TP2025U2 [3PEAK]

SC70, 1.8V, Nano-power Comparators with Voltage Reference;
TP2025U2
型号: TP2025U2
厂家: 3PEAK    3PEAK
描述:

SC70, 1.8V, Nano-power Comparators with Voltage Reference

文件: 总20页 (文件大小:501K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TP2021/TP2025  
SC70, 1.8V, Nano-power Comparators with Voltage Reference  
Features  
Description  
The TP2021 has a push-pull output stage with loads  
up to 25mA. The TP2025 has an open-drain output  
stage that makes it suitable for mixed-voltage  
Ultra-Low Supply Current:  
390 nA Comparator with Reference  
system design. Both feature an on-chip 1.248V  
±1.8% reference and draw an ultra-low supply  
current of only 440nA (max). The TP202x  
incorporate 3PEAK’s proprietary and patented  
design techniques to achieve the best world-class  
performance among all nano-power comparators.  
Both have 13μs fast response time under 1.8V to  
5.5V supply. The internal input hysteresis eliminates  
output switching due to internal input noise voltage,  
reducing current draw. They have input  
common-mode range 200mV beyond the supply  
rails, and operate down to +1.8V. The integrated  
1.248V voltage reference offers low 120ppm/°C drift,  
is stable with up to 10nF capacitive load, and can  
provide up to 25mA of output current. These  
features make the TP202x ideal for all 2-Cell Battery  
Monitoring/Management.  
Internal 1.248V ± 1.8% Reference @ VDD =5V  
Fast Response Time: 13 μs Propagation Delay,  
with 100 mV Overdrive  
Internal Hysteresis for Clean Switching  
Offset Voltage: ± 2.0 mV Maximum  
Offset Voltage Temperature Drift: 0.3 μV/°C  
Input Bias Current: 6 pA Typical  
Input Common-Mode Range Extends 200 mV  
Push-Pull Output with ±25 mA Drive Capability  
Open-Drain Output Version Available: TP2025  
No Phase Reversal for Overdriven Inputs  
Low Supply Voltage: 1.8V to 5.5V  
Green, Space-Saving SC70/SOT23 Package  
The TP202x is available in the tiny SC70/SOT23  
package for space-conservative designs. Both  
versions are specified for the temperature range of  
–40°C to +85°C.  
Applications  
Battery Monitoring / Management  
Alarm and Monitoring Circuits  
Threshold Detectors/Discriminators  
Sensing at Ground or Supply Line  
Oscillators and RC Timers  
3PEAK and the 3PEAK logo are registered trademarks of  
3PEAK INCORPORATED. All other trademarks are the property  
of their respective owners.  
Mobile Communications and Notebooks  
Ultra-Low-Power Systems  
Related Products  
VBattery  
DEVICE  
DESCRIPTION  
Fast 68ns, 1.8V Low Power (46µA), Internal Hysteresis,  
±3mV Maximum VOS, – 0.2V to VDD + 0.2V RRI, Push-  
Pull (CMOS/TTL) Output Comparators  
(1)  
TP1941/TP1941N  
/TP1942/TP1944  
Load  
RPU  
TP2021  
Fast 68ns, 1.8V Low Power (46µA), Internal Hysteresis,  
±3mV Maximum VOS, – 0.2V to VDD + 0.2V RRI, Open-  
Drain Output Comparators  
TP1945/TP1945N  
/TP1946/TP1948  
Battery  
Ref  
R1  
R2  
TP1931  
/TP1932/TP1934  
950ns, 3µA, 1.8V, ±2.5mV VOS-MAX, – 0.2V to VDD + 0.2V  
RRI, Internal Hysteresis, Push-Pull Output Comparators  
Rsense  
TP1935  
/TP1936/TP1938  
950ns, 3µA, 1.8V, ±2.5mV VOS-MAX, – 0.2V to VDD + 0.2V  
RRI, Internal Hysteresis, Open-Drain Comparators  
Ultra-low 200nA, 13µs, 1.6V, ±2mV Maximum VOS  
Internal Hysteresis, – 0.2V to VDD + 0.2V RRI, Push-Pull  
(CMOS/TTL) Output Comparators  
,
TP2011  
/TP2012/TP2014  
NOTE: (1) Use RPU with the TP2025  
Ultra-low 200nA, 13µs, 1.6V, ±2mV Maximum VOS  
Internal Hysteresis, – 0.2V to VDD + 0.2V RRI, Open-  
Drain Output Comparators  
,
TP2015  
/TP2016/TP2018  
TP2021 in Low-Side Current Sensing  
www.3peakic.com.cn  
1
TP2021/TP2025  
SC70, 1.8V, Nano-power Comparators with Voltage Reference  
Pin Configuration (Top View)  
Order Information  
Marking  
Information  
Model Name  
Order Number  
Package  
Transport Media, Quantity  
TP2021-TR  
TP2021-CR  
TP2021-SR  
TP2021U-TR  
TP2021U-SR  
TP2021U2-TR  
TP2025-TR  
TP2025-CR  
TP2025-SR  
TP2025U-TR  
TP2025U-SR  
TP2025U2-TR  
6-Pin SOT23  
6-Pin SC70  
8-Pin SOIC  
5-Pin SOT23  
8-Pin SOIC  
6-Pin SOT23  
6-Pin SOT23  
6-Pin SOT23  
8-Pin SOIC  
5-Pin SOT23  
8-Pin SOIC  
6-Pin SOT23  
Tape and Reel, 3000  
Tape and Reel, 3000  
Tape and Reel, 4000  
Tape and Reel, 3000  
Tape and Reel, 4000  
Tape and Reel, 3000  
Tape and Reel, 3000  
Tape and Reel, 3000  
Tape and Reel, 4000  
Tape and Reel, 3000  
Tape and Reel, 4000  
Tape and Reel, 3000  
C2TYW (1)  
C2CYW (1)  
2021S  
TP2021  
C2UYW (1)  
TP2021U  
2021US  
TP2021U2  
C2VYW (1)  
CT2YW (1)  
CC2YW (1)  
2025S  
TP2025  
CU2YW (1)  
TP2025U  
2025US  
CV2YW (1)  
TP2025U2  
Note (1): ‘YW’ is date coding scheme. 'Y' stands for calendar year, and 'W' stands for single workweek coding scheme.  
REV1.3  
www.3peakic.com.cn  
2
TP2021/TP2025  
SC70, 1.8V, Nano-power Comparators with Voltage Reference  
Note 1  
Absolute Maximum Ratings  
Supply Voltage: V+ – V....................................6.0V  
Input Voltage............................. V– 0.3 to V+ + 0.3  
Input Current: +IN, –IN, Note 2..........................±10mA  
Output Current: OUT.................................... ±25mA  
Output Short-Circuit Duration Note 3…......... Indefinite  
Operating Temperature Range.........–40°C to 85°C  
Maximum Junction Temperature................... 150°C  
Storage Temperature Range.......... –65°C to 150°C  
Lead Temperature (Soldering, 10 sec) ......... 260°C  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any  
Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.  
Note 2: The inputs are protected by ESD protection diodes to each power supply. If the input extends more than 500mV beyond the power  
supply, the input current should be limited to less than 10mA.  
Note 3: A heat sink may be required to keep the junction temperature below the absolute maximum. This depends on the power supply voltage  
and how many amplifiers are shorted. Thermal resistance varies with the amount of PC board metal connected to the package. The specified  
values are for short traces connected to the leads.  
ESD, Electrostatic Discharge Protection  
Symbol  
HBM  
Parameter  
Human Body Model ESD  
Charged Device Model ESD  
Condition  
Minimum Level  
Unit  
kV  
kV  
ANSI/ESDA/JEDEC JS-001  
ANSI/ESDA/JEDEC JS-002  
2
1
CDM  
www.3peakic.com.cn  
3
TP2021/TP2025  
SC70, 1.8V, Nano-power Comparators with Voltage Reference  
Electrical Characteristics  
The denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 27°C.  
VDD = +1.8V to +5.5V, VIN+ = VDD, VIN- = 1.2V, RPU=10k, CL =15pF.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
1.8  
TYP  
MAX  
5.5  
UNITS  
V
VDD  
VOS  
Supply Voltage  
Input Offset Voltage Note 1  
VCM = 1.2V  
-2.0  
0.5  
+2.0  
mV  
VOS TC  
VHYST  
VHYST TC  
IB  
Input Offset Voltage Drift Note 1  
Input Hysteresis Voltage Note 1  
Input Hysteresis Voltage Drift Note 1  
Input Bias Current  
VCM = 1.2V  
VCM = 1.2V  
VCM = 1.2V  
VCM = 1.2V  
VCM = 1.2V  
0.3  
μV/°C  
mV  
μV/°C  
pA  
3
4
20  
6
7
IOS  
Input Offset Current  
4
pA  
RIN  
Input Resistance  
> 100  
2
4
GΩ  
Differential  
Common Mode  
VCM = VSS to VDD  
CIN  
Input Capacitance  
pF  
dB  
V
CMRR  
VCM  
Common Mode Rejection Ratio  
Common-mode Input Voltage  
Range  
50  
V–  
82  
V+  
PSRR  
VOH  
VOL  
ISC  
Power Supply Rejection Ratio  
High-Level Output Voltage  
Low-Level Output Voltage  
Output Short-Circuit Current  
Quiescent Current per Comparator  
60  
VDD-0.3  
90  
dB  
V
V
mA  
nA  
V
IOUT=-1mA  
IOUT=1mA  
Sink or source current  
VSS+0.3  
25  
390  
1.248  
1.224  
150  
1.45  
0.13  
5
IQ  
440  
1.272  
1.246  
VDD = 5V  
1.225  
1.202  
VOUT  
Reference Voltage  
VDD = 3V  
V
VOUT TC  
VOUT LC  
Reference Voltage Drift  
μV/°C  
μV/μA  
μV/μA  
ns  
0μAIsource400μA  
0μAIsink400μA  
Reference  
Regulation  
Voltage  
Load  
tR  
tF  
Rising Time Note 2  
Falling Time  
5
ns  
tPD+  
tPD-  
TPD-SKEW  
Propagation Delay (Low-to-High)  
Propagation Delay (High-to-Low)  
Propagation Delay Skew Note 3  
Overdrive=100mV, VIN- =1.2V  
Overdrive=100mV, VIN- =1.2V  
Overdrive=100mV, VIN- =1.2V  
13  
14  
1
19  
18  
5
μs  
μs  
μs  
Note 1: The input offset voltage is the average of the input-referred trip points. The input hysteresis is the difference between the input-referred  
trip points.  
Note 2: For TP2025/TP2025U, tR dependent on RPU and CL-.  
Note 3: Propagation Delay Skew is defined as: tPD-SKEW = tPD+ - tPD-  
.
REV1.3  
www.3peakic.com.cn  
4
TP2021/TP2025  
SC70, 1.8V, Nano-power Comparators with Voltage Reference  
Typical Performance Characteristics  
Input Offset Voltage vs. Temperature  
Input Hysteresis Voltage vs. Temperature  
5
10  
8
2.5  
5V  
6
0
-2.5  
-5  
5V  
4
2
0
1.8V  
1.8V  
VCM=1.2V  
-25  
VCM=1.2V  
-25  
-50  
0
25  
50  
75  
100  
-50  
0
25  
50  
75  
100  
TEMPERATURE (  
)
TEMPERATURE (  
)
Quiescent Current vs. Temperature  
Propagation Delay vs. Temperature  
1000  
25  
20  
15  
10  
5
tpd-@VDD=5V  
tpd+@VDD=5V  
800  
600  
400  
200  
0
5V  
tpd-@VDD=1.8V  
tpd+@VDD=1.8V  
1.8V  
VCM=1.2V  
-50 -25  
VCM=1.2V  
-50  
0
0
25  
50  
75  
100  
0
50  
100  
TEMPERATURE (  
)
TEMPERATURE (  
)
Propagation Delay Skew vs. Temperature  
Reference Voltage vs. Temperature  
8
1.3  
1.28  
1.26  
1.24  
1.22  
1.2  
4
5V  
5V  
0
-4  
1.8V  
1.8V  
VCM=1.2V  
-8  
-50  
0
50  
100  
-50  
-25  
0
25  
50  
75  
100  
TEMPERATURE (  
)
TEMPERATURE (  
)
www.3peakic.com.cn  
5
TP2021/TP2025  
SC70, 1.8V, Nano-power Comparators with Voltage Reference  
Typical Performance Characteristics  
Propagation Delay vs. Overdrive Voltage  
Propagation Delay Skew vs. Overdrive Voltage  
100  
20  
VDD=5V  
VDD=5V  
CM=2.5V  
15  
V
CM=2.5V  
V
80  
60  
40  
20  
0
10  
5
0
-5  
tpd-  
-10  
-15  
-20  
tpd+  
100  
10  
1V  
10  
100  
Common Mode Voltage (mV)  
1V  
Common Mode Voltage (mV)  
Propagation Delay vs. Overdrive Voltage  
Propagation Delay Skew vs. Overdrive Voltage  
100  
20  
VDD=1.8V  
VDD=1.8V  
CM=0.9V  
15  
V
CM=0.9V  
V
80  
60  
40  
20  
0
10  
5
0
-5  
-10  
-15  
-20  
tpd-  
tpd+  
10  
100  
Common Mode Voltage (mV)  
1V  
10  
100  
Common Mode Voltage (mV)  
1V  
Input Offset Voltage vs. Common Mode Voltage  
Input Offset Voltage vs. Common Mode Voltage  
5
5
2.5  
0
2.5  
0
-2.5  
-2.5  
VDD=5V  
-5  
VDD=1.8V  
-5  
0
1
2
3
4
5
0
0.5  
1
1.5  
2
Common Mode Voltage (V)  
Common Mode Voltage (V)  
REV1.3  
www.3peakic.com.cn  
6
TP2021/TP2025  
SC70, 1.8V, Nano-power Comparators with Voltage Reference  
Typical Performance Characteristics  
Input Hysteresis Voltage vs. Common Mode Voltage  
Input Hysteresis Voltage vs. Common Mode Voltage  
10  
8
10  
8
6
6
4
4
2
2
VDD=5V  
0
VDD=1.8V  
0
0
1
2
3
4
5
5
5
0
0.5  
1
1.5  
2
Common Mode Voltage (V)  
Common Mode Voltage (V)  
Quiescent Current vs. Common Mode Voltage  
Quiescent Current vs. Common Mode Voltage  
1000  
800  
600  
400  
200  
1000  
800  
600  
400  
200  
VDD=5V  
0
VDD=1.8V  
0
0
1
2
3
4
0
0.5  
1
1.5  
2
Common Mode Voltage (V)  
Common Mode Voltage (V)  
Propagation Delay vs. Common Mode Voltage  
Propagation Delay vs. Common Mode Voltage  
20  
20  
tpd+  
15  
15  
tpd+  
tpd-  
10  
10  
tpd-  
5
5
VDD=5V  
0
VDD=1.8V  
0
0
1
2
3
4
0
0.5  
1
1.5  
2
Common Mode Voltage (V)  
Common Mode Voltage (V)  
www.3peakic.com.cn  
7
TP2021/TP2025  
SC70, 1.8V, Nano-power Comparators with Voltage Reference  
Typical Performance Characteristics  
Propagation Delay Skew vs. Common Mode Voltage  
Propagation Delay Skew vs. Common Mode Voltage  
5
5
2.5  
0
2.5  
0
-2.5  
-2.5  
VDD=5V  
-5  
VDD=1.8V  
-5  
0
1
2
3
4
5
0
0.5  
1
1.5  
2
Common Mode Voltage (V)  
Common Mode Voltage (V)  
Input Offset Voltage Distribution  
Input Hysteresis Voltage Distribution  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
60%  
1462 Samples  
DD=5V  
CM=1.2V  
1462 Samples  
50%  
40%  
30%  
20%  
10%  
0%  
V
V
V
DD=5V  
V
CM=1.2V  
0
1
2
3
4
5
6
7
8
9 10 11 12  
-6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
Input Offset Voltage (mV)  
Input Hysteresis Voltage (mV)  
Quiescent Current Distribution  
Low to High Propagation Delay Distribution  
35%  
30%  
25%  
20%  
15%  
10%  
5%  
70%  
1462 Samples  
1462 Samples  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
V
V
DD=5V  
V
V
DD=5V  
CM=1.2V  
CM=1.2V  
100mV overdrive  
0%  
350  
370  
390  
410  
430  
450  
470  
12  
14  
16  
18  
20  
22  
24  
Quiscent Current (nA)  
Propagation Low to High Delay (μs)  
REV1.3  
www.3peakic.com.cn  
8
TP2021/TP2025  
SC70, 1.8V, Nano-power Comparators with Voltage Reference  
Typical Performance Characteristics  
High to Low Propagation Delay Distribution  
Propagation Delay Skew Distribution  
45%  
50%  
1462 Samples  
40%  
1462 Samples  
45%  
40%  
35%  
30%  
25%  
20%  
15%  
10%  
5%  
V
V
DD=5V  
V
V
DD=5V  
35%  
30%  
25%  
20%  
15%  
10%  
5%  
CM=1.2V  
CM=1.2V  
100mV overdrive  
100mV overdrive  
0%  
0%  
10  
12  
14  
16  
18  
20  
22  
-2  
0
2
4
6
8
10  
Propagation High to Low Delay (μs)  
Propagation Delay Skew (μs)  
Reference Voltage Distribution  
Reference Voltage vs. Supply Voltage  
1.3  
50%  
45%  
40%  
35%  
30%  
25%  
20%  
15%  
10%  
5%  
1462 Samples  
DD=5V  
1.28  
1.26  
1.24  
1.22  
1.2  
V
Isinking  
Isourcing  
RREFLOAD=100kΩ  
2
0%  
1.20 1.22 1.24 1.26 1.28 1.30 1.32  
Reference Voltage (mV)  
1
3
4
5
Supply Voltage (V)  
Reference Voltage vs. Reference Load Current  
Reference Voltage vs. Reference Load Current  
1.3  
1.24  
1.28  
1.235  
Isinking  
Isinking  
1.26  
1.23  
1.24  
1.22  
Isourcing  
1.225  
VDD=5V  
Isourcing  
VDD=1.8V  
1.22  
1.2  
0
100  
200  
300  
400  
0
10  
20  
30  
Reference Load Current, Sourcing (μA)  
Reference Load Current, Sourcing (μA)  
www.3peakic.com.cn  
9
TP2021/TP2025  
SC70, 1.8V, Nano-power Comparators with Voltage Reference  
Typical Performance Characteristics  
Output Voltage Headroom vs. Output Load Current  
Output Voltage Headroom vs. Output Load Current  
5
2
VDD=5V  
VDD=1.8V  
4
1.5  
Sourcing Current  
3
Sourcing Current  
1
2
Sinking Current  
1
0.5  
Sinking Current  
0
0
0
5
10  
15  
0.0  
0.5  
1.0  
1.5  
2.0  
Output Load Current (mA)  
Output Load Current (mA)  
Output Voltage Headroom vs. Supply Voltage  
Output Short Current vs. Supply Voltage  
400  
30  
25  
300  
20  
Isinking  
VOH  
15  
10  
200  
100  
Isourcing  
5
0
VOL  
IOUT=±1mA  
0
1
2
3
4
5
1
2
3
4
5
Supply Voltage (V)  
Supply Voltage (V)  
REV1.3  
www.3peakic.com.cn  
10  
TP2021/TP2025  
SC70, 1.8V, Nano-power Comparators with Voltage Reference  
Pin Functions  
–IN: Inverting Input of the Comparator. Voltage range of  
V: Negative Power Supply. It is normally tied to ground.  
It can also be tied to a voltage other than ground as long  
as the voltage between V+ and Vis from 1.8V to 5.5V. If  
it is not connected to ground, bypass it with a capacitor  
of 0.1μF as close to the part as possible.  
this pin can go from V– 0.3V to V+ + 0.3V.  
+IN: Non-Inverting Input of Comparator. This pin has the  
same voltage range as –IN.  
V+: Positive Power Supply. Typically the voltage is from  
1.8V to 5.5V. Split supplies are possible as long as the  
voltage between V+ and V– is between 1.8V and 5.5V.  
A bypass capacitor of 0.1μF as close to the part as  
possible should be used between power supply pins or  
between supply pins and ground.  
OUT: Comparator Output. The voltage range extends to  
within millivolts of each supply rail.  
Ref: Reference voltage output.  
LATCH: Active Low Latch enable. Latch enable  
threshold is 1/2 V+ above negative supply rail.  
NC: No Connection.  
Operation  
The TP202x family single-supply comparators feature  
internal hysteresis, internal reference, high speed, and  
ultra-low power. Input signal range extends beyond the  
negative and positive power supplies. The output can  
even extend all the way to the negative supply. The  
input stage is comprised of two CMOS differential  
amplifiers, a PMOS stage and NMOS stage that are  
active over different ranges of common mode input  
voltage. Rail-to-rail input voltage range and low-voltage  
single-supply operation make these devices ideal for  
portable equipment.  
Applications Information  
Inputs  
The TP202x comparator family uses CMOS transistors at the input which prevent phase inversion when the input pins  
exceed the supply voltages. Figure 1 shows an input voltage exceeding both supplies with no resulting phase  
inversion.  
6
Input Voltage  
4
1KΩ  
+In  
2
Core  
1KΩ  
-In  
0
Output Voltage  
VDD=5V  
-2  
Time (100μs/div)  
Chip  
Figure 1. Response time to Input Voltage  
Figure 2. Equivalent Input Structure  
The electrostatic discharge (ESD) protection input structure of two back-to-back diodes and 1kΩ series resistors are  
used to limit the differential input voltage applied to the precision input of the comparator by clamping input voltages  
that exceed supply voltages, as shown in Figure 2.  
Large differential voltages exceeding the supply voltage should be avoided to prevent damage to the input stage.  
www.3peakic.com.cn  
11  
TP2021/TP2025  
SC70, 1.8V, Nano-power Comparators with Voltage Reference  
Internal Hysteresis  
Most high-speed comparators oscillate in the linear region because of noise or undesired parasitic feedback. This  
tends to occur when the voltage on one input is at or equal to the voltage on the other input. To counter the parasitic  
effects and noise, the TP202x implements internal hysteresis.  
The hysteresis in a comparator creates two trip points: one for the rising input voltage and one for the falling input  
voltage. The difference between the trip points is the hysteresis. When the comparator’s input voltages are equal, the  
hysteresis effectively causes one comparator input voltage to move quickly past the other, thus taking the input out of  
the region where oscillation occurs. Figure 3 illustrates the case where IN- is fixed and IN+ is varied. If the inputs were  
reversed, the figure would look the same, except the output would be inverted.  
Vi  
Vtr  
Vi  
Vtr  
Vhyst=Vtr-Vtf  
Vtr+V  
Vhyst=Vtr-Vtf  
Vtr+V  
Hysteresis  
Band  
Hysteresis  
Band  
Vin-  
Vin-  
tf -Vin-  
tf -Vin-  
Vos=  
2
Vos=  
2
Vtf  
Vtf  
Time  
Time  
VDD  
VDD  
0
0
Non-Inverting Comparator Output  
Inverting Comparator Output  
Figure 3. Comparator’s hysteresis and offset  
External Hysteresis  
Greater flexibility in selecting hysteresis is achieved by using external resistors. Hysteresis reduces output chattering  
when one input is slowly moving past the other. It also helps in systems where it is best not to cycle between high and  
low states too frequently (e.g., air conditioner thermostatic control). Output chatter also increases the dynamic supply  
current.  
Non-Inverting Comparator with Hysteresis  
A non-inverting comparator with hysteresis requires a two-resistor network, as shown in Figure 4 and a voltage  
reference (Vr) at the inverting input.  
VDD  
VDD  
VDD  
R2  
R2  
R2  
(1)  
RPU  
(1)  
TP202x  
RPU  
Vo  
R1  
(1)  
TP202x  
RPU  
R1  
Vi  
TP202x  
R1  
Vo  
Vtr  
Vr  
V+=Vr  
Vtf  
Ref  
V+=Vr  
Vo  
Ref  
Ref  
NOTE: (1) Use RPU with the TP2025/5U  
Figure 4. Non-Inverting Configuration with Hysteresis  
Consider the comparator of TP2021/TP2021U, when Vi is low, the output is also low. For the output to switch from low  
to high, Vi must rise up to Vtr. When Vi is high, the output is also high. In order for the comparator to switch back to a  
low state, Vi must equal Vtf before the non-inverting input V+ is again equal to Vr.  
R
2
V
V
tr  
r
R
R
2
1
R
1
V
(V  
V  
)
V  
tf  
r
DD  
tf  
R
1
R
2
REV1.3  
www.3peakic.com.cn  
12  
TP2021/TP2025  
SC70, 1.8V, Nano-power Comparators with Voltage Reference  
R
R
2
1
V
V
r
tr  
R
2
R
R
R
1
1
2
V
V   
V
DD  
r
tf  
R
R
2
2
R
1
V
V V  
tf  
V
DD  
tr  
hyst  
R
2
As for the TP2025/TP2025U, a pull-up resistor should be placed between output and the supply. The formula for  
calculating Vtf is slight difference with TP2021/TP2021U, so does the hysteresis voltage Vhyst  
.
R
1
V
(V  
DD  
V  
tf  
)
V  
r
tf  
R
R
R
1
2
PU  
R
R
R
R
1
1
2
PU  
V
V
V
r
DD  
tf  
R
R
R
R
2
PU  
2
PU  
R
1
V
V
if RPU<<R2  
DD  
hyst  
R
R
2
PU  
Inverting Comparator with Hysteresis  
The inverting comparator with hysteresis requires a two-resistor network that is referenced to the comparator supply  
voltage (VDD), as shown in Figure 5.  
Figure 5. Inverting Configuration with Hysteresis  
Consider the comparator of TP2021/TP2021U, when Vi is greater than V+, the output voltage is low. In this case, the  
three network resistors can be presented as paralleled resistor R2 || R3 in series with R1. When Vi at the inverting input  
is less than V+, the output voltage is high. The three network resistors can be represented as R1 ||R3 in series with R2.  
R
1
V
(V V ) V  
DD  
ref ref  
tr  
R
R
1
2
R
2
V
V
tf  
ref  
R
R
2
1
www.3peakic.com.cn  
13  
TP2021/TP2025  
SC70, 1.8V, Nano-power Comparators with Voltage Reference  
R
1
V
V V  
tf  
V
tr  
DD  
hyst  
R
R
2
1
As for the TP2025/TP2025U, a pull-up resistor should be placed between output and the supply. The formula for  
calculating Vtr is slight difference with TP2021/TP2021U, so does the hysteresis voltage Vhyst  
.
R
1
V
(V  
DD  
V ) V  
ref ref  
tr  
R  
R
R
PU  
1
2
R
1
if RPU<<R2  
V
V
DD  
hyst  
R
R
2
1
Low Input Bias Current  
The TP202x family is a CMOS comparator family and features very low input bias current in pA range. The low input  
bias current allows the comparators to be used in applications with high resistance sources. Care must be taken to  
minimize PCB Surface Leakage. See below section on “PCB Surface Leakage” for more details.  
PCB Surface Leakage  
In applications where low input bias current is critical, Printed Circuit Board (PCB) surface leakage effects need to be  
considered. Surface leakage is caused by humidity, dust or other contamination on the board. Under low humidity  
conditions, a typical resistance between nearby traces is 1012Ω. A 5V difference would cause 5pA of current to flow,  
which is greater than the TP202x’s input bias current at +27°C (±6pA, typical). It is recommended to use multi-layer  
PCB layout and route the comparator’s -IN and +IN signal under the PCB surface.  
The effective way to reduce surface leakage is to use a guard ring around sensitive pins (or traces). The guard ring is  
biased at the same voltage as the sensitive pin. An example of this type of layout is shown in Figure 6. for Inverting  
configuration application.  
1. For Non-Inverting Configuration:  
a) Connect the non-inverting pin (VIN+) to the input with a wire that does not touch the PCB surface.  
b) Connect the guard ring to the inverting input pin (VIN–). This biases the guard ring to the same reference as the  
comparator.  
2. For Inverting Configuration:  
a) Connect the guard ring to the non-inverting input pin (VIN+). This biases the guard ring to the same reference voltage as  
the comparator (e.g., VDD/2 or ground).  
b) Connect the inverting pin (VIN–) to the input with a wire that does not touch the PCB surface.  
Figure 6. Example Guard Ring Layout for Inverting Comparator  
Ground Sensing and Rail to Rail Output  
The TP202x family implements a rail-to-rail topology that is capable of swinging to within 10mV of either rail. Since the  
inputs can go 300mV beyond either rail, the comparator can easily perform ‘true ground’ sensing.  
REV1.3  
www.3peakic.com.cn  
14  
TP2021/TP2025  
SC70, 1.8V, Nano-power Comparators with Voltage Reference  
The maximum output current is a function of total supply voltage. As the supply voltage of the comparator increases,  
the output current capability also increases. Attention must be paid to keep the junction temperature of the IC below  
150°C when the output is in continuous short-circuit condition. The output of the amplifier has reverse-biased ESD  
diodes connected to each supply. The output should not be forced more than 0.5V beyond either supply, otherwise  
current will flow through these diodes.  
ESD  
The TP202x family has reverse-biased ESD protection diodes on all inputs and output. Input and output pins can not  
be biased more than 300mV beyond either supply rail.  
Power Supply Layout and Bypass  
The TP202x family’s power supply pin should have a local bypass capacitor (i.e., 0.01μF to 0.1μF) within 2mm for  
good high frequency performance. It can also use a bulk capacitor (i.e., 1μF or larger) within 100mm to provide large,  
slow currents. This bulk capacitor can be shared with other analog parts.  
Good ground layout improves performance by decreasing the amount of stray capacitance and noise at the  
comparator’s inputs and outputs. To decrease stray capacitance, minimize PCB lengths and resistor leads, and place  
external components as close to the comparator’ pins as possible.  
Proper Board Layout  
The TP202x family is a series of fast-switching, high-speed comparator and requires high-speed layout considerations.  
For best results, the following layout guidelines should be followed:  
1. Use a printed circuit board (PCB) with a good, unbroken low-inductance ground plane.  
2. Place a decoupling capacitor (0.1μF ceramic, surface-mount capacitor) as close as possible to supply.  
3. On the inputs and the output, keep lead lengths as short as possible to avoid unwanted parasitic feedback  
around the comparator. Keep inputs away from the output.  
4. Solder the device directly to the PCB rather than using a socket.  
5. For slow-moving input signals, take care to prevent parasitic feedback. A small capacitor (1000 pF or less)  
placed between the inputs can help eliminate oscillations in the transition region. This capacitor causes some  
degradation to propagation delay when the impedance is low. The topside ground plane should be placed  
between the output and inputs.  
6. The ground pin ground trace should run under the device up to the bypass capacitor, thus shielding the inputs  
from the outputs.  
www.3peakic.com.cn  
15  
TP2021/TP2025  
SC70, 1.8V, Nano-power Comparators with Voltage Reference  
Typical Applications  
IR Receiver  
The TP202x is an ideal candidate to be used as an infrared receiver shown in Figure 7. The infrared photo diode  
creates a current relative to the amount of infrared light present. The current creates a voltage across RD. When this  
voltage level cross the voltage applied by the voltage divider to the inverting input, the output transitions. Optional Ro  
provides additional hysteresis for noise immunity.  
Figure 7. IR Receiver  
Relaxation Oscillator  
A relaxation oscillator using TP2021 is shown in Figure 8. Resistors R1 and R2 set the bias point at the comparator's  
inverting input. The period of oscillator is set by the time constant of R4 and C1. The maximum frequency is limited by  
the large signal propagation delay of the comparator. TP2021’s low propagation delay guarantees the high frequency  
oscillation.  
If the inverted input (VC1) is lower than the non-inverting input (VA), the output is high which charges C1 through R4 until  
VC1 is equal to VA. The value of VA at this point is  
V
R  
2
DD  
|| R R  
2
V
A1  
R
1
3
At this point the comparator switches pulling down the output to the negative rail. The value of VA at this point is  
V
R || R  
DD  
2
3
V
A2  
R
R || R  
3
1
2
If R1=R2=R3, then VA1=2VDD /3, and VA2= VDD/3  
The capacitor C1 now discharges through R4, and the voltage VC decreases till it is equal to VA2, at which point the  
comparator switches again, bringing it back to the initial stage. The time period is equal to twice the time it takes to  
discharge C1 from 2VDD/3 to VDD/3. Hence the frequency is:  
1
Freq   
2 ln2 R C  
4
1
REV1.3  
www.3peakic.com.cn  
16  
TP2021/TP2025  
SC70, 1.8V, Nano-power Comparators with Voltage Reference  
VDD  
R3  
VO  
R1  
R2  
TP2021  
VA  
t
t
VC1  
Vo  
VC1  
2/3VDD  
1/3VDD  
R4  
C1  
R1=R2=R3  
Figure 8. Relaxation Oscillator  
Battery Level Detect  
The low power consumption and 1.8V supply voltage of the TP202x make it an excellent candidate for  
battery-powered applications. Figure 9 shows the TP202x configured as a low battery level detector for a 3V battery.  
BatteryGood V (R R )/R  
2
r
1
2
Figure 9. Battery Level Detect  
www.3peakic.com.cn  
17  
TP2021/TP2025  
SC70, 1.8V, Nano-power Comparators with Voltage Reference  
Package Outline Dimensions  
SC-70-5 / SC-70-6 (SOT353 / SOT363)  
Dimensions  
Dimensions In  
Inches  
In Millimeters  
Symbol  
Min  
Max  
Min  
Max  
A1  
A2  
b
0.000  
0.900  
0.150  
0.080  
2.000  
1.150  
2.150  
0.100  
1.000  
0.350  
0.150  
2.200  
1.350  
2.450  
0.000  
0.035  
0.006  
0.003  
0.079  
0.045  
0.085  
0.004  
0.039  
0.014  
0.006  
0.087  
0.053  
0.096  
C
D
E
E1  
e
0.650TYP  
0.026TYP  
e1  
L1  
θ
1.200  
0.260  
0°  
1.400  
0.460  
8°  
0.047  
0.010  
0°  
0.055  
0.018  
8°  
REV1.3  
www.3peakic.com.cn  
18  
TP2021/TP2025  
SC70, 1.8V, Nano-power Comparators with Voltage Reference  
Package Outline Dimensions  
SOT23-5 / SOT23-6  
Dimensions  
Dimensions  
In Inches  
In Millimeters  
Symbol  
Min  
Max  
Min  
Max  
A1  
A2  
b
0.000  
1.050  
0.300  
2.820  
1.500  
2.650  
0.100  
1.150  
0.400  
3.020  
1.700  
2.950  
0.000  
0.041  
0.012  
0.111  
0.059  
0.104  
0.004  
0.045  
0.016  
0.119  
0.067  
0.116  
D
E
E1  
e
0.950TYP  
0.037TYP  
e1  
L1  
θ
1.800  
0.300  
0°  
2.000  
0.460  
8°  
0.071  
0.012  
0°  
0.079  
0.024  
8°  
www.3peakic.com.cn  
19  
TP2021/TP2025  
SC70, 1.8V, Nano-power Comparators with Voltage Reference  
Package Outline Dimensions  
SO-8 (SOIC-8)  
A2  
C
θ
L1  
A1  
e
E
D
Dimensions  
Dimensions In  
Inches  
In Millimeters  
Symbol  
Min  
Max  
Min  
Max  
A1  
A2  
b
0.100  
1.350  
0.330  
0.190  
4.780  
3.800  
5.800  
0.250  
1.550  
0.510  
0.250  
5.000  
4.000  
6.300  
0.004  
0.053  
0.013  
0.007  
0.188  
0.150  
0.228  
0.010  
0.061  
0.020  
0.010  
0.197  
0.157  
0.248  
E1  
C
D
E
E1  
e
1.270TYP  
0.050TYP  
L1  
θ
0.400  
0°  
1.270  
8°  
0.016  
0°  
0.050  
8°  
b
REV1.3  
www.3peakic.com.cn  
20  

相关型号:

TP2025U2-TR

SC70, 1.8V, Nano-power Comparators with Voltage Reference

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
3PEAK

TP202G

2.0A Glass Passivated Bridge Rectifier

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TAITRON

TP203

1.5 WATT and DUAL OUTPUT DC-DC CONVERTERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

TP2033

TRANSISTOR | BJT | NPN | 8A I(C) | STX-8

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

TP2037

TRANSISTOR | BJT | NPN | 8A I(C) | STX-8

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

TP203C

6x6 mm Right Angle Type with Supporting Terminal & Tab Available

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
GREATECS

TP203CS28CNTR03

6x6 mm Right Angle Type with Supporting Terminal & Tab Available

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
GREATECS

TP203CS43BUTR03

6x6 mm Right Angle Type with Supporting Terminal & Tab Available

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
GREATECS

TP204

1.5 WATT and DUAL OUTPUT DC-DC CONVERTERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

TP204G

2.0A Glass Passivated Bridge Rectifier

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TAITRON

TP205

1.5 WATT and DUAL OUTPUT DC-DC CONVERTERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

TP2050

STEREO 50W (8ヘ) POWER STAGE

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TRIPATH