TP2014 [3PEAK]

Ultra-Low Power 200nA, 1.6V, RRIO, Push-Pull Output Comparators;
TP2014
型号: TP2014
厂家: 3PEAK    3PEAK
描述:

Ultra-Low Power 200nA, 1.6V, RRIO, Push-Pull Output Comparators

文件: 总21页 (文件大小:1674K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TP2011/TP2012/TP2014  
Ultra-Low Power 200nA, 1.6V, RRIO, Push-Pull Output Comparators  
Features  
Descriptions  
The TP201x family of push-pull output comparators  
features the world-class lowest nano-power (250nA  
maximum) and fast 13μs response time capability,  
allowing operation from 1.6V to 5.5V. Input  
common-mode range beyond supply rails makes the  
TP201x an ideal choice for power-sensitive,  
low-voltage (2-cell) applications.  
Ultra-Low Supply Current: 200 nA per channel  
Fast Response Time: 13 μs Propagation Delay,  
with 100 mV Overdrive  
Internal Hysteresis for Clean Switching  
Offset Voltage: ± 2.0 mV Maximum  
Offset Voltage Temperature Drift: 0.3 μV/°C  
The TP201x push-pull output supports rail-to-rail output  
swing and interfaces with TTL /CMOS logic, and are  
capable of driving heavy DC or capacitive loads. The  
internal input hysteresis eliminates output switching  
due to internal input noise voltage, reducing current  
draw. The output limits supply current surges and  
dynamic power consumption while switching. Beyond  
the rails input and rail-to-rail output characteristics allow  
the full power-supply voltage to be used for signal  
range.  
Input Bias Current: 6 pA Typical  
Input Common-Mode Range Extends 200 mV  
Push-Pull Output with ±25 mA Drive Capability  
Output Latch (TP2011N Only)  
No Phase Reversal for Overdriven Inputs  
Low Supply Voltage: 1.6V to 5.5V  
Micro-sized packages provide options for portable and  
space-restricted applications. The single (TP2011) is  
available in SC70-5, and the dual (TP2012) is available  
in SOT23-8.  
Applications  
Battery Monitoring / Management  
Alarm and Monitoring Circuits  
Peak and Zero-crossing Detectors  
Threshold Detectors/Discriminators  
Sensing at Ground or Supply Line  
Logic Level Shifting or Translation  
Window Comparators  
The related TP2015/6/8 family of comparators from  
3PEAK has an open-drain output. Used with a pull-up  
resistor, these devices can be used as level-shifters for  
any desired voltage up to 10V and in wired-OR logic.  
3PEAK and the 3PEAK logo are registered trademarks of  
3PEAK Incorporated. All other trademarks are the property of their  
respective owners.  
Oscillators and RC Timers  
Mobile Communications and Notebooks  
Ultra-Low-Power Systems  
Related Products  
DEVICE  
TP2015  
DESCRIPTION  
Ultra-low 200nA, 13µs, 1.6V, ±2mV VOS-MAX  
Internal Hysteresis, RRI, Open-Drain Output  
Comparators  
,
/TP2016/TP2018  
TP1931  
/TP1932/TP1934  
950ns, 3µA, 1.8V, ±2.5mV VOS-MAX, Internal  
Hysteresis, RRI, Push-Pull Output Comparators  
TP1935  
/TP1936/TP1938  
950ns, 3µA, 1.8V, ±2.5mV VOS-MAX, Internal  
Hysteresis, RRI, Open-Drain Comparators  
Fast 68ns, Low Power, Internal Hysteresis,  
±3mV Maximum VOS, – 0.2V to VDD + 0.2V RRI,  
Push-Pull (CMOS/TTL) Output Comparators  
TP1941/TP1941N  
/TP1942/TP1944  
Typical Application of TP201x Comparators  
Fast 68ns, Low Power, Internal Hysteresis,  
±3mV Maximum VOS, – 0.2V to VDD + 0.2V RRI,  
Open-Drain Output Comparators  
TP1945/TP1945N  
/TP1946/TP1948  
www.3peakic.com.cn  
1
TP2011/TP2012/TP2014  
Ultra-Low Power 200nA, 1.6V, RRIO, Push-Pull Output Comparators  
Pin Configuration(Top View)  
Order Information  
Marking  
Information  
Model Name  
Order Number  
Package  
Transport Media, Quantity  
TP2011-TR  
TP2011-CR  
TP2011-SR  
TP2011U-TR  
TP2011U-CR  
TP2011U2-TR  
TP2011N-TR  
TP2012-TR  
TP2012-SR  
TP2012-VR  
TP2014-SR  
TP2014-TR  
5-Pin SOT23  
5-Pin SC70  
8-Pin SOIC  
Tape and Reel, 3000  
Tape and Reel, 3000  
Tape and Reel, 4000  
Tape and Reel, 3000  
Tape and Reel, 3000  
Tape and Reel, 3000  
Tape and Reel, 3000  
Tape and Reel, 3000  
Tape and Reel, 4000  
Tape and Reel, 3000  
Tape and Reel, 2500  
Tape and Reel, 3000  
C1TYW (1)  
C1CYW (1)  
2011S  
TP2011  
(1)  
5-Pin SOT23  
5-Pin SC70  
5-Pin SOT23  
6-Pin SOT23  
8-Pin SOT23  
8-Pin SOIC  
C1AYW  
TP2011U  
(1)  
C1BYW  
(1)  
TP2011U2  
TP2011N  
C1EYW  
(1)  
C1NYW  
C12YW (1)  
TP2012  
TP2014  
2012S  
8-Pin MSOP  
14-Pin SOIC  
14-Pin TSSOP  
2012V  
TP2014S  
TP2014T  
Note (1): ‘YW’ is date coding scheme. 'Y' stands for calendar year, and 'W' stands for single workweek coding scheme.  
Pin Functions  
N/C: No Connection.  
V(VSS): Negative Power Supply. It is normally tied  
to ground. It can also be tied to a voltage other than  
ground as long as the voltage between V+ and Vis  
from 1.6V to 5.5V. If it is not connected to ground,  
bypass it with a capacitor of 0.1μF as close to the  
part as possible.  
–IN: Inverting Input of the Comparator. Voltage range of  
this pin can go from V– 0.3V to V+ + 0.3V.  
+IN: Non-Inverting Input of Comparator. This pin has the  
same voltage range as –IN.  
V+ (VDD): Positive Power Supply. Typically the voltage is  
from 1.6V to 5.5V. Split supplies are possible as long as  
the voltage between V+ and V– is between 1.6V and  
5.5V. A bypass capacitor of 0.1μF as close to the part as  
possible should be used between power supply pins or  
between supply pins and ground.  
OUT: Comparator Output. The voltage range  
extends to within millivolts of each supply rail.  
LATCH: Active Low Latch enable. Latch enable  
threshold is 1/2V+ above negative supply rail.  
REV1.2  
www.3peakic.com.cn  
2
TP2011/TP2012/TP2014  
Ultra-Low Power 200nA, 1.6V, RRIO, Push-Pull Output Comparators  
Note 1  
Absolute Maximum Ratings  
Supply Voltage: V+ – V....................................6.0V  
Input Voltage............................. V– 0.3 to V+ + 0.3  
Input Current: +IN, –IN, Note 2..........................±10mA  
Output Current: OUT.................................... ±25mA  
Output Short-Circuit Duration Note 3…......... Indefinite  
Operating Temperature Range.......–40°C to 85°C  
Maximum Junction Temperature................... 150°C  
Storage Temperature Range.......... –65°C to 150°C  
Lead Temperature (Soldering, 10 sec) ......... 260°C  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any  
Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.  
Note 2: The inputs are protected by ESD protection diodes to each power supply. If the input extends more than 500mV beyond the power  
supply, the input current should be limited to less than 10mA.  
Note 3: A heat sink may be required to keep the junction temperature below the absolute maximum. This depends on the power supply  
voltage and how many amplifiers are shorted. Thermal resistance varies with the amount of PC board metal connected to the package. The  
specified values are for short traces connected to the leads.  
ESD, Electrostatic Discharge Protection  
Symbol  
HBM  
Parameter  
Condition  
Minimum Level  
Unit  
kV  
Human Body Model ESD  
Charged Device Model ESD  
ANSI/ESDA/JEDEC JS-001  
ANSI/ESDA/JEDEC JS-002  
2
1
CDM  
kV  
Thermal Information  
Package  
RΘJA  
RΘJC(Top)  
Unit  
8-Pin SOP  
14-Pin SOP  
14-Pin TSSOP  
112.4  
96.7  
64.1  
46.7  
42.7  
°C/W  
°C/W  
°C/W  
108.1  
www.3peakic.com.cn  
3
TP2011/TP2012/TP2014  
Ultra-Low Power 200nA, 1.6V, RRIO, Push-Pull Output Comparators  
Electrical Characteristics  
The denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 27°C.  
VDD = +1.6V to +5.5V, VIN+ = VDD, VIN- = 1.2V, CL =15pF.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
1.6  
TYP  
MAX  
5.5  
UNITS  
V
VDD  
VOS  
VOS  
VOS  
Supply Voltage  
Input Offset Voltage Note 1  
Input Offset Voltage Note 1  
Input Offset Voltage Note 1  
VCM = 1.2V  
VCM = 0V  
-3.0  
-3.0  
-4.0  
0.5  
0.5  
0.5  
+3.0  
+3.0  
+4.0  
mV  
mV  
mV  
VCM = Vdd  
VOS TC  
VHYST  
IB  
Input Offset Voltage Drift Note 1  
Input Hysteresis Voltage Note 1  
Input Bias Current  
VCM = 1.2V  
VCM = 1.2V  
VCM = 1.2V  
VCM = 1.2V  
0.3  
4
6
4
μV/°C  
mV  
pA  
2
7
IOS  
Input Offset Current  
pA  
RIN  
Input Resistance  
> 100  
2
4
GΩ  
Differential  
Common Mode  
VCM = VSS to VDD  
CIN  
Input Capacitance  
pF  
CMRR  
VCM  
PSRR  
VOH  
VOL  
ISC  
Common Mode Rejection Ratio  
Common-mode Input Voltage Range  
Power Supply Rejection Ratio  
High-Level Output Voltage  
Low-Level Output Voltage  
Output Short-Circuit Current  
Quiescent Current per Comparator  
50  
V–  
60  
82  
dB  
V
dB  
V
V
mA  
nA  
V+  
90  
IOUT=-1mA  
IOUT=1mA  
Sink or source current  
VDD-0.3  
VSS+0.3  
250  
25  
200  
IQ  
160  
tR  
Rising Time  
5
ns  
ns  
μs  
μs  
μs  
tF  
Falling Time  
5
Propagation Delay (Low-to-High)  
Propagation Delay (High-to-Low)  
Propagation Delay Skew Note 2  
tPD+  
tPD-  
tPD-SKEW  
Overdrive=100mV, VIN- =1.2V  
Overdrive=100mV, VIN- =1.2V  
Overdrive=100mV, VIN- =1.2V  
13  
14  
1
19  
18  
5
Note 1: The input offset voltage is the average of the input-referred trip points. The input hysteresis is the difference between the input-referred  
trip points.  
Note 2: Propagation Delay Skew is defined as: tPDSKEW = tPD+ - tPD-.  
REV1.2  
www.3peakic.com.cn  
4
TP2011/TP2012/TP2014  
Ultra-Low Power 200nA, 1.6V, RRIO, Push-Pull Output Comparators  
Typical Performance Characteristics  
Input Offset Voltage vs. Temperature  
Input Hysteresis Voltage vs. Temperature  
5
10  
8
2.5  
5V  
6
0
-2.5  
-5  
5V  
4
2
0
1.8V  
1.8V  
VCM=1.2V  
-25  
VCM=1.2V  
-25  
-50  
0
25  
50  
75  
100  
-50  
0
25  
50  
75  
100  
TEMPERATURE (  
)
TEMPERATURE (  
)
Quiescent Current vs. Temperature  
Propagation Delay vs. Temperature  
1000  
25  
20  
15  
10  
5
tpd-@VDD=5V  
tpd+@VDD=5V  
800  
600  
400  
200  
0
5V  
tpd-@VDD=1.8V  
tpd+@VDD=1.8V  
1.8V  
VCM=1.2V  
-50 -25  
VCM=1.2V  
-50  
0
0
25  
50  
75  
100  
0
50  
100  
TEMPERATURE (  
)
TEMPERATURE (  
)
Propagation Delay Skew vs. Temperature  
Propagation Delay vs. Overdrive Voltage  
100  
8
VDD=5V  
VCM=2.5V  
80  
60  
40  
20  
0
4
5V  
0
tpd-  
-4  
1.8V  
VCM=1.2V  
tpd+  
100  
-8  
-50  
0
50  
100  
10  
1V  
TEMPERATURE (  
)
Common Mode Voltage (mV)  
www.3peakic.com.cn  
5
TP2011/TP2012/TP2014  
Ultra-Low Power 200nA, 1.6V, RRIO, Push-Pull Output Comparators  
Typical Performance Characteristics  
Propagation Delay Skew vs. Overdrive Voltage  
Propagation Delay vs. Overdrive Voltage  
20  
100  
VDD=5V  
VCM=2.5V  
VDD=1.8V  
15  
10  
VCM=0.9V  
80  
60  
40  
20  
0
5
0
-5  
-10  
-15  
-20  
tpd-  
tpd+  
10  
100  
1V  
10  
100  
Common Mode Voltage (mV)  
1V  
Common Mode Voltage (mV)  
Propagation Delay Skew vs. Overdrive Voltage  
Input Offset Voltage vs. Common Mode Voltage  
20  
5
VDD=1.8V  
VCM=0.9V  
15  
10  
2.5  
0
5
0
-5  
-2.5  
-10  
-15  
-20  
VDD=5V  
-5  
0
1
2
3
4
5
10  
100  
1V  
Common Mode Voltage (V)  
Common Mode Voltage (mV)  
Input Offset Voltage vs. Common Mode Voltage  
Input Hysteresis Voltage vs. Common Mode Voltage  
5
10  
8
2.5  
0
6
4
-2.5  
2
VDD=1.8V  
-5  
VDD=5V  
0
0
0.5  
1
1.5  
2
0
1
2
3
4
5
Common Mode Voltage (V)  
Common Mode Voltage (V)  
REV1.2  
www.3peakic.com.cn  
6
TP2011/TP2012/TP2014  
Ultra-Low Power 200nA, 1.6V, RRIO, Push-Pull Output Comparators  
Typical Performance Characteristics  
Input Hysteresis Voltage vs. Common Mode Voltage  
Quiescent Current vs. Common Mode Voltage  
10  
8
1000  
800  
600  
400  
200  
6
4
2
VDD=1.8V  
0
VDD=5V  
0
0
0.5  
1
1.5  
2
0
1
2
3
4
5
Common Mode Voltage (V)  
Common Mode Voltage (V)  
Quiescent Current vs. Common Mode Voltage  
Propagation Delay V.S. Common Mode Voltage  
1000  
800  
600  
400  
200  
20  
tpd+  
15  
tpd-  
10  
5
VDD=1.8V  
0
VDD=5V  
0
0
0.5  
1
1.5  
2
0
1
2
3
4
5
Common Mode Voltage (V)  
Common Mode Voltage (V)  
Propagation Delay vs. Common Mode Voltage  
Propagation Delay Skew vs. Common Mode Voltage  
20  
5
15  
2.5  
0
tpd+  
10  
tpd-  
5
-2.5  
VDD=1.8V  
0
VDD=5V  
-5  
0
0.5  
1
1.5  
2
0
1
2
3
4
5
Common Mode Voltage (V)  
Common Mode Voltage (V)  
www.3peakic.com.cn  
7
TP2011/TP2012/TP2014  
Ultra-Low Power 200nA, 1.6V, RRIO, Push-Pull Output Comparators  
Typical Performance Characteristics  
Propagation Delay Skew vs. Common Mode Voltage  
Input Offset Voltage Distribution  
5
60%  
50%  
40%  
30%  
20%  
10%  
0%  
1462 Samples  
VDD=5V  
2.5  
0
VCM=1.2V  
-2.5  
VDD=1.8V  
-5  
-6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
0
0.5  
1
1.5  
2
Input Offset Voltage (mV)  
Common Mode Voltage (V)  
Input Hysteresis Voltage Distribution  
Quiescent Current Distribution  
40%  
35%  
30%  
25%  
20%  
15%  
10%  
5%  
60%  
1462 Samples  
VDD=5V  
1462 Samples  
VDD=5V  
50%  
40%  
30%  
20%  
10%  
0%  
VCM=1.2V  
VCM=1.2V  
0%  
0
1
2
3
4
5
6
7
8
9
10 11 12  
140  
160  
180  
200  
220  
240  
260  
Input Hysteresis Voltage (mV)  
Quiscent Current (nA)  
Low to High Propagation Delay Distribution  
High to Low Propagation Delay Distribution  
70%  
45%  
1462 Samples  
1462 Samples  
40%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
VDD=5V  
VDD=5V  
35%  
VCM=1.2V  
VCM=1.2V  
30%  
100mV overdrive  
100mV overdrive  
25%  
20%  
15%  
10%  
5%  
0%  
12  
14  
16  
18  
20  
22  
24  
10  
12  
14  
16  
18  
20  
22  
Propagation Low to High Delay (μs)  
Propagation High to Low Delay (μs)  
REV1.2  
www.3peakic.com.cn  
8
TP2011/TP2012/TP2014  
Ultra-Low Power 200nA, 1.6V, RRIO, Push-Pull Output Comparators  
Typical Performance Characteristics  
Propagation Delay Skew Distribution  
Output Voltage Headroom vs. Output Load Current  
5
50%  
VDD=5V  
1462 Samples  
VDD=5V  
45%  
40%  
35%  
30%  
25%  
20%  
15%  
10%  
5%  
4
VCM=1.2V  
Sourcing Current  
3
100mV overdrive  
2
Sinking Current  
1
0%  
0
-2  
0
2
4
6
8
10  
0
5
10  
15  
Propagation Delay Skew (μs)  
Output Load Current (mA)  
Output Voltage Headroom vs. Output Load Current  
Output Voltage Headroom vs. Supply Voltage  
2
400  
VDD=1.8V  
1.5  
300  
Sourcing Current  
VOH  
1
200  
0.5  
100  
Sinking Current  
VOL  
IOUT=±1mA  
0
0
0.0  
0.5  
1.0  
1.5  
2.0  
1
2
3
4
5
Output Load Current (mA)  
Supply Voltage (V)  
Output Short Current vs. Supply Voltage  
30  
25  
20  
Isinking  
15  
10  
Isourcing  
5
0
1
2
3
4
5
Supply Voltage (V)  
www.3peakic.com.cn  
9
TP2011/TP2012/TP2014  
Ultra-Low Power 200nA, 1.6V, RRIO, Push-Pull Output Comparators  
Operation  
The TP201x family single-supply comparators feature  
internal hysteresis, high speed, and low power. Input  
signal range extends beyond the negative and positive  
power supplies. The output can even extend all the way  
to the negative supply. The input stage is active over  
different ranges of common mode input voltage.  
Rail-to-rail input voltage range and low-voltage  
single-supply operation make these devices ideal for  
portable equipment.  
Applications Information  
Inputs  
The TP201x comparator family uses CMOS transistors at the input which prevent phase inversion when the input pins  
exceed the supply voltages. Figure 1 shows an input voltage exceeding both supplies with no resulting phase  
inversion.  
6
Input Voltage  
4
1KΩ  
+In  
2
Core  
1KΩ  
-In  
0
Output Voltage  
VDD=5V  
-2  
Time (100μs/div)  
Chip  
Figure 1. Comparator Response to Input Voltage  
Figure 2. Equivalent Input Structure  
The electrostatic discharge (ESD) protection input structure of two back-to-back diodes and 1kΩ series resistors are  
used to limit the differential input voltage applied to the precision input of the comparator by clamping input voltages  
that exceed supply voltages, as shown in Figure 2. Large differential voltages exceeding the supply voltage should be  
avoided to prevent damage to the input stage.  
Internal Hysteresis  
Most high-speed comparators oscillate in the linear region because of noise or undesired parasitic feedback. This  
tends to occur when the voltage on one input is at or equal to the voltage on the other input. To counter the parasitic  
effects and noise, the TP201x implements internal hysteresis.  
The hysteresis in a comparator creates two trip points: one for the rising input voltage and one for the falling input  
voltage. The difference between the trip points is the hysteresis. When the comparator’s input voltages are equal, the  
hysteresis effectively causes one comparator input voltage to move quickly past the other, thus taking the input out of  
the region where oscillation occurs. Figure 3 illustrates the case where IN- is fixed and IN+ is varied. If the inputs were  
reversed, the figure would look the same, except the output would be inverted.  
REV1.2  
www.3peakic.com.cn  
10  
TP2011/TP2012/TP2014  
Ultra-Low Power 200nA, 1.6V, RRIO, Push-Pull Output Comparators  
-Vin-  
-Vin-  
0
0
Non-Inverting Comparator Output  
Inverting Comparator Output  
Figure 3. Comparator’s hysteresis and offset  
External Hysteresis  
Greater flexibility in selecting hysteresis is achieved by using external resistors. Hysteresis reduces output chattering  
when one input is slowly moving past the other. It also helps in systems where it is best not to cycle between high and  
low states too frequently (e.g., air conditioner thermostatic control). Output chatter also increases the dynamic supply  
current.  
Non-Inverting Comparator with Hysteresis  
A non-inverting comparator with hysteresis requires a two-resistor network, as shown in Figure 4 and a voltage  
reference (Vr) at the inverting input.  
Figure 4. Non-Inverting Configuration with Hysteresis  
When Vi is low, the output is also low. For the output to switch from low to high, Vi must rise up to Vtr. When Vi is high,  
the output is also high. In order for the comparator to switch back to a low state, Vi must equal Vtf before the  
non-inverting input V+ is again equal to Vr.  
R
2
V
V
tr  
r
R
R
2
1
R
1
V
(V  
V  
)
V  
tf  
r
DD  
tf  
R
1
R
2
R
R
2
1
V
V
r
tr  
R
2
R
R
R
1
1
2
V
V   
V
DD  
r
tf  
R
R
2
2
R
1
V
V V  
tf  
V
DD  
tr  
hyst  
R
2
www.3peakic.com.cn  
11  
TP2011/TP2012/TP2014  
Ultra-Low Power 200nA, 1.6V, RRIO, Push-Pull Output Comparators  
Inverting Comparator with Hysteresis  
The inverting comparator with hysteresis requires a three-resistor network that is referenced to the comparator supply  
voltage (VDD), as shown in Figure 5.  
Figure 5. Inverting Configuration with Hysteresis  
When Vi is greater than V+, the output voltage is low. In this case, the three network resistors can be presented as  
paralleled resistor R2 || R3 in series with R1. When Vi at the inverting input is less than V+, the output voltage is high.  
The three network resistors can be represented as R1 ||R3 in series with R2.  
R
2
V
V
tr  
tf  
DD  
||  
R
R
R
2
1
3
||  
R
R
2
3
V
V
DD  
||  
R
1
R
R
2
3
||  
R
R
2
1
V
V V  
tf  
V
tr  
DD  
hyst  
||  
R
3
R
R
1
2
Low Input Bias Current  
The TP201x family is a CMOS comparator family and features very low input bias current in pA range. The low input  
bias current allows the comparators to be used in applications with high resistance sources. Care must be taken to  
minimize PCB Surface Leakage. See below section on “PCB Surface Leakage” for more details.  
PCB Surface Leakage  
In applications where low input bias current is critical, Printed Circuit Board (PCB) surface leakage effects need to be  
considered. Surface leakage is caused by humidity, dust or other contamination on the board. Under low humidity  
conditions, a typical resistance between nearby traces is 1012Ω. A 5V difference would cause 5pA of current to flow,  
which is greater than the TP201x’s input bias current at +27°C (±6pA, typical). It is recommended to use multi-layer  
PCB layout and route the comparator’s -IN and +IN signal under the PCB surface.  
The effective way to reduce surface leakage is to use a guard ring around sensitive pins (or traces). The guard ring is  
biased at the same voltage as the sensitive pin. An example of this type of layout is shown in Figure 6 for Inverting  
configuration application.  
1. For Non-Inverting Configuration:  
a) Connect the non-inverting pin (VIN+) to the input with a wire that does not touch the PCB surface.  
b) Connect the guard ring to the inverting input pin (VIN–). This biases the guard ring to the same reference as the  
comparator.  
REV1.2  
www.3peakic.com.cn  
12  
TP2011/TP2012/TP2014  
Ultra-Low Power 200nA, 1.6V, RRIO, Push-Pull Output Comparators  
2. For Inverting Configuration:  
a) Connect the guard ring to the non-inverting input pin (VIN+). This biases the guard ring to the same reference voltage as  
the comparator (e.g., VDD/2 or ground).  
b) Connect the inverting pin (VIN–) to the input with a wire that does not touch the PCB surface.  
Figure 6. Example Guard Ring Layout for Inverting Comparator  
Ground Sensing and Rail to Rail Output  
The TP201x family implements a rail-to-rail topology that is capable of swinging to within 10mV of either rail. Since the  
inputs can go 300mV beyond either rail, the comparator can easily perform ‘true ground’ sensing.  
The maximum output current is a function of total supply voltage. As the supply voltage of the comparator increases,  
the output current capability also increases. Attention must be paid to keep the junction temperature of the IC below  
150°C when the output is in continuous short-circuit condition. The output of the amplifier has reverse-biased ESD  
diodes connected to each supply. The output should not be forced more than 0.5V beyond either supply, otherwise  
current will flow through these diodes.  
ESD  
The TP201x family has reverse-biased ESD protection diodes on all inputs and output. Input and output pins can not  
be biased more than 300mV beyond either supply rail.  
Power Supply Layout and Bypass  
The TP201x family’s power supply pin should have a local bypass capacitor (i.e., 0.01μF to 0.1μF) within 2mm for  
good high frequency performance. It can also use a bulk capacitor (i.e., 1μF or larger) within 100mm to provide large,  
slow currents. This bulk capacitor can be shared with other analog parts.  
Good ground layout improves performance by decreasing the amount of stray capacitance and noise at the  
comparator’s inputs and outputs. To decrease stray capacitance, minimize PCB lengths and resistor leads, and place  
external components as close to the comparator’ pins as possible.  
Proper Board Layout  
The TP201x family is a series of fast-switching, high-speed comparator and requires high-speed layout considerations.  
For best results, the following layout guidelines should be followed:  
1. Use a printed circuit board (PCB) with a good, unbroken low-inductance ground plane.  
2. Place a decoupling capacitor (0.1μF ceramic, surface-mount capacitor) as close as possible to supply.  
3. On the inputs and the output, keep lead lengths as short as possible to avoid unwanted parasitic feedback  
around the comparator. Keep inputs away from the output.  
4. Solder the device directly to the PCB rather than using a socket.  
5. For slow-moving input signals, take care to prevent parasitic feedback. A small capacitor (1000 pF or less)  
placed between the inputs can help eliminate oscillations in the transition region. This capacitor causes some  
degradation to propagation delay when the impedance is low. The topside ground plane should be placed  
between the output and inputs.  
6. The ground pin ground trace should run under the device up to the bypass capacitor, thus shielding the inputs  
from the outputs.  
www.3peakic.com.cn  
13  
TP2011/TP2012/TP2014  
Ultra-Low Power 200nA, 1.6V, RRIO, Push-Pull Output Comparators  
Typical Applications  
IR Receiver  
The TP2011 is an ideal candidate to be used as an infrared receiver shown in Figure 7. The infrared photo diode  
creates a current relative to the amount of infrared light present. The current creates a voltage across RD. When this  
voltage level cross the voltage applied by the voltage divider to the inverting input, the output transitions. Optional Ro  
provides additional hysteresis for noise immunity.  
VDD  
Ro  
R1  
TP2011  
Vo  
R2  
RD  
Figure 7. IR Receiver  
Relaxation Oscillator  
A relaxation oscillator using TP2011 is shown in Figure 8. Resistors R1 and R2 set the bias point at the comparator's  
inverting input. The period of oscillator is set by the time constant of R4 and C1. The maximum frequency is limited by  
the large signal propagation delay of the comparator. TP2011’s low propagation delay guarantees the high frequency  
oscillation.  
If the inverted input (VC1) is lower than the non-inverting input (VA), the output is high which charges C1 through R4 until  
VC1 is equal to VA. The value of VA at this point is  
V
R  
2
DD  
|| R R  
2
V
A1  
R
1
3
At this point the comparator switches pulling down the output to the negative rail. The value of VA at this point is  
V
R || R  
DD  
2
3
V
A2  
R
R || R  
3
1
2
If R1=R2=R3, then VA1=2VDD /3, and VA2= VDD/3  
The capacitor C1 now discharges through R4, and the voltage VC decreases till it is equal to VA2, at which point the  
comparator switches again, bringing it back to the initial stage. The time period is equal to twice the time it takes to  
discharge C1 from 2VDD/3 to VDD/3. Hence the frequency is:  
1
Freq   
2 ln2 R C  
4
1
REV1.2  
www.3peakic.com.cn  
14  
TP2011/TP2012/TP2014  
Ultra-Low Power 200nA, 1.6V, RRIO, Push-Pull Output Comparators  
VDD  
R3  
VO  
R1  
R2  
T2011  
VA  
t
t
VC1  
Vo  
VC1  
2/3VDD  
1/3VDD  
R4  
C1  
R1=R2=R3  
Figure 8. Relaxation Oscillator  
Windowed Comparator  
Figure 9. shows one approach to designing a windowed comparator using a single TP2012 chip. Choose different  
thresholds by changing the values of R1, R2, and R3. OutA provides an active-low undervoltage indication, and OutB  
gives an active-low overvoltage indication. ANDing the two outputs provides an active-high, power-good signal. When  
input voltage Vi reaches the overvoltage threshold VOH, the OutB gets low. Once Vi falls to the undervoltage threshold  
VUH, the OutA gets low. When VUH<Vi<VOH, the AND Gate gets high.  
V
V (R R R )/R  
r
1 2 3 1  
OH  
V
V (R R R )/(R R  
)
UH  
r
1
2
3
1
2
Vi  
R1  
R2  
R3  
TP2012  
+InA  
+InB  
-InA  
-InB  
Power  
Good  
OutA UnderVolt  
AND  
Gate  
Vr  
OverVolt  
OutB  
Figure 9. Windowed Comparator  
www.3peakic.com.cn  
15  
TP2011/TP2012/TP2014  
Ultra-Low Power 200nA, 1.6V, RRIO, Push-Pull Output Comparators  
Package Outline Dimensions  
SOT23-5 / SOT23-6  
Dimensions  
Dimensions  
In Inches  
In Millimeters  
Symbol  
Min  
Max  
Min  
Max  
A1  
A2  
b
0.000  
1.050  
0.300  
2.820  
1.500  
2.650  
0.100  
1.150  
0.400  
3.020  
1.700  
2.950  
0.000  
0.041  
0.012  
0.111  
0.059  
0.104  
0.004  
0.045  
0.016  
0.119  
0.067  
0.116  
D
E
E1  
e
0.950TYP  
0.037TYP  
e1  
L1  
θ
1.800  
0.300  
0°  
2.000  
0.460  
8°  
0.071  
0.012  
0°  
0.079  
0.024  
8°  
REV1.2  
www.3peakic.com.cn  
16  
TP2011/TP2012/TP2014  
Ultra-Low Power 200nA, 1.6V, RRIO, Push-Pull Output Comparators  
Package Outline Dimensions  
SC-70-5 / SC-70-6 (SOT353 / SOT363)  
Dimensions  
Dimensions In  
Inches  
In Millimeters  
Symbol  
Min  
Max  
Min  
Max  
A1  
A2  
b
0.000  
0.900  
0.150  
0.080  
2.000  
1.150  
2.150  
0.100  
1.000  
0.350  
0.150  
2.200  
1.350  
2.450  
0.000  
0.035  
0.006  
0.003  
0.079  
0.045  
0.085  
0.004  
0.039  
0.014  
0.006  
0.087  
0.053  
0.096  
C
D
E
E1  
e
0.650TYP  
0.026TYP  
e1  
L1  
θ
1.200  
0.260  
0°  
1.400  
0.460  
8°  
0.047  
0.010  
0°  
0.055  
0.018  
8°  
www.3peakic.com.cn  
17  
TP2011/TP2012/TP2014  
Ultra-Low Power 200nA, 1.6V, RRIO, Push-Pull Output Comparators  
Package Outline Dimensions  
SO-8 (SOIC-8)  
A2  
C
θ
L1  
A1  
e
E
D
Dimensions  
Dimensions In  
Inches  
In Millimeters  
Symbol  
Min  
Max  
Min  
Max  
A1  
A2  
0.100  
1.350  
0.330  
0.190  
4.780  
3.800  
5.800  
0.250  
1.550  
0.510  
0.250  
5.000  
4.000  
6.300  
0.004  
0.053  
0.013  
0.007  
0.188  
0.150  
0.228  
0.010  
0.061  
0.020  
0.010  
0.197  
0.157  
0.248  
E1  
b
C
D
E
E1  
e
1.270TYP  
0.050TYP  
L1  
θ
0.400  
0°  
1.270  
8°  
0.016  
0°  
0.050  
8°  
b
REV1.2  
www.3peakic.com.cn  
18  
TP2011/TP2012/TP2014  
Ultra-Low Power 200nA, 1.6V, RRIO, Push-Pull Output Comparators  
Package Outline Dimensions  
MSOP-8  
Dimensions  
Dimensions In  
Inches  
In Millimeters  
Symbol  
Min  
Max  
Min  
Max  
A
0.800  
0.000  
0.760  
0.30 TYP  
0.15 TYP  
2.900  
0.65 TYP  
2.900  
4.700  
0.410  
0°  
1.200  
0.200  
0.970  
0.031  
0.000  
0.030  
0.012 TYP  
0.006 TYP  
0.114  
0.026  
0.114  
0.185  
0.016  
0°  
0.047  
0.008  
0.038  
A1  
A2  
b
E
E1  
C
D
3.100  
0.122  
e
e
b
E
3.100  
5.100  
0.650  
6°  
0.122  
0.201  
0.026  
6°  
E1  
L1  
θ
D
A1  
R1  
R
θ
L
L1  
L2  
www.3peakic.com.cn  
19  
TP2011/TP2012/TP2014  
Ultra-Low Power 200nA, 1.6V, RRIO, Push-Pull Output Comparators  
Package Outline Dimensions  
SO-14 (SOIC-14)  
Dimensions  
In Millimeters  
TYP  
Symbol  
MIN  
1.35  
0.10  
1.25  
0.36  
8.53  
5.80  
3.80  
MAX  
1.75  
0.25  
1.65  
0.49  
8.73  
6.20  
4.00  
A
A1  
A2  
b
1.60  
0.15  
1.45  
D
8.63  
6.00  
E
E1  
e
3.90  
1.27 BSC  
0.60  
L
0.45  
0°  
0.80  
8°  
L1  
L2  
θ
1.04 REF  
0.25 BSC  
REV1.2  
www.3peakic.com.cn  
20  
TP2011/TP2012/TP2014  
Ultra-Low Power 200nA, 1.6V, RRIO, Push-Pull Output Comparators  
Package Outline Dimensions  
TSSOP-14  
Dimensions  
In Millimeters  
E1  
E
Symbol  
MIN  
-
TYP  
MAX  
1.20  
0.15  
1.05  
0.28  
0.19  
5.06  
6.60  
4.50  
A
A1  
A2  
b
-
0.05  
0.90  
0.20  
0.10  
4.86  
6.20  
4.30  
-
1.00  
-
e
c
c
-
4.96  
D
D
E
6.40  
E1  
e
4.40  
0.65 BSC  
0.60  
L
0.45  
0.75  
A1  
L1  
L2  
R
1.00 REF  
0.25 BSC  
-
0.09  
0°  
-
R1  
θ
-
8°  
R
θ
L
L1  
L2  
www.3peakic.com.cn  
21  

相关型号:

TP2014-SR

Ultra-Low Power 200nA, 1.6V, RRIO, Push-Pull Output Comparators

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
3PEAK

TP2014-TR

Ultra-Low Power 200nA, 1.6V, RRIO, Push-Pull Output Comparators

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
3PEAK

TP201G

2.0A Glass Passivated Bridge Rectifier

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TAITRON

TP202

1.5 WATT and DUAL OUTPUT DC-DC CONVERTERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

TP2020L

TRANSISTOR | MOSFET | P-CHANNEL | 200V V(BR)DSS | 120MA I(D) | TO-226AA

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

TP2020L-1-18

Small Signal Field-Effect Transistor, 0.12A I(D), 200V, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, TO-226AA

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

TP2020L-18

Small Signal Field-Effect Transistor, 0.12A I(D), 200V, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, TO-226AA,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TEMIC

TP2020L-18

Small Signal Field-Effect Transistor, 0.12A I(D), 200V, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, TO-226AA

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

TP2020L-1TR1

Small Signal Field-Effect Transistor, 0.12A I(D), 200V, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, TO-226AA

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

TP2020L-2

Small Signal Field-Effect Transistor, 0.12A I(D), 200V, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, TO-226AA

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

TP2020L-2-18

Small Signal Field-Effect Transistor, 0.12A I(D), 200V, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, TO-226AA

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

TP2020L18

120mA, 200V, P-CHANNEL, Si, SMALL SIGNAL, MOSFET, TO-226AA

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY