TP1562A-SR [3PEAK]

Stable 6MHz, 500μA, RRIO, Precision, Op Amps;
TP1562A-SR
型号: TP1562A-SR
厂家: 3PEAK    3PEAK
描述:

Stable 6MHz, 500μA, RRIO, Precision, Op Amps

文件: 总19页 (文件大小:1743K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TP1561A/ TP1561NA/TP1562A/TP1564A  
Stable 6MHz, 500μA, RRIO, Precision, Op Amps  
Description  
3PEAK  
Features  
The TP156xA series are CMOS single, dual, and  
quad RRIO op-amps with low offset, low power and  
stable high frequency response. They incorporate  
3PEAKs proprietary and patented design  
techniques to achieve very good AC performance  
with 6MHz bandwidth, 4.5V/μs slew rate and low  
distortion while drawing only 500μA of quiescent  
current per amplifier. The input common-mode  
voltage range extends 300mV beyond Vand V+,  
and the outputs swing rail-to-rail. The TP156xA  
family can be used as plug-in replacements for  
many commercially available op-amps to reduce  
power and improve input/output range and  
performance.  
Stable 6 MHz GBWP in VCM from 0V to VS  
Excellent EMI Suppress Performance  
Offset Voltage: ±400 μV Maximum  
Offset Voltage Temperature Drift: 1 μV/°C  
Input Bias Current: 1 pA Typical  
THD+Noise: -115 dB at 1kHz, -99 dB at 10kHz  
High CMRR/PSRR: 110/95 dB  
Beyond the Rails Input Common-Mode Range  
Outputs Swing to within 3 mV of Each Rail  
No Phase Reversal for Overdriven Inputs  
High Output Capability: 100mA  
The TP156xA Op-amps are unity gain stable with  
any capacitive load. They operate from either single  
+2.1V to +6.0V supply or dual ±1.05V to ±3.0V  
supplies. Analog trim and calibration routine reduce  
input offset voltage to below 400μV, and proprietary  
precision temperature compensation technique  
makes offset voltage temperature drift at 1μV/°C.  
Adaptive biasing and dynamic compensation  
enables the TP156xA to achieve „THD +Noisefor  
1kHz/10kHz 2VPP signal at -115dB/ -99dB. Beyond  
the rails input and rail-to-rail output characteristics  
allow the full power-supply voltage to be used for  
signal range.  
Shutdown Current: 0.2 μA (TP1561NA)  
Supply Voltage Range:  
-
-
Single +2.1 V to +6.0 V Supply  
Or Dual ±1.05 V to ±3.0 V Supplies  
40°C to 125°C Operation Temperature Range  
ESD Rating: 8KV HBM, 2KVCDM and 500VMM  
Green, Popular Type Package  
Applications  
Multimedia Audio  
Headphone Drivers  
LCD Drivers  
The combination of features makes the TP156xA  
ideal choices for audio amplification of computers,  
sound ports, and other consumer Audio. The  
TP156xA Op-amp is very stable, and it is capable of  
driving heavy capacitive loads such as those found  
in LCDs. The ability to swing rail-to-rail at the inputs  
and outputs enables designers to buffer CMOS  
DACs, ASICs, or other wide output swing devices in  
single-supply systems.  
Photo Diode Pre-amp  
Medical Equipments  
Portable Devices  
ASIC Input or Output  
Sensor Interfaces  
3PEAK and the 3PEAK logo are registered trademarks of  
3PEAK INCORPORATED. All other trademarks are the property  
of their respective owners.  
Pin Configuration(Top View)  
TP1561A  
5-Pin SOT23/SC70  
-T and -C Suffixes  
TP1564A  
TP1562A  
14-Pin SOIC/TSSOP  
1
2
3
5
4
8-Pin SOIC/TSSOP/MSOP  
Out  
Vs  
-S and -T Suffixes  
-S, -T and -V Suffixes  
Vs  
1
2
3
4
5
6
7
14  
13 In D  
Out A  
In A  
In A  
Vs  
Out D  
+In  
-In  
1
2
3
4
8
Out A  
Vs  
A
B
D
C
In A  
7
6
5
Out B  
In B  
In B  
A
12  
11  
In D  
Vs  
In A  
Vs  
TP1561NA  
6-Pin SOT23  
(-T Suffix)  
B
10 In C  
In B  
In B  
Out B  
9
8
In C  
1
2
3
6
5
4
Out  
Vs  
Out C  
Vs  
SHDN  
-In  
+In  
www.3peakic.com.cn  
Rev. B.03  
1
TP1561A/ TP1561NA/TP1562A/TP1564A  
Stable 6MHz, 500μA, RRIO, Precision Op Amps  
Note 1  
Absolute Maximum Ratings  
Supply Voltage: V+ V.......................................7V  
Input Voltage............................. V0.3 to V+ + 0.3  
Differential Input Voltage................................ ...±7V  
Input Current: +IN, IN, SHDN Note 2.............. ±20mA  
SHDN Pin Voltage……………………………Vto V+  
Output Short-Circuit Duration Note 3............ Infinite  
Operating Temperature Range.......40°C to 125°C  
Maximum Junction Temperature................... 150°C  
Storage Temperature Range.......... 65°C to 150°C  
Lead Temperature (Soldering, 10 sec) ......... 260°C  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any  
Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.  
Note 2: The inputs are protected by ESD protection diodes to each power supply. If the input extends more than 300mV beyond the power  
supply, the input current should be limited to less than 10mA.  
Note 3: A heat sink may be required to keep the junction temperature below the absolute maximum. This depends on the power supply  
voltage and how many amplifiers are shorted. Thermal resistance varies with the amount of PC board metal connected to the package. The  
specified values are for short traces connected to the leads.  
ESD, Electrostatic Discharge Protection  
Symbol  
HBM  
Parameter  
Human Body Model ESD  
Machine Model ESD  
Condition  
Minimum Level  
Unit  
kV  
MIL-STD-883H Method 3015.8  
JEDEC-EIA/JESD22-A115  
JEDEC-EIA/JESD22-C101E  
8
MM  
500  
2
V
CDM  
Charged Device Model ESD  
kV  
Order Information  
Marking  
Information  
Model Name  
Order Number  
Package  
Transport Media, Quantity  
Tape and Reel, 3000  
TP1561A-TR  
TP1561A-CR  
TP1561NA-TR  
TP1562A-SR  
TP1562A-VR  
TP1562A-TR  
TP1564A-SR  
TP1564A-TR  
5-Pin SOT23  
5-Pin SC70  
561  
TP1561A  
Tape and Reel, 3000  
Tape and Reel, 3000  
Tape and Reel, 4000  
Tape and Reel, 3000  
Tape and Reel, 3000  
Tape and Reel, 2500  
Tape and Reel, 3000  
561  
TP1561NA  
6-Pin SOT23  
8-Pin SOIC  
56N  
1562A  
1562A  
1562A  
1564A  
1564A  
TP1562A  
TP1564A  
8-Pin MSOP  
8-Pin TSSOP  
14-Pin SOIC  
14-Pin TSSOP  
Rev. B.03  
www.3peakic.com.cn  
2
TP1561A/ TP1561NA/TP1562A/TP1564A  
Stable 6MHz, 500μA, RRIO, Precision Op Amps  
Electrical Characteristics  
The specifications are at TA = 27° C. VS = 5.0 V, RL = 2kΩ, CL =100pF, unless otherwise noted.  
SYMBOL  
PARAMETER  
Input Offset Voltage  
CONDITIONS  
VCM = 0V to 3V  
MIN  
TYP  
MAX  
UNITS  
VOS  
-400  
± 50  
1
+400  
2
μV  
μV/° C  
pA  
VOS TC  
Input Offset Voltage Drift  
-40°C to 125°C  
TA = 27 °C  
1
10  
IB  
Input Bias Current  
25  
0.001  
8
TA = 85 °C  
pA  
IOS  
VN  
Input Offset Current  
Input Voltage Noise  
pA  
f = 0.1Hz to 10Hz  
f = 1kHz  
μVPP  
19  
eN  
iN  
Input Voltage Noise Density  
Input Current Noise  
nV/√Hz  
f = 1kHz  
Differential  
Common Mode  
2
8
7
fA/√Hz  
CIN  
Input Capacitance  
pF  
CMRR  
CMRR  
Common Mode Rejection Ratio  
Common Mode Rejection Ratio  
VCM = 0V to 2.5V  
VCM = 0V to 5V  
90  
63  
110  
dB  
dB  
Common-mode Input Voltage  
Range  
VCM  
V-0.1  
V+-0.1  
15  
V
PSRR  
AVOL  
VOL, VOH  
ROUT  
ISC  
Power Supply Rejection Ratio  
Open-Loop Large Signal Gain  
Output Swing from Supply Rail  
Closed-Loop Output Impedance  
Output Short-Circuit Current  
Output Current  
VCM = 1/2 VS, VS = 3V to 5V  
RLOAD = 10kΩ  
80  
95  
95  
105  
3
dB  
dB  
mV  
Ω
RLOAD = 10kΩ  
G = 1, f =1kHz, IOUT = 0  
Sink or source current  
Sink or source current, Output 1V Drop  
0.024  
100  
50  
mA  
mA  
V
IO  
VDD  
Supply Voltage  
2.1  
6.0  
IQ  
Quiescent Current per Amplifier  
VS = 5V  
500  
0.2  
800  
μA  
μA  
μA  
μA  
pA  
pA  
V
IQ(OFF)  
Supply Current in Shutdown Note 1 VS = 5V  
VSHDN = 0.5V  
-0.15  
-0.15  
-20  
ISHDN  
Shutdown Pin Current Note 1  
VSHDN = 1.5V  
VSHDN = 0V, VOUT = 0V  
VSHDN = 0V, VOUT = 5V  
Disable  
Output Leakage Current in  
Shutdown Note 1  
ILEAK  
20  
VIL  
VIH  
SHDN Input Low Voltage Note 1  
SHDN Input High Voltage Note 1  
Turn-On Time Note 1  
0.5  
Enable  
1.0  
V
tON  
SHDN Toggle from 0V to 5V  
SHDN Toggle from 5V to 0V  
RLOAD = 1kΩ, CLOAD = 60pF  
RLOAD = 1kΩ, CLOAD = 60pF  
f = 1kHz  
20  
20  
60  
15  
6
μs  
tOFF  
Turn-Off Time Note 1  
μs  
PM  
Phase Margin  
°
GM  
Gain Margin  
dB  
MHz  
GBWP  
Gain-Bandwidth Product  
AV = 1, VOUT = 1.5V to 3.5V, CLOAD = 60pF,  
RLOAD = 1kΩ  
SR  
tS  
Slew Rate  
3.6  
4.5  
V/μs  
μs  
Settling Time, 0.1%  
Settling Time, 0.01%  
Total Harmonic Distortion and  
Noise  
AV = 1, 2V Step, CLOAD = 60pF, RLOAD  
=
0.8  
1
1kΩ  
THD+N  
Xtalk  
f = 1kHz, AV =1, RL = 2kΩ, VOUT = 1Vp-p  
0.0003  
110  
%
Channel Separation  
f = 1kHz, RL = 2kΩ  
dB  
Note 1: Specifications apply to the TP1561NA with shutdown  
www.3peakic.com.cn  
Rev. B.03  
3
TP1561A/ TP1561NA/TP1562A/TP1564A  
Stable 6MHz, 500μA, RRIO, Precision Op Amps  
Typical Performance Characteristics  
VS = ±2.75V, VCM = 0V, RL = Open, unless otherwise specified.  
Offset Voltage Production Distribution  
Unity Gain Bandwidth vs. Temperature  
10  
9
8
7
6
5
4
3
2
1
0
450  
Number = 9162 pcs  
400  
350  
300  
250  
200  
150  
100  
50  
0
-50  
0
50  
100  
150  
-500 -400 -300 -200 -100  
0
100 200 300 400  
Temperature()  
Offset Voltage(μV)  
Open-Loop Gain and Phase  
Input Voltage Noise Spectral Density  
120  
100  
80  
200  
150  
100  
50  
1000  
100  
10  
60  
40  
20  
0
0
-50  
-100  
-150  
-20  
-40  
-60  
1
1
10  
100  
1k  
10k  
100k  
1M  
10M  
0.1  
10  
1k  
100k  
10M  
Frequency(Hz)  
Frequency (Hz)  
Input Bias Current vs. Temperature  
Input Bias Current vs. Input Common Mode Voltage  
250  
200  
150  
100  
50  
0
-5  
-10  
-15  
-20  
-25  
0
-50  
-40 -20  
0
20  
40  
60  
80 100 120 140  
0
1
2
3
4
5
Temperature()  
Common Mode Voltage(V)  
Rev. B.03  
www.3peakic.com.cn  
4
TP1561A/ TP1561NA/TP1562A/TP1564A  
Stable 6MHz, 500μA, RRIO, Precision Op Amps  
Typical Performance Characteristics  
VS = ±2.75V, VCM = 0V, RL = Open, unless otherwise specified. (Continued)  
Offset Voltage vs. Common-Mode Voltage  
CMRR vs. Frequency  
20  
0
-20  
-40  
-60  
-80  
-100  
-120  
0
1
2
3
4
5
Common-mode voltage(V)  
Quiescent Current vs. Temperature  
Short Circuit Current vs. Temperature  
140  
120  
100  
80  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
ISOURCE  
ISINK  
60  
40  
20  
0
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Temperature()  
Temperature()  
Power-Supply Rejection Ratio  
Quiescent Current vs. Supply Voltage  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Supply Voltage(V)  
www.3peakic.com.cn  
Rev. B.03  
5
TP1561A/ TP1561NA/TP1562A/TP1564A  
Stable 6MHz, 500μA, RRIO, Precision Op Amps  
Typical Performance Characteristics  
VS = ±2.75V, VCM = 0V, RL = Open, unless otherwise specified. (Continued)  
PSRR vs. Temperature  
CMRR vs. Temperature  
140  
120  
100  
80  
120  
100  
80  
60  
40  
20  
0
60  
40  
20  
0
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Temperature()  
Temperature()  
EMIRR IN+ vs. Frequency  
Large-Scale Step Response  
140  
120  
100  
80  
Gain=+1  
RL=10kΩ  
60  
40  
20  
0
1
10  
100  
1000  
Time (500μs/div)  
Frequency(MHz)  
Negative Over-Voltage Recovery  
Positive Over-Voltage Recovery  
Rev. B.03  
www.3peakic.com.cn  
6
TP1561A/ TP1561NA/TP1562A/TP1564A  
Stable 6MHz, 500μA, RRIO, Precision Op Amps  
Typical Performance Characteristics  
VS = ±2.75V, VCM = 0V, RL = Open, unless otherwise specified. (Continued)  
0.1 Hz TO 10 Hz Input Voltage Noise  
Negative Output Swing vs. Load Current  
0
-40℃  
25℃  
-20  
-40  
125℃  
-60  
-80  
-100  
-120  
-140  
0
1
2
3
4
5
Time (1s/div)  
Vout Dropout(V)  
Positive Output Swing vs. Load Current  
140  
120  
100  
80  
60  
40  
-40℃  
20  
25℃  
125℃  
0
0
1
2
3
4
5
Vout Dropout(V)  
www.3peakic.com.cn  
Rev. B.03  
7
TP1561A/ TP1561NA/TP1562A/TP1564A  
Stable 6MHz, 500μA, RRIO, Precision Op Amps  
Pin Functions  
IN: Inverting Input of the Amplifier. Voltage range  
-VS: Negative Power Supply. It is normally tied to  
ground. It can also be tied to a voltage other than  
ground as long as the voltage between V+ and Vis  
from 2.1V to 6V. If it is not connected to ground,  
bypass it with a capacitor of 0.1μF as close to the  
part as possible.  
of this pin can go from V0.3V to V+ + 0.3V.  
+IN: Non-Inverting Input of Amplifier. This pin has  
the same voltage range as IN.  
+VS: Positive Power Supply. Typically the voltage is  
from 2.1V to 6V. Split supplies are possible as long  
as the voltage between V+ and Vis between 2.1V  
and 6V. A bypass capacitor of 0.1μF as close to the  
part as possible should be used between power  
supply pins or between supply pins and ground.  
SHDN: Active Low Shutdown. Shutdown threshold  
is 1.0V above negative supply rail. If unconnected,  
the amplifier is automatically enabled.  
OUT: Amplifier Output. The voltage range extends  
to within millivolts of each supply rail.  
N/C: No Connection.  
Operation  
The TP156xA family input signal range extends  
beyond the negative and positive power supplies.  
The output can even extend all the way to the  
negative supply. The input stage is comprised of  
two CMOS differential amplifiers, a PMOS stage  
and NMOS stage that are active over different  
ranges of common mode input voltage. The  
Class-AB control buffer and output bias stage uses  
a proprietary compensation technique to take full  
advantage of the process technology to drive very  
high capacitive loads. This is evident from the  
transient over shoot measurement plots in the  
Typical Performance Characteristics.  
Applications Information  
Low Supply Voltage and Low Power Consumption  
The TP156xA family of operational amplifiers can operate with power supply voltages from 2.1 V to 6.0 V. Each  
amplifier draws only 500 μA quiescent current. The low supply voltage capability and low supply current are ideal  
for portable applications demanding high capacitive load driving capability and stable wide bandwidth. The  
TP156xA family is optimized for wide bandwidth low power applications. They have an industry leading high  
GBWP to power ratio and are unity gain stable for any capacitive load. When the load capacitance increases, the  
increased capacitance at the output pushed the non-dominant pole to lower frequency in the open loop frequency  
response, lowering the phase and gain margin. Higher gain configurations tend to have better capacitive drive  
capability than lower gain configurations due to lower closed loop bandwidth and hence higher phase margin.  
Low Input Referred Noise  
The TP156xA family provides a low input referred noise density of 19 nV/Hz at 1 kHz. The voltage noise will  
grow slowly with the frequency in wideband range, and the input voltage noise is typically 8 μVP-P at the frequency  
of 0.1 Hz to 10 Hz.  
Low Input Offset Voltage  
The TP156xA family has a low offset voltage of 400 μV maximum which is essential for precision applications.  
The offset voltage is trimmed with a proprietary trim algorithm to ensure low offset voltage for precision signal  
processing requirement.  
Low Input Bias Current  
The TP156xA family is a CMOS OPA family and features very low input bias current in pA range. The low input  
bias current allows the amplifiers to be used in applications with high resistance sources. Care must be taken to  
minimize PCB Surface Leakage. See below section on “PCB Surface Leakage” for more details.  
PCB Surface Leakage  
Rev. B.03  
www.3peakic.com.cn  
8
TP1561A/ TP1561NA/TP1562A/TP1564A  
Stable 6MHz, 500μA, RRIO, Precision Op Amps  
In applications where low input bias current is critical, Printed Circuit Board (PCB) surface leakage effects need to  
be considered. Surface leakage is caused by humidity, dust or other contamination on the board. Under low  
humidity conditions, a typical resistance between nearby traces is 1012 Ω. A 5 V difference would cause 5 pA of  
current to flow, which is greater than the TP156xA OPA‟s input bias current at +27°C (±1pA, typical). It is  
recommended to use multi-layer PCB layout and route the OPA‟s -IN and +IN signal under the PCB surface.  
The effective way to reduce surface leakage is to use a guard ring around sensitive pins (or traces). The guard  
ring is biased at the same voltage as the sensitive pin. An example of this type of layout is shown in Figure 1 for  
Inverting Gain application.  
1. For Non-Inverting Gain and Unity-Gain Buffer:  
a) Connect the non-inverting pin (VIN+) to the input with a wire that does not touch the PCB surface.  
b) Connect the guard ring to the inverting input pin (VIN). This biases the guard ring to the Common Mode input voltage.  
2. For Inverting Gain and Trans-impedance Gain Amplifiers (convert current to voltage, such as photo detectors):  
a) Connect the guard ring to the non-inverting input pin (VIN+). This biases the guard ring to the same reference voltage as  
the op-amp (e.g., VDD/2 or ground).  
b) Connect the inverting pin (VIN) to the input with a wire that does not touch the PCB surface.  
Guard Ring  
VIN+  
VIN-  
+VS  
Figure 1  
Ground Sensing and Rail to Rail Output  
The TP156xA family has excellent output drive capability, delivering over 100 mA of output drive current. The  
output stage is a rail-to-rail topology that is capable of swinging to within 10mV of either rail. Since the inputs can  
go 300 mV beyond either rail, the op-amp can easily perform „true ground‟ sensing.  
The maximum output current is a function of total supply voltage. As the supply voltage to the amplifier increases,  
the output current capability also increases. Attention must be paid to keep the junction temperature of the IC  
below 150°C when the output is in continuous short-circuit. The output of the amplifier has reverse-biased ESD  
diodes connected to each supply. The output should not be forced more than 0.5V beyond either supply,  
otherwise current will flow through these diodes.  
ESD  
The TP156xA family has reverse-biased ESD protection diodes on all inputs and output. Input and out pins can  
not be biased more than 300 mV beyond either supply rail.  
Feedback Components and Suppression of Ringing  
Care should be taken to ensure that the pole formed by the feedback resistors and the parasitic capacitance at  
the inverting input does not degrade stability. For example, in a gain of +2 configuration with gain and feedback  
resistors of 10k, a poorly designed circuit board layout with parasitic capacitance of 5 pF (part +PC board) at the  
amplifier‟s inverting input will cause the amplifier to ring due to a pole formed at 8.1 MHz. An additional capacitor  
of 5 pF across the feedback resistor as shown in Figure 2 will eliminate any ringing.  
Careful layout is extremely important because low power signal conditioning applications demand  
high-impedance circuits. The layout should also minimize stray capacitance at the OPA‟s inputs. However some  
stray capacitance may be unavoidable and it may be necessary to add a 2 pF to 10 pF capacitor across the  
feedback resistor. Select the smallest capacitor value that ensures stability.  
www.3peakic.com.cn  
Rev. B.03  
9
TP1561A/ TP1561NA/TP1562A/TP1564A  
Stable 6MHz, 500μA, RRIO, Precision Op Amps  
5pF  
10KOhm  
Vout  
Vin  
CPAR  
10KOhm  
Figure 2  
Shut-down  
The single channel OPA versions have SHDN pins that can shut down the amplifier to less than 0.2 μA supply  
current. The SHDN pin voltage needs to be within 0.5 V of Vfor the amplifier to shut down. During shutdown, the  
output will be in high output resistance state, which is suitable for multiplexer applications. When left floating, the  
SHDN pin is internally pulled up to the positive supply and the amplifier remains enabled.  
Driving Large Capacitive Load  
The TP156xA family of OPA is designed to drive large capacitive loads. Refer to Typical Performance  
Characteristics for “Phase Margin vs. Load Capacitance”. As always, larger load capacitance decreases overall  
phase margin in a feedback system where internal frequency compensation is utilized. As the load capacitance  
increases, the feedback loop‟s phase margin decreases, and the closed-loop bandwidth is reduced. This  
produces gain peaking in the frequency response, with overshoot and ringing in output step response. The  
unity-gain buffer (G = +1V/V) is the most sensitive to large capacitive loads.  
When driving large capacitive loads with the TP156xA OPA family (e.g., > 200 pF when G = +1V/V), a small  
series resistor at the output (RISO in Figure 3) improves the feedback loop‟s phase margin and stability by making  
the output load resistive at higher frequencies.  
Riso  
Vout  
Vin  
Cload  
Figure 3  
Power Supply Layout and Bypass  
The TP156xA OPA‟s power supply pin (VDD for single-supply) should have a local bypass capacitor (i.e., 0.01 μF  
to 0.1 μF) within 2 mm for good high frequency performance. It can also use a bulk capacitor (i.e., 1μF or larger)  
within 100mm to provide large, slow currents. This bulk capacitor can be shared with other analog parts.  
Ground layout improves performance by decreasing the amount of stray capacitance and noise at the OPA‟s  
inputs and outputs. To decrease stray capacitance, minimize PC board lengths and resistor leads, and place  
external components as close to the op amps‟ pins as possible.  
Proper Board Layout  
To ensure optimum performance at the PCB level, care must be taken in the design of the board layout. To avoid  
leakage currents, the surface of the board should be kept clean and free of moisture. Coating the surface creates  
a barrier to moisture accumulation and helps reduce parasitic resistance on the board.  
Keeping supply traces short and properly bypassing the power supplies minimizes power supply disturbances  
due to output current variation, such as when driving an ac signal into a heavy load. Bypass capacitors should be  
Rev. B.03  
www.3peakic.com.cn  
10  
TP1561A/ TP1561NA/TP1562A/TP1564A  
Stable 6MHz, 500μA, RRIO, Precision Op Amps  
connected as closely as possible to the device supply pins. Stray capacitances are a concern at the outputs and  
the inputs of the amplifier. It is recommended that signal traces be kept at least 5mm from supply lines to minimize  
coupling.  
A variation in temperature across the PCB can cause a mismatch in the Seebeck voltages at solder joints and  
other points where dissimilar metals are in contact, resulting in thermal voltage errors. To minimize these  
thermocouple effects, orient resistors so heat sources warm both ends equally. Input signal paths should contain  
matching numbers and types of components, where possible to match the number and type of thermocouple  
junctions. For example, dummy components such as zero value resistors can be used to match real resistors in  
the opposite input path. Matching components should be located in close proximity and should be oriented in the  
same manner. Ensure leads are of equal length so that thermal conduction is in equilibrium. Keep heat sources  
on the PCB as far away from amplifier input circuitry as is practical.  
The use of a ground plane is highly recommended. A ground plane reduces EMI noise and also helps to maintain  
a constant temperature across the circuit board.  
Instrumentation Amplifier  
The TP156xA op-amp series is well suited for conditioning sensor signals in battery-powered applications. Figure  
4 shows a two op-amp instrumentation amplifier, using the TP156xA op-amps.  
The circuit works well for applications requiring rejection of Common Mode noise at higher gains. The reference  
voltage (VREF) is supplied by a low-impedance source. In single voltage supply applications, VREF is typically  
VDD/2.  
RG  
R1  
R2  
R2  
R1  
Vout  
Vref  
V2  
V2  
R
2R  
1 ) VREF  
R2 RG  
1
VOUT =(V V2 )(1  
1
Figure 4  
Gain-of-100 Amplifier Circuit  
Figure 5 shows a Gain-of-100 amplifier circuit using two TP156xA op-amps. It draws 500 uA total current from  
supply rail, and has a -3dB frequency at 100kHz.  
Figure 6 shows the small signal frequency response of the circuit.  
+0.9V  
Vin  
Vout  
-0.9V  
90.9K  
90.9K  
10K  
10K  
Figure 5: 100kHz, 500μA Gain-of-100 Amplifier  
www.3peakic.com.cn  
Rev. B.03  
11  
TP1561A/ TP1561NA/TP1562A/TP1564A  
Stable 6MHz, 500μA, RRIO, Precision Op Amps  
Figure 6: Frequency response of 100kHz, 500uA Gain-of-100 Amplifier  
Buffered Chemical Sensor (pH) Probe  
The TP156xA op-amp has input bias current in the pA range. This is ideal in buffering high impedance chemical  
sensors such as pH probe. As an example, the circuit in Figure 7 eliminates expansive low-leakage cables that  
that is required to connect pH probe to metering ICs such as ADC, AFE and/or MCU. A TP156xA op-amp and a  
lithium battery are housed in the probe assembly. A conventional low-cost coaxial cable can be used to carry  
OPA‟s output signal to subsequent ICs for pH reading.  
BATTERY  
3V  
(DURACELL  
DL1620)  
GENERAL PURPOSE  
COMBINATION  
pH PROBE  
COAX  
(CORNING 476540)  
R1  
10M  
To  
pH  
PROBE  
ADC/AFE/MCU  
R2  
10M  
ALL COMPONENTS CONTAJNED WITHIN THE pH PROBE  
Figure 7: Buffer pH Probe  
Two-Pole Micro-power Sallen-Key Low-Pass Filter  
Figure 8 shows a micro-power two-pole Sallen-Key Low-Pass Filter with 400Hz cut-off frequency. For best  
results, the filter‟s cut-off frequency should be 8 to 10 times lower than the OPA‟s crossover frequency. Additional  
OPA‟s phase margin shift can be avoided if the OPA‟s bandwidth-to-signal ratio is greater than 8. The design  
equations for the 2-pole Sallen-Key low-pass filter are given below with component values selected to set a  
400Hz low-pass filter cutoff frequency:  
C1  
400pF  
Vin  
Vout  
R1  
1MOhm  
R2  
1MOhm  
C2  
400pF  
R1= R2 = R = 1M  
C1= C2 = C = 400pF  
R4  
2MOhm  
Q = Filter Peaking Factor = 1  
f-3dB = 1/(2 RC) = 400Hz  
R3  
2MOhm  
R3 = R4 /(2-1/Q) ; with Q = 1, R3 =R4  
Figure 8  
Rev. B.03  
www.3peakic.com.cn  
12  
TP1561A/ TP1561NA/TP1562A/TP1564A  
Stable 6MHz, 500μA, RRIO, Precision Op Amps  
Portable Gas Sensor Amplifier  
Gas sensors are used in many different industrial and medical applications. Gas sensors generate a current that  
is proportional to the percentage of a particular gas concentration sensed in an air sample. This output current  
flows through a load resistor and the resultant voltage drop is amplified. Depending on the sensed gas and  
sensitivity of the sensor, the output current can be in the range of tens of microamperes to a few milli-amperes.  
Gas sensor datasheets often specify a recommended load resistor value or a range of load resistors from which  
to choose.  
There are two main applications for oxygen sensors applications which sense oxygen when it is abundantly  
present (that is, in air or near an oxygen tank) and those which detect traces of oxygen in parts-per-million  
concentration. In medical applications, oxygen sensors are used when air quality or oxygen delivered to a patient  
needs to be monitored. In fresh air, the concentration of oxygen is 20.9% and air samples containing less than 18%  
oxygen are considered dangerous. In industrial applications, oxygen sensors are used to detect the absence of  
oxygen; for example, vacuum-packaging of food products.  
The circuit in Figure 9 illustrates a typical implementation used to amplify the output of an oxygen detector. With  
the components shown in the figure, the circuit consumes less than 600μA of supply current ensuring that small  
form-factor single- or button-cell batteries (exhibiting low mAh charge ratings) could last beyond the operating life  
of the oxygen sensor. The precision specifications of these amplifiers, such as their low offset voltage, low TC-VOS,  
low input bias current, high CMRR, and high PSRR are other factors which make these amplifiers excellent  
choices for this application.  
10MOhm  
1%  
100KOhm  
1%  
Vout  
Oxygen Sensor  
City Technology  
4OX2  
100KOhm  
1%  
VOUT 1Vin Air ( 21% O2 )  
I
100Ohm  
1%  
O2  
IDD 0.7uA  
Figure 9  
www.3peakic.com.cn  
Rev. B.03  
13  
TP1561A/ TP1561NA/TP1562A/TP1564A  
Stable 6MHz, 500μA, RRIO, Precision Op Amps  
Package Outline Dimensions  
SC70-5 /SOT-353  
Dimensions  
Dimensions In  
Inches  
In Millimeters  
Symbol  
Min  
Max  
Min  
Max  
A
0.900  
0.000  
0.900  
0.150  
0.080  
2.000  
1.150  
2.150  
0.650TYP  
1.200  
0.525REF  
0.260  
0°  
1.100  
0.100  
1.000  
0.350  
0.150  
2.200  
1.350  
2.450  
0.035  
0.000  
0.035  
0.006  
0.003  
0.079  
0.045  
0.085  
0.026TYP  
0.047  
0.021REF  
0.010  
0°  
0.043  
0.004  
0.039  
0.014  
0.006  
0.087  
0.053  
0.096  
A1  
A2  
b
C
D
E
E1  
e
e1  
L
1.400  
0.055  
L1  
θ
0.460  
8°  
0.018  
8°  
SOT23-5 (SOT23-6)  
Dimensions  
Dimensions In  
Inches  
Symbol  
In Millimeters  
Min  
Max  
Min  
Max  
A
1.050  
0.000  
1.050  
0.300  
0.100  
2.820  
1.500  
2.650  
0.950TYP  
1.800  
0.700REF  
0.300  
0°  
1.250  
0.100  
1.150  
0.400  
0.200  
3.020  
1.700  
2.950  
0.041  
0.000  
0.041  
0.012  
0.004  
0.111  
0.059  
0.104  
0.037TYP  
0.071  
0.028REF  
0.012  
0°  
0.049  
0.004  
0.045  
0.016  
0.008  
0.119  
0.067  
0.116  
A1  
A2  
b
C
D
E
E1  
e
e1  
L
2.000  
0.079  
L1  
θ
0.460  
8°  
0.024  
8°  
Rev. B.03  
www.3peakic.com.cn  
14  
TP1561A/ TP1561NA/TP1562A/TP1564A  
Stable 6MHz, 500μA, RRIO, Precision Op Amps  
Package Outline Dimensions  
SO-8  
Dimensions  
Dimensions In  
Inches  
In Millimeters  
Symbol  
Min  
Max  
Min  
Max  
A
1.350  
0.100  
1.350  
0.330  
0.190  
4.780  
3.800  
5.800  
1.270TYP  
0.400  
0°  
1.750  
0.250  
1.550  
0.510  
0.250  
5.000  
4.000  
6.300  
0.053  
0.004  
0.053  
0.013  
0.007  
0.188  
0.150  
0.228  
0.050TYP  
0.016  
0°  
0.069  
0.010  
0.061  
0.020  
0.010  
0.197  
0.157  
0.248  
A1  
A2  
B
C
D
E
E1  
e
L1  
θ
1.270  
8°  
0.050  
8°  
MSOP-8  
Dimensions  
Dimensions In  
Inches  
In Millimeters  
Symbol  
Min  
Max  
Min  
Max  
A
0.800  
0.000  
0.760  
0.30 TYP  
0.15 TYP  
2.900  
0.65 TYP  
2.900  
4.700  
0.410  
0°  
1.200  
0.200  
0.970  
0.031  
0.000  
0.030  
0.012 TYP  
0.006 TYP  
0.114  
0.026  
0.114  
0.185  
0.016  
0°  
0.047  
0.008  
0.038  
A1  
A2  
b
C
D
3.100  
0.122  
e
E
3.100  
5.100  
0.650  
6°  
0.122  
0.201  
0.026  
6°  
E1  
L1  
θ
www.3peakic.com.cn  
Rev. B.03  
15  
TP1561A/ TP1561NA/TP1562A/TP1564A  
Stable 6MHz, 500μA, RRIO, Precision Op Amps  
Package Outline Dimensions  
TSSOP-8  
Symbol  
Dimensions In Millimeters  
Min Max  
3.100  
Dimensions In Inches  
Min Max  
0.122  
D
E
2.900  
4.300  
0.190  
0.090  
6.250  
0.114  
0.169  
0.007  
0.004  
0.246  
4.500  
0.300  
0.200  
6.550  
1.200  
1.000  
0.150  
0.177  
0.012  
0.008  
0.258  
0.047  
0.039  
0.006  
b
c
E1  
A
A2  
A1  
e
0.800  
0.050  
0.031  
0.002  
0.65(BSC)  
0.500  
0.026BSC)  
0.020  
L
0.700  
7°  
0.028  
7°  
H
θ
0.25(BSC)  
1°  
0.01BSC)  
1°  
Rev. B.03  
www.3peakic.com.cn  
16  
TP1561A/ TP1561NA/TP1562A/TP1564A  
Stable 6MHz, 500μA, RRIO, Precision Op Amps  
Package Outline Dimensions  
SO-14  
Dimensions  
In Millimeters  
Symbol  
MIN  
NOM  
1.60  
0.15  
1.45  
0.65  
MAX  
A
1.35  
0.10  
1.25  
0.55  
0.36  
0.35  
0.16  
0.15  
8.53  
5.80  
3.80  
1.75  
0.25  
1.65  
0.75  
0.49  
0.45  
0.25  
0.25  
8.73  
6.20  
4.00  
A1  
A2  
A3  
b
b1  
c
0.40  
c1  
D
0.20  
8.63  
E
6.00  
E1  
e
3.90  
1.27 BSC  
0.60  
L
0.45  
0.80  
L1  
L2  
R
1.04 REF  
0.25 BSC  
0.07  
0.07  
0.30  
0°  
R1  
h
0.40  
0.50  
8°  
θ
θ1  
θ2  
θ3  
θ4  
6°  
8°  
8°  
7°  
7°  
10°  
10°  
9°  
6°  
5°  
5°  
9°  
www.3peakic.com.cn  
Rev. B.03  
17  
TP1561A/ TP1561NA/TP1562A/TP1564A  
Stable 6MHz, 500μA, RRIO, Precision Op Amps  
Package Outline Dimensions  
TSSOP-14  
Dimensions  
Symbol  
In Millimeters  
MIN  
NOM  
MAX  
A
-
-
-
1.20  
0.15  
1.05  
0.54  
0.28  
0.24  
0.19  
0.15  
5.06  
6.60  
4.50  
A1  
A2  
A3  
b
0.05  
0.90  
0.34  
0.20  
0.20  
0.10  
0.10  
4.86  
6.20  
4.30  
1.00  
0.44  
-
b1  
c
0.22  
-
c1  
D
0.13  
4.96  
6.40  
4.40  
0.65 BSC  
0.60  
E
E1  
e
L
0.45  
0.75  
L1  
L2  
R
1.00 REF  
0.25 BSC  
0.09  
-
-
-
R1  
s
0.09  
-
0.20  
-
θ1  
θ2  
θ3  
0°  
-
8°  
10°  
12°  
12°  
14°  
14°  
10°  
Rev. B.03  
www.3peakic.com.cn  
18  
TP1561A/ TP1561NA/TP1562A/TP1564A  
Stable 6MHz, 500μA, RRIO, Precision Op Amps  
Tape and Reel Information  
All dimensions are nominal, unit is mm  
Order Number  
Package  
D1  
W1  
A0  
B0  
K0  
P0  
W0  
Pin1  
Quadrant  
Q3  
TP1561A-TR  
TP1561NA-TR  
TP1562A-SR  
TP1562A-VR  
TP1562A-TR  
TP1564A-SR  
TP1564A-TR  
5-Pin SOT23  
6-Pin SOT23  
8-Pin SOIC  
180.0  
180.0  
330.0  
330.0  
330.0  
330.0  
13.1  
13.1  
17.6  
17.6  
17.6  
21.6  
17.6  
3.2  
3.2  
6.4  
5.2  
6.8  
6.5  
6.8  
3.2  
3.2  
5.4  
3.3  
3.3  
9.0  
5.4  
1.4  
1.4  
2.1  
1.5  
1.2  
2.1  
1.2  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
12.0  
12.0  
12.0  
16.0  
12.0  
Q1  
8-Pin MSOP  
8-Pin TSSOP  
14-Pin SOIC  
Q1  
Q1  
Q1  
14-Pin TSSOP 330.0  
Q1  
www.3peakic.com.cn  
Rev. B.03  
19  

相关型号:

TP1562A-TR

Stable 6MHz, 500μA, RRIO, Precision, Op Amps

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
3PEAK

TP1562A-VR

Stable 6MHz, 500μA, RRIO, Precision, Op Amps

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
3PEAK

TP1562AL1

6MHz, 600μA, RRIO, Op Amps

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
3PEAK

TP1562AL1-FR

6MHz, 600μA, RRIO, Op Amps

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
3PEAK

TP1562AL1-SR

6MHz, 600μA, RRIO, Op Amps

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
3PEAK

TP1562AL1-TSR

6MHz, 600μA, RRIO, Op Amps

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
3PEAK

TP1562AL1-VR

6MHz, 600μA, RRIO, Op Amps

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
3PEAK

TP1564

6MHz, 600μA, RRIO, Op Amps

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
3PEAK

TP1564-SR

Stable 3.8MHz, 130μA, RRIO, EveryCapTM Op Amps

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
3PEAK

TP1564-TR

Stable 3.8MHz, 130μA, RRIO, EveryCapTM Op Amps

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
3PEAK

TP1564A

Stable 6MHz, 500μA, RRIO, Precision, Op Amps

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
3PEAK

TP1564A-SR

Stable 6MHz, 500μA, RRIO, Precision, Op Amps

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
3PEAK