TP1948-SR [3PEAK]

1.8V Micropower, RRIO, Open-Drain Output Comparators;
TP1948-SR
型号: TP1948-SR
厂家: 3PEAK    3PEAK
描述:

1.8V Micropower, RRIO, Open-Drain Output Comparators

文件: 总20页 (文件大小:655K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TP1945 / TP1946 / TP1948  
3PEAK  
1.8V Micropower, RRIO, Open-Drain Output Comparators  
Features  
Description  
The 3PEAK TP194x single/dual/quad micropower  
comparators feature rail-to-rail inputs and outputs,  
and fully specified single-supply operation down to  
+1.8V. The devices draw only 49μA per comparator  
while reaching 70ns high-to-low response time, and  
have open-drain outputs that can be pulled beyond  
Vto 6V (max) above ground for maximum flexibility.  
Down to 1.8V Supply Voltage: 1.8V to 5.5V  
Low Supply Current: 49 μA per Channel  
High-to-Low Propagation Delay: 70 ns  
Offset Voltage: ± 3.0 mV Maximum  
Offset Voltage Temperature Drift: 0.3 μV/°C  
In addition, their rail-to-rail input common-mode  
voltage range makes these comparators suitable for  
ultra-low-voltage operation. The input common-  
mode voltage range extends 200mV below ground  
and 200mV above supply, allowing both ground and  
supply sensing. The internal input hysteresis  
eliminates output switching due to internal input  
noise voltage, reducing current draw.  
Input Bias Current: 6 pA Typical  
Input Common-Mode Range Extends 200 mV  
Internal Hysteresis Ensures Clean Switching  
No Phase Reversal for Overdriven Inputs  
Open-Drain Output for Maximum Flexibility  
Green, Space-Saving SC70 Package Available  
A +1.8V to +5.5V single-supply operating voltage  
range makes the TP194x family of comparators  
ideal for 2-cell battery-powered applications.  
Applications  
The TP1945 single comparator is available in tiny  
SC70 package for space-conservative designs. All  
chips are specified for the temperature range of  
40°C to +85°C.  
Threshold Detectors/Discriminators  
Sensing at Ground or Supply Line  
Peak and Zero-crossing Detectors  
Logic Level Shifting or Translation  
Window Comparators  
3PEAK and the 3PEAK logo are registered trademarks of  
3PEAK INCORPORATED. All other trademarks are the property  
of their respective owners.  
IR Receivers  
Clock and Data Signal Restoration  
Telecom, Portable Communications  
Portable and Battery Powered Systems  
Related Products  
DEVICE  
DESCRIPTION  
Fast 30ns, Low Power, Internal Hysteresis,  
± 3mV Maximum VOS, 0.2V to VDD + 0.2V RRI,  
Push-Pull (CMOS/TTL) Output Comparators  
TP1951/TP1951N  
/TP1952/TP1954  
VDD  
VPU  
R3  
TP194x  
Fast 30ns, Low Power, Internal Hysteresis,  
± 3mV Maximum VOS, 0.2V to VDD + 0.2V RRI,  
Open-Drain Output Comparators  
TP1955/TP1955N  
/TP1956/TP1958  
R1  
RPU  
Fast 68ns, 46µ A Micropower, Internal Hysteresis,  
± 3mV Maximum VOS, 0.2V to VDD + 0.2V RRI,  
Push-Pull (CMOS/TTL) Output Comparators  
TP1941/TP1941N  
/TP1942/TP1944  
VOUT  
VIN  
TP1931  
/TP1932/TP1934  
950ns, 3µ A, 1.8V, ± 2.5mV VOS-MAX, Internal  
Hysteresis, RRI, Push-Pull Output Comparators  
R2  
TP1935  
/TP1936/TP1938  
950ns, 3µ A, 1.8V, ± 2.5mV VOS-MAX, Internal  
Hysteresis, RRI, Open-Drain Comparators  
Typical Application of the TP194x Comparators  
Ultra-low 200nA, 13µ s, 1.6V, ± 2mV VOS-MAX,  
Internal Hysteresis, RRI, Push-Pull (CMOS/TTL)  
Output Comparators  
TP2011  
/TP2012/TP2014  
Ultra-low 200nA, 13µ s, 1.6V, ± 2mV VOS-MAX  
Internal Hysteresis, RRI, Open-Drain Output  
Comparators  
,
TP2015  
/TP2016/TP2018  
www.3peakic.com.cn  
REV1.0  
1
TP1945 / TP1946 / TP1948  
1.8V Micropower, RRIO, Open-Drain Output Comparators  
Pin Configuration (Top View)  
TP1945  
5-Pin SOT23/SC70  
TP1945U  
5-Pin SOT23/SC70  
TP1946  
8-Pin SOT23/SOIC/MSOP  
TP1948  
14-Pin SOIC/TSSOP  
(-T, -S and -V Suffixes)  
(-S and -T Suffixes)  
(-T and -C Suffixes)  
(-T and -C Suffixes)  
1
5
4
1
2
3
5
1
2
3
4
8
7
6
5
1
2
3
4
5
6
7
14 Out D  
Out  
V-  
V+  
-In  
+In  
V-  
V+  
V+  
Out A  
In A  
In A  
V+  
Out A  
In A  
In A  
V-  
In D  
In D  
2
3
13  
12  
11  
10  
9
Out B  
A
A
B
D
C
+In  
-In  
4
Out  
In B  
In B  
B
V-  
In C  
In B  
In B  
Out B  
TP1945  
8-Pin SOIC  
(-S Suffix)  
In C  
TP1945U2  
5-Pin SOT23  
(-T Suffix)  
8
Out C  
1
2
3
4
8
7
6
5
NC  
NC  
In  
1
2
3
5
4
V+  
Out  
V+  
V-  
Out  
NC  
In  
+In  
-In  
V-  
Order Information  
Marking  
Information  
Model Name  
Order Number  
Package  
Transport Media, Quantity  
TP1945-TR  
TP1945-CR  
TP1945-SR  
TP1945U-TR  
TP1945U-CR  
TP1945U2-TR  
TP1946-TR  
TP1946-SR  
TP1946-VR  
TP1948-SR  
TP1948-TR  
5-Pin SOT23  
5-Pin SC70  
8-Pin SOIC  
5-Pin SOT23  
5-Pin SC70  
5-Pin SOT23  
8-Pin SOT23  
8-Pin SOIC  
8-Pin MSOP  
14-Pin SOIC  
14-Pin TSSOP  
Tape and Reel, 3000  
Tape and Reel, 3000  
Tape and Reel, 4000  
Tape and Reel, 3000  
Tape and Reel, 3000  
Tape and Reel, 3000  
Tape and Reel, 3000  
Tape and Reel, 4000  
Tape and Reel, 3000  
Tape and Reel, 2500  
Tape and Reel, 3000  
CT4YW (1)  
CC4YW (1)  
1945S  
CA4YW (1)  
CB4YW (1)  
CE4YW (1)  
C46YW (1)  
C46S  
TP1945  
TP1945U  
TP1945U2  
TP1946  
TP1948  
C46V  
1948S  
1948T  
Note (1): ‘YW’ is date coding scheme. 'Y' stands for calendar year, and 'W' stands for single workweek coding scheme.  
Pin Functions  
IN: Inverting Input of the Comparator. Voltage  
range of this pin can go from V0.3V to V+ + 0.3V.  
between power supply pins or between supply pins  
and ground.  
+IN: Non-Inverting Input of Comparator. This pin has  
the same voltage range as IN.  
V(VSS): Negative Power Supply. It is normally tied to  
ground. It can also be tied to a voltage other than  
ground as long as the voltage between V+ and Vis  
from 1.8V to 5.5V. If it is not connected to ground,  
bypass it with a capacitor of 0.1μF as close to the  
part as possible.  
NC: No Connection.  
V+ (VDD): Positive Power Supply. Typically the  
voltage is from 1.8V to 5.5V. Split supplies are  
possible as long as the voltage between V+ and V–  
is between 1.8V and 5.5V. A bypass capacitor of  
0.1μF as close to the part as possible should be used  
OUT: Comparator Output. The voltage range  
extends to within millivolts of each supply rail.  
REV1.0  
www.3peakic.com.cn  
2
TP1945/TP1946/TP1948  
1.8V Micropower, RRIO, Open-Drain Output Comparators  
Note 1  
Absolute Maximum Ratings  
Supply Voltage: V+ V....................................6.0V  
Open-Drain Output................................... V+ 6.0V  
Input Voltage............................. V0.3 to V+ + 0.3  
Difference Input Voltage.............V0.3 to V+ + 0.3  
Input Current: +IN, IN, Note 2..........................±10mA  
Output Short-Circuit Current........................ ±45mA  
Output Short-Circuit Duration Note 3…......... Indefinite  
Current at Output and Supply Pins............... ±50mA  
Operating Temperature Range.........40°C to 85°C  
Maximum Junction Temperature................... 150°C  
Storage Temperature Range.......... 65°C to 150°C  
Lead Temperature (Soldering, 10 sec) ......... 260°C  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any  
Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.  
Note 2: The inputs are protected by ESD protection diodes to each power supply. If the input extends more than 500mV beyond the power  
supply, the input current should be limited to less than 10mA.  
Note 3: A heat sink may be required to keep the junction temperature below the absolute maximum. This depends on the power supply voltage  
and how many amplifiers are shorted. Thermal resistance varies with the amount of PC board metal connected to the package. The specified  
values are for short traces connected to the leads.  
ESD, Electrostatic Discharge Protection  
Symbol  
HBM  
Parameter  
Human Body Model ESD  
Charged Device Model ESD  
Condition  
Minimum Level  
Unit  
kV  
kV  
MIL-STD-883H Method 3015.8  
JEDEC-EIA/JESD22-C101E  
8
2
CDM  
www.3peakic.com.cn  
REV1.0  
3
TP1945 / TP1946 / TP1948  
1.8V Micropower, RRIO, Open-Drain Output Comparators  
Electrical Characteristics  
The denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 27° C.  
VDD = +1.8V to +5.5V, VIN+ = VDD, VIN- = 1.2V, RPU=10, CL =15pF.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
1.8  
TYP  
MAX  
5.5  
UNITS  
V
VDD  
VOS  
Supply Voltage  
Input Offset Voltage Note 1  
VCM = 1.2V  
-3.0  
± 0.6  
+3.0  
mV  
VOS TC  
VHYST  
VHYST TC  
IB  
Input Offset Voltage Drift Note 1  
Input Hysteresis Voltage Note 1  
Input Hysteresis Voltage Drift Note 1  
Input Bias Current  
VCM = 1.2V  
VCM = 1.2V  
VCM = 1.2V  
VCM = 1.2V  
0.3  
μV/° C  
mV  
μV/° C  
pA  
4
6
20  
6
8
IOS  
Input Offset Current  
4
pA  
RIN  
Input Resistance  
> 100  
2
4
GΩ  
Differential  
Common Mode  
VCM = VSS to VDD  
CIN  
Input Capacitance  
pF  
dB  
V
CMRR  
VCM  
Common Mode Rejection Ratio  
Common-mode Input Voltage  
Range  
Power Supply Rejection Ratio  
Low-Level Output Voltage  
High Level Output Current leakage  
Output Short-Circuit Current  
Quiescent Current per Comparator  
50  
70  
V- 0.2  
60  
V+ + 0.2  
PSRR  
VOL  
IOH_leak  
ISC  
75  
dB  
V
nA  
mA  
μA  
IOUT=1mA  
V+ 0.3  
0.2  
Sink or source current  
25  
49  
IQ  
60  
tF  
Falling Time Note 2  
5
ns  
ns  
Propagation Delay (High-to-Low)  
tPD-  
Input Overdrive=100mV, VIN- = VSS  
70  
Note 1: The input offset voltage is the average of the input-referred trip points. The input hysteresis is the difference between the input-referred  
trip points.  
Note 2: Rising time tR and low-to-high propagation delay tPD+ dependent on the pull-up resistor RL and load capacitor CL.  
Typical Performance Characteristics  
Input Offset Voltage V.S. Temperature  
Input Hysteresis Voltage V.S. Temperature  
2.0  
10.0  
8.0  
5V  
1.0  
0.0  
1.8V  
6.0  
5V  
4.0  
1.8V  
-1.0  
-2.0  
2.0  
VCM=1.2V  
VCM=1.2V  
0.0  
-50  
0
50  
100  
-50  
0
50  
100  
Temperature ()  
Temperature ()  
REV1.0  
www.3peakic.com.cn  
4
TP1945/TP1946/TP1948  
1.8V Micropower, RRIO, Open-Drain Output Comparators  
Typical Performance Characteristics  
Quiescent Current V.S. Temperature  
Propagation Delay V.S. Temperature  
70  
100  
60  
50  
40  
30  
20  
5V  
tpd- @VDD=5V  
80  
60  
40  
20  
1.8V  
tpd- @VDD=1.8V  
VCM=1.2V  
-50  
VCM=VSS  
0
50  
100  
-50  
0
50  
100  
Temperature ()  
Temperature ()  
Propagation Delay V.S. Overdrive Voltage  
Propagation Delay V.S. Capacitor Loading  
10000  
400  
VCM=VSS  
350  
300  
250  
tpd+ @VDD=5V  
1000  
tpd- @VDD=5V  
tpd- @VDD=1.8V  
200  
150  
100  
50  
100  
tpd- @VDD=1.8V  
VCM=VSS  
10  
0
1
10  
100  
1V  
1
10  
100  
1n  
Overdrive (mV)  
Capacitive Load (pF)  
Quiescent Current V.S. Common mode Voltage  
Quiescent Current V.S. Common mode Voltage  
100  
100  
80  
80  
2785℃  
85  
27℃  
60  
60  
40  
20  
0
40  
VDD=5V  
VDD=5V  
Vin-=0V  
Vin+=Vcm  
-40℃  
-40℃  
20  
Vin-=0V  
Vin+=Vcm  
0
0
1
2
3
4
5
0.0  
0.5  
1.0  
1.5  
2.0  
Common Mode Voltage (V)  
Common Mode Voltage (V)  
www.3peakic.com.cn  
REV1.0  
5
TP1945 / TP1946 / TP1948  
1.8V Micropower, RRIO, Open-Drain Output Comparators  
Typical Performance Characteristics  
Input Offset Voltage V.S. Common mode Voltage  
Input Offset Voltage V.S. Common mode Voltage  
2
2
-40  
1
1
0
85  
27℃  
27℃  
85℃  
0
-1  
-2  
-40℃  
-1  
VDD=5V  
VDD=1.8V  
-2  
0
1
2
3
4
5
0.0  
0.5  
1.0  
1.5  
2.0  
Common Mode Voltage (V)  
Common Mode Voltage (V)  
Input Hysteresis Voltage V.S. Common mode Voltage  
Input Hysteresis Voltage V.S. Common mode Voltage  
10  
20  
16  
85  
8
27℃  
6
12  
85℃  
27℃  
4
8
-40℃  
2
4
-40℃  
VDD=5V  
0
VDD=1.8V  
0
0
1
2
3
4
5
0.0  
0.5  
1.0  
1.5  
2.0  
Common Mode Voltage (V)  
Common Mode Voltage (V)  
Input Offset Voltage Distribution  
Input Hysteresis Voltage Distribution  
45%  
40%  
35%  
30%  
25%  
20%  
15%  
10%  
5%  
90%  
1626 Samples  
VCM=1.2V  
1626 Samples  
VCM=1.2V  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
100mV overdrive  
100mV overdrive  
5V  
1.8V  
5V  
1.8V  
0%  
-6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
7
8
9
10 11 12  
Input Offset Voltage (mV)  
Input Hysteresis Voltage (mV)  
REV1.0  
www.3peakic.com.cn  
6
TP1945/TP1946/TP1948  
1.8V Micropower, RRIO, Open-Drain Output Comparators  
Typical Performance Characteristics  
Quiescent Current Distribution  
Input Bias and Offset Current V.S. Temperature  
1000  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
1626 Samples  
VCM=1.2V  
100mV overdrive  
100  
10  
1
Ibias  
1.8V  
5V  
Ios  
VDD=5V  
20 25 30 35 40 45 50 55 60 65 70 75 80  
Quiscent Current (uA)  
-50  
0
50  
100  
TEMPERATURE ()  
Input Bias&Offset Current V.S. Common mode Voltage  
Output Short Circuit Current V.S. Temperature  
20  
40  
Isource@5V  
15  
20  
Isource@1.8V  
Ibias  
10  
0
Isink@1.8V  
Ios  
-20  
5
VDD=5V  
0
Isink@5V  
60  
-40  
0
1
2
3
4
-40  
-15  
10  
35  
85  
Common Mode Voltage (V)  
TEMPERATURE ()  
Output Short Circuit Current V.S. Supply Voltage  
Output Voltage Headroom V.S. Output Current  
1.0  
40  
Isource  
0.8  
85  
20  
27℃  
0.6  
-40℃  
0
-4027℃  
85℃  
0.4  
-20  
-40  
0.2  
Isink  
VDD=5V  
0.0  
1
2
3
4
5
0
2
4
6
8
10  
Supply Voltage (V)  
Output Current (mA)  
www.3peakic.com.cn  
REV1.0  
7
TP1945 / TP1946 / TP1948  
1.8V Micropower, RRIO, Open-Drain Output Comparators  
Typical Performance Characteristics  
Output Voltage Headroom V.S. Output Current  
Input Offset Voltage V.S. Supply Voltage  
2
1.0  
1
0.8  
85℃  
27℃  
85  
0.6  
0
27℃  
-40℃  
-40℃  
0.4  
-1  
0.2  
VDD=1.8V  
0.0  
-2  
1
2
3
4
5
0
1
2
3
4
5
Supply Voltage (V)  
Output Current (mA)  
Input Hysteresis Voltage V.S. Supply Voltage  
Quiescent Current V.S. Supply Voltage  
10  
70  
85  
85℃  
8
60  
27℃  
27℃  
6
50  
- 4 0  
4
40  
-40℃  
2
30  
20  
0
1
2
3
4
5
1
2
3
4
5
Supply Voltage (V)  
S u p p l y V o l t a  
High to low Propagation Delay V.S. Supply Voltage  
Output Leakage Current V.S. Pull-up Voltage  
1000  
100  
27℃  
80  
60  
40  
20  
-40℃  
100  
85℃  
10  
85℃  
27℃  
VCM=VSS  
VDD=5V  
1
1
2
3
4
5
1
2
3
4
5
Supply Voltage (V)  
Pull-up Voltage (V)  
REV1.0  
www.3peakic.com.cn  
8
TP1945/TP1946/TP1948  
1.8V Micropower, RRIO, Open-Drain Output Comparators  
Operation  
The TP194x family single-supply comparators feature  
internal hysteresis, high speed, and low power. Input  
signal range extends beyond the negative and  
positive power supplies. The output can even extend  
all the way to the negative supply. The input stage is  
active over different ranges of common mode input  
voltage. Rail-to-rail input voltage range and  
low-voltage single-supply operation make these  
devices ideal for portable equipment.  
Applications Information  
Inputs  
The TP194x comparator family uses CMOS transistors at the input which prevent phase inversion when the input pins  
exceed the supply voltages. Figure 1 shows an input voltage exceeding both supplies with no resulting phase  
inversion.  
6
Input Voltage  
4
2
0
Output Voltage  
VDD=5V  
-2  
Time (100μs/div)  
Figure 1. Comparator Response to Input Voltage  
The electrostatic discharge (ESD) protection input structure of two back-to-back diodes and 1series resistors are  
used to limit the differential input voltage applied to the precision input of the comparator by clamping input voltages  
that exceed supply voltages, as shown in Figure 2. Large differential voltages exceeding the supply voltage should be  
avoided to prevent damage to the input stage.  
1 kΩ  
+In  
Core  
1 kΩ  
-In  
Chip  
Figure 2. Equivalent Input Structure  
www.3peakic.com.cn  
REV1.0  
9
 
 
TP1945 / TP1946 / TP1948  
1.8V Micropower, RRIO, Open-Drain Output Comparators  
Internal Hysteresis  
Most high-speed comparators oscillate in the linear region because of noise or undesired parasitic feedback. This  
tends to occur when the voltage on one input is at or equal to the voltage on the other input. To counter the parasitic  
effects and noise, the TP194x implements internal hysteresis.  
The hysteresis in a comparator creates two trip points: one for the rising input voltage and one for the falling input  
voltage. The difference between the trip points is the hysteresis. When the comparator’s input voltages are equal, the  
hysteresis effectively causes one comparator input voltage to move quickly past the other, thus taking the input out of  
the region where oscillation occurs. Figure 3 illustrates the case where IN- is fixed and IN+ is varied. If the inputs were  
reversed, the figure would look the same, except the output would be inverted.  
Vi  
Vtr  
Vi  
Vtr  
Vhyst=Vtr-Vtf  
Vtr+V  
Vhyst=Vtr-Vtf  
Vtr+V  
Hysteresis  
Band  
Hysteresis  
Band  
Vin-  
Vin-  
tf -Vin-  
tf -Vin-  
Vos=  
2
Vos=  
2
Vtf  
Vtf  
Time  
Time  
VDD  
VDD  
0
0
Non-Inverting Comparator Output  
Inverting Comparator Output  
Figure 3. Comparator’s hysteresis and offset  
External Hysteresis  
Greater flexibility in selecting hysteresis is achieved by using external resistors. Hysteresis reduces output chattering  
when one input is slowly moving past the other. It also helps in systems where it is best not to cycle between high and  
low states too frequently (e.g., air conditioner thermostatic control). Output chatter also increases the dynamic supply  
current.  
Non-Inverting Comparator with Hysteresis  
A non-inverting comparator with hysteresis requires a two-resistor network, as shown in Figure 4 and a voltage  
reference (Vr) at the inverting input.  
VPU  
VPU  
VPU  
R2  
R2  
R2  
TP1945  
TP1946  
TP1948  
TP1945  
TP1946  
TP1948  
TP1945  
TP1946  
TP1948  
RPU  
Vo  
RPU  
Vo  
RPU  
Vo  
R1  
Vr  
R1  
Vr  
R1  
Vr  
Vi  
Vtr  
Vtf  
V+=Vr  
V+=Vr  
Figure 4. Non-Inverting Configuration with Hysteresis  
When Vi is low, the output is also low. For the output to switch from low to high, Vi must rise up to Vtr. When Vi is high,  
the output is also high. In order for the comparator to switch back to a low state, Vi must equal Vtf before the  
non-inverting input V+ is again equal to Vr.  
R
2
V
V
tr  
r
R
R
2
1
R
1
V
(V  
DD  
V  
tf  
)
V  
tf  
r
R
PU  
R
R
1
2
REV1.0  
www.3peakic.com.cn  
10  
 
 
TP1945/TP1946/TP1948  
1.8V Micropower, RRIO, Open-Drain Output Comparators  
R
1
R
2
V
V
r
tr  
R
2
R
R
R
R
1
1
2
PU  
V
V
V
r
DD  
tf  
R
R
R
R
2
PU  
2
PU  
R
1
V
V
if RPU<<R2  
DD  
hyst  
R
R
2
PU  
Inverting Comparator with Hysteresis  
The inverting comparator with hysteresis requires a three-resistor network that is referenced to the comparator supply  
voltage (VDD), as shown in Figure 5.  
VDD  
VPU  
VDD  
VPU  
VDD  
VPU  
R3  
R3  
R3  
R1  
R1  
R1  
TP1945  
TP1946  
TP1948  
TP1945  
TP1946  
TP1948  
TP1945  
TP1946  
TP1948  
RPU  
Vo  
RPU  
Vo  
RPU  
Vo  
V+=Vtr  
V+=Vtf  
Vi  
Vtr  
Vtf  
R2  
R2  
R2  
Figure 5. Inverting Configuration with Hysteresis  
When Vi is greater than V+, the output voltage is low. In this case, the three network resistors can be presented as  
paralleled resistor R2 || R3 in series with R1. When Vi at the inverting input is less than V+, the output voltage is high.  
The three network resistors can be represented as R1 ||R3 in series with R2.  
R
R
2
V
V
DD  
tr  
||  
R
2
R
1
3
||  
R
R
3
2
V
V
DD  
tf  
||  
R
1
R
R
2
3
||  
R
R
2
1
V
V V  
tf  
V
tr  
DD  
hyst  
||  
R
3
R
R
1
2
Low Input Bias Current  
The TP194x family is a CMOS comparator family and features very low input bias current in pA range. The low input  
bias current allows the comparators to be used in applications with high resistance sources. Care must be taken to  
minimize PCB Surface Leakage. See below section on “PCB Surface Leakage” for more details.  
PCB Surface Leakage  
In applications where low input bias current is critical, Printed Circuit Board (PCB) surface leakage effects need to be  
considered. Surface leakage is caused by humidity, dust or other contamination on the board. Under low humidity  
conditions, a typical resistance between nearby traces is 1012Ω. A 5V difference would cause 5pA of current to flow,  
www.3peakic.com.cn  
REV1.0  
11  
 
TP1945 / TP1946 / TP1948  
1.8V Micropower, RRIO, Open-Drain Output Comparators  
which is greater than the TP194x’s input bias current at +27°C (±6pA, typical). It is recommended to use multi-layer  
PCB layout and route the comparator’s -IN and +IN signal under the PCB surface.  
The effective way to reduce surface leakage is to use a guard ring around sensitive pins (or traces). The guard ring is  
biased at the same voltage as the sensitive pin. An example of this type of layout is shown in Figure 6 for Inverting  
configuration application.  
1. For Non-Inverting Configuration:  
a) Connect the non-inverting pin (VIN+) to the input with a wire that does not touch the PCB surface.  
b) Connect the guard ring to the inverting input pin (VIN). This biases the guard ring to the same reference as the  
comparator.  
2. For Inverting Configuration:  
a) Connect the guard ring to the non-inverting input pin (VIN+). This biases the guard ring to the same reference voltage as  
the comparator (e.g., VDD/2 or ground).  
b) Connect the inverting pin (VIN) to the input with a wire that does not touch the PCB surface.  
Guard Ring  
VI N +  
VI N -  
+VS  
Figure 6. Example Guard Ring Layout for Inverting Comparator  
Ground Sensing and Rail to Rail Output  
The TP194x family implements a rail-to-rail topology that is capable of swinging to within 10mV of either rail. Since the  
inputs can go 300mV beyond either rail, the comparator can easily perform ‘true ground’ sensing.  
The maximum output current is a function of total supply voltage. As the supply voltage of the comparator increases,  
the output current capability also increases. Attention must be paid to keep the junction temperature of the IC below  
150°C when the output is in continuous short-circuit condition. The output of the amplifier has reverse-biased ESD  
diodes connected to each supply. The output should not be forced more than 0.5V beyond either supply, otherwise  
current will flow through these diodes.  
ESD  
The TP194x family has reverse-biased ESD protection diodes on all inputs and output. Input and output pins can not  
be biased more than 300mV beyond either supply rail.  
Power Supply Layout and Bypass  
The TP194x family’s power supply pin should have a local bypass capacitor (i.e., 0.01μF to 0.1μF) within 2mm for  
good high frequency performance. It can also use a bulk capacitor (i.e., 1μF or larger) within 100mm to provide large,  
slow currents. This bulk capacitor can be shared with other analog parts.  
Good ground layout improves performance by decreasing the amount of stray capacitance and noise at the  
comparator’s inputs and outputs. To decrease stray capacitance, minimize PCB lengths and resistor leads, and place  
external components as close to the comparator’ pins as possible.  
Proper Board Layout  
The TP194x family is a series of fast-switching, high-speed comparator and requires high-speed layout considerations.  
For best results, the following layout guidelines should be followed:  
1. Use a printed circuit board (PCB) with a good, unbroken low-inductance ground plane.  
2. Place a decoupling capacitor (0.1μF ceramic, surface-mount capacitor) as close as possible to supply.  
3. On the inputs and the output, keep lead lengths as short as possible to avoid unwanted parasitic feedback  
around the comparator. Keep inputs away from the output.  
4. Solder the device directly to the PCB rather than using a socket.  
REV1.0  
www.3peakic.com.cn  
12  
 
TP1945/TP1946/TP1948  
1.8V Micropower, RRIO, Open-Drain Output Comparators  
5. For slow-moving input signals, take care to prevent parasitic feedback. A small capacitor (1000 pF or less)  
placed between the inputs can help eliminate oscillations in the transition region. This capacitor causes some  
degradation to propagation delay when the impedance is low. The topside ground plane should be placed  
between the output and inputs.  
6. The ground pin ground trace should run under the device up to the bypass capacitor, thus shielding the inputs  
from the outputs.  
Typical Applications  
IR Receiver  
The TP1945 is an ideal candidate to be used as an infrared receiver shown in Figure 7. The infrared photo diode  
creates a current relative to the amount of infrared light present. The current creates a voltage across RD. When this  
voltage level cross the voltage applied by the voltage divider to the inverting input, the output transitions. Optional Ro  
provides additional hysteresis for noise immunity.  
VDD  
VDD  
Ro  
R1  
R2  
RPU  
Vo  
TP1945  
RD  
Figure 7. IR Receiver  
Logic-Level Translator  
Figure 8 shows an application that converts 5V logic to 3V logic levels. The TP1945/TP1946/TP1948 is powered by  
the +5V supply voltage, and the pull-up resistor for open-drain output is connected to the +3V supply voltage. This  
configuration allows the full 5V logic swing without creating overvoltage on the 3V logic inputs. For 3V to 5V logic-level  
translations, simply connect the 3V supply voltage to V+ and the 5V supply voltage to the pullup resistor.  
5V(3V)  
3V(5V)  
R1  
TP1945  
TP1946  
TP1948  
RPU  
Vo  
Vr  
R2  
Figure 8. Logic-Level Translator  
www.3peakic.com.cn  
REV1.0  
13  
 
 
TP1945 / TP1946 / TP1948  
1.8V Micropower, RRIO, Open-Drain Output Comparators  
Windowed Comparator  
Figure 9 shows one approach to designing a windowed comparator using a single TP201946 chip. Choose different  
thresholds by changing the values of R1, R2, and R3. When input voltage Vi reaches the overvoltage threshold VOH, the  
OutB gets low. Once Vi falls to the undervoltage threshold VUH, the OutA gets low. When VUH<Vi<VOH, the output  
PowerGood gets high.  
V
V (R R R )/R  
1
(1)  
r
OH  
1
2
3
V
V (R R R )/(R R  
)
(2)  
UH  
r
1
2
3
1
2
VDD  
Vi  
R1  
R2  
R3  
RPU  
TP1946  
+InA  
+InB  
-InA  
-InB  
OutA  
OutB  
Power  
Good  
Vr  
Figure 9. Windowed Comparator  
REV1.0  
www.3peakic.com.cn  
14  
 
TP1945/TP1946/TP1948  
1.8V Micropower, RRIO, Open-Drain Output Comparators  
Package Outline Dimensions  
SOT23-5 / SOT23-6  
D
A2  
A1  
θ
L1  
e
Dimensions  
Dimensions  
In Inches  
In Millimeters  
Symbol  
Min  
Max  
Min  
Max  
A1  
A2  
b
0.000  
1.050  
0.300  
2.820  
1.500  
2.650  
0.100  
1.150  
0.400  
3.020  
1.700  
2.950  
0.000  
0.041  
0.012  
0.111  
0.059  
0.104  
0.004  
0.045  
0.016  
0.119  
0.067  
0.116  
E1  
D
E
E
E1  
e
0.950TYP  
0.037TYP  
e1  
L1  
θ
1.800  
0.300  
0°  
2.000  
0.460  
8°  
0.071  
0.012  
0°  
0.079  
0.024  
8°  
b
e1  
www.3peakic.com.cn  
REV1.0  
15  
TP1945 / TP1946 / TP1948  
1.8V Micropower, RRIO, Open-Drain Output Comparators  
Package Outline Dimensions  
SC-70-5 / SC-70-6 (SOT353 / SOT363)  
D
A2  
C
A1  
θ
L1  
e
Dimensions  
Dimensions In  
Inches  
In Millimeters  
Symbol  
Min  
Max  
Min  
Max  
A1  
A2  
b
0.000  
0.900  
0.150  
0.080  
2.000  
1.150  
2.150  
0.100  
1.000  
0.350  
0.150  
2.200  
1.350  
2.450  
0.000  
0.035  
0.006  
0.003  
0.079  
0.045  
0.085  
0.004  
0.039  
0.014  
0.006  
0.087  
0.053  
0.096  
E1  
C
D
E
E
E1  
e
0.650TYP  
0.026TYP  
e1  
L1  
θ
1.200  
0.260  
0°  
1.400  
0.460  
8°  
0.047  
0.010  
0°  
0.055  
0.018  
8°  
b
e1  
REV1.0  
www.3peakic.com.cn  
16  
TP1945/TP1946/TP1948  
1.8V Micropower, RRIO, Open-Drain Output Comparators  
Package Outline Dimensions  
SO-8 (SOIC-8)  
A2  
C
θ
L1  
A1  
e
E
D
Dimensions  
Dimensions In  
Inches  
In Millimeters  
Symbol  
Min  
Max  
Min  
Max  
A1  
A2  
b
0.100  
1.350  
0.330  
0.190  
4.780  
3.800  
5.800  
0.250  
1.550  
0.510  
0.250  
5.000  
4.000  
6.300  
0.004  
0.053  
0.013  
0.007  
0.188  
0.150  
0.228  
0.010  
0.061  
0.020  
0.010  
0.197  
0.157  
0.248  
E1  
C
D
E
E1  
e
1.270TYP  
0.050TYP  
L1  
θ
0.400  
0°  
1.270  
8°  
0.016  
0°  
0.050  
8°  
b
www.3peakic.com.cn  
REV1.0  
17  
TP1945 / TP1946 / TP1948  
1.8V Micropower, RRIO, Open-Drain Output Comparators  
Package Outline Dimensions  
MSOP-8  
Dimensions  
Dimensions In  
Inches  
In Millimeters  
Symbol  
Min  
Max  
Min  
Max  
A
0.800  
0.000  
0.760  
0.30 TYP  
0.15 TYP  
2.900  
0.65 TYP  
2.900  
4.700  
0.410  
0°  
1.200  
0.200  
0.970  
0.031  
0.000  
0.030  
0.012 TYP  
0.006 TYP  
0.114  
0.026  
0.114  
0.185  
0.016  
0°  
0.047  
0.008  
0.038  
A1  
A2  
b
E
E1  
C
D
3.100  
0.122  
e
e
b
E
3.100  
5.100  
0.650  
6°  
0.122  
0.201  
0.026  
6°  
E1  
L1  
θ
D
A1  
R1  
R
θ
L
L1  
L2  
REV1.0  
www.3peakic.com.cn  
18  
TP1945/TP1946/TP1948  
1.8V Micropower, RRIO, Open-Drain Output Comparators  
Package Outline Dimensions  
SO-14 (SOIC-14)  
D
Dimensions  
In Millimeters  
TYP  
Symbol  
MIN  
1.35  
0.10  
1.25  
0.36  
8.53  
5.80  
3.80  
MAX  
1.75  
0.25  
1.65  
0.49  
8.73  
6.20  
4.00  
A
A1  
A2  
b
1.60  
E1  
E
0.15  
1.45  
D
8.63  
6.00  
e
b
E
E1  
e
3.90  
1.27 BSC  
0.60  
L
0.45  
0°  
0.80  
8°  
A2  
A
L1  
L2  
θ
1.04 REF  
0.25 BSC  
A1  
L
L1  
θ
L2  
www.3peakic.com.cn  
REV1.0  
19  
TP1945 / TP1946 / TP1948  
1.8V Micropower, RRIO, Open-Drain Output Comparators  
Package Outline Dimensions  
TSSOP-14  
Dimensions  
In Millimeters  
E1  
E
Symbol  
MIN  
-
TYP  
MAX  
1.20  
0.15  
1.05  
0.28  
0.19  
5.06  
6.60  
4.50  
A
A1  
A2  
b
-
0.05  
0.90  
0.20  
0.10  
4.86  
6.20  
4.30  
-
1.00  
-
e
c
c
-
4.96  
D
D
E
6.40  
E1  
e
4.40  
0.65 BSC  
0.60  
L
0.45  
0.75  
A1  
L1  
L2  
R
1.00 REF  
0.25 BSC  
-
0.09  
0°  
-
R1  
θ
-
8°  
R
θ
L
L1  
L2  
REV1.0  
www.3peakic.com.cn  
20  

相关型号:

TP1948-TR

1.8V Micropower, RRIO, Open-Drain Output Comparators

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
3PEAK

TP1961

7ns, 1/2/4, Ultra-High-Speed, 3V/5V, Beyond-the-Rails Comparators

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
3PEAK

TP1961-CR

7ns, 1/2/4, Ultra-High-Speed, 3V/5V, Beyond-the-Rails Comparators

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
3PEAK

TP1961-TR

7ns, 1/2/4, Ultra-High-Speed, 3V/5V, Beyond-the-Rails Comparators

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
3PEAK

TP1962

7ns, 1/2/4, Ultra-High-Speed, 3V/5V, Beyond-the-Rails Comparators

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
3PEAK

TP1962-FR

7ns, 1/2/4, Ultra-High-Speed, 3V/5V, Beyond-the-Rails Comparators

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
3PEAK

TP1962-SR

7ns, 1/2/4, Ultra-High-Speed, 3V/5V, Beyond-the-Rails Comparators

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
3PEAK

TP1962-VR

7ns, 1/2/4, Ultra-High-Speed, 3V/5V, Beyond-the-Rails Comparators

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
3PEAK

TP1964

7ns, 1/2/4, Ultra-High-Speed, 3V/5V, Beyond-the-Rails Comparators

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
3PEAK

TP1964-SR

7ns, 1/2/4, Ultra-High-Speed, 3V/5V, Beyond-the-Rails Comparators

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
3PEAK

TP1964-TR

7ns, 1/2/4, Ultra-High-Speed, 3V/5V, Beyond-the-Rails Comparators

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
3PEAK

TP199A1T

Zero-Drift, Bi-directional Current Sense Amplifier

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
3PEAK