESD  
diodes connected to each supply. The output should not be forced more than 0.5V beyond either supply,  
otherwise current will flow through these diodes.  
ESD  
The TP154xA family has reverse-biased ESD protection diodes on all inputs and output. Input and out pins can  
not be biased more than 300mV beyond either supply rail.  
Shut-down  
The single channel OPA versions have SHDN pins that can shut down the amplifier to less than 0.2μA supply  
current. The SHDN pin voltage needs to be within 0.5V of Vfor the amplifier to shut down. During shutdown, the  
output will be in high output resistance state, which is suitable for multiplexer applications. When left floating, the  
SHDN pin is internally pulled up to the positive supply and the amplifier remains enabled.  
www.3peakic.com.cn  
Rev. B.04  
9
TP1541A/TP1541NA/TP1542A/TP1544A  
Stable 1.3MHz, Precision, RRIO, Op Amps  
Driving Large Capacitive Load  
The TP154xA family of OPA is designed to drive large capacitive loads. Refer to Typical Performance  
Characteristics for “Phase Margin vs. Load Capacitance”. As always, larger load capacitance decreases overall  
phase margin in a feedback system where internal frequency compensation is utilized. As the load capacitance  
increases, the feedback loop‟s phase margin decreases, and the closed-loop bandwidth is reduced. This  
produces gain peaking in the frequency response, with overshoot and ringing in output step response. The  
unity-gain buffer (G = +1V/V) is the most sensitive to large capacitive loads.  
When driving large capacitive loads with the TP154xA OPA family (e.g., > 200 pF when G = +1V/V), a small  
series resistor at the output (RISO in Figure 3) improves the feedback loop‟s phase margin and stability by making  
the output load resistive at higher frequencies.  
Riso  
Vout  
Vin  
Cload  
Figure 3  
Power Supply Layout and Bypass  
The TP154xA OPA‟s power supply pin (VDD for single-supply) should have a local bypass capacitor (i.e., 0.01μF  
to 0.1μF) within 2mm for good high frequency performance. It can also use a bulk capacitor (i.e., 1μF or larger)  
within 100mm to provide large, slow currents. This bulk capacitor can be shared with other analog parts.  
Ground layout improves performance by decreasing the amount of stray capacitance and noise at the OPA‟s  
inputs and outputs. To decrease stray capacitance, minimize PC board lengths and resistor leads, and place  
external components as close to the op amps‟ pins as possible.  
Proper Board Layout  
To ensure optimum performance at the PCB level, care must be taken in the design of the board layout. To avoid  
leakage currents, the surface of the board should be kept clean and free of moisture. Coating the surface creates  
a barrier to moisture accumulation and helps reduce parasitic resistance on the board.  
Keeping supply traces short and properly bypassing the power supplies minimizes power supply disturbances  
due to output current variation, such as when driving an ac signal into a heavy load. Bypass capacitors should be  
connected as closely as possible to the device supply pins. Stray capacitances are a concern at the outputs and  
the inputs of the amplifier. It is recommended that signal traces be kept at least 5mm from supply lines to minimize  
coupling.  
A variation in temperature across the PCB can cause a mismatch in the Seebeck voltages at solder joints and  
other points where dissimilar metals are in contact, resulting in thermal voltage errors. To minimize these  
thermocouple effects, orient resistors so heat sources warm both ends equally. Input signal paths should contain  
matching numbers and types of components, where possible to match the number and type of thermocouple  
junctions. For example, dummy components such as zero value resistors can be used to match real resistors in  
the opposite input path. Matching components should be located in close proximity and should be oriented in the  
same manner. Ensure leads are of equal length so that thermal conduction is in equilibrium. Keep heat sources  
on the PCB as far away from amplifier input circuitry as is practical.  
The use of a ground plane is highly recommended. A ground plane reduces EMI noise and also helps to maintain  
a constant temperature across the circuit board.  
Instrumentation Amplifier  
The TP154xA OPA series is well suited for conditioning sensor signals in battery-powered applications. Figure 4  
shows a two op-amp instrumentation amplifier, using the TP154xA OPA.  
The circuit works well for applications requiring rejection of Common Mode noise at higher gains. The reference  
voltage (VREF) is supplied by a low-impedance source. In single voltage supply applications, VREF is typically  
VDD/2.  
Rev. B.04  
www.3peakic.com.cn  
10  
TP1541A/TP1541NA/TP1542A/TP1544A  
Stable 1.3MHz, Precision, RRIO, Op Amps  
RG  
R1  
R2  
R2  
R1  
Vout  
Vref  
V2  
V2  
R
2R  
1 ) VREF  
R2 RG  
1
VOUT =(V V2 )(1  
1
Figure 4  
Gain-of-100 Amplifier Circuit  
Figure 5 shows a Gain-of-100 amplifier circuit using two TP154xA OPAs. It draws 160uA total current from  
supply rail, and has a -3dB frequency at 100kHz.  
Figure 6 shows the small signal frequency response of the circuit.  
+0.9V  
Vin  
Vout  
-0.9V  
90.9K  
90.9K  
10K  
10K  
Figure 5: 100kHz, 160μA Gain-of-100 Amplifier  
Figure 6: Frequency response of 100kHz, 160uA Gain-of-100 Amplifier  
Buffered Chemical Sensor (pH) Probe  
The TP154xA OPA has input bias current in the pA range. This is ideal in buffering high impedance chemical  
sensors such as pH probe. As an example, the circuit in Figure 7 eliminates expansive low-leakage cables that  
that is required to connect pH probe to metering ICs such as ADC, AFE and/or MCU. A TP154xA OPA and a  
lithium battery are housed in the probe assembly. A conventional low-cost coaxial cable can be used to carry  
OPA‟s output signal to subsequent ICs for pH reading.  
www.3peakic.com.cn  
Rev. B.04  
11  
TP1541A/TP1541NA/TP1542A/TP1544A  
Stable 1.3MHz, Precision, RRIO, Op Amps  
BATTERY  
3V  
(DURACELL  
DL1620)  
GENERAL PURPOSE  
COMBINATION  
pH PROBE  
COAX  
(CORNING 476540)  
R1  
10M  
To  
pH  
PROBE  
ADC/AFE/MCU  
R2  
10M  
ALL COMPONENTS CONTAJNED WITHIN THE pH PROBE  
Figure 7: Buffer pH Probe  
Two-Pole Micro-power Sallen-Key Low-Pass Filter  
Figure 8 shows a micro-power two-pole Sallen-Key Low-Pass Filter with 400Hz cut-off frequency. For best  
results, the filter‟s cut-off frequency should be 8 to 10 times lower than the OPA‟s crossover frequency. Additional  
OPA‟s phase margin shift can be avoided if the OPA‟s bandwidth-to-signal ratio is greater than 8. The design  
equations for the 2-pole Sallen-Key low-pass filter are given below with component values selected to set a  
400Hz low-pass filter cutoff frequency:  
C1  
400pF  
Vin  
Vout  
R1  
1MOhm  
R2  
1MOhm  
C2  
400pF  
R1= R2 = R = 1M  
C1= C2 = C = 400pF  
R4  
2MOhm  
Q = Filter Peaking Factor = 1  
f-3dB = 1/(2 RC) = 400Hz  
R3  
2MOhm  
R3 = R4 /(2-1/Q) ; with Q = 1, R3 =R4  
Figure 8  
Portable Gas Sensor Amplifier  
Gas sensors are used in many different industrial and medical applications. Gas sensors generate a current that  
is proportional to the percentage of a particular gas concentration sensed in an air sample. This output current  
flows through a load resistor and the resultant voltage drop is amplified. Depending on the sensed gas and  
sensitivity of the sensor, the output current can be in the range of tens of microamperes to a few milli-amperes.  
Gas sensor datasheets often specify a recommended load resistor value or a range of load resistors from which  
to choose.  
There are two main applications for oxygen sensors applications which sense oxygen when it is abundantly  
present (that is, in air or near an oxygen tank) and those which detect traces of oxygen in parts-per-million  
concentration. In medical applications, oxygen sensors are used when air quality or oxygen delivered to a patient  
needs to be monitored. In fresh air, the concentration of oxygen is 20.9% and air samples containing less than 18%  
oxygen are considered dangerous. In industrial applications, oxygen sensors are used to detect the absence of  
oxygen; for example, vacuum-packaging of food products.  
The circuit in Figure 9 illustrates a typical implementation used to amplify the output of an oxygen detector. With  
the components shown in the figure, the circuit consumes less than 37μA of supply current ensuring that small  
form-factor single- or button-cell batteries (exhibiting low mAh charge ratings) could last beyond the operating life  
of the oxygen sensor. The precision specifications of these amplifiers, such as their low offset voltage, low TC-VOS,  
Rev. B.04  
www.3peakic.com.cn  
12  
TP1541A/TP1541NA/TP1542A/TP1544A  
Stable 1.3MHz, Precision, RRIO, Op Amps  
low input bias current, high CMRR, and high PSRR are other factors which make these amplifiers excellent  
choices for this application.  
10MOhm  
1%  
100KOhm  
1%  
Vout  
Oxygen Sensor  
City Technology  
4OX2  
100KOhm  
1%  
VOUT 1Vin Air ( 21% O2 )  
I
100Ohm  
1%  
O2  
IDD 0.7uA  
Figure 9  
www.3peakic.com.cn  
Rev. B.04  
13  
TP1541A/TP1541NA/TP1542A/TP1544A  
Stable 1.3MHz, Precision, RRIO, Op Amps  
Package Outline Dimensions  
SC70-5(SC70-6)  
Dimensions  
In Millimeters In Inches  
Min Max Min Max  
Dimensions  
Symbol  
A
0.900 1.100 0.035 0.043  
0.000 0.100 0.000 0.004  
0.900 1.000 0.035 0.039  
0.150 0.350 0.006 0.014  
0.080 0.150 0.003 0.006  
2.000 2.200 0.079 0.087  
1.150 1.350 0.045 0.053  
2.150 2.450 0.085 0.096  
A1  
A2  
b
C
D
E
E1  
e
0.650TYP  
1.200 1.400 0.047 0.055  
0.525REF 0.021REF  
0.260 0.460 0.010 0.018  
0° 8° 0° 8°  
0.026TYP  
e1  
L
L1  
θ
SOT23-5(SOT23-6)  
Dimensions  
In Millimeters In Inches  
Min Max Min Max  
Dimensions  
Symbol  
A
1.050 1.250 0.041 0.049  
0.000 0.100 0.000 0.004  
1.050 1.150 0.041 0.045  
0.300 0.400 0.012 0.016  
0.100 0.200 0.004 0.008  
2.820 3.020 0.111 0.119  
1.500 1.700 0.059 0.067  
2.650 2.950 0.104 0.116  
A1  
A2  
b
C
D
E
E1  
e
0.950TYP  
1.800 2.000 0.071 0.079  
0.700REF 0.028REF  
0.300 0.460 0.012 0.024  
0° 8° 0° 8°  
0.037TYP  
e1  
L
L1  
θ
Rev. B.04  
www.3peakic.com.cn  
14  
TP1541A/TP1541NA/TP1542A/TP1544A  
Stable 1.3MHz, Precision, RRIO, Op Amps  
Package Outline Dimensions  
SOIC-8  
Dimensions  
Dimensions In  
Inches  
In Millimeters  
Symbol  
Min  
Max  
Min  
Max  
A
1.350  
0.100  
1.350  
0.330  
0.190  
4.780  
3.800  
5.800  
1.270TYP  
0.400  
0°  
1.750  
0.250  
1.550  
0.510  
0.250  
5.000  
4.000  
6.300  
0.053  
0.004  
0.053  
0.013  
0.007  
0.188  
0.150  
0.228  
0.050TYP  
0.016  
0°  
0.069  
0.010  
0.061  
0.020  
0.010  
0.197  
0.157  
0.248  
A1  
A2  
B
C
D
E
E1  
e
L1  
θ
1.270  
8°  
0.050  
8°  
MSOP-8  
Dimensions  
Dimensions In  
Inches  
In Millimeters  
Symbol  
Min  
Max  
Min  
Max  
A
0.800  
0.000  
0.760  
0.30 TYP  
0.15 TYP  
2.900  
0.65 TYP  
2.900  
4.700  
0.410  
0°  
1.200  
0.200  
0.970  
0.031  
0.000  
0.030  
0.012 TYP  
0.006 TYP  
0.114  
0.026  
0.114  
0.185  
0.016  
0°  
0.047  
0.008  
0.038  
A1  
A2  
b
C
D
3.100  
0.122  
e
E
3.100  
5.100  
0.650  
6°  
0.122  
0.201  
0.026  
6°  
E1  
L1  
θ
www.3peakic.com.cn  
Rev. B.04  
15  
TP1541A/TP1541NA/TP1542A/TP1544A  
Stable 1.3MHz, Precision, RRIO, Op Amps  
Package Outline Dimensions  
DFN-8  
Dimensions  
Dimensions In Inches  
In Millimeters  
Symbol  
Min  
0.80  
0.00  
Nom  
0.85  
0.02  
Max  
0.9  
Min  
Nom  
0.033  
0.001  
0.008  
0.009  
0.079  
0.079  
0.024  
0.047  
0.20  
Max  
A
0.031  
0.000  
0.035  
0.002  
0.010  
0.012  
0.083  
0.083  
0.028  
0.051  
A1  
A2  
b
0.05  
0.153 0.203  
0.253 0.006  
0.18  
1.9  
1.9  
0.5  
1.1  
0.24  
2.0  
0.30  
2.1  
2.1  
0.7  
1.3  
0.007  
0.075  
0.075  
0.020  
0.043  
D
E
2.0  
D1  
E1  
e
0.6  
1.2  
0.50  
k
0.2  
0.008  
0.010  
L
0.25  
0.35  
0.45  
0.014  
0.018  
Rev. B.04  
www.3peakic.com.cn  
16  
TP1541A/TP1541NA/TP1542A/TP1544A  
Stable 1.3MHz, Precision, RRIO, Op Amps  
Package Outline Dimensions  
SOIC-14  
Dimensions  
In Millimeters  
Symbol  
MIN  
NOM  
1.60  
0.15  
1.45  
0.65  
MAX  
A
1.35  
0.10  
1.25  
0.55  
0.36  
0.35  
0.16  
0.15  
8.53  
5.80  
3.80  
1.75  
0.25  
1.65  
0.75  
0.49  
0.45  
0.25  
0.25  
8.73  
6.20  
4.00  
A1  
A2  
A3  
b
b1  
c
0.40  
c1  
D
0.20  
8.63  
E
6.00  
E1  
e
3.90  
1.27 BSC  
0.60  
L
0.45  
0.80  
L1  
L2  
R
1.04 REF  
0.25 BSC  
0.07  
0.07  
0.30  
0°  
R1  
h
0.40  
0.50  
8°  
θ
θ1  
θ2  
θ3  
θ4  
6°  
8°  
8°  
7°  
7°  
10°  
10°  
9°  
6°  
5°  
5°  
9°  
www.3peakic.com.cn  
Rev. B.04  
17  
TP1541A/TP1541NA/TP1542A/TP1544A  
Stable 1.3MHz, Precision, RRIO, Op Amps  
Package Outline Dimensions  
TSSOP-14  
Dimensions  
Symbol  
In Millimeters  
MIN  
NOM  
MAX  
A
-
-
-
1.20  
0.15  
1.05  
0.54  
0.28  
0.24  
0.19  
0.15  
5.06  
6.60  
4.50  
A1  
A2  
A3  
b
0.05  
0.90  
0.34  
0.20  
0.20  
0.10  
0.10  
4.86  
6.20  
4.30  
1.00  
0.44  
-
b1  
c
0.22  
-
c1  
D
0.13  
4.96  
6.40  
4.40  
0.65 BSC  
0.60  
E
E1  
e
L
0.45  
0.75  
L1  
L2  
R
1.00 REF  
0.25 BSC  
0.09  
-
-
-
R1  
s
0.09  
-
0.20  
-
θ1  
θ2  
θ3  
0°  
-
8°  
10°  
12°  
12°  
14°  
14°  
10°  
Rev. B.04  
www.3peakic.com.cn  
18  

相关型号:

TP1541NA-CR

Stable 1.3MHz, Precision, RRIO, Op Amps

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
3PEAK

TP1542A

Stable 1.3MHz, Precision, RRIO, Op Amps

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
3PEAK

TP1542A-FR

Stable 1.3MHz, Precision, RRIO, Op Amps

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
3PEAK

TP1542A-SR

Stable 1.3MHz, Precision, RRIO, Op Amps

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
3PEAK

TP1542A-VR

Stable 1.3MHz, Precision, RRIO, Op Amps

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
3PEAK

TP1544A

Stable 1.3MHz, Precision, RRIO, Op Amps

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
3PEAK

TP1544A-SR

Stable 1.3MHz, Precision, RRIO, Op Amps

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
3PEAK

TP1544A-TR

Stable 1.3MHz, Precision, RRIO, Op Amps

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
3PEAK

TP1561

Stable 3.8MHz, 130μA, RRIO, EveryCapTM Op Amps

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
3PEAK

TP1561-CR

Stable 3.8MHz, 130μA, RRIO, EveryCapTM Op Amps

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
3PEAK

TP1561-SR

Stable 3.8MHz, 130μA, RRIO, EveryCapTM Op Amps

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
3PEAK

TP1561-TR

Stable 3.8MHz, 130μA, RRIO, EveryCapTM Op Amps

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
3PEAK