TP2412-TR [3PEAK]

Low Cost, Low Noise CMOS RRIO Op-amps;
TP2412-TR
型号: TP2412-TR
厂家: 3PEAK    3PEAK
描述:

Low Cost, Low Noise CMOS RRIO Op-amps

文件: 总17页 (文件大小:1258K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TP2411/TP2412 /TP2414  
Low Cost, Low Noise CMOS RRIO Op-amps  
Description  
3PEAK  
Features  
The TP2411, TP2412, and TP2414 are low cost, single,  
dual, and quad rail-to-rail output, single-supply amplifiers  
featuring low offset and input voltages, low current noise,  
and wide signal bandwidth. The combination of low  
offset, low noise, very low input bias currents, and high  
speed make these amplifiers useful in a wide variety of  
applications. Filters, integrators, photodiode amplifiers,  
and high impedance sensors all benefit from this  
combination of performance features. Audio and other  
ac applications benefit from the wide bandwidth and low  
distortion of these devices.  
Gain-bandwidth Product: 10 MHz  
Low Noise: 8.2 nV/√Hz(f= 1kHz)  
Slew Rate: 7 V/μs  
Offset Voltage: 1 mV (max)  
EMIRR IN+: 88 dB( under 2.4GHz)  
Low THD+N: 0.0005%  
Supply Range: 2.2 V to 5.5 V  
Supply Current: 1.4 mA/ch  
Low Input Bias Current: 0.3pA Typical  
Rail-to-Rail I/O  
Applications for these amplifiers include power  
amplifier (PA) controls, laser diode control loops,  
portable and loop-powered instrumentation, audio  
amplification for portable devices, and ASIC input and  
output amplifiers.  
High Output Current: 70 mA (1.0V Drop)  
40°C to 125°C Operation Range  
The TP2411 is single channel version available in 8-pin  
SOP and 5-pin SOT23 packages. The TP2412 is dual  
channel version available in 8-pin SOP, SOT, TSSOP  
and MSOP packages. The TP2414 is quad channel  
version available in 14-pin SOP and TSSOP packages.  
Applications  
Sensor Signal Conditioning  
Consumer Audio  
Multi-Pole Active Filters  
Control-Loop Amplifiers  
Communications  
Security  
3PEAK and the 3PEAK logo are registered trademarks of  
3PEAK INCORPORATED. All other trademarks are the property of  
their respective owners.  
Scanners  
Pin Configuration(Top View)  
TP2411  
8-Pin SOP  
(-S Suffix)  
TP2412  
8-Pin SOP/MSOP/SOT/TSSOP  
(-S ,-V, -T, -TS Suffixes)  
Input Voltage Noise Spectral Density  
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
NC  
NC  
Vs  
Out  
NC  
Out A  
Vs  
1000  
In  
In A  
Out B  
In B  
In B  
A
In  
In A  
Vs  
B
VCC= +5V  
RL= 1kΩ  
Vs  
100  
TP2411  
5-Pin SOT23  
(-T Suffix)  
TP2414  
14-Pin SOP/TSSOP  
(-S and -T Suffixes)  
1
2
3
4
5
6
7
14  
Out A  
In A  
In A  
Vs  
Out D  
1
2
3
5
4
Out  
Vs  
10  
1
13 In D  
Vs  
A
B
D
C
12  
11  
In D  
Vs  
+In  
-In  
10 In C  
In B  
In B  
Out B  
9
8
In C  
1
10  
100  
1k  
10k  
100k  
1M  
Out C  
Frequency(Hz)  
www.3peakic.com.cn  
Rev. B.01  
1
TP2411 / TP241
2
/
T
P2414  
Low Cost, Low Noise CMOS RRIO Op-amps  
Order Information  
Marking  
Information  
Model Name  
Order Number  
Package  
8-Pin SOP  
Transport Media, Quantity  
TP2411-SR  
TP2411-TR  
TP2412-SR  
TP2412-VR  
TP2412-TSR  
TP2412-TR  
TP2414-SR  
TP2414-TR  
Tape and Reel, 4,000  
Tape and Reel, 3,000  
Tape and Reel, 4,000  
Tape and Reel, 3,000  
Tape and Reel, 3,000  
Tape and Reel, 3,000  
Tape and Reel, 2,500  
Tape and Reel, 3,000  
TP2411  
411  
TP2411  
5-Pin SOT23  
8-Pin SOP  
TP2412  
TP2412  
TP2412  
S12  
8-Pin MSOP  
8-Pin TSSOP  
8-Pin SOT23  
14-Pin SOP  
14-Pin TSSOP  
TP2412  
TP2414  
TP2414  
TP2414  
Note 1  
Absolute Maximum Ratings  
Supply Voltage: V+ VNote 2............................7.0V  
Input Voltage............................. V0.3 to V+ + 0.3  
Input Current: +IN, IN Note 3.......................... ±20mA  
Output Short-Circuit Duration Note 4......... Indefinite  
Current at Supply Pins……………............... ±60mA  
Operating Temperature Range........40°C to 125°C  
Maximum Junction Temperature................... 150°C  
Storage Temperature Range.......... 65°C to 150°C  
Lead Temperature (Soldering, 10 sec) ......... 260°C  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum  
Rating condition for extended periods may affect device reliability and lifetime.  
Note 2: The op amp supplies must be established simultaneously, with, or before, the application of any input signals.  
Note 3: The inputs are protected by ESD protection diodes to each power supply. If the input extends more than 500mV beyond the power supply, the input  
current should be limited to less than 10mA.  
Note 4: A heat sink may be required to keep the junction temperature below the absolute maximum. This depends on the power supply voltage and how many  
amplifiers are shorted. Thermal resistance varies with the amount of PC board metal connected to the package. The specified values are for short traces  
connected to the leads.  
ESD, Electrostatic Discharge Protection  
Symbol  
Parameter  
Condition  
Minimum Level  
Unit  
HBM  
CDM  
Human Body Model ESD  
ANSI/ESDA/JEDEC JS-001  
ANSI/ESDA/JEDEC JS-002  
2
1
kV  
kV  
Charged Device Model ESD  
Thermal Resistance  
Package Type  
5-Pin SOT23  
8-Pin SOP  
θJA  
250  
158  
210  
191  
196  
120  
180  
θJC  
81  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
43  
8-Pin MSOP  
8-Pin TSSOP  
8-Pin SOT23  
14-Pin SOP  
14-Pin TSSOP  
45  
70  
36  
35  
Rev. B.01  
www.3peakic.com.cn  
2
TP2411/TP241
2
/
T
P2414  
Low Cost, Low Noise CMOS RRIO Op-amps  
Electrical Characteristics  
The specifications are at TA = 27° C. VS = 5V, RL = 2kΩ, CL =100pF.Unless otherwise noted.  
SYMBOL  
PARAMETER  
Input Offset Voltage  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
VCM = VS/2  
VCM = 0V  
-1  
-1  
± 0.25  
+1  
+1  
mV  
mV  
μV/° C  
pA  
VOS  
± 0.25  
1
VOS TC  
Input Offset Voltage Drift  
Input Bias Current  
-40°C to 125°C  
TA = 27 °C  
0.3  
150  
300  
0.3  
IB  
TA = 85 °C  
pA  
TA = 125 °C  
pA  
IOS  
Vn  
Input Offset Current  
Input Voltage Noise  
pA  
3.14  
8.2  
f = 0.1Hz to 10Hz  
f = 1kHz  
μVPP  
en  
in  
Input Voltage Noise Density  
Input Current Noise  
nV/√Hz  
f = 1kHz  
2
8
7
fA/√Hz  
Differential  
Common Mode  
CIN  
CMRR  
VCM  
Input Capacitance  
pF  
VCM = 2.5V  
90  
80  
55  
106  
106  
72  
dB  
dB  
dB  
Common Mode Rejection Ratio  
VCM = 0V to 3V  
VCM = 0V to 5V  
Common-mode Input Voltage  
Range  
V-0.1  
V+-0.1  
50  
V
PSRR  
AVOL  
VOL, VOH  
ROUT  
RO  
Power Supply Rejection Ratio  
Open-Loop Large Signal Gain  
Output Swing from Supply Rail  
Closed-Loop Output Impedance  
Open-Loop Output Impedance  
Output Short-Circuit Current  
Supply Voltage  
VS = 2.2V to 5.5V, VCM = 0V  
RLOAD = 2kΩ, VOUT = -2V to 2V  
RLOAD = 2kΩ  
82  
100  
120  
20  
dB  
dB  
mV  
Ω
100  
G = 1, f =1MHz, IOUT = 0  
f = 1kHz, IOUT = 0  
0.2  
125  
130  
Ω
ISC  
Sink or source current  
100  
2.2  
mA  
V
VS  
5.5  
IQ  
Quiescent Current per Amplifier  
Phase Margin  
VS = 5V  
1.4  
60  
8
1.95  
mA  
°
PM  
RLOAD = 1kΩ, CLOAD = 60pF  
RLOAD = 1kΩ, CLOAD = 60pF  
f = 1kHz  
GM  
Gain Margin  
dB  
MHz  
GBWP  
Gain-Bandwidth Product  
10  
AV = 1, VOUT = 0V to 10V, CLOAD = 100pF,  
RLOAD = 2kΩ  
SR  
FPBW  
tS  
Slew Rate  
3.0  
7
V/μs  
kHz  
μs  
Full Power Bandwidth Note 1  
414  
Settling Time, 0.1%  
Settling Time, 0.01%  
Total Harmonic Distortion and  
Noise  
0.75  
0.85  
AV = 1, 1V Step  
THD+N  
Xtalk  
f = 1kHz, AV =1, RL = 2kΩ, VOUT = 1Vp-p  
f = 1kHz, RL = 2kΩ  
0.0005  
110  
%
Channel Separation  
dB  
Note 1: Full power bandwidth is calculated from the slew rate FPBW = SR/π • VP-P  
www.3peakic.com.cn  
Rev. B.01  
3
TP2411 / TP241
2
/
T
P2414  
Low Cost, Low Noise CMOS RRIO Op-amps  
Typical Performance Characteristics  
VS = ±2.75V, VCM = 0V, RL = Open, unless otherwise specified.  
Offset Voltage Production Distribution  
Unity Gain Bandwidth vs. Temperature  
1000  
15  
14.9  
14.8  
14.7  
14.6  
14.5  
14.4  
14.3  
14.2  
14.1  
14  
Number = 38300 pcs  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
-40  
-20  
0
20  
40  
60  
80  
100 120  
Temperature()  
Offset Voltage(uV)  
Open-Loop Gain and Phase  
Input Voltage Noise Spectral Density  
140  
330  
120  
1000  
100  
10  
VCC= +5V  
RL= 1kΩ  
100  
80  
230  
130  
30  
60  
40  
20  
-70  
0
-20  
-40  
-60  
-170  
1
-270  
1000M  
1
10  
100  
1k  
10k  
100k  
1M  
0.1  
10  
1k  
100k  
10M  
Frequency(Hz)  
Frequency (Hz)  
Input Bias Current vs. Temperature  
Input Bias Current vs. Input Common Mode Voltage  
5.00E-16  
1.00E-11  
1.00E-13  
1.00E-15  
1.00E-17  
1.00E-19  
1.00E-21  
5.00E-17  
5.00E-18  
0
1
2
3
4
5
6
-10  
10  
30  
50  
70  
90  
110 130 150  
Common Mode Voltage(V)  
Temperature()  
Rev. B.01  
www.3peakic.com.cn  
4
TP2411/TP241
2
/
T
P2414  
Low Cost, Low Noise CMOS RRIO Op-amps  
Typical Performance Characteristics  
VS = ±2.75V, VCM = 0V, RL = Open, unless otherwise specified. (Continued)  
Common Mode Rejection Ratio  
CMRR vs. Frequency  
180  
140  
120  
100  
160  
140  
120  
100  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
1
100  
10k  
1M  
100M  
0
1
2
3
4
Frequency(Hz)  
Common Mode Voltage(V)  
Quiescent Current vs. Temperature  
Short Circuit Current vs. Temperature  
200  
180  
160  
140  
120  
100  
80  
1.48  
1.46  
1.44  
1.42  
1.4  
I
SINK  
I
SOURCE  
1.38  
1.36  
1.34  
1.32  
1.3  
60  
40  
20  
0
-50  
0
50  
100  
150  
-40  
-15  
10  
35  
60  
85  
110  
Temperature()  
Temperature()  
Power-Supply Rejection Ratio  
Quiescent Current vs. Supply Voltage  
1.8  
1.6  
1.4  
1.2  
1
140  
120  
100  
80  
60  
40  
20  
0
PSRR+  
0.8  
0.6  
0.4  
0.2  
0
PSRR-  
1
100  
10k  
1M  
1.5  
2.5  
3.5  
4.5  
5.5  
Frequency(Hz)  
Supply Voltage (V)  
www.3peakic.com.cn  
Rev. B.01  
5
TP2411 / TP241
2
/
T
P2414  
Low Cost, Low Noise CMOS RRIO Op-amps  
Typical Performance Characteristics  
VS = ±2.75V, VCM = 0V, RL = Open, unless otherwise specified. (Continued)  
Power-Supply Rejection Ratio vs. Temperature  
CMRR vs. Temperature  
120  
100  
80  
60  
40  
20  
0
140  
120  
100  
80  
60  
40  
20  
0
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Temperature()  
Temperature()  
EMIRR IN+ vs. Frequency  
Large-Scale Step Response  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Gain=+1  
RL=10kΩ  
40  
400  
4000  
Frequency (MHz)  
Time (20μs/div)  
Negative Over-Voltage Recovery  
Positive Over-Voltage Recovery  
Gain=+10  
±V=±2.5V  
Gain=+10  
±V=±2.5V  
Time (500ns/div)  
Time (500ns/div)  
Rev. B.01  
www.3peakic.com.cn  
6
TP2411/TP241
2
/
T
P2414  
Low Cost, Low Noise CMOS RRIO Op-amps  
Typical Performance Characteristics  
VS = ±2.75V, VCM = 0V, RL = Open, unless otherwise specified. (Continued)  
0.1 Hz TO 10 Hz Input Voltage Noise  
Offset Voltage vs Common-Mode Voltage  
500  
0
-500  
Vcc=±2.5V  
-1000  
-1500  
-2000  
-2500  
-3000  
-2.5  
-1.5  
-0.5  
0.5  
1.5  
2.5  
5s/div  
Common-mode voltage(V)  
Positive Output Swing vs. Load Current  
Negative Output Swing vs. Load Current  
0
-20  
140  
120  
100  
80  
-40  
25℃  
-40  
-60  
+125℃  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
60  
+125℃  
25℃  
40  
20  
-40℃  
0
0
1
2
3
4
5
0
1
2
3
4
5
Vout Dropout (V)  
Vout Dropout (V)  
www.3peakic.com.cn  
Rev. B.01  
7
TP2411 / TP241
2
/
T
P2414  
Low Cost, Low Noise CMOS RRIO Op-amps  
Pin Functions  
-IN: Inverting Input of the Amplifier.  
possible should be used between power supply pins or  
between supply pins and ground.  
+IN: Non-Inverting Input of Amplifier.  
OUT: Amplifier Output. The voltage range extends to  
within mV of each supply rail.  
V- or -Vs: Negative Power Supply. It is normally tied to  
ground. It can also be tied to a voltage other than  
ground as long as the voltage between V+ and Vis from  
2.2V to 5.5V. If it is not connected to ground, bypass it  
V+ or +Vs: Positive Power Supply. Typically the voltage  
is from 2.2V to 5.5V. Split supplies are possible as long  
as the voltage between V+ and Vis between 2.2V and  
5.5V. A bypass capacitor of 0.1μF as close to the part as  
with a capacitor of 0.1μF as close to the part as  
possible.  
Operation  
The TP2411 series op amps can operate on a single-supply voltage (2.2 V to 5.5 V), or a split-supply voltage (±1.1 V to  
±2.75 V), making them highly versatile and easy to use. The power-supply pins should have local bypass ceramic  
capacitors (typically 0.001 μF to 0.1 μF). These amplifiers are fully specified from +2.2 V to +5.5 V and over the  
extended temperature range of 40°C to +125°C. Parameters that can exhibit variance with regard to operating voltage  
or temperature are presented in the Typical Characteristics.  
Applications Information  
Input ESD Diode Protection  
The TP2411 incorporates internal electrostatic discharge (ESD) protection circuits on all pins. In the case of input and  
output pins, this protection primarily consists of current-steering diodes connected between the input and power-supply  
pins. These ESD protection diodes also provide in-circuit input overdrive protection, as long as the current is limited to  
10 mA as stated in the Absolute Maximum Ratings table. Many input signals are inherently current-limited to less than  
10 mA; therefore, a limiting resistor is not required. Figure 1 shows how a series input resistor (RS) may be added to  
the driven input to limit the input current. The added resistor contributes thermal noise at the amplifier input and the  
value should be kept to the minimum in noise-sensitive applications.  
V+  
Current-limiting resistor  
required if input voltage  
exceeds supply rails by  
500Ω  
+2.5V  
IN+  
>0.5V.  
Ioverload  
10mA max  
TP2411  
VIN  
Vout  
500Ω  
IN-  
5kΩ  
-2.5V  
V-  
INPUT ESD DIODE CURRENT LIMITING- UNITY GAIN  
Figure1. Input ESD Diode  
Rev. B.01  
www.3peakic.com.cn  
8
TP2411/TP241
2
/
T
P2414  
Low Cost, Low Noise CMOS RRIO Op-amps  
PHASE REVERSAL  
The TP2411 op amps are designed to be immune to phase reversal when the input pins exceed the supply voltages,  
therefore providing further in-system stability and predictability. Figure 2 shows the input voltage exceeding the supply  
voltage without any phase reversal.  
Figure 2. No Phase Reversal  
EMI SUSCEPTIBILITY AND INPUT FILTERING  
Operational amplifiers vary in susceptibility to electromagnetic interference (EMI). If conducted EMI enters the device,  
the dc offset observed at the amplifier output may shift from the nominal value while EMI is present. This shift is a result  
of signal rectification associated with the internal semiconductor junctions. While all operational amplifier pin functions  
can be affected by EMI, the input pins are likely to be the most susceptible. The TP2411 operational amplifier family  
incorporates an internal input low-pass filter that reduces the amplifier response to EMI. Both common-mode and  
differential mode filtering are provided by the input filter. The filter is designed for a cutoff frequency of approximately  
500 MHz (3 dB), with a roll-off of 20 dB per decade.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
40  
400  
4000  
Frequency (MHz)  
Figure 3. TP2411 EMIRR IN+ vs Frequency  
www.3peakic.com.cn  
Rev. B.01  
9
TP2411 / TP241
2
/
T
P2414  
Low Cost, Low Noise CMOS RRIO Op-amps  
PCB Surface Leakage  
In applications where low input bias current is critical, Printed Circuit Board (PCB) surface leakage effects need to be  
considered. Surface leakage is caused by humidity, dust or other contamination on the board. Under low humidity  
conditions, a typical resistance between nearby traces is 1012Ω. A 5V difference would cause 5pA of current to flow,  
which is greater than the TP2411/2412/2414 OPA’s input bias current at +27°C (±3pA, typical). It is recommended to  
use multi-layer PCB layout and route the OPA’s -IN and +IN signal under the PCB surface.  
The effective way to reduce surface leakage is to use a guard ring around sensitive pins (or traces). The guard ring is  
biased at the same voltage as the sensitive pin. An example of this type of layout is shown in Figure 1 for Inverting  
Gain application.  
1. For Non-Inverting Gain and Unity-Gain Buffer:  
a) Connect the non-inverting pin (VIN+) to the input with a wire that does not touch the PCB surface.  
b) Connect the guard ring to the inverting input pin (VIN). This biases the guard ring to the Common Mode input voltage.  
2. For Inverting Gain and Trans-impedance Gain Amplifiers (convert current to voltage, such as photo detectors):  
a) Connect the guard ring to the non-inverting input pin (VIN+). This biases the guard ring to the same reference voltage as the  
op-amp (e.g., VDD/2 or ground).  
b) Connect the inverting pin (VIN) to the input with a wire that does not touch the PCB surface.  
Guard Ring  
VIN+  
VIN-  
+VS  
Figure 4 The Layout of Guard Ring  
Power Supply Layout and Bypass  
The TP2411/2412/2412 OPA’s power supply pin (VDD for single-supply) should have a local bypass capacitor (i.e.,  
0.01μF to 0.1μF) within 2mm for good high frequency performance. It can also use a bulk capacitor (i.e., 1μF or larger)  
within 100mm to provide large, slow currents. This bulk capacitor can be shared with other analog parts.  
Ground layout improves performance by decreasing the amount of stray capacitance and noise at the OPA’s inputs  
and outputs. To decrease stray capacitance, minimize PC board lengths and resistor leads, and place external  
components as close to the op amps’ pins as possible.  
Proper Board Layout  
To ensure optimum performance at the PCB level, care must be taken in the design of the board layout. To avoid  
leakage currents, the surface of the board should be kept clean and free of moisture. Coating the surface creates a  
barrier to moisture accumulation and helps reduce parasitic resistance on the board.  
Keeping supply traces short and properly bypassing the power supplies minimizes power supply disturbances due to  
output current variation, such as when driving an ac signal into a heavy load. Bypass capacitors should be connected  
as closely as possible to the device supply pins. Stray capacitances are a concern at the outputs and the inputs of the  
amplifier. It is recommended that signal traces be kept at least 5mm from supply lines to minimize coupling.  
A variation in temperature across the PCB can cause a mismatch in the Seebeck voltages at solder joints and other  
points where dissimilar metals are in contact, resulting in thermal voltage errors. To minimize these thermocouple  
effects, orient resistors so heat sources warm both ends equally. Input signal paths should contain matching numbers  
and types of components, where possible to match the number and type of thermocouple junctions. For example,  
dummy components such as zero value resistors can be used to match real resistors in the opposite input path.  
Matching components should be located in close proximity and should be oriented in the same manner. Ensure leads  
are of equal length so that thermal conduction is in equilibrium. Keep heat sources on the PCB as far away from  
amplifier input circuitry as is practical.  
The use of a ground plane is highly recommended. A ground plane reduces EMI noise and also helps to maintain a  
constant temperature across the circuit board.  
Rev. B.01  
www.3peakic.com.cn  
10  
TP2411/TP241
2
/
T
P2414  
Low Cost, Low Noise CMOS RRIO Op-amps  
Package Outline Dimensions  
SOT23-5  
D
A2  
A1  
θ
L1  
e
Dimensions  
Dimensions  
In Inches  
In Millimeters  
Symbol  
Min  
Max  
Min  
Max  
A1  
A2  
b
0.000  
1.050  
0.300  
2.820  
1.500  
2.650  
0.100  
1.150  
0.400  
3.020  
1.700  
2.950  
0.000  
0.041  
0.012  
0.111  
0.059  
0.104  
0.004  
0.045  
0.016  
0.119  
0.067  
0.116  
E1  
E
D
E
E1  
e
0.950TYP  
0.037TYP  
e1  
L1  
θ
1.800  
0.300  
0°  
2.000  
0.460  
8°  
0.071  
0.012  
0°  
0.079  
0.024  
8°  
b
e1  
www.3peakic.com.cn  
Rev. B.01  
11  
TP2411 / TP241
2
/
T
P2414  
Low Cost, Low Noise CMOS RRIO Op-amps  
Package Outline Dimensions  
SOT-23-8  
Dimensions  
Dimensions In  
Inches  
In Millimeters  
Symbol  
Min  
Max  
Min  
Max  
A
A1  
A2  
b
1.050  
0.000  
1.050  
0.300  
0.100  
2.820  
1.500  
2.600  
1.250  
0.100  
1.150  
0.500  
0.200  
3.020  
1.700  
3.000  
0.041  
0.000  
0.041  
0.012  
0.004  
0.111  
0.059  
0.102  
0.049  
0.004  
0.045  
0.020  
0.008  
0.119  
0.067  
0.118  
c
D
E
E1  
e
0.65BSC)  
0.975BSC)  
0.300 0.600  
0° 8°  
0.026(BSC)  
0.038(BSC)  
e1  
L
0.012  
0°  
0.024  
θ
8°  
Rev. B.01  
www.3peakic.com.cn  
12  
TP2411/TP241
2
/
T
P2414  
Low Cost, Low Noise CMOS RRIO Op-amps  
Package Outline Dimensions  
SOP-8  
A2  
C
θ
L1  
A1  
e
E
D
Dimensions  
Dimensions In  
Inches  
In Millimeters  
Symbol  
Min  
Max  
Min  
Max  
A1  
A2  
b
0.100  
1.350  
0.330  
0.190  
4.780  
3.800  
5.800  
0.250  
1.550  
0.510  
0.250  
5.000  
4.000  
6.300  
0.004  
0.053  
0.013  
0.007  
0.188  
0.150  
0.228  
0.010  
0.061  
0.020  
0.010  
0.197  
0.157  
0.248  
E1  
C
D
E
E1  
e
b
1.270 TYP  
0.050 TYP  
L1  
θ
0.400  
0°  
1.270  
8°  
0.016  
0°  
0.050  
8°  
www.3peakic.com.cn  
Rev. B.01  
13  
TP2411 / TP241
2
/
T
P2414  
Low Cost, Low Noise CMOS RRIO Op-amps  
Package Outline Dimensions  
MSOP-8  
Dimensions  
Dimensions In  
Inches  
In Millimeters  
Symbol  
Min  
Max  
Min  
Max  
A
0.800  
0.000  
0.760  
0.30 TYP  
0.15 TYP  
2.900  
0.65 TYP  
2.900  
4.700  
0.410  
0°  
1.200  
0.200  
0.970  
0.031  
0.000  
0.030  
0.012 TYP  
0.006 TYP  
0.114  
0.026  
0.114  
0.185  
0.016  
0°  
0.047  
0.008  
0.038  
E
E1  
A1  
A2  
b
C
D
3.100  
0.122  
e
b
e
E
3.100  
5.100  
0.650  
6°  
0.122  
0.201  
0.026  
6°  
D
E1  
L1  
θ
A1  
R1  
R
θ
L
L1  
L2  
Rev. B.01  
www.3peakic.com.cn  
14  
TP2411/TP241
2
/
T
P2414  
Low Cost, Low Noise CMOS RRIO Op-amps  
Package Outline Dimensions  
TSSOP-8  
Symbol  
Dimensions In Millimeters  
Min Max  
3.100  
Dimensions In Inches  
Min Max  
0.122  
D
E
2.900  
4.300  
0.190  
0.090  
6.250  
0.114  
0.169  
0.007  
0.004  
0.246  
4.500  
0.300  
0.200  
6.550  
1.200  
1.000  
0.150  
0.177  
0.012  
0.008  
0.258  
0.047  
0.039  
0.006  
b
c
E1  
A
A2  
A1  
e
0.800  
0.031  
0.002  
0.050  
0.65(BSC)  
0.500  
0.026BSC)  
0.020  
L
0.700  
7°  
0.028  
7°  
H
θ
0.25(BSC)  
1°  
0.01BSC)  
1°  
www.3peakic.com.cn  
Rev. B.01  
15  
TP2411 / TP241
2
/
T
P2414  
Low Cost, Low Noise CMOS RRIO Op-amps  
Package Outline Dimensions  
TSSOP-14  
Dimensions  
In Millimeters  
E1  
E
Symbol  
MIN  
-
TYP  
MAX  
1.20  
0.15  
1.05  
0.28  
0.19  
5.06  
6.60  
4.50  
A
A1  
A2  
b
-
0.05  
0.90  
0.20  
0.10  
4.86  
6.20  
4.30  
-
1.00  
-
e
c
c
-
4.96  
D
D
E
6.40  
E1  
e
4.40  
0.65 BSC  
0.60  
L
0.45  
0.75  
A1  
L1  
L2  
R
1.00 REF  
0.25 BSC  
-
0.09  
0°  
-
R1  
θ
-
8°  
R
θ
L
L1  
L2  
Rev. B.01  
www.3peakic.com.cn  
16  
TP2411/TP241
2
/
T
P2414  
Low Cost, Low Noise CMOS RRIO Op-amps  
Package Outline Dimensions  
SOP-14  
D
Dimensions  
E1  
E
In Millimeters  
TYP  
Symbol  
MIN  
1.35  
0.10  
1.25  
0.36  
8.53  
5.80  
3.80  
MAX  
1.75  
0.25  
1.65  
0.49  
8.73  
6.20  
4.00  
A
A1  
A2  
b
1.60  
0.15  
e
b
1.45  
D
8.63  
6.00  
E
A2  
A
E1  
e
3.90  
1.27 BSC  
0.60  
A1  
L
0.45  
0°  
0.80  
8°  
L1  
L2  
θ
1.04 REF  
0.25 BSC  
L
L1  
θ
L2  
www.3peakic.com.cn  
Rev. B.01  
17  

相关型号:

TP2412-TSR

Low Cost, Low Noise CMOS RRIO Op-amps
3PEAK

TP2412-VR

Low Cost, Low Noise CMOS RRIO Op-amps
3PEAK

TP2414

Low Cost, Low Noise CMOS RRIO Op-amps
3PEAK

TP2414-SR

Low Cost, Low Noise CMOS RRIO Op-amps
3PEAK

TP2414-TR

Low Cost, Low Noise CMOS RRIO Op-amps
3PEAK

TP242

1.5 WATT and DUAL OUTPUT DC-DC CONVERTERS
ETC

TP2424

P-Channel Enhancement-Mode Vertical DMOS FETs
SUPERTEX

TP2424N8

P-Channel Enhancement-Mode Vertical DMOS FETs
SUPERTEX

TP2424N8-G

0.316A, 240V, 8ohm, P-CHANNEL, Si, POWER, MOSFET, TO-243AA
MICROCHIP

TP2424ND

P-Channel Enhancement-Mode Vertical DMOS FETs
SUPERTEX

TP243

1.5 WATT and DUAL OUTPUT DC-DC CONVERTERS
ETC

TP2431

1.6MHz Bandwidth, Micropower Low Noise Op-amps
3PEAK