TP2431U-TR [3PEAK]

1.6MHz Bandwidth, Micropower Low Noise Op-amps;
TP2431U-TR
型号: TP2431U-TR
厂家: 3PEAK    3PEAK
描述:

1.6MHz Bandwidth, Micropower Low Noise Op-amps

文件: 总16页 (文件大小:1339K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TP2431/TP2432 /TP2434  
1.6MHz Bandwidth, Micropower Low Noise Op-amps  
Description  
3PEAK  
Features  
The single TP2431, dual TP2432, and quad TP2434  
operational amplifiers combine excellent DC accuracy  
with Rail-to-Rail operation at the input and output. Since  
the common-mode voltage extends from VCC to VEE,  
the devices can operate from either a single supply  
(2.2V to 5.5V) or split supplies (±1.1V to ±2.75V). Each  
op amp requires less than 190μA of supply current.  
Even with this low current, the op amps are capable of  
driving a 1kΩ load, and the input-referred voltage noise  
is only 13nV/√Hz. In addition, these op amps can drive  
loads in excess of 2000pF.  
Low Noise: 13nV/√Hz(f= 1kHz)  
Supply Current: 190μA/ch  
Offset Voltage: 1 mV (max)  
Low THD+N: 0.0005%  
Supply Range: 2.2V to 5.5V  
Low Input Bias Current: 0.3pA Typical  
EMIRR IN+: 85 dB( under 2.4GHz)  
Slew Rate: 0.9 V/μs  
Gain-bandwidth Product: 1.6MHz  
Rail-to-Rail I/O  
The precision performance of the TP2431/TP2432/  
TP2434 combined with their wide input and output  
dynamic range, low-voltage, single-supply operation,  
and very low supply current, make them an ideal choice  
for battery-operated equipment, industrial, and data  
acquisition and control applications.  
High Output Current: 70mA (1.0V Drop)  
40°C to 125°C Operation Range  
Robust 7kV HBM and 2kV CDM ESD Rating  
The TP2431 is single channel version available in 8-pin  
SOP and 5-pin SOT23 packages. The TP2432 is dual  
channel version available in 8-pin SOP and MSOP  
packages. The TP2434 is quad channel version  
available in 14-pin SOP and TSSOP packages.  
Applications  
Portable Equipment  
Battery-Powered Instruments  
Data Acquisition and Control  
Low-Voltage Signal Conditioning  
Communications  
3PEAK and the 3PEAK logo are registered trademarks of  
3PEAK INCORPORATED. All other trademarks are the property of  
their respective owners.  
Security  
Pin Configuration(Top View)  
TP2431  
8-Pin SOP  
(-S Suffix)  
TP2432  
8-Pin SOP/MSOP  
(-S and -V Suffixes)  
1
2
3
4
8
7
6
5
1
2
3
4
8
NC  
NC  
Vs  
Out  
NC  
Out A  
Vs  
Quiescent Current vs. Supply Voltage  
In  
In A  
7
6
5
Out B  
In B  
In B  
A
0.25  
In  
In A  
Vs  
B
Vs  
0.2  
0.15  
0.1  
TP2431  
5-Pin SOT23  
(-T Suffix)  
TP2434  
14-Pin SOP/TSSOP  
(-S and -T Suffixes)  
1
2
3
4
5
6
7
14  
Out  
A
In A  
Out D  
1
2
3
5
4
Out  
Vs  
13 In D  
Vs  
A
B
D
C
In A  
Vs  
12  
11  
In D  
Vs  
+In  
-In  
0.05  
0
TP2431U  
5-Pin SOT23  
-T Suffixes  
10 In C  
In B  
In B  
Out B  
9
8
In C  
1.5  
2.5  
3.5  
4.5  
Out C  
+In  
- Vs  
-In  
1
5
4
+ Vs  
Supply Voltage (V)  
2
3
OUT  
www.3peakic.com.cn  
Rev. C  
1
TP2431 / TP243
2
/
T
P2434  
1.6MHz Bandwidth, Micropower Low Noise Op-amps  
Order Information  
Marking  
Information  
Model Name  
Order Number  
Package  
8-Pin SOP  
Transport Media, Quantity  
TP2431-SR  
TP2431-TR  
TP2431U-TR  
TP2432-SR  
TP2432-VR  
TP2434-SR  
TP2434-TR  
Tape and Reel, 4,000  
Tape and Reel, 3,000  
Tape and Reel, 3,000  
Tape and Reel, 4,000  
Tape and Reel, 3,000  
Tape and Reel, 2,500  
Tape and Reel, 3,000  
TP2431  
431  
TP2431  
5-Pin SOT23  
5-Pin SOT23  
8-Pin SOP  
43U  
TP2432  
TP2432  
TP2434  
TP2434  
TP2432  
TP2434  
8-Pin MSOP  
14-Pin SOP  
14-Pin TSSOP  
Note 1  
Absolute Maximum Ratings  
Supply Voltage: V+ VNote 2............................7.0V  
Input Voltage............................. V0.3 to V+ + 0.3  
Input Current: +IN, IN Note 3.......................... ±20mA  
Output Current: OUT.................................... ±160mA  
Output Short-Circuit Duration Note 4......... Indefinite  
Current at Supply Pins……………............... ±60mA  
Operating Temperature Range........40°C to 125°C  
Maximum Junction Temperature................... 150°C  
Storage Temperature Range.......... 65°C to 150°C  
Lead Temperature (Soldering, 10 sec) ......... 260°C  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum  
Rating condition for extended periods may affect device reliability and lifetime.  
Note 2: The op amp supplies must be established simultaneously, with, or before, the application of any input signals.  
Note 3: The inputs are protected by ESD protection diodes to each power supply. If the input extends more than 500mV beyond the power supply, the input  
current should be limited to less than 10mA.  
Note 4: A heat sink may be required to keep the junction temperature below the absolute maximum. This depends on the power supply voltage and how many  
amplifiers are shorted. Thermal resistance varies with the amount of PC board metal connected to the package. The specified values are for short traces  
connected to the leads.  
ESD, Electrostatic Discharge Protection  
Symbol  
Parameter  
Condition  
Minimum Level  
Unit  
HBM  
CDM  
Human Body Model ESD  
MIL-STD-883H Method 3015.8  
JEDEC-EIA/JESD22-C101E  
7
2
kV  
kV  
Charged Device Model ESD  
Thermal Resistance  
Package Type  
5-Pin SOT23  
8-Pin SOP  
θJA  
250  
158  
210  
196  
120  
180  
θJC  
81  
43  
45  
70  
36  
35  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
8-Pin MSOP  
8-Pin SOT23  
14-Pin SOP  
14-Pin TSSOP  
Rev. C  
2
TP2431/TP243
2
/
T
P2434  
1.6MHz Bandwidth, Micropower Low Noise Op-amps  
Electrical Characteristics  
The specifications are at TA = 27° C. VS = +2.7 V to +5.5 V, or ± 1.35 V to ± 2.75 V, RL = 2kΩ, CL =100pF.Unless otherwise noted.  
SYMBOL  
PARAMETER  
Input Offset Voltage  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
VOS  
VCM = VDD/2  
-1  
± 0.3  
1
+1  
2
mV  
μV/° C  
pA  
VOS TC  
Input Offset Voltage Drift  
-40°C to 125°C  
TA = 27 °C  
0.3  
3
150  
300  
0.001  
4.1  
IB  
Input Bias Current  
TA = 85 °C  
pA  
TA = 125 °C  
pA  
IOS  
Vn  
Input Offset Current  
Input Voltage Noise  
pA  
f = 0.1Hz to 10Hz  
f = 1kHz  
μVPP  
13  
en  
in  
Input Voltage Noise Density  
Input Current Noise  
nV/√Hz  
f = 1kHz  
2
fA/√Hz  
Differential  
Common Mode  
7.76  
6.87  
CIN  
CMRR  
VCM  
Input Capacitance  
pF  
dB  
V
Common Mode Rejection Ratio  
VCM = 2V to 3V  
85  
110  
Common-mode Input Voltage  
Range  
V-0.1  
V+-0.1  
45  
PSRR  
AVOL  
VOL, VOH  
ROUT  
RO  
Power Supply Rejection Ratio  
Open-Loop Large Signal Gain  
Output Swing from Supply Rail  
Closed-Loop Output Impedance  
Open-Loop Output Impedance  
Output Short-Circuit Current  
Supply Voltage  
VCM = 2.5V, VS = 4.8V to 5V  
RLOAD = 2kΩ  
75  
100  
130  
15  
dB  
dB  
mV  
Ω
100  
RLOAD = 2kΩ  
G = 1, f =1kHz, IOUT = 0  
f = 1kHz, IOUT = 0  
0.002  
125  
130  
Ω
ISC  
Sink or source current  
95  
mA  
V
VDD  
2.2  
5.5  
IQ  
Quiescent Current per Amplifier  
Phase Margin  
190  
80  
280  
μA  
°
PM  
RLOAD = 1kΩ, CLOAD = 60pF  
RLOAD = 1kΩ, CLOAD = 60pF  
f = 1kHz  
GM  
Gain Margin  
15  
dB  
MHz  
GBWP  
Gain-Bandwidth Product  
1.6  
AV = 1, VOUT = 1.5V to 3.5V, CLOAD  
60pF, RLOAD = 1kΩ  
=
SR  
FPBW  
tS  
Slew Rate  
0.36  
0.84  
58.6  
V/μs  
kHz  
μs  
Full Power Bandwidth Note 1  
Settling Time, 0.1%  
Settling Time, 0.01%  
Total Harmonic Distortion and  
Noise  
4.4  
4.4  
AV = 1, 1V Step  
THD+N  
Xtalk  
f = 1kHz, AV =1, RL = 2kΩ, VOUT = 1Vp-p  
f = 1kHz, RL = 2kΩ  
0.0003  
110  
%
Channel Separation  
dB  
Note 1: Full power bandwidth is calculated from the slew rate FPBW = SR/π • VP-P  
www.3peakic.com.cn  
Rev. C  
3
TP2431 / TP243
2
/
T
P2434  
1.6MHz Bandwidth, Micropower Low Noise Op-amps  
Typical Performance Characteristics  
VS = ±2.75V, VCM = 0V, RL = Open, unless otherwise specified.  
Offset Voltage Production Distribution  
Unity Gain Bandwidth vs. Temperature  
2.5  
2
5000  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
1.5  
1
0.5  
0
0
-50  
0
50  
100  
150  
Temperature()  
Offset Voltage(uV)  
Open-Loop Gain and Phase  
Input Voltage Noise Spectral Density  
130  
200  
150  
100  
50  
1000  
100  
10  
110  
90  
VCC= +5V  
RL= 1kΩ  
70  
50  
0
30  
-50  
10  
-100  
-150  
-200  
-250  
-10  
-30  
-50  
1
0.1  
10  
1k  
100k  
10M  
1
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
Frequency(Hz)  
Input Bias Current vs. Temperature  
Input Bias Current vs. Input Common Mode Voltage  
5.00E-16  
1.00E-11  
1.00E-13  
1.00E-15  
1.00E-17  
1.00E-19  
1.00E-21  
5.00E-17  
5.00E-18  
0
1
2
3
4
5
6
-10  
10  
30  
50  
70  
90  
110 130 150  
Common Mode Voltage(V)  
Temperature()  
Rev. C  
4
TP2431/TP243
2
/
T
P2434  
1.6MHz Bandwidth, Micropower Low Noise Op-amps  
Typical Performance Characteristics  
VS = ±2.75V, VCM = 0V, RL = Open, unless otherwise specified. (Continued)  
Common Mode Rejection Ratio  
CMRR vs. Frequency  
140  
120  
140  
120  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
1
10  
100  
1k  
10k  
100k  
1M  
10M  
0
1
2
3
4
Frequency(Hz)  
Common Mode Voltage(V)  
Quiescent Current vs. Temperature  
Short Circuit Current vs. Temperature  
180  
160  
140  
120  
100  
80  
0.205  
I
SINK  
0.2  
0.195  
0.19  
I
SOURCE  
60  
40  
0.185  
0.18  
20  
0
-50  
0
50  
100  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature()  
Temperature()  
Power-Supply Rejection Ratio  
Quiescent Current vs. Supply Voltage  
120  
100  
80  
60  
40  
20  
0
0.25  
0.2  
PSRR+  
0.15  
0.1  
PSRR-  
0.05  
0
1
10  
100  
1k  
10k  
100k  
1M  
10M  
1.5  
2.5  
3.5  
4.5  
Frequency(Hz)  
Supply Voltage (V)  
www.3peakic.com.cn  
Rev. C  
5
TP2431 / TP243
2
/
T
P2434  
1.6MHz Bandwidth, Micropower Low Noise Op-amps  
Typical Performance Characteristics  
VS = ±2.75V, VCM = 0V, RL = Open, unless otherwise specified. (Continued)  
Power-Supply Rejection Ratio vs. Temperature  
CMRR vs. Temperature  
120  
100  
80  
60  
40  
20  
0
140  
120  
100  
80  
60  
40  
20  
0
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Temperature()  
Temperature()  
EMIRR IN+ vs. Frequency  
Large-Scale Step Response  
140  
120  
100  
80  
60  
40  
20  
0
Gain=+1  
RL=10kΩ  
10  
100  
1000  
10000  
Frequency (MHz)  
Time (10ms/div)  
Negative Over-Voltage Recovery  
Positive Over-Voltage Recovery  
Gain=+10  
Gain=+10  
±V=±2.5V  
±V=±2.5V  
Time (5μs/div)  
Time (5μs/div)  
Rev. C  
6
TP2431/TP243
2
/
T
P2434  
1.6MHz Bandwidth, Micropower Low Noise Op-amps  
Typical Performance Characteristics  
VS = ±2.75V, VCM = 0V, RL = Open, unless otherwise specified. (Continued)  
0.1 Hz TO 10 Hz Input Voltage Noise  
Offset Voltage vs Common-Mode Voltage  
200  
0
-200  
-400  
-600  
-800  
-1000  
Vcc=±2.5V  
-1200  
-2.5  
-1.5  
-0.5  
0.5  
1.5  
2.5  
Time (1s/div)  
Common-mode voltage(V)  
Positive Output Swing vs. Load Current  
Negative Output Swing vs. Load Current  
0
-20  
140  
120  
100  
80  
-40  
25℃  
-40  
+125℃  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
60  
+125℃  
25℃  
40  
20  
-40℃  
0
0
1
2
3
4
5
0
1
2
3
4
5
Vout Dropout (V)  
Vout Dropout (V)  
www.3peakic.com.cn  
Rev. C  
7
TP2431 / TP243
2
/
T
P2434  
1.6MHz Bandwidth, Micropower Low Noise Op-amps  
Pin Functions  
-IN: Inverting Input of the Amplifier.  
possible should be used between power supply pins or  
+IN: Non-Inverting Input of Amplifier.  
between supply pins and ground.  
OUT: Amplifier Output. The voltage range extends to  
within mV of each supply rail.  
V- or -Vs: Negative Power Supply. It is normally tied to  
ground. It can also be tied to a voltage other than  
ground as long as the voltage between V+ and Vis from  
2.2V to 5.5V. If it is not connected to ground, bypass it  
V+ or +Vs: Positive Power Supply. Typically the voltage  
is from 2.2V to 5.5V. Split supplies are possible as long  
as the voltage between V+ and Vis between 2.2V and  
5.5V. A bypass capacitor of 0.1μF as close to the part as  
with a capacitor of 0.1μF as close to the part as  
possible.  
Operation  
The TP2431/TP2432/TP2434 can operate from a single +2.2V to +5.5V power supply, or from ±1.1V to ±2.75V power  
supplies. The power supply pin(s) must be bypassed to ground with a 0.1μF capacitor as close to the pin as possible. The  
single TP2431, dual TP2432 and quad TP2434 op amps combine excellent DC accuracy with rail-to-rail operation at both  
input and output. With their precision performance, wide dynamic range at low supply voltages, and very low supply current,  
these op amps are ideal for battery-operated equipment, industrial, and data acquisition and control applications.  
Applications Information  
Rail-to-Rail Inputs and Outputs  
The TP243x op amps are designed to be immune to phase reversal when the input pins exceed the supply voltages,  
therefore providing further in-system stability and predictability. Figure 1 shows the input voltage exceeding the supply  
voltage without any phase reversal.  
Figure 1. No Phase Reversal  
Input ESD Diode Protection  
The TP2431 incorporates internal electrostatic discharge (ESD) protection circuits on all pins. In the case of input and  
output pins, this protection primarily consists of current-steering diodes connected between the input and power-supply  
pins. These ESD protection diodes also provide in-circuit input overdrive protection, as long as the current is limited to  
10 mA as stated in the Absolute Maximum Ratings table. Many input signals are inherently current-limited to less than  
10 mA; therefore, a limiting resistor is not required. Figure 2 shows how a series input resistor (RS) may be added to  
the driven input to limit the input current. The added resistor contributes thermal noise at the amplifier input and the  
Rev. C  
8
TP2431/TP243
2
/
T
P2434  
1.6MHz Bandwidth, Micropower Low Noise Op-amps  
value should be kept to the minimum in noise-sensitive applications.  
V+  
Current-limiting resistor  
required if input voltage  
exceeds supply rails by  
>0.5V.  
500Ω  
IN+  
IN-  
+2.5V  
TP2431  
-2.5V  
Ioverload  
10mA max  
500Ω  
VIN  
Vout  
5kΩ  
V-  
INPUT ESD DIODE CURRENT LIMITING- UNITY GAIN  
Figure 2. Input ESD Diode  
EMI Susceptibility and Input Filtering  
Operational amplifiers vary in susceptibility to electromagnetic interference (EMI). If conducted EMI enters the device,  
the dc offset observed at the amplifier output may shift from the nominal value while EMI is present. This shift is a result  
of signal rectification associated with the internal semiconductor junctions. While all operational amplifier pin functions  
can be affected by EMI, the input pins are likely to be the most susceptible. The TP2431 operational amplifier family  
incorporates an internal input low-pass filter that reduces the amplifier response to EMI. Both common-mode and  
differential mode filtering are provided by the input filter. The filter is designed for a cutoff frequency of approximately  
400 MHz (3 dB), with a roll-off of 20 dB per decade.  
140  
120  
100  
80  
60  
40  
20  
0
10  
100  
1000  
10000  
Frequency (MHz)  
Figure 3. TP2431 EMIRR IN+ vs Frequency  
PCB Surface Leakage  
In applications where low input bias current is critical, Printed Circuit Board (PCB) surface leakage effects need to be  
considered. Surface leakage is caused by humidity, dust or other contamination on the board. Under low humidity  
conditions, a typical resistance between nearby traces is 1012Ω. A 5V difference would cause 5pA of current to flow,  
which is greater than the TP2431/2432/2434 OPA’s input bias current at +27°C (±0.3pA, typical). It is recommended to  
use multi-layer PCB layout and route the OPA’s -IN and +IN signal under the PCB surface.  
www.3peakic.com.cn  
Rev. C  
9
TP2431 / TP243
2
/
T
P2434  
1.6MHz Bandwidth, Micropower Low Noise Op-amps  
The effective way to reduce surface leakage is to use a guard ring around sensitive pins (or traces). The guard ring is  
biased at the same voltage as the sensitive pin. An example of this type of layout is shown in Figure 6 for Inverting  
Gain application.  
1. For Non-Inverting Gain and Unity-Gain Buffer:  
a) Connect the non-inverting pin (VIN+) to the input with a wire that does not touch the PCB surface.  
b) Connect the guard ring to the inverting input pin (VIN). This biases the guard ring to the Common Mode input voltage.  
2. For Inverting Gain and Trans-impedance Gain Amplifiers (convert current to voltage, such as photo detectors):  
a) Connect the guard ring to the non-inverting input pin (VIN+). This biases the guard ring to the same reference voltage as the  
op-amp (e.g., VDD/2 or ground).  
b) Connect the inverting pin (VIN) to the input with a wire that does not touch the PCB surface.  
Guard Ring  
VIN+  
VIN-  
+VS  
Figure 4 The Layout of Guard Ring  
Power Supply Layout and Bypass  
The TP2431/2432/2432 OPA’s power supply pin (VDD for single-supply) should have a local bypass capacitor (i.e.,  
0.01μF to 0.1μF) within 2mm for good high frequency performance. It can also use a bulk capacitor (i.e., 1μF or larger)  
within 100mm to provide large, slow currents. This bulk capacitor can be shared with other analog parts.  
Ground layout improves performance by decreasing the amount of stray capacitance and noise at the OPA’s inputs  
and outputs. To decrease stray capacitance, minimize PC board lengths and resistor leads, and place external  
components as close to the op amps’ pins as possible.  
Proper Board Layout  
To ensure optimum performance at the PCB level, care must be taken in the design of the board layout. To avoid  
leakage currents, the surface of the board should be kept clean and free of moisture. Coating the surface creates a  
barrier to moisture accumulation and helps reduce parasitic resistance on the board.  
Keeping supply traces short and properly bypassing the power supplies minimizes power supply disturbances due to  
output current variation, such as when driving an ac signal into a heavy load. Bypass capacitors should be connected  
as closely as possible to the device supply pins. Stray capacitances are a concern at the outputs and the inputs of the  
amplifier. It is recommended that signal traces be kept at least 5mm from supply lines to minimize coupling.  
A variation in temperature across the PCB can cause a mismatch in the Seebeck voltages at solder joints and other  
points where dissimilar metals are in contact, resulting in thermal voltage errors. To minimize these thermocouple  
effects, orient resistors so heat sources warm both ends equally. Input signal paths should contain matching numbers  
and types of components, where possible to match the number and type of thermocouple junctions. For example,  
dummy components such as zero value resistors can be used to match real resistors in the opposite input path.  
Matching components should be located in close proximity and should be oriented in the same manner. Ensure leads  
are of equal length so that thermal conduction is in equilibrium. Keep heat sources on the PCB as far away from  
amplifier input circuitry as is practical.  
The use of a ground plane is highly recommended. A ground plane reduces EMI noise and also helps to maintain a  
constant temperature across the circuit board.  
Rev. C  
10  
TP2431/TP243
2
/
T
P2434  
1.6MHz Bandwidth, Micropower Low Noise Op-amps  
Package Outline Dimensions  
SOT23-5  
D
A2  
A1  
θ
L1  
e
Dimensions  
Dimensions  
In Inches  
In Millimeters  
Symbol  
Min  
Max  
Min  
Max  
A1  
A2  
b
0.000  
1.050  
0.300  
2.820  
1.500  
2.650  
0.100  
1.150  
0.400  
3.020  
1.700  
2.950  
0.000  
0.041  
0.012  
0.111  
0.059  
0.104  
0.004  
0.045  
0.016  
0.119  
0.067  
0.116  
E1  
E
D
E
E1  
e
0.950TYP  
0.037TYP  
e1  
L1  
θ
1.800  
0.300  
0°  
2.000  
0.460  
8°  
0.071  
0.012  
0°  
0.079  
0.024  
8°  
b
e1  
www.3peakic.com.cn  
Rev. C  
11  
TP2431 / TP243
2
/
T
P2434  
1.6MHz Bandwidth, Micropower Low Noise Op-amps  
Package Outline Dimensions  
SOT-23-8  
Dimensions  
Dimensions In  
Inches  
In Millimeters  
Symbol  
Min  
Max  
Min  
Max  
A
A1  
A2  
b
1.050  
0.000  
1.050  
0.300  
0.100  
2.820  
1.500  
1.250  
0.100  
1.150  
0.500  
0.200  
3.020  
1.700  
0.041  
0.000  
0.041  
0.012  
0.004  
0.111  
0.059  
0.049  
0.004  
0.045  
0.020  
0.008  
0.119  
0.067  
c
D
E
e
0.65BSC)  
0.975BSC)  
0.300 0.600  
0° 8°  
0.026(BSC)  
0.038(BSC)  
e1  
L
0.012  
0°  
0.024  
θ
8°  
Rev. C  
12  
TP2431/TP243
2
/
T
P2434  
1.6MHz Bandwidth, Micropower Low Noise Op-amps  
Package Outline Dimensions  
SOP-8  
A2  
C
θ
L1  
A1  
e
E
D
Dimensions  
Dimensions In  
Inches  
In Millimeters  
Symbol  
Min  
Max  
Min  
Max  
A1  
A2  
b
0.100  
1.350  
0.330  
0.190  
4.780  
3.800  
5.800  
0.250  
1.550  
0.510  
0.250  
5.000  
4.000  
6.300  
0.004  
0.053  
0.013  
0.007  
0.188  
0.150  
0.228  
0.010  
0.061  
0.020  
0.010  
0.197  
0.157  
0.248  
E1  
C
D
E
E1  
e
b
1.270 TYP  
0.050 TYP  
L1  
θ
0.400  
0°  
1.270  
8°  
0.016  
0°  
0.050  
8°  
www.3peakic.com.cn  
Rev. C  
13  
TP2431 / TP243
2
/
T
P2434  
1.6MHz Bandwidth, Micropower Low Noise Op-amps  
Package Outline Dimensions  
MSOP-8  
Dimensions  
Dimensions In  
Inches  
In Millimeters  
Symbol  
Min  
Max  
Min  
Max  
A
0.800  
0.000  
0.760  
0.30 TYP  
0.15 TYP  
2.900  
0.65 TYP  
2.900  
4.700  
0.410  
0°  
1.200  
0.200  
0.970  
0.031  
0.000  
0.030  
0.012 TYP  
0.006 TYP  
0.114  
0.026  
0.114  
0.185  
0.016  
0°  
0.047  
0.008  
0.038  
E
E1  
A1  
A2  
b
C
D
3.100  
0.122  
e
b
e
E
3.100  
5.100  
0.650  
6°  
0.122  
0.201  
0.026  
6°  
D
E1  
L1  
θ
A1  
R1  
R
θ
L
L1  
L2  
Rev. C  
14  
TP2431/TP243
2
/
T
P2434  
1.6MHz Bandwidth, Micropower Low Noise Op-amps  
Package Outline Dimensions  
TSSOP-14  
Dimensions  
In Millimeters  
Symbol  
MIN  
-
TYP  
MAX  
1.20  
0.15  
1.05  
0.30  
0.20  
5.10  
4.50  
6.60  
A
A1  
A2  
b
-
0.05  
0.80  
0.19  
0.09  
4.86  
4.30  
6.20  
-
0.90  
-
-
C
D
4.96  
E
4.40  
E1  
e
6.40  
0.65 BSC  
0.60  
L
0.45  
0°  
0.75  
8°  
H
0.25 BSC  
-
θ
www.3peakic.com.cn  
Rev. C  
15  
TP2431 / TP243
2
/
T
P2434  
1.6MHz Bandwidth, Micropower Low Noise Op-amps  
Package Outline Dimensions  
SOP-14  
D
Dimensions  
In Millimeters  
TYP  
E1  
E
Symbol  
MIN  
1.35  
0.10  
1.25  
0.36  
8.53  
5.80  
3.80  
MAX  
1.75  
0.25  
1.65  
0.49  
8.73  
6.20  
4.00  
A
A1  
A2  
b
1.60  
0.15  
e
b
1.45  
D
8.63  
6.00  
E
A2  
A
E1  
e
3.90  
1.27 BSC  
0.60  
A1  
L
0.45  
0°  
0.80  
8°  
L1  
L2  
θ
1.04 REF  
0.25 BSC  
L
L1  
θ
L2  
Rev. C  
16  

相关型号:

TP2432

1.6MHz Bandwidth, Micropower Low Noise Op-amps

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
3PEAK

TP2432-SR

1.6MHz Bandwidth, Micropower Low Noise Op-amps

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
3PEAK

TP2432-VR

1.6MHz Bandwidth, Micropower Low Noise Op-amps

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
3PEAK

TP2434

1.6MHz Bandwidth, Micropower Low Noise Op-amps

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
3PEAK

TP2434-SR

1.6MHz Bandwidth, Micropower Low Noise Op-amps

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
3PEAK

TP2434-TR

1.6MHz Bandwidth, Micropower Low Noise Op-amps

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
3PEAK

TP2435

P-Channel Enhancement-Mode Vertical DMOS FETs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SUPERTEX

TP2435N8

P-Channel Enhancement-Mode Vertical DMOS FETs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SUPERTEX

TP2435N8-G

Power Field-Effect Transistor, 0.231A I(D), 350V, 15ohm, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, TO-243AA, GREEN PACKAGE-3

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SUPERTEX

TP2435ND

Small Signal Field-Effect Transistor, 0.231A I(D), 350V, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, DIE-2

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SUPERTEX

TP2435NW

P-Channel Enhancement-Mode Vertical DMOS FETs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SUPERTEX

TP244

1.5 WATT and DUAL OUTPUT DC-DC CONVERTERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC