S-1317A12-M5T1U4 [ABLIC]

5.5 V INPUT, 100 mA CMOS VOLTAGE REGULATOR WITH 0.35 A SUPER LOW CURRENT CONSUMPTION;
S-1317A12-M5T1U4
型号: S-1317A12-M5T1U4
厂家: ABLIC    ABLIC
描述:

5.5 V INPUT, 100 mA CMOS VOLTAGE REGULATOR WITH 0.35 A SUPER LOW CURRENT CONSUMPTION

输入元件
文件: 总31页 (文件大小:1038K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
S-1317 Series  
5.5 V INPUT, 100 mA CMOS VOLTAGE REGULATOR  
www.ablic.com  
WITH 0.35  
A SUPER LOW CURRENT CONSUMPTION  
© ABLIC Inc., 2016  
Rev.1.0_01  
The S-1317 Series, developed by using the CMOS technology, is a positive voltage regulator IC, which features super low  
current consumption and low dropout voltage. This IC has low current consumption of 0.35 A typ. and high-accuracy output  
voltage of 1.0%. It is most suitable for use in portable equipment and battery-powered devices.  
Features  
Output voltage:  
Input voltage:  
1.0 V to 3.5 V, selectable in 0.05 V step  
1.5 V to 5.5 V  
Output voltage accuracy:  
Dropout voltage:  
Current consumption during operation:  
Output current:  
Input capacitor:  
Output capacitor:  
Built-in overcurrent protection circuit:  
Operation temperature range:  
Lead-free (Sn 100%), halogen-free  
1.0% (1.0 V to 1.45 V output product: 15 mV) (Ta = 25°C)  
20 mV typ. (2.5 V output product, at IOUT = 10 mA) (Ta = 25°C)  
0.35 A typ. (Ta = 25°C)  
Possible to output 100 mA (at VIN VOUT(S)1.0 V)*1  
A ceramic capacitor can be used. (1.0 F or more)  
A ceramic capacitor can be used. (1.0 F to 100 F)  
Limits overcurrent of output transistor.  
Ta = 40°C to 85°C  
*1. Please make sure that the loss of the IC will not exceed the power dissipation when the output current is large.  
Applications  
Constant-voltage power supply for battery-powered device  
Constant-voltage power supply for portable communication device, digital camera, and digital audio player  
Constant-voltage power supply for home electric appliance  
Packages  
SOT-23-5  
HSNT-4(1010)  
1
5.5 V INPUT, 100 mA CMOS VOLTAGE REGULATOR WITH 0.35  
S-1317 Series  
A SUPER LOW CURRENT CONSUMPTION  
Rev.1.0_01  
Block Diagram  
*1  
VIN  
VOUT  
Overcurrent  
protection circuit  
Reference  
voltage circuit  
VSS  
*1. Parasitic diode  
Figure 1  
2
5.5 V INPUT, 100 mA CMOS VOLTAGE REGULATOR WITH 0.35  
Rev.1.0_01  
A
SUPER LOW CURRENT CONSUMPTION  
S-1317 Series  
Product Name Structure  
Users can select output voltage and package type for the S-1317 Series. Refer to "1. Product name" regarding the  
contents of product name, "2. Packages" regarding the package drawings and "3. Product name list" regarding  
details of the product name.  
1. Product name  
S-1317  
A
xx  
-
xxxx  
U
4
Environmental code  
U:  
Lead-free (Sn 100%), halogen-free  
Package abbreviation and IC packing specifications*1  
M5T1: SOT-23-5, Tape  
A4T2: HSNT-4(1010), Tape  
Output voltage*2  
10 to 35  
(e.g., when the output voltage is 1.0 V, it is expressed as 10.)  
Product type  
*1. Refer to the tape drawing.  
*2. Contact our sales office when the product which has 0.05 V step is necessary.  
2. Packages  
Table 1 Package Drawing Codes  
Package Name  
SOT-23-5  
HSNT-4(1010)  
Dimension  
Tape  
Reel  
Land  
PL004-A-L-SD  
MP005-A-P-SD  
PL004-A-P-SD  
MP005-A-C-SD  
PL004-A-C-SD  
MP005-A-R-SD  
PL004-A-R-SD  
3
5.5 V INPUT, 100 mA CMOS VOLTAGE REGULATOR WITH 0.35  
S-1317 Series  
A SUPER LOW CURRENT CONSUMPTION  
Rev.1.0_01  
3. Product name list  
Table 2  
SOT-23-5  
HSNT-4(1010)  
Output Voltage  
1.0 V 15 mV  
1.2 V 15 mV  
1.8 V 1.0%  
2.5 V 1.0%  
3.0 V 1.0%  
S-1317A10-M5T1U4  
S-1317A12-M5T1U4  
S-1317A18-M5T1U4  
S-1317A25-M5T1U4  
S-1317A30-M5T1U4  
S-1317A10-A4T2U4  
S-1317A12-A4T2U4  
S-1317A18-A4T2U4  
S-1317A25-A4T2U4  
S-1317A30-A4T2U4  
Remark Please contact our sales office for products with specifications other than the above.  
4
5.5 V INPUT, 100 mA CMOS VOLTAGE REGULATOR WITH 0.35  
Rev.1.0_01  
A
SUPER LOW CURRENT CONSUMPTION  
S-1317 Series  
Pin Configurations  
1. SOT-23-5  
Table 3  
Top view  
Pin No.  
Symbol  
VIN  
Description  
Input voltage pin  
1
2
3
4
5
5
4
VSS  
GND pin  
NC*1  
NC*1  
VOUT  
No connection  
No connection  
Output voltage pin  
1
2
3
Figure 2  
*1. The NC pin is electrically open.  
The NC pin can be connected to the VIN pin or the VSS pin.  
2. HSNT-4(1010)  
Table 4  
Pin No.  
Symbol  
Description  
Top view  
1
2
3
4
VOUT  
VSS  
NC*2  
VIN  
Output voltage pin  
GND pin  
1
2
4
3
No connection  
Input voltage pin  
Bottom view  
4
3
1
2
*1  
Figure 3  
*1. Connect the heat sink of backside at shadowed area to the board, and set electric potential open or GND.  
However, do not use it as the function of electrode.  
*2. The NC pin is electrically open.  
The NC pin can be connected to the VIN pin or the VSS pin.  
5
5.5 V INPUT, 100 mA CMOS VOLTAGE REGULATOR WITH 0.35  
S-1317 Series  
A SUPER LOW CURRENT CONSUMPTION  
Rev.1.0_01  
Absolute Maximum Ratings  
Table 5  
(Ta = 25C unless otherwise specified)  
Item  
Symbol  
Absolute Maximum Rating  
VSS 0.3 to VSS 6.0  
VSS 0.3 to VIN 0.3  
120  
Unit  
V
Input voltage  
Output voltage  
Output current  
VIN  
VOUT  
IOUT  
Topr  
Tstg  
V
mA  
C  
C  
Operation ambient temperature  
Storage temperature  
40 to 85  
40 to 125  
Caution The absolute maximum ratings are rated values exceeding which the product could suffer physical  
damage. These values must therefore not be exceeded under any conditions.  
Thermal Resistance Value  
Table 6  
Item  
Symbol  
Condition  
Board A  
Min.  
  
  
  
  
  
  
  
  
Typ.  
192  
160  
378  
317  
  
  
  
Max.  
  
  
  
  
  
  
  
  
Unit  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
Board B  
Board C  
Board D  
Board E  
Board A  
Board B  
Board C  
Board D  
Board E  
SOT-23-5  
Junction-to-ambient thermal resistance*1 JA  
HSNT-4(1010)  
  
  
  
  
*1. Test environment: compliance with JEDEC STANDARD JESD51-2A  
Remark Refer to "Power Dissipation" and "Test Board" for details.  
6
5.5 V INPUT, 100 mA CMOS VOLTAGE REGULATOR WITH 0.35  
Rev.1.0_01  
A
SUPER LOW CURRENT CONSUMPTION  
S-1317 Series  
Electrical Characteristics  
Table 7  
(Ta =25C unless otherwise specified)  
Test  
Circuit  
Item  
Symbol  
Condition  
1.0 V  
Min.  
Typ.  
Max.  
Unit  
VOUT(S)  
0.015  
VOUT(S)  
VOUT(S)  
0.015  
VOUT(S)  
1.01  
VOUT(S) < 1.5 V  
VOUT(S)  
VOUT(S)  
V
1
V
IN = VOUT(S)  
1.0 V,  
Output voltage*1  
Output current*2  
VOUT(E)  
IOUT = 10 mA  
1.5 V  
VOUT(S)  
3.5 V  
V
1
0.99  
IOUT  
VIN  
VOUT(S)  
1.0 V  
100*5  
0.50  
0.40  
0.30  
0.20  
0.10  
  
  
mA  
V
V
V
V
V
V
V
V
V
V
V
V
3
1
1
1
1
1
1
1
1
1
1
1
1
1.0 V  
1.1 V  
1.2 V  
1.3 V  
1.4 V  
1.5 V  
1.7 V  
1.8 V  
2.0 V  
2.5 V  
2.8 V  
3.0 V  
VOUT(S) < 1.1 V  
VOUT(S) < 1.2 V  
VOUT(S) < 1.3 V  
VOUT(S) < 1.4 V  
VOUT(S) < 1.5 V  
VOUT(S) < 1.7 V  
VOUT(S) < 1.8 V  
VOUT(S) < 2.0 V  
VOUT(S) < 2.5 V  
VOUT(S) < 2.8 V  
VOUT(S) < 3.0 V  
0.050  
0.040  
0.040  
0.030  
0.020  
0.019  
0.018  
0.080  
0.060  
0.050  
0.040  
0.030  
0.021  
0.020  
Dropout voltage*3  
Vdrop  
IOUT = 10 mA  
VOUT(S)  
3.5 V  
VOUT1  
Line regulation  
Load regulation  
VOUT(S) 0.5 V VIN 5.5 V, IOUT = 10 mA  
0.05  
20  
0.2  
%/V  
mV  
1
VINVOUT  
VOUT2  
VIN = VOUT(S)  
VIN = VOUT(S)  
1.0 V, 1  
A IOUT 50 mA  
40  
1
1
VOUT  
Output voltage  
1.0 V, IOUT = 10 mA,  
130  
ppm/C  
temperature coefficient*4  
40C Ta  85C  
TaVOUT  
Current consumption  
during operation  
ISS1  
VIN = VOUT(S)  
1.0 V, no load  
0.35  
0.53  
A
2
Input voltage  
VIN  
1.5  
5.5  
V
Short-circuit current  
Ishort  
VIN = VOUT(S) 1.0 V, VOUT = 0 V  
60  
mA  
3
*1. VOUT(S): Set output voltage  
VOUT(E): Actual output voltage  
Output voltage when fixing IOUT (= 10 mA) and inputting VOUT(S) 1.0 V  
*2. The output current at which the output voltage becomes 95% of VOUT(E) after gradually increasing the output current.  
*3. Vdrop = VIN1(VOUT3  0.98)  
VIN1 is the input voltage at which the output voltage becomes 98% of VOUT3 after gradually decreasing the input voltage.  
VOUT3 is the output voltage when VIN = VOUT(S) 1.0 V and IOUT = 10 mA.  
*4. A change in the temperature of the output voltage [mV/°C] is calculated using the following equation.  
VOUT  
Ta  
VOUT  
TaVOUT  
mV/°C *1 = VOUT(S)  
V
[ ]  
*2   
ppm/°C *3 1000  
[ ]  
[
]
*1. Change in temperature of output voltage  
*2. Set output voltage  
*3. Output voltage temperature coefficient  
*5. Due to limitation of the power dissipation, this value may not be satisfied. Attention should be paid to the power  
dissipation when the output current is large.  
This specification is guaranteed by design.  
7
5.5 V INPUT, 100 mA CMOS VOLTAGE REGULATOR WITH 0.35  
S-1317 Series  
A SUPER LOW CURRENT CONSUMPTION  
Rev.1.0_01  
Test Circuits  
VIN  
VOUT  
A
V
VSS  
Figure 4 Test Circuit 1  
VIN  
VOUT  
A
VSS  
Figure 5 Test Circuit 2  
VIN  
VOUT  
A
V
VSS  
Figure 6 Test Circuit 3  
8
5.5 V INPUT, 100 mA CMOS VOLTAGE REGULATOR WITH 0.35  
Rev.1.0_01  
A
SUPER LOW CURRENT CONSUMPTION  
S-1317 Series  
Standard Circuit  
Input  
Output  
VIN  
VOUT  
*1  
*2  
CIN  
CL  
VSS  
Single GND  
GND  
*1. CIN is a capacitor for stabilizing the input.  
*2. CL is a capacitor for stabilizing the output.  
Figure 7  
Caution The above connection diagram and constants will not guarantee successful operation. Perform  
thorough evaluation including the temperature characteristics with an actual application to set the  
constants.  
Condition of Application  
Input capacitor (CIN):  
Output capacitor (CL):  
A ceramic capacitor with capacitance of 1.0 F or more is recommended.  
A ceramic capacitor with capacitance of 1.0 F to 100 F is recommended.  
Caution Generally, in a voltage regulator, an oscillation may occur depending on the selection of the external  
parts. Perform thorough evaluation including the temperature characteristics with an actual  
application using the above capacitors to confirm no oscillation occurs.  
Selection of Input Capacitor (CIN) and Output Capacitor (CL)  
The S-1317 Series requires CL between the VOUT pin and the VSS pin for phase compensation. The operation is  
stabilized by a ceramic capacitor with capacitance of 1.0 F to 100 F. When using an OS capacitor, a tantalum  
capacitor or an aluminum electrolytic capacitor, the capacitance must also be 1.0 F to 100 F. However, an oscillation  
may occur depending on the equivalent series resistance (ESR).  
Moreover, the S-1317 Series requires CIN between the VIN pin and the VSS pin for a stable operation.  
Generally, an oscillaiton may occur when a voltage regulator is used under the conditon that the impedance of the power  
supply is high. Note that the output voltage transient characteristics vary depending on the capacitance of CIN and CL and  
the value of ESR.  
Caution Perform thorough evaluation including the temperature characteristics with an actual application to  
select CIN and CL.  
9
5.5 V INPUT, 100 mA CMOS VOLTAGE REGULATOR WITH 0.35  
S-1317 Series  
A SUPER LOW CURRENT CONSUMPTION  
Rev.1.0_01  
Explanation of Terms  
1. Output voltage (VOUT  
)
This voltage is output at an accuracy of 1.0% or 15 mV*2 when the input voltage, the output current and the  
temperature are in a certain condition*1.  
*1. Differs depending on the product.  
*2. When VOUT < 1.5 V: 15 mV, when VOUT 1.5 V: 1.0%  
Caution If the certain condition is not satisfied, the output voltage may exceed the accuracy range of  
1.0% or 15 mV. Refer to "Electrical Characteristics" for details.  
VOUT1  
2. Line regulation  
V V  
OUT   
IN  
Indicates the dependency of the output voltage against the input voltage. The value shows how much the output  
voltage changes due to a change in the input voltage after fixing output current constant.  
3. Load regulation (VOUT2  
)
Indicates the dependency of the output voltage against the output current. The value shows how much the output  
voltage changes due to a change in the output current after fixing input voltage constant.  
4. Dropout voltage (Vdrop  
)
Indicates the difference between input voltage (VIN1) and the output voltage when the output voltage becomes 98%  
of the output voltage value (VOUT3) at VIN = VOUT(S) 1.0 V after the input voltage (VIN) is decreased gradually.  
Vdrop = VIN1 (VOUT3 0.98)  
10  
5.5 V INPUT, 100 mA CMOS VOLTAGE REGULATOR WITH 0.35  
Rev.1.0_01  
A
SUPER LOW CURRENT CONSUMPTION  
S-1317 Series  
VOUT  
5. Output voltage temperature coefficient  
TaV  
OUT   
The shaded area in Figure 8 is the range where VOUT varies in the operation temperature range when the output  
voltage temperature coefficient is 130 ppm/C.  
Example of S-1317A10 typ. product  
VOUT  
[V]  
0.13 mV/C  
*1  
VOUT(E)  
0.13 mV/C  
40  
25  
85  
Ta [C]  
*1.  
V
OUT(E) is the value of the output voltage measured at Ta = 25C.  
Figure 8  
A change in the temperature of the output voltage [mV/°C] is calculated using the following equation.  
VOUT  
Ta  
VOUT  
TaVOUT  
mV/°C *1 = VOUT(S)  
V
[ ]  
*2   
ppm/°C *3 1000  
[ ]  
[
]
*1. Change in temperature of output voltage  
*2. Set output voltage  
*3. Output voltage temperature coefficient  
11  
5.5 V INPUT, 100 mA CMOS VOLTAGE REGULATOR WITH 0.35  
S-1317 Series  
A SUPER LOW CURRENT CONSUMPTION  
Rev.1.0_01  
Operation  
1. Basic operation  
Figure 9 shows the block diagram of the S-1317 Series to describe the basic operation.  
The error amplifier compares the feedback voltage (Vfb) whose output voltage (VOUT) is divided by the feedback  
resistors (Rs and Rf) with the reference voltage (Vref). The error amplifier controls the output transistor,  
consequently, the regulator starts the operation that holds VOUT constant without the influence of the input voltage  
(VIN).  
VIN  
*1  
Current  
Supply  
Error amplifier  
VOUT  
Vref  
Rf  
Vfb  
Reference voltage  
circuit  
Rs  
VSS  
*1. Parasitic diode  
Figure 9  
2. Output transistor  
In the S-1317 Series, a low on-resistance P-channel MOS FET is used between the VIN pin and the VOUT pin as  
the output transistor. In order to keep VOUT constant, the ON resistance of the output transistor varies appropriately  
according to the output current (IOUT).  
Caution Since a parasitic diode exists between the VIN pin and the VOUT pin due to the structure of the  
transistor, the IC may be damaged by a reverse current if VOUT becomes higher than VIN.  
Therefore, be sure that VOUT does not exceed VIN0.3 V.  
3. Overcurrent protection circuit  
The S-1317 Series has a built-in overcurrent protection circuit to limit the overcurrent of the output transistor.  
When the VOUT pin is shorted to the VSS pin, that is, at the time of the output short-circuit, the output current is  
limited to 60 mA typ. due to the overcurrent protection circuit operation. The S-1317 Series restarts regulating  
when the output transistor is released from the overcurrent status.  
Caution This overcurrent protection circuit does not work as for thermal protection. If this IC long keeps  
short circuiting inside, pay attention to the conditions of input voltage and load current so that,  
under the usage conditions including short circuit, the loss of the IC will not exceed power  
dissipation.  
12  
5.5 V INPUT, 100 mA CMOS VOLTAGE REGULATOR WITH 0.35  
Rev.1.0_01  
A
SUPER LOW CURRENT CONSUMPTION  
S-1317 Series  
Precautions  
Generally, when a voltage regulator is used under the condition that the load current value is small (1 A or less), the  
output voltage may increase due to the leakage current of an output transistor.  
Generally, when a voltage regulator is used under the condition that the temperature is high, the output voltage may  
increase due to the leakage current of an output transistor.  
Generally, when a voltage regulator is used under the condition that the impedance of the power supply is high, an  
oscillation may occur. Perform thorough evaluation including the temperature characteristics with an actual application  
to select CIN.  
Generally, in a voltage regulator, an oscillation may occur depending on the selection of the external parts. The  
following use conditions are recommended in the S-1317 Series, however, perform thorough evaluation including the  
temperature characteristics with an actual application to select CIN and CL.  
Input capacitor (CIN):  
Output capacitor (CL):  
A ceramic capacitor with capacitance of 1.0 F or more is recommended.  
A ceramic capacitor with capacitance of 1.0 F to 100 F is recommended.  
Generally, in a voltage regulator, the values of an overshoot and an undershoot in the output voltage vary depending  
on the variation factors of input voltage start-up, input voltage fluctuation and load fluctuation etc., or the capacitance of  
CIN or CL and the value of the equivalent series resistance (ESR), which may cause a problem to the stable  
operation. Perform thorough evaluation including the temperature characteristics with an actual application to select CIN  
and CL.  
Generally, in a voltage regulator, if the VOUT pin is steeply shorted with GND, a negative voltage exceeding the  
absolute maximum ratings may occur in the VOUT pin due to resonance phenomenon of the inductance and the  
capacitance including CL on the application. The resonance phenomenon is expected to be weakened by inserting a  
series resistor into the resonance path, and the negative voltage is expected to be limited by inserting a protection  
diode between the VOUT pin and the VSS pin.  
Make sure of the conditions for the input voltage, output voltage and the load current so that the internal loss does not  
exceed the power dissipation.  
Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in electrostatic  
protection circuit.  
When considering the output current value that the IC is able to output, make sure of the output current value specified  
in Table 7 in "Electrical Characteristics" and footnote *5 of the table.  
Wiring patterns on the application related to the VIN pin, the VOUT pin and the VSS pin should be designed so that the  
impedance is low. When mounting CIN between the VIN pin and the VSS pin and CL between the VOUT pin and the  
VSS pin, connect the capacitors as close as possible to the respective destination pins of the IC.  
In the package equipped with heat sink of backside, mount the heat sink firmly. Since the heat radiation differs  
according to the condition of the application, perform thorough evaluation with an actual application to confirm no  
problems happen.  
ABLIC Inc. claims no responsibility for any disputes arising out of or in connection with any infringement by products  
including this IC of patents owned by a third party.  
13  
5.5 V INPUT, 100 mA CMOS VOLTAGE REGULATOR WITH 0.35  
S-1317 Series  
A SUPER LOW CURRENT CONSUMPTION  
Rev.1.0_01  
Characteristics (Typical Data)  
1. Output voltage vs. Output current (When load current increases) (Ta = 25C)  
1. 1 VOUT = 1.0 V  
1. 2 VOUT = 2.5 V  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VIN = 1.3 V  
VIN = 1.5 V  
VIN = 2.0 V  
VIN = 3.0 V  
VIN = 5.5 V  
V
V
V
V
V
IN = 2.8 V  
IN = 3.0 V  
IN = 3.5 V  
IN = 4.5 V  
IN = 5.5 V  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
I
OUT [mA]  
IOUT [mA]  
1. 3 VOUT = 3.5 V  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VIN = 3.8 V  
VIN = 4.0 V  
VIN = 4.5 V  
VIN = 5.5 V  
Remark In determining the output current, attention should  
be paid to the following.  
1. The minimum output current value and  
footnote *5 of Table 7 in "Electrical  
Characteristics"  
2. Power dissipation  
0
100  
200  
300  
400  
500  
IOUT [mA]  
2. Output voltage vs. Input voltage (Ta = 25C)  
2. 1 VOUT = 1.0 V  
2. 2 VOUT = 2.5 V  
1.2  
1.1  
1.0  
2.7  
2.6  
2.5  
2.4  
0.9  
0.8  
0.7  
0.6  
I
I
I
I
OUT = 1 mA  
OUT = 10 mA  
OUT = 50 mA  
OUT = 100 mA  
I
I
I
I
OUT = 1 mA  
OUT = 10 mA  
OUT = 50 mA  
OUT = 100 mA  
2.3  
2.2  
2.1  
2.0  
0.6  
1.0  
1.4  
1.8  
2.2  
2.6  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
V
IN [V]  
VIN [V]  
2. 3 VOUT = 3.5 V  
3.7  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
3.0  
I
I
I
I
OUT = 1 mA  
OUT = 10 mA  
OUT = 50 mA  
OUT = 100 mA  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
V
IN [V]  
14  
5.5 V INPUT, 100 mA CMOS VOLTAGE REGULATOR WITH 0.35  
Rev.1.0_01  
A
SUPER LOW CURRENT CONSUMPTION  
S-1317 Series  
3. Dropout voltage vs. Output current  
3. 1 VOUT = 1.0 V  
3. 2 VOUT = 2.5 V  
1.2  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
Ta = +85C  
Ta = +25C  
Ta = 40C  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Ta = +85C  
Ta = +25C  
Ta = 40C  
0.00  
0
0
20  
40  
60  
80  
100  
20  
40  
60  
80  
100  
IOUT [mA]  
IOUT [mA]  
3. 3 VOUT = 3.5 V  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
Ta = +85C  
Ta = +25C  
Ta = 40C  
0
20  
40  
60  
80  
100  
I
OUT [mA]  
4. Dropout voltage vs. Set output voltage  
1.2  
1.0  
I
OUT = 0.1 mA  
0.8  
0.6  
0.4  
0.2  
0.0  
IOUT = 1 mA  
IOUT = 10 mA  
I
OUT = 50 mA  
I
OUT = 100 mA  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
V
OUT(S) [V]  
15  
5.5 V INPUT, 100 mA CMOS VOLTAGE REGULATOR WITH 0.35  
S-1317 Series  
A SUPER LOW CURRENT CONSUMPTION  
Rev.1.0_01  
5. Output voltage vs. Ambient temperature  
5. 1 VOUT = 1.0 V  
5. 2 VOUT = 2.5 V  
1.10  
2.70  
1.05  
1.00  
0.95  
0.90  
2.60  
2.50  
2.40  
2.30  
40  
25  
0
25  
50  
75 85  
40  
25  
0
25  
50  
75 85  
Ta [°C]  
Ta [°C]  
5. 3 VOUT = 3.5 V  
3.80  
3.70  
3.60  
3.50  
3.40  
3.30  
3.20  
40  
25  
0
25  
50  
75 85  
Ta [°C]  
6. Current consumption vs. Input voltage  
6. 1 VOUT = 1.0 V  
6. 2 VOUT = 2.5 V  
0.7  
0.7  
0.6  
Ta = +85C  
Ta = +25C  
Ta = +85C  
Ta = +25C  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
Ta = 40C  
Ta = 40C  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
V
IN [V]  
V
IN [V]  
6. 3 VOUT = 3.5 V  
0.7  
0.6  
Ta = +85C  
Ta = +25C  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
Ta = 40C  
1.0 2.0 3.0  
0.0  
4.0  
5.0  
6.0  
V
IN [V]  
16  
5.5 V INPUT, 100 mA CMOS VOLTAGE REGULATOR WITH 0.35  
Rev.1.0_01  
A
SUPER LOW CURRENT CONSUMPTION  
S-1317 Series  
7. Current consumption vs. Ambient temperature  
7. 1 VOUT = 1.0 V  
7. 2 VOUT = 2.5 V  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
VIN = 2.0 V  
VIN = 3.5 V  
V
IN = 5.5 V  
VIN = 5.5 V  
40  
25  
0
25  
Ta [C]  
50  
75 85  
40  
25  
0
25  
Ta [C]  
50  
75 85  
7. 3 VOUT = 3.5 V  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
VIN = 4.5 V  
V
IN = 5.5 V  
40  
25  
0
25  
Ta [C]  
50  
75 85  
8. Current consumption vs. Output current  
8. 1 VOUT = 1.0 V  
8. 2 VOUT = 2.5 V  
40  
35  
30  
40  
35  
30  
25  
20  
15  
10  
5
25  
VIN = 2.0 V  
VIN = 3.5 V  
20  
15  
10  
5
0
VIN = 5.5 V  
80  
VIN = 5.5 V  
80 100  
0
0
0
20  
40  
60  
100  
20  
40  
60  
IOUT [mA]  
IOUT [mA]  
8. 3 VOUT = 3.5 V  
40  
35  
30  
25  
20  
15  
10  
5
VIN = 4.5 V  
VIN = 5.5 V  
0
0
20  
40  
60  
80 100  
I
OUT [mA]  
17  
5.5 V INPUT, 100 mA CMOS VOLTAGE REGULATOR WITH 0.35  
S-1317 Series  
A SUPER LOW CURRENT CONSUMPTION  
Rev.1.0_01  
Reference Data  
1. Characteristics of input transient response (Ta = 25C)  
1. 1 VOUT = 1.0 V  
IOUT = 1 mA, CIN = CL = 1  
F, VIN = 2.0 V  
3.0 V, tr = tf = 5.0  
s
s
s
IOUT = 50 mA, CIN = CL = 1  
F, VIN = 2.0 V  
3.0 V, tr = tf = 5.0  
s  
s  
s  
1.5  
1.4  
1.3  
1.2  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
1.5  
1.4  
1.3  
1.2  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VIN  
V
IN  
1.1  
1.0  
0.9  
0.8  
0.7  
1.1  
1.0  
0.9  
0.8  
0.7  
V
OUT  
V
OUT  
200  
0
200 400 600 800 1000 1200  
200  
0
200 400 600 800 1000 1200  
t [s]  
t [s]  
1. 2 VOUT = 2.5 V  
IOUT = 1 mA, CIN = CL = 1  
F, VIN = 3.5 V  
4.5 V, tr = tf = 5.0  
IOUT = 50 mA, CIN = CL = 1  
F, VIN = 3.5 V  
4.5 V, tr = tf = 5.0  
3.0  
2.9  
2.8  
2.7  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
3.0  
2.9  
2.8  
2.7  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
VIN  
V
IN  
2.6  
2.5  
2.4  
2.3  
2.2  
2.6  
2.5  
2.4  
2.3  
2.2  
V
OUT  
V
OUT  
200  
0
200 400 600 800 1000 1200  
200  
0
200 400 600 800 1000 1200  
t [s]  
t [s]  
1. 3 VOUT = 3.5 V  
IOUT = 1 mA, CIN = CL = 1  
F, VIN = 4.5 V  
5.5 V, tr = tf = 5.0  
IOUT = 50 mA, CIN = CL = 1  
F, VIN = 4.5 V  
5.5 V, tr = tf = 5.0  
4.0  
3.9  
3.8  
3.7  
3.6  
3.5  
3.4  
3.3  
3.2  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
4.0  
3.9  
3.8  
3.7  
3.6  
3.5  
3.4  
3.3  
3.2  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
V
IN  
V
IN  
VOUT  
VOUT  
200  
0
200 400 600 800 1000 1200  
200  
0
200 400 600 800 1000 1200  
t [s]  
t [s]  
18  
5.5 V INPUT, 100 mA CMOS VOLTAGE REGULATOR WITH 0.35  
Rev.1.0_01  
A
SUPER LOW CURRENT CONSUMPTION  
S-1317 Series  
2. Characteristics of load transient response (Ta = 25C)  
2. 1 VOUT = 1.0 V  
VIN = 2.0 V, CIN = CL = 1  
F, IOUT = 1 mA  
10 mA, tr = tf = 5.0  
s
s
s
VIN = 2.0 V, CIN = CL = 1  
F, IOUT = 10 mA  
50 mA, tr = tf = 5.0  
s
s
s
1.5  
1.4  
1.3  
1.2  
75  
50  
25  
0
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
75  
50  
25  
0
IOUT  
I
OUT  
1.1  
1.0  
0.9  
0.8  
0.7  
25  
50  
75  
100  
125  
25  
50  
75  
100  
125  
V
OUT  
V
OUT  
200  
0
200 400 600 800 1000 1200  
200  
0
200 400 600 800 1000 1200  
t [s]  
t [s]  
2. 2 VOUT = 2.5 V  
VIN = 3.5 V, CIN = CL = 1  
F, IOUT = 1 mA  
10 mA, tr = tf = 5.0  
VIN = 3.5 V, CIN = CL = 1  
F, IOUT = 10 mA  
50 mA, tr = tf = 5.0  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
75  
50  
25  
0
3.0  
2.9  
2.8  
75  
50  
25  
0
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
I
OUT  
I
OUT  
25  
50  
75  
100  
125  
25  
50  
75  
100  
125  
V
OUT  
V
OUT  
100  
0
100 200 300 400 500 600  
100  
0
100 200 300 400 500 600  
t [s]  
t [s]  
2. 3 VOUT = 3.5 V  
VIN = 4.5 V, CIN = CL = 1  
F, IOUT = 1 mA  
10 mA, tr = tf = 5.0  
VIN = 4.5 V, CIN = CL = 1  
F, IOUT = 10 mA  
50 mA, tr = tf = 5.0  
4.0  
3.9  
3.8  
3.7  
3.6  
3.5  
3.4  
3.3  
3.2  
75  
50  
25  
0
4.0  
3.9  
3.8  
3.7  
3.6  
3.5  
3.4  
3.3  
3.2  
75  
50  
25  
0
I
OUT  
I
OUT  
25  
50  
75  
100  
125  
25  
50  
75  
100  
125  
V
OUT  
V
OUT  
400  
0
400 800 1200 1600 2000 2400  
800  
0
800 1600 2400 3200 4000 4800  
t [s]  
t [s]  
19  
5.5 V INPUT, 100 mA CMOS VOLTAGE REGULATOR WITH 0.35  
S-1317 Series  
A SUPER LOW CURRENT CONSUMPTION  
Rev.1.0_01  
3. Ripple rejection (Ta = 25C)  
3. 1 VOUT = 1.0 V  
3. 2  
VOUT = 2.5 V  
VIN = 2.0 V, CL = 1.0 F  
VIN = 3.5 V, CL = 1.0 F  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
IOUT = 1 mA  
IOUT = 10 mA  
IOUT = 50 mA  
IOUT = 100 mA  
IOUT = 1 mA  
IOUT = 10 mA  
IOUT = 50 mA  
IOUT = 100 mA  
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
Frequency [Hz]  
Frequency [Hz]  
3. 3 VOUT = 3.5 V  
VIN = 4.5 V, CL = 1.0 F  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
IOUT = 1 mA  
IOUT = 10 mA  
IOUT = 50 mA  
IOUT = 100 mA  
10  
100  
1k  
10k  
100k  
1M  
Frequency [Hz]  
4. Example of equivalent series resistance vs. Output current characteristics (Ta = 25C)  
CIN = CL = 1.0 F  
100  
VIN  
VOUT  
CIN  
Stable  
S-1317 Series  
*1  
CL  
0
VSS  
RESR  
0.01  
100  
IOUT [mA]  
*1. CL: TDK Corporation C3216X7R1H105K160AB  
Figure 10  
Figure 11  
20  
5.5 V INPUT, 100 mA CMOS VOLTAGE REGULATOR WITH 0.35  
Rev.1.0_01  
A
SUPER LOW CURRENT CONSUMPTION  
S-1317 Series  
Power Dissipation  
SOT-23-5  
HSNT-4(1010)  
T
j
= 125C max.  
T = 125C max.  
j
1.0  
0.8  
0.6  
0.4  
0.2  
1.0  
0.8  
0.6  
B
A
0.4  
0.2  
0.0  
B
A
0.0  
0
25  
50  
75  
100 125 150 175  
0
25  
50  
75  
100 125 150 175  
Ambient temperature (Ta) [C]  
Ambient temperature (Ta) [C]  
Board  
Power Dissipation (PD)  
Board  
Power Dissipation (PD)  
A
B
C
D
E
0.52 W  
A
B
C
D
E
0.26 W  
0.63 W  
0.32 W  
  
  
  
  
  
  
21  
SOT-23-3/3S/5/6 Test Board  
No. SOT23x-A-Board-SD-2.0  
ABLIC Inc.  
HSNT-4(1010) Test Board  
No. HSNT4-B-Board-SD-1.0  
ABLIC Inc.  
2.9±0.2  
1.9±0.2  
4
5
+0.1  
-0.06  
1
2
3
0.16  
0.95±0.1  
0.4±0.1  
No. MP005-A-P-SD-1.3  
TITLE  
SOT235-A-PKG Dimensions  
MP005-A-P-SD-1.3  
No.  
ANGLE  
UNIT  
mm  
ABLIC Inc.  
4.0±0.1(10 pitches:40.0±0.2)  
+0.1  
-0  
2.0±0.05  
0.25±0.1  
ø1.5  
+0.2  
-0  
4.0±0.1  
ø1.0  
1.4±0.2  
3.2±0.2  
3
4
2 1  
5
Feed direction  
No. MP005-A-C-SD-2.1  
TITLE  
SOT235-A-Carrier Tape  
MP005-A-C-SD-2.1  
No.  
ANGLE  
UNIT  
mm  
ABLIC Inc.  
12.5max.  
9.0±0.3  
Enlarged drawing in the central part  
ø13±0.2  
(60°)  
(60°)  
No. MP005-A-R-SD-1.1  
TITLE  
SOT235-A-Reel  
MP005-A-R-SD-1.1  
No.  
ANGLE  
UNIT  
QTY.  
3,000  
mm  
ABLIC Inc.  
0.38±0.02  
0.65  
3
4
+0.05  
-0.02  
1
2
0.08  
1.00±0.04  
he heat sink of back side has different electric  
potential depending on the product.  
Confirm specifications of each product.  
Do not use it as the function of electrode.  
0.20±0.05  
No. PL004-A-P-SD-1.1  
TITLE  
HSNT-4-B-PKG Dimensions  
PL004-A-P-SD-1.1  
No.  
ANGLE  
UNIT  
mm  
ABLIC Inc.  
4.0±0.05  
2.0±0.05  
+0.1  
-0  
ø1.5  
0.25±0.05  
+0.1  
-0  
ø0.5  
2.0±0.05  
0.5±0.05  
1.12±0.05  
2
3
1
4
Feed direction  
No. PL004-A-C-SD-2.0  
HSNT-4-B-Carrier Tape  
PL004-A-C-SD-2.0  
TITLE  
No.  
ANGLE  
UNIT  
mm  
ABLIC Inc.  
+1.0  
- 0.0  
9.0  
11.4±1.0  
Enlarged drawing in the central part  
ø13±0.2  
(60°)  
(60°)  
No. PL004-A-R-SD-1.0  
HSNT-4-B-Reel  
PL004-A-R-SD-1.0  
TITLE  
No.  
QTY.  
10,000  
ANGLE  
UNIT  
mm  
ABLIC Inc.  
Land Pattern  
0.30min.  
0.38~0.48  
0.38~0.48  
0.07  
0.65±0.02  
(1.02)  
Caution It is recommended to solder the heat sink to a board  
in order to ensure the heat radiation.  
PKG  
Metal Mask Pattern  
Aperture ratio  
Aperture ratio  
Caution  
Mask aperture ratio of the lead mounting part is 100%.  
Mask aperture ratio of the heat sink mounting part is 40%.  
Mask thickness: t0.10mm to 0.12 mm  
100%  
40%  
t0.10mm ~ 0.12 mm  
HSNT-4-B  
TITLE  
-Land Recommendation  
No. PL004-A-L-SD-2.0  
No.  
PL004-A-L-SD-2.0  
ANGLE  
UNIT  
mm  
ABLIC Inc.  
Disclaimers (Handling Precautions)  
1. All the information described herein (product data, specifications, figures, tables, programs, algorithms and application  
circuit examples, etc.) is current as of publishing date of this document and is subject to change without notice.  
2. The circuit examples and the usages described herein are for reference only, and do not guarantee the success of  
any specific mass-production design.  
ABLIC Inc. is not responsible for damages caused by the reasons other than the products described herein  
(hereinafter "the products") or infringement of third-party intellectual property right and any other right due to the use  
of the information described herein.  
3. ABLIC Inc. is not responsible for damages caused by the incorrect information described herein.  
4. Be careful to use the products within their specified ranges. Pay special attention to the absolute maximum ratings,  
operation voltage range and electrical characteristics, etc.  
ABLIC Inc. is not responsible for damages caused by failures and / or accidents, etc. that occur due to the use of the  
products outside their specified ranges.  
5. When using the products, confirm their applications, and the laws and regulations of the region or country where they  
are used and verify suitability, safety and other factors for the intended use.  
6. When exporting the products, comply with the Foreign Exchange and Foreign Trade Act and all other export-related  
laws, and follow the required procedures.  
7. The products must not be used or provided (exported) for the purposes of the development of weapons of mass  
destruction or military use. ABLIC Inc. is not responsible for any provision (export) to those whose purpose is to  
develop, manufacture, use or store nuclear, biological or chemical weapons, missiles, or other military use.  
8. The products are not designed to be used as part of any device or equipment that may affect the human body, human  
life, or assets (such as medical equipment, disaster prevention systems, security systems, combustion control  
systems, infrastructure control systems, vehicle equipment, traffic systems, in-vehicle equipment, aviation equipment,  
aerospace equipment, and nuclear-related equipment), excluding when specified for in-vehicle use or other uses. Do  
not apply the products to the above listed devices and equipments without prior written permission by ABLIC Inc.  
Especially, the products cannot be used for life support devices, devices implanted in the human body and devices  
that directly affect human life, etc.  
Prior consultation with our sales office is required when considering the above uses.  
ABLIC Inc. is not responsible for damages caused by unauthorized or unspecified use of our products.  
9. Semiconductor products may fail or malfunction with some probability.  
The user of the products should therefore take responsibility to give thorough consideration to safety design including  
redundancy, fire spread prevention measures, and malfunction prevention to prevent accidents causing injury or  
death, fires and social damage, etc. that may ensue from the products' failure or malfunction.  
The entire system must be sufficiently evaluated and applied on customer's own responsibility.  
10. The products are not designed to be radiation-proof. The necessary radiation measures should be taken in the  
product design by the customer depending on the intended use.  
11. The products do not affect human health under normal use. However, they contain chemical substances and heavy  
metals and should therefore not be put in the mouth. The fracture surfaces of wafers and chips may be sharp. Be  
careful when handling these with the bare hands to prevent injuries, etc.  
12. When disposing of the products, comply with the laws and ordinances of the country or region where they are used.  
13. The information described herein contains copyright information and know-how of ABLIC Inc.  
The information described herein does not convey any license under any intellectual property rights or any other  
rights belonging to ABLIC Inc. or a third party. Reproduction or copying of the information from this document or any  
part of this document described herein for the purpose of disclosing it to a third-party without the express permission  
of ABLIC Inc. is strictly prohibited.  
14. For more details on the information described herein, contact our sales office.  
2.2-2018.06  
www.ablic.com  

相关型号:

S-1317A18-A4T2U4

5.5 V INPUT, 100 mA CMOS VOLTAGE REGULATOR WITH 0.35 uA SUPER LOW CURRENT CONSUMPTION
SII

S-1317A18-A4T2U4

5.5 V INPUT, 100 mA CMOS VOLTAGE REGULATOR WITH 0.35 A SUPER LOW CURRENT CONSUMPTION
ABLIC

S-1317A18-M5T1U4

5.5 V INPUT, 100 mA CMOS VOLTAGE REGULATOR WITH 0.35 uA SUPER LOW CURRENT CONSUMPTION
SII

S-1317A18-M5T1U4

5.5 V INPUT, 100 mA CMOS VOLTAGE REGULATOR WITH 0.35 A SUPER LOW CURRENT CONSUMPTION
ABLIC

S-1317A20-A4T2U4

IC REG LINEAR 2V 100MA HSNT4-B
ETC

S-1317A20-M5T1U4

IC REG LINEAR 2V 100MA SOT23-5
ETC

S-1317A25-A4T2U4

5.5 V INPUT, 100 mA CMOS VOLTAGE REGULATOR WITH 0.35 uA SUPER LOW CURRENT CONSUMPTION
SII

S-1317A25-A4T2U4

5.5 V INPUT, 100 mA CMOS VOLTAGE REGULATOR WITH 0.35 A SUPER LOW CURRENT CONSUMPTION
ABLIC

S-1317A25-M5T1U4

5.5 V INPUT, 100 mA CMOS VOLTAGE REGULATOR WITH 0.35 uA SUPER LOW CURRENT CONSUMPTION
SII

S-1317A25-M5T1U4

5.5 V INPUT, 100 mA CMOS VOLTAGE REGULATOR WITH 0.35 A SUPER LOW CURRENT CONSUMPTION
ABLIC

S-1317A27-A4T2U4

IC REG LINEAR 2.7V 100MA HSNT4-B
ETC

S-1317A27-M5T1U4

IC REG LINEAR 2.7V 100MA SOT23-5
ETC