S-8424AAFFT-TB-X [ABLIC]

BATTERY BACKUP SWITCHING IC;
S-8424AAFFT-TB-X
型号: S-8424AAFFT-TB-X
厂家: ABLIC    ABLIC
描述:

BATTERY BACKUP SWITCHING IC

开关
文件: 总43页 (文件大小:535K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
S-8424A Series  
www.ablic.com  
BATTERY BACKUP SWITCHING IC  
© ABLIC Inc., 2001-2019  
Rev.4.0_00  
The S-8424A Series is a CMOS IC designed for use in the switching circuits of primary and backup power supplies on  
a single chip. It consists of two voltage regulators, three voltage detectors, a power supply switch and its controller, as  
well as other functions.  
In addition to the switching function between the primary and backup power supply, the S-8424A Series can provide  
the micro controllers with three types of voltage detection output signals corresponding to the power supply voltage.  
Moreover adopting a special sequence for switch control enables the effective use of the backup power supply,  
making this IC ideal for configuring a backup system.  
Features  
Low power consumption  
Normal operation: 15 μA Max. (VIN = 6 V)  
Backup:  
2.1 μA Max.  
Voltage regulator  
Output voltage tolerance : 2 %  
Output voltage:  
Independently selectable in 0.1 V steps in the range of 2.3 V to 5.4 V  
Three built-in voltage detectors (CS, PREEND , RESET )  
Detection voltage precision: 2 %  
Detection voltage:  
Selectable in 0.1 V steps in the range of 2.4 V to 5.3 V (CS voltage detector)  
Selectable in 0.1 V steps in the range of 1.7 V to 3.4 V (PREEND , RESET  
voltage detector)  
Switching circuit for primary power supply and backup power supply configurable on one chip  
Efficient use of backup power supply possible  
Special sequence  
Backup voltage is not output when the primary power supply voltage does not reach the initial voltage at which  
the switch unit operates.  
Lead-free, Sn 100%, halogen-free*1  
*1. Refer to “Product Name Structure” for details.  
Package  
8-Pin TSSOP  
Applications  
Video camera recorders  
Still video cameras  
Memory cards  
SRAM backup equipment  
1
BATTERY BACKUP SWITCHING IC  
S-8424A Series  
Rev.4.0_00  
Product Name Structure  
1. Product name  
S-8424A xx FT - TB - x  
Environmental code  
U: Lead-free (Sn 100%), halogen-free  
G: Lead-free (for details, please contact our sales representatives.)  
IC direction in tape specification  
Package code  
FT: 8-Pin TSSOP  
Serial code  
2. Package  
Drawing Code  
Package Name  
Package  
Tape  
Reel  
Environmental code = G  
Environmental code = U  
FT008-A-P-SD  
FT008-A-P-SD  
FT008-E-C-SD  
FT008-E-C-SD  
FT008-E-R-SD  
FT008-E-R-S1  
8-Pin TSSOP  
2
BATTERY BACKUP SWITCHING IC  
S-8424A Series  
Rev.4.0_00  
3. Product name list  
Part No.  
Package  
Output  
Voltage  
(V)  
CS Voltage  
(V)  
Switch Voltage  
(V)  
RESET  
Voltage  
(V)  
PREEND  
Voltage  
(V)  
Type  
VRO  
VOUT VDET1 +VDET1 VDET2 +VDET2 VDET3  
+VDET3  
VSW1  
+VDET1 × 0.85  
+VDET1 × 0.77  
+VDET1 × 0.85  
+VDET1 × 0.77  
+VDET1 × 0.77  
+VDET1 × 0.77  
+VDET1 × 0.77  
+VDET1 × 0.77  
+VDET1 × 0.77  
+VDET1 × 0.77  
S-8424AAAFT-TB-x  
S-8424AABFT-TB-x  
S-8424AACFT-TB-x  
S-8424AADFT-TB-x  
S-8424AAEFT-TB-x  
S-8424AAFFT-TB-x  
S-8424AAGFT-TB-x  
S-8424AAHFT-TB-x  
S-8424AAJFT-TB-x  
S-8424AAKFT-TB-x  
8-Pin TSSOP  
8-Pin TSSOP  
8-Pin TSSOP  
8-Pin TSSOP  
8-Pin TSSOP  
8-Pin TSSOP  
8-Pin TSSOP  
8-Pin TSSOP  
8-Pin TSSOP  
8-Pin TSSOP  
3.000 3.000  
3.300 3.300  
3.200 3.200  
5.000 5.000  
3.150 3.150  
3.200 3.200  
2.800 2.800  
5.000 5.000  
3.100 3.100  
3.200 3.200  
3.300  
4.000  
3.300  
4.600  
4.200  
4.400  
4.400  
4.600  
4.400  
4.600  
3.401  
4.129  
3.401  
4.753  
4.337  
4.545  
4.545  
4.753  
4.545  
4.753  
2.200  
2.300  
2.400  
2.300  
2.300  
2.400  
2.400  
2.550  
2.200  
2.400  
2.312  
2.420  
2.528  
2.420  
2.420  
2.528  
2.528  
2.690  
2.312  
2.528  
2.600  
2.500  
2.600  
2.500  
2.500  
2.600  
2.600  
2.700  
2.600  
2.600  
2.748  
2.640  
2.748  
2.640  
2.640  
2.748  
2.748  
2.856  
2.748  
2.748  
Caution Set the CS voltage so that the switch voltage (VSW1) is equal to or greater than the  
RESET detection voltage (VDET2).  
Remark 1. The selection range is as follows.  
VRO, VOUT: 2.3 to 5.4 V (0.1 V steps)  
VDET1  
VDET2  
VDET3  
:
:
:
2.4 to 5.3 V (0.1 V steps)  
1.7 to 3.4 V (0.1 V steps )  
1.7 to 3.4 V (0.1 V steps)  
+VDET1 × 0.85 or +VDET1 × 0.77  
VSW1  
:
2. Please contact our sales representatives for products other than the above.  
3. x: G or U  
4. Please select products of environmental code = U for Sn 100%, halogen-free products.  
3
BATTERY BACKUP SWITCHING IC  
S-8424A Series  
Rev.4.0_00  
Block Diagram  
VOUT  
M1  
VIN  
REG2  
VBAT  
PREEND  
PREEND  
Voltage  
detector  
VSW1  
Detector  
RESET  
CS  
Voltage  
detector  
VSW2  
Detector  
CS  
RESET  
Voltage  
detector  
Switch  
controller  
REG1  
VRO  
VSS  
Figure 1 Block Diagram  
4
BATTERY BACKUP SWITCHING IC  
S-8424A Series  
Rev.4.0_00  
Pin Configuration  
1. 8-Pin TSSOP  
Table 1  
Description  
Ground  
Top view  
Pin No.  
Symbol  
VSS  
1
2
1
2
3
4
8
7
6
5
PREEND  
VBAT*1  
CS  
Output pin of PREEND voltage detector  
Backup power supply input pin  
3
4
5
Output pin of CS voltage detector  
RESET  
VOUT*2  
VIN*3  
Output pin of RESET voltage detector  
Output pin of voltage regulator 2  
Primary power supply input pin  
Output pin of voltage regulator 1  
6
7
8
Figure 2  
VRO*4  
*1 to *4. Mount capacitors between VSS (GND pin) and the VIN, VBAT,  
VOUT, and VRO pins. (Refer to the “Standard Circuit”)  
5
BATTERY BACKUP SWITCHING IC  
S-8424A Series  
Rev.4.0_00  
Absolute Maximum Ratings  
Table 2  
Symbol  
(Unless otherwise specified: Ta = 25°C)  
Parameter  
Ratings  
Unit  
Primary power supply input voltage  
Backup power supply input voltage  
Output voltage of voltage regulator  
CS output voltage  
VIN  
VBAT  
V
VSS0.3 to VSS+18  
VRO, VOUT  
VCS  
VSS0.3 to VIN+0.3  
VSS0.3 to VSS+18  
VRESET  
RESET output voltage  
VPREEND  
PREEND output voltage  
Power dissipation  
PD  
300 (When not mounted on board)  
mW  
700*1  
Operating ambient temperature  
Storage temperature  
Topr  
Tstg  
40 to +85  
40 to +125  
°C  
*1. When mounted on board  
[Mounted board]  
(1) Board size: 114.3 mm × 76.2 mm × t1.6 mm  
(2) Board name: JEDEC STANDARD51-7  
Caution The absolute maximum ratings are rated values exceeding which the product could suffer  
physical damage. These values must therefore not be exceeded under any conditions.  
(1) When mounted on board  
(2) When not mounted on board  
800  
400  
700  
600  
500  
300  
200  
100  
0
400  
300  
200  
100  
0
0
50  
Ambient Temperature Ta (°C)  
Figure 3 Power Dissipation of Package  
100  
150  
0
50  
100  
150  
Ambient Temperature Ta (°C)  
6
BATTERY BACKUP SWITCHING IC  
S-8424A Series  
Rev.4.0_00  
Electrical Characteristics  
1. S-8424AAAxx  
Table 3 Electrical Characteristics  
(Unless otherwise specified: Ta = 25°C)  
Test  
Circuit  
1
Parameter  
Symbol  
Conditions  
Min.  
Typ.  
Max.  
Unit  
Output voltage 1  
Dropout voltage 1  
Load stability 1  
Input stability 1  
VRO  
VIN = 7.2 V, IRO = 3 mA  
2.940  
3.000  
41  
3.060  
59  
V
Vdrop1  
ΔVRO1  
VIN = 7.2 V, IRO = 3 mA  
mV  
mV  
mV  
VIN = 7.2 V, IRO = 0.1 to 10 mA  
VIN = 4 to 16 V, IRO = 3 mA  
50  
100  
20  
ΔVRO2  
ΔVRO  
ΔTa VRO  
5
Output voltage temperature coefficient 1  
Ta = −40°C to +85°C  
100  
ppm/°C  
Output voltage 2  
Dropout voltage 2  
Load stability 2  
Input stability 2  
VOUT  
Vdrop2  
VIN = 7.2 V, IOUT = 23 mA  
2.940  
3.000  
187  
50  
3.060  
252  
100  
20  
V
VIN = 7.2 V, IOUT = 23 mA  
mV  
mV  
mV  
ΔVOUT1  
ΔVOUT2  
VIN = 7.2 V, IOUT = 0.1 to 60 mA  
VIN = 4 to 16 V, IOUT = 23 mA  
5
ΔVOUT  
ΔTa VOUT  
Output voltage temperature coefficient 2  
Ta = −40°C to +85°C  
100  
ppm/°C  
Primary power input voltage  
CS detection voltage  
VIN  
VIN voltage detection  
16  
V
V
V
V
VDET1  
+VDET1  
VDET2  
3.234  
3.319  
2.156  
3.300  
3.401  
2.200  
3.366  
3.482  
2.244  
2
CS release voltage  
RESET detection voltage  
VOUT voltage detection  
RESET release voltage  
+VDET2  
VDET3  
+VDET3  
Vopr  
VBAT voltage detection  
2.256  
2.548  
2.682  
1.7  
2.312  
2.600  
2.748  
2.367  
2.652  
2.814  
16  
V
V
V
V
PREEND detection voltage  
PREEND release voltage  
Operating voltage  
VIN or VBAT  
Δ − VDET1  
ΔTa • −VDET1  
Detection voltage temperature coefficient  
Ta = −40°C to +85°C  
Ta = −40°C to +85°C  
100  
100  
ppm/°C  
ppm/°C  
Δ − VDET2  
ΔTa • −VDET2  
Δ − VDET3  
ΔTa • −VDET3  
Ta = −40°C to +85°C  
100  
ppm/°C  
RESET  
PREEND  
CS  
Sink current  
ISINK  
VDS = 0.5 V, VIN = VBAT = 2.0 V  
1.50  
2.30  
mA  
mA  
mA  
μA  
3
1.50  
1.50  
2.30  
2.30  
Leakage current  
Switch voltage  
ILEAK  
VSW1  
VDS = 16 V, VIN = 16 V  
0.1  
+VDET1  
× 0.83  
VOUT  
× 0.93  
+VDET1  
× 0.85  
VOUT  
× 0.95  
+VDET1  
× 0.87  
VOUT  
× 0.97  
0.1  
VBAT = 2.8 V, VIN voltage detection  
V
V
4
5
CS output inhibit voltage  
VSW2  
ILEAK  
VBAT = 3.0 V, VOUT voltage detection  
VIN = 3.6 V, VBAT = 0 V  
VBAT switch leakage current  
VBAT switch resistance  
μA  
6
7
RSW  
VIN = Open, VBAT = 3.0 V, IOUT = 10 to 500 μA  
30  
60  
Ω
ΔVSW1  
Switch voltage temperature coefficient  
Ta = −40°C to +85°C  
100  
100  
ppm/°C  
ppm/°C  
4
ΔTa VSW1  
ΔVSW2  
CS output inhibit voltage temperature  
coefficient  
Ta = −40°C to +85°C  
5
8
ΔTa VSW2  
Current consumption  
ISS1  
VIN = 3.6 V, VBAT = 3.0 V, Unload  
7
0.26  
1.0  
15  
0.50  
2.1  
μA  
μA  
μA  
μA  
V
IBAT1  
IBAT2  
VIN = Open, VBAT = 3.0 V, Unload  
Ta = 25°C  
Ta = 85°C  
3.5  
4.0  
Backup power supply input voltage  
VBAT  
1.7  
7
Remark The number in the Test Circuit column corresponds to the circuit number in the “Test Circuit”section.  
7
BATTERY BACKUP SWITCHING IC  
S-8424A Series  
Rev.4.0_00  
2. S-8424AABxx  
Table 4 Electrical Characteristics  
(Unless otherwise specified: Ta = 25°C)  
Test  
Circuit  
1
Parameter  
Output voltage 1  
Symbol  
Conditions  
Min.  
Typ.  
Max.  
Unit  
VRO  
VIN = 6 V, IRO = 30 mA  
3.234  
3.300  
356  
50  
3.366  
474  
100  
20  
V
Dropout voltage 1  
Load stability 1  
Input stability 1  
Vdrop1  
ΔVRO1  
VIN = 6 V, IRO = 30 mA  
mV  
mV  
mV  
VIN = 6 V, IRO = 0.1 to 40 mA  
VIN = 6 to 16 V, IRO = 30 mA  
ΔVRO2  
ΔVRO  
ΔTa VRO  
5
Output voltage temperature coefficient 1  
Ta = −40°C to +85°C  
100  
ppm/°C  
Output voltage 2  
Dropout voltage 2  
Load stability 2  
Input stability 2  
VOUT  
Vdrop2  
VIN = 6 V, IOUT = 50 mA  
3.234  
3.300  
401  
50  
3.366  
540  
100  
20  
V
VIN = 6 V, IOUT = 50 mA  
mV  
mV  
mV  
ΔVOUT1  
ΔVOUT2  
VIN = 6 V, IOUT = 0.1 to 60 mA  
VIN = 6 to 16 V, IOUT = 50 mA  
5
ΔVOUT  
ΔTa VOUT  
Output voltage temperature coefficient 2  
Ta = −40°C to +85°C  
100  
ppm/°C  
Primary power input voltage  
CS detection voltage  
VIN  
VIN voltage detection  
16  
V
V
V
V
VDET1  
+VDET1  
VDET2  
3.920  
4.030  
2.254  
4.000  
4.129  
2.300  
4.080  
4.228  
2.346  
2
CS release voltage  
RESET detection voltage  
VOUT voltage detection  
RESET release voltage  
+VDET2  
VDET3  
+VDET3  
Vopr  
VBAT voltage detection  
2.362  
2.450  
2.576  
1.7  
2.420  
2.500  
2.640  
2.478  
2.550  
2.703  
16  
V
V
V
V
PREEND detection voltage  
PREEND release voltage  
Operating voltage  
VIN or VBAT  
Δ − VDET1  
ΔTa • −VDET1  
Detection voltage temperature coefficient  
Ta = −40°C to +85°C  
Ta = −40°C to +85°C  
100  
100  
ppm/°C  
ppm/°C  
Δ − VDET2  
ΔTa • −VDET2  
Δ − VDET3  
ΔTa • −VDET3  
Ta = −40°C to +85°C  
100  
ppm/°C  
RESET  
PREEND  
CS  
Sink current  
ISINK  
VDS = 0.5 V, VIN = VBAT = 2.0 V  
1.50  
2.30  
mA  
mA  
mA  
μA  
3
1.50  
1.50  
2.30  
2.30  
Leakage current  
Switch voltage  
ILEAK  
VSW1  
VDS = 16 V, VIN = 16 V  
0.1  
+VDET1  
× 0.75  
VOUT  
× 0.93  
+VDET1  
× 0.77  
VOUT  
× 0.95  
+VDET1  
× 0.79  
VOUT  
× 0.97  
0.1  
VBAT = 2.8 V, VIN voltage detection  
V
V
4
5
VBAT = 3.0 V  
CS output inhibit voltage  
VSW2  
ILEAK  
VOUT voltage detection  
VIN = 6V, VBAT = 0 V  
VBAT switch leakage current  
VBAT switch resistance  
μA  
6
7
RSW  
VIN = Open, VBAT = 3.0 V, IOUT = 10 to 500 μA  
30  
60  
Ω
ΔVSW1  
Switch voltage temperature coefficient  
Ta = −40°C to +85°C  
100  
100  
ppm/°C  
ppm/°C  
4
ΔTa VSW1  
ΔVSW2  
CS output inhibit voltage temperature  
coefficient  
Ta = −40°C to +85°C  
5
8
ΔTa VSW2  
Current consumption  
ISS1  
VIN = 6 V, VBAT = 3.0 V, Unload  
7
0.26  
1.0  
15  
0.50  
2.1  
μA  
μA  
μA  
μA  
V
IBAT1  
IBAT2  
VIN = Open, VBAT = 3.0 V, Unload  
Ta = 25°C  
Ta = 85°C  
3.5  
4.0  
Backup power supply input voltage  
VBAT  
1.7  
7
Remark The number in the Test Circuit column corresponds to the circuit number in the “Test Circuit” section.  
8
BATTERY BACKUP SWITCHING IC  
S-8424A Series  
Rev.4.0_00  
3. S-8424AACxx  
Table 5 Electrical Characteristics  
(Unless otherwise specified: Ta = 25°C)  
Test  
Circuit  
1
Parameter  
Symbol  
Conditions  
Min.  
Typ.  
Max.  
Unit  
Output voltage 1  
Dropout voltage 1  
Load stability 1  
Input stability 1  
VRO  
VIN = 3.6 V, IRO = 15 mA  
3.136  
3.200  
181  
50  
3.264  
243  
100  
20  
V
Vdrop1  
ΔVRO1  
VIN = 3.6 V, IRO = 15 mA  
mV  
mV  
mV  
VIN = 3.6 V, IRO = 0.1 to 20 mA  
VIN = 3.6 to 16 V, IRO = 15 mA  
ΔVRO2  
ΔVRO  
ΔTa VRO  
5
Output voltage temperature coefficient 1  
Ta = −40°C to +85°C  
100  
ppm/°C  
Output voltage 2  
Dropout voltage 2  
Load stability 2  
Input stability 2  
VOUT  
Vdrop2  
VIN = 3.6 V, IOUT = 15mA  
3.136  
3.200  
123  
50  
3.264  
167  
100  
20  
V
VIN = 3.6 V, IOUT = 15 mA  
mV  
mV  
mV  
ΔVOUT1  
ΔVOUT2  
VIN = 3.6 V, IOUT = 0.1 to 20 mA  
VIN = 3.6 to 16 V, IOUT = 15 mA  
5
ΔVOUT  
ΔTa VOUT  
Output voltage temperature coefficient 2  
Ta = −40°C to +85°C  
100  
ppm/°C  
Primary power input voltage  
CS detection voltage  
VIN  
VIN voltage detection  
16  
V
V
V
V
VDET1  
+VDET1  
VDET2  
3.234  
3.319  
2.352  
3.300  
3.401  
2.400  
3.366  
3.482  
2.448  
2
CS release voltage  
RESET detection voltage  
VOUT voltage detection  
RESET release voltage  
+VDET2  
VDET3  
+VDET3  
Vopr  
VBAT voltage detection  
2.467  
2.548  
2.682  
1.7  
2.528  
2.600  
2.748  
2.589  
2.652  
2.814  
16  
V
V
V
V
PREEND detection voltage  
PREEND release voltage  
Operating voltage  
VIN or VBAT  
Δ − VDET1  
ΔTa • −VDET1  
Detection voltage temperature coefficient  
Ta = −40°C to +85°C  
Ta = −40°C to +85°C  
100  
100  
ppm/°C  
ppm/°C  
Δ − VDET2  
ΔTa • −VDET2  
Δ − VDET3  
ΔTa • −VDET3  
Ta = −40°C to +85°C  
100  
ppm/°C  
RESET  
PREEND  
CS  
Sink current  
ISINK  
VDS = 0.5 V, VIN = VBAT = 2.0 V  
1.50  
2.30  
mA  
mA  
mA  
μA  
V
3
1.50  
1.50  
2.30  
2.30  
Leakage current  
Switch voltage  
ILEAK  
VSW1  
VDS = 16 V, VIN = 16 V  
0.1  
+VDET1  
× 0.83  
VOUT  
× 0.93  
+VDET1  
× 0.85  
VOUT  
× 0.95  
+VDET1  
× 0.87  
VOUT  
× 0.97  
0.1  
4
5
VBAT = 2.8 V, VIN voltage detection  
V
CS output inhibit voltage  
VSW2  
ILEAK  
VBAT = 3.0 V, VOUT voltage detection  
VIN = 3.6 V, VBAT = 0 V  
VBAT switch leakage current  
VBAT switch resistance  
μA  
Ω
6
7
4
RSW  
VIN = Open, VBAT = 3.0 V, IOUT = 10 to 500 μA  
30  
60  
ΔVSW1  
100  
ppm/°C  
Switch voltage temperature coefficient  
Ta = −40°C to +85°C  
ΔTa VSW1  
ΔVSW2  
CS output inhibit voltage temperature  
100  
ppm/°C  
5
8
Ta = −40°C to +85°C  
ΔTa VSW2  
coefficient  
Current consumption  
ISS1  
VIN = 3.6 V, VBAT = 3.0 V, Unload  
7
0.26  
1.0  
15  
0.50  
2.1  
μA  
μA  
μA  
μA  
V
IBAT1  
IBAT2  
VIN = Open, VBAT = 3.0 V, Unload  
Ta = 25°C  
Ta = 85°C  
3.5  
4.0  
Backup power supply input voltage  
VBAT  
1.7  
7
Remark The number in the Test Circuit column corresponds to the circuit number in the “Test Circuit” section.  
9
BATTERY BACKUP SWITCHING IC  
S-8424A Series  
Rev.4.0_00  
4. S-8424AADxx  
Table 6 Electrical Characteristics  
(Unless otherwise specified: Ta = 25°C)  
Test  
Circuit  
1
Parameter  
Output voltage 1  
Symbol  
Conditions  
Min.  
Typ.  
Max.  
Unit  
VRO  
VIN = 6 V, IRO = 30 mA  
4.900  
5.000  
356  
50  
5.100  
474  
100  
20  
V
Dropout voltage 1  
Load stability 1  
Input stability 1  
Vdrop1  
ΔVRO1  
VIN = 6 V, IRO = 30 mA  
mV  
mV  
mV  
VIN = 6 V, IRO = 0.1 to 40 mA  
VIN = 6 to 16 V, IRO = 30 mA  
ΔVRO2  
ΔVRO  
ΔTa VRO  
5
Output voltage temperature coefficient 1  
Ta = −40°C to +85°C  
100  
ppm/°C  
Output voltage 2  
Dropout voltage 2  
Load stability 2  
Input stability 2  
VOUT  
Vdrop2  
VIN = 6 V, IOUT = 50 mA  
4.900  
5.000  
401  
50  
5.100  
540  
100  
20  
V
VIN = 6 V, IOUT = 50 mA  
mV  
mV  
mV  
ΔVOUT1  
ΔVOUT2  
VIN = 6 V, IOUT = 0.1 to 60 mA  
VIN = 6 to 16 V, IOUT = 50 mA  
5
ΔVOUT  
ΔTa VOUT  
Output voltage temperature coefficient 2  
Ta = −40°C to +85°C  
100  
ppm/°C  
Primary power input voltage  
CS detection voltage  
VIN  
VIN voltage detection  
16  
V
V
V
V
VDET1  
+VDET1  
VDET2  
4.508  
4.639  
2.254  
4.600  
4.753  
2.300  
4.692  
4.867  
2.346  
2
CS release voltage  
RESET detection voltage  
VOUT voltage detection  
RESET release voltage  
+VDET2  
VDET3  
+VDET3  
Vopr  
VBAT voltage detection  
2.362  
2.450  
2.576  
1.7  
2.420  
2.500  
2.640  
2.478  
2.550  
2.703  
16  
V
V
V
V
PREEND detection voltage  
PREEND release voltage  
Operating voltage  
VIN or VBAT  
Δ − VDET1  
ΔTa • −VDET1  
Detection voltage temperature coefficient  
Ta = −40°C to +85°C  
Ta = −40°C to +85°C  
100  
100  
ppm/°C  
ppm/°C  
Δ − VDET2  
ΔTa • −VDET2  
Δ − VDET3  
ΔTa • −VDET3  
Ta = −40°C to +85°C  
100  
ppm/°C  
RESET  
PREEND  
CS  
Sink current  
ISINK  
VDS = 0.5 V, VIN = VBAT = 2.0 V  
1.50  
2.30  
mA  
mA  
mA  
μA  
3
1.50  
1.50  
2.30  
2.30  
Leakage current  
Switch voltage  
ILEAK  
VSW1  
VDS = 16 V, VIN = 16 V  
0.1  
+VDET1  
× 0.75  
VOUT  
× 0.93  
+VDET1  
× 0.77  
VOUT  
× 0.95  
+VDET1  
× 0.79  
VOUT  
× 0.97  
0.1  
VBAT = 2.8 V, VIN voltage detection  
V
V
4
5
CS output inhibit voltage  
VSW2  
ILEAK  
VBAT = 3.0 V, VOUT voltage detection  
VIN = 6 V, VBAT = 0 V  
VBAT switch leakage current  
VBAT switch resistance  
μA  
6
7
RSW  
VIN = Open, VBAT = 3.0 V, IOUT = 10 to 500 μA  
30  
60  
Ω
ΔVSW1  
Switch voltage temperature coefficient  
Ta = −40°C to +85°C  
100  
100  
ppm/°C  
ppm/°C  
4
ΔTa VSW1  
ΔVSW2  
CS output inhibit voltage temperature  
coefficient  
Ta = −40°C to +85°C  
5
8
ΔTa VSW2  
VIN = 6 V, VBAT = 3.0 V, Unload  
Current consumption  
ISS1  
7
0.26  
1.0  
15  
0.50  
2.1  
μA  
μA  
μA  
μA  
V
IBAT1  
IBAT2  
VIN = Open, VBAT = 3.0 V, Unload  
Ta = 25°C  
Ta = 85°C  
3.5  
4.0  
Backup power supply input voltage  
VBAT  
1.7  
7
Remark The number in the Test Circuit column corresponds to the circuit number in the “Test Circuit” section.  
10  
BATTERY BACKUP SWITCHING IC  
S-8424A Series  
Rev.4.0_00  
5. S-8424AAExx  
Table 7 Electrical Characteristics  
(Unless otherwise specified: Ta = 25°C)  
Test  
Circuit  
1
Parameter  
Symbol  
Conditions  
Min.  
Typ.  
Max.  
Unit  
Output voltage 1  
Dropout voltage 1  
Load stability 1  
Input stability 1  
VRO  
VIN = 6 V, IRO = 30 mA  
3.087  
3.150  
356  
50  
3.213  
474  
100  
20  
V
Vdrop1  
ΔVRO1  
VIN = 6 V, IRO = 30 mA  
mV  
mV  
mV  
VIN = 6 V, IRO = 0.1 to 30 mA  
VIN = 6 to 16 V, IRO = 30 mA  
ΔVRO2  
ΔVRO  
ΔTa VRO  
5
Output voltage temperature coefficient 1  
Ta = −40°C to +85°C  
100  
ppm/°C  
Output voltage 2  
Dropout voltage 2  
Load stability 2  
Input stability 2  
VOUT  
Vdrop2  
VIN = 6 V, IOUT = 50 mA  
3.087  
3.150  
401  
50  
3.213  
540  
100  
20  
V
VIN = 6 V, IOUT = 50 mA  
mV  
mV  
mV  
ΔVOUT1  
ΔVOUT2  
VIN = 6 V, IOUT = 0.1 to 60 mA  
VIN = 6 to 16 V, IOUT = 50 mA  
5
ΔVOUT  
ΔTa VOUT  
Output voltage temperature coefficient 2  
Ta = −40°C to +85°C  
100  
ppm/°C  
Primary power input voltage  
CS detection voltage  
VIN  
VIN voltage detection  
16  
V
V
V
V
VDET1  
+VDET1  
VDET2  
4.116  
4.233  
2.254  
4.200  
4.337  
2.300  
4.284  
4.441  
2.346  
2
CS release voltage  
RESET detection voltage  
VOUT voltage detection  
RESET release voltage  
+VDET2  
VDET3  
+VDET3  
Vopr  
VBAT voltage detection  
2.362  
2.450  
2.576  
1.7  
2.420  
2.500  
2.640  
2.478  
2.550  
2.703  
16  
V
V
V
V
PREEND detection voltage  
PREEND release voltage  
Operating voltage  
VIN or VBAT  
Δ − VDET1  
ΔTa • −VDET1  
Detection voltage temperature coefficient  
Ta = −40°C to +85°C  
Ta = −40°C to +85°C  
100  
100  
ppm/°C  
ppm/°C  
Δ − VDET2  
ΔTa • −VDET2  
Δ − VDET3  
ΔTa • −VDET3  
Ta = −40°C to +85°C  
100  
ppm/°C  
RESET  
PREEND  
CS  
Sink current  
ISINK  
VDS = 0.5 V, VIN = VBAT = 2.0 V  
1.50  
2.30  
mA  
mA  
mA  
μA  
3
1.50  
1.50  
2.30  
2.30  
Leakage current  
Switch voltage  
ILEAK  
VSW1  
VDS = 16 V, VIN = 16 V  
0.1  
+VDET1  
× 0.75  
VOUT  
× 0.93  
+VDET1  
× 0.77  
VOUT  
× 0.95  
+VDET1  
× 0.79  
VOUT  
× 0.97  
0.1  
VBAT = 2.8 V, VIN voltage detection  
V
V
4
5
CS output inhibit voltage  
VSW2  
ILEAK  
VBAT = 3.0 V, VOUT voltage detection  
VIN = 6 V, VBAT = 0 V  
VBAT switch leakage current  
VBAT switch resistance  
μA  
6
7
RSW  
VIN = Open, VBAT = 3.0 V, IOUT = 10 to 500 μA  
30  
60  
Ω
ΔVSW1  
Switch voltage temperature coefficient  
Ta = −40°C to +85°C  
100  
100  
ppm/°C  
ppm/°C  
4
ΔTa VSW1  
ΔVSW2  
CS output inhibit voltage temperature  
coefficient  
Ta = −40°C to +85°C  
5
8
ΔTa VSW2  
VIN = 6 V, VBAT = 3.0 V, Unload  
Current consumption  
ISS1  
7
0.26  
1.0  
15  
0.50  
2.1  
μA  
μA  
μA  
μA  
V
IBAT1  
IBAT2  
VIN = Open, VBAT = 3.0 V, Unload  
Ta = 25°C  
Ta = 85°C  
3.5  
4.0  
Backup power supply input voltage  
VBAT  
1.7  
7
Remark The number in the Test Circuit column corresponds to the circuit number in the “Test Circuit” section.  
11  
BATTERY BACKUP SWITCHING IC  
S-8424A Series  
Rev.4.0_00  
6. S-8424AAFxx  
Table 8 Electrical Characteristics  
(Unless otherwise specified: Ta = 25°C)  
Test  
Parameter  
Output voltage 1  
Symbol  
Conditions  
VIN = 6 V, IRO = 30 mA  
Min.  
Typ.  
Max.  
Unit  
Circuit  
1
VRO  
3.136  
3.200  
356  
50  
3.264  
474  
100  
20  
V
Dropout voltage 1  
Load stability 1  
Input stability 1  
Vdrop1  
ΔVRO1  
VIN = 6 V, IRO = 30 mA  
mV  
mV  
mV  
VIN = 6 V, IRO = 0.1 to 30 mA  
VIN = 6 to 16 V, IRO = 30 mA  
ΔVRO2  
ΔVRO  
ΔTa VRO  
5
Output voltage temperature coefficient 1  
Ta = −40°C to +85°C  
100  
ppm/°C  
Output voltage 2  
Dropout voltage 2  
Load stability 2  
Input stability 2  
VOUT  
Vdrop2  
VIN = 6 V, IOUT = 50 mA  
3.136  
3.200  
401  
50  
3.264  
540  
100  
20  
V
VIN = 6 V, IOUT = 50 mA  
mV  
mV  
mV  
ΔVOUT1  
ΔVOUT2  
VIN = 6 V, IOUT = 0.1 to 50 mA  
VIN = 6 to 16 V, IOUT = 50 mA  
5
ΔVOUT  
ΔTa VOUT  
Output voltage temperature coefficient 2  
Ta = −40°C to +85°C  
100  
ppm/°C  
Primary power input voltage  
CS detection voltage  
VIN  
VIN voltage detection  
16  
V
V
V
V
VDET1  
+VDET1  
VDET2  
4.312  
4.436  
2.352  
4.400  
4.545  
2.400  
4.488  
4.654  
2.448  
2
CS release voltage  
RESET detection voltage  
VOUT voltage detection  
RESET release voltage  
+VDET2  
VDET3  
+VDET3  
Vopr  
VBAT voltage detection  
2.467  
2.548  
2.682  
1.7  
2.528  
2.600  
2.748  
2.589  
2.652  
2.814  
16  
V
V
V
V
PREEND detection voltage  
PREEND release voltage  
Operating voltage  
VIN or VBAT  
Δ − VDET1  
ΔTa • −VDET1  
Detection voltage temperature coefficient  
Ta = −40°C to +85°C  
Ta = −40°C to +85°C  
100  
100  
ppm/°C  
ppm/°C  
Δ − VDET2  
ΔTa • −VDET2  
Δ − VDET3  
ΔTa • −VDET3  
Ta = −40°C to +85°C  
100  
ppm/°C  
VDS = 0.5 V, VIN = VBAT = 2.0 V  
RESET  
PREEND  
CS  
Sink current  
ISINK  
1.50  
2.30  
mA  
mA  
mA  
μA  
3
1.50  
1.50  
2.30  
2.30  
Leakage current  
Switch voltage  
ILEAK  
VSW1  
VDS = 16 V, VIN = 16 V  
0.1  
+VDET1  
× 0.75  
VOUT  
× 0.93  
+VDET1  
× 0.77  
VOUT  
× 0.95  
+VDET1  
× 0.79  
VOUT  
× 0.97  
0.1  
VBAT = 2.8 V, VIN voltage detection  
V
V
4
5
CS output inhibit voltage  
VSW2  
ILEAK  
VBAT = 3.0 V, VOUT voltage detection  
VIN = 6 V, VBAT = 0 V  
VBAT switch leakage current  
VBAT switch resistance  
μA  
6
7
RSW  
VIN = Open, VBAT = 3.0 V, IOUT = 10 to 500 μA  
30  
60  
Ω
ΔVSW1  
Switch voltage temperature coefficient  
Ta = −40°C to +85°C  
100  
100  
ppm/°C  
ppm/°C  
4
ΔTa VSW1  
ΔVSW2  
CS output inhibit voltage temperature  
coefficient  
Ta = −40°C to +85°C  
5
8
ΔTa VSW2  
Current consumption  
ISS1  
IBAT1  
IBAT2  
VIN = 6 V, VBAT = 3.0 V, Unload  
7
0.26  
1.0  
15  
0.50  
2.1  
μA  
μA  
μA  
μA  
V
VIN = Open, VBAT = 3.0 V, Unload  
Ta = 25°C  
Ta = 85°C  
3.5  
4.0  
Backup power supply input voltage  
VBAT  
1.7  
7
Remark The number in the Test Circuit column corresponds to the circuit number in the “Test Circuit” section.  
12  
BATTERY BACKUP SWITCHING IC  
S-8424A Series  
Rev.4.0_00  
7. S-8424AAGxx  
Table 9 Electrical Characteristics  
(Unless otherwise specified: Ta = 25°C)  
Test  
Parameter  
Symbol  
Conditions  
VIN = 6 V, IRO = 30 mA  
Min.  
Typ.  
Max.  
Unit  
Circuit  
1
Output voltage 1  
Dropout voltage 1  
Load stability 1  
Input stability 1  
VRO  
2.744  
2.800  
356  
50  
2.856  
474  
100  
20  
V
Vdrop1  
ΔVRO1  
VIN = 6 V, IRO = 30 mA  
mV  
mV  
mV  
VIN = 6 V, IRO = 0.1 to 30 mA  
VIN = 6 to 16 V, IRO = 30 mA  
ΔVRO2  
ΔVRO  
ΔTa VRO  
5
Output voltage temperature coefficient 1  
Ta = −40°C to +85°C  
100  
ppm/°C  
Output voltage 2  
Dropout voltage 2  
Load stability 2  
Input stability 2  
VOUT  
Vdrop2  
VIN = 6 V, IOUT = 50 mA  
2.744  
2.800  
401  
50  
2.856  
540  
100  
20  
V
VIN = 6 V, IOUT = 50 mA  
mV  
mV  
mV  
ΔVOUT1  
ΔVOUT2  
VIN = 6 V, IOUT = 0.1 to 50 mA  
VIN = 6 to 16 V, IOUT = 50 mA  
5
ΔVOUT  
ΔTa VOUT  
Output voltage temperature coefficient 2  
Ta = −40°C to +85°C  
100  
ppm/°C  
Primary power input voltage  
CS detection voltage  
CS release voltage  
VIN  
16  
V
V
V
V
V
V
V
V
VDET1  
+VDET1  
VDET2  
+VDET2  
VDET3  
+VDET3  
Vopr  
VIN voltage detection  
4.312  
4.436  
2.352  
2.467  
2.548  
2.682  
1.7  
4.400  
4.545  
2.400  
2.528  
2.600  
2.748  
4.488  
4.654  
2.448  
2.589  
2.652  
2.814  
16  
2
detection voltage  
VOUT voltage detection  
VBAT voltage detection  
RESET release voltage  
PREEND detection voltage  
PREEND release voltage  
Operating voltage  
VIN or VBAT  
Δ − VDET1  
ΔTa • −VDET1  
Detection voltage temperature coefficient  
Ta = −40°C to +85°C  
100  
100  
ppm/°C  
ppm/°C  
Δ − VDET2  
ΔTa • −VDET2  
Ta = −40°C to +85°C  
Δ − VDET3  
ΔTa • −VDET3  
Ta = −40°C to +85°C  
100  
ppm/°C  
VDS = 0.5 V, VIN = VBAT = 2.0 V  
RESET  
PREEND  
CS  
Sink current  
ISINK  
1.50  
2.30  
mA  
mA  
mA  
μA  
3
1.50  
1.50  
2.30  
2.30  
Leakage current  
Switch voltage  
ILEAK  
VSW1  
VDS = 16 V, VIN = 16 V  
0.1  
+VDET1  
× 0.75  
VOUT  
× 0.93  
+VDET1  
× 0.77  
VOUT  
× 0.95  
+VDET1  
× 0.79  
VOUT  
× 0.97  
0.1  
VBAT = 2.8 V, VIN voltage detection  
V
V
4
5
CS output inhibit voltage  
VSW2  
ILEAK  
VBAT = 3.0 V, VOUT voltage detection  
VIN = 6 V, VBAT = 0 V  
VBAT switch leakage current  
VBAT switch resistance  
μA  
6
7
RSW  
VIN = Open, VBAT = 3.0 V, IOUT = 10 to 500 μA  
30  
60  
Ω
ΔVSW1  
Switch voltage temperature coefficient  
Ta = −40°C to +85°C  
100  
100  
ppm/°C  
ppm/°C  
4
ΔTa VSW1  
ΔVSW2  
CS output inhibit voltage temperature  
coefficient  
Ta = −40°C to +85°C  
5
8
ΔTa VSW2  
Current consumption  
ISS1  
VIN = 6 V, VBAT = 3.0 V, Unload  
7
15  
μA  
μA  
IBAT1  
0.26  
0.50  
IBAT2  
VIN = Open, VBAT = 3.0 V, Unload  
Ta = 25°C  
Ta = 85°C  
1.0  
2.1  
μA  
3.5  
4.0  
μA  
Backup power supply input voltage  
VBAT  
1.7  
V
7
Remark The number in the Test Circuit column corresponds to the circuit number in the “Test Circuit” section.  
13  
BATTERY BACKUP SWITCHING IC  
S-8424A Series  
Rev.4.0_00  
8. S-8424AAHxx  
Table 10 Electrical Characteristics  
(Unless otherwise specified: Ta = 25°C)  
Test  
Parameter  
Output voltage 1  
Symbol  
Conditions  
VIN = 6 V, IRO = 30 mA  
Min.  
Typ.  
Max.  
Unit  
Circuit  
1
VRO  
4.900  
5.000  
356  
50  
5.100  
474  
100  
20  
V
Dropout voltage 1  
Load stability 1  
Input stability 1  
Vdrop1  
ΔVRO1  
VIN = 6 V, IRO = 30 mA  
mV  
mV  
mV  
VIN = 6 V, IRO = 0.1 to 40 mA  
VIN = 6 to 16 V, IRO = 30 mA  
ΔVRO2  
ΔVRO  
ΔTa VRO  
5
Output voltage temperature coefficient 1  
Ta = −40°C to +85°C  
100  
ppm/°C  
Output voltage 2  
Dropout voltage 2  
Load stability 2  
Input stability 2  
VOUT  
Vdrop2  
VIN = 6 V, IOUT = 50 mA  
4.900  
5.000  
401  
50  
5.100  
540  
100  
20  
V
VIN = 6 V, IOUT = 50 mA  
mV  
mV  
mV  
ΔVOUT1  
ΔVOUT2  
VIN = 6 V, IOUT = 0.1 to 60 mA  
VIN = 6 to 16 V, IOUT = 50 mA  
5
ΔVOUT  
ΔTa VOUT  
Output voltage temperature coefficient 2  
Ta = −40°C to +85°C  
100  
ppm/°C  
Primary power input voltage  
CS detection voltage  
CS release voltage  
VIN  
16  
V
V
V
V
V
V
V
V
VDET1  
+VDET1  
VDET2  
+VDET2  
VDET3  
+VDET3  
Vopr  
VIN voltage detection  
4.508  
4.639  
2.499  
2.625  
2.646  
2.787  
1.7  
4.600  
4.753  
2.550  
2.690  
2.700  
2.856  
4.692  
4.867  
2.601  
2.754  
2.754  
2.924  
16  
2
detection voltage  
VOUT voltage detection  
VBAT voltage detection  
RESET release voltage  
PREEND detection voltage  
PREEND release voltage  
Operating voltage  
VIN or VBAT  
Δ − VDET1  
ΔTa • −VDET1  
Detection voltage temperature coefficient  
Ta = −40°C to +85°C  
100  
100  
ppm/°C  
ppm/°C  
Δ − VDET2  
ΔTa • −VDET2  
Ta = −40°C to +85°C  
Δ − VDET3  
ΔTa • −VDET3  
Ta = −40°C to +85°C  
100  
ppm/°C  
VDS = 0.5 V, VIN = VBAT = 2.0 V  
RESET  
PREEND  
CS  
Sink current  
ISINK  
1.50  
2.30  
mA  
mA  
mA  
μA  
3
1.50  
1.50  
2.30  
2.30  
Leakage current  
Switch voltage  
ILEAK  
VSW1  
VDS = 16 V, VIN = 16 V  
0.1  
+VDET1  
× 0.75  
VOUT  
× 0.93  
+VDET1  
× 0.77  
VOUT  
× 0.95  
+VDET1  
× 0.79  
VOUT  
× 0.97  
0.1  
VBAT = 2.8 V, VIN voltage detection  
V
V
4
5
CS output inhibit voltage  
VSW2  
ILEAK  
VBAT = 3.0 V, VOUT voltage detection  
VIN = 6 V, VBAT = 0 V  
VBAT switch leakage current  
VBAT switch resistance  
μA  
6
7
RSW  
VIN = Open, VBAT = 3.0 V, IOUT = 10 to 500 μA  
30  
60  
Ω
ΔVSW1  
Switch voltage temperature coefficient  
Ta = −40°C to +85°C  
100  
100  
ppm/°C  
ppm/°C  
4
ΔTa VSW1  
ΔVSW2  
CS output inhibit voltage temperature  
coefficient  
Ta = −40°C to +85°C  
5
8
ΔTa VSW2  
Current consumption  
ISS1  
VIN = 6 V, VBAT = 3.0 V, Unload  
7
15  
μA  
μA  
IBAT1  
0.26  
0.50  
IBAT2  
VIN = Open, VBAT = 3.0 V, Unload  
Ta = 25°C  
Ta = 85°C  
1.0  
2.1  
μA  
3.5  
4.0  
μA  
Backup power supply input voltage  
VBAT  
1.7  
V
7
Remark The number in the Test Circuit column corresponds to the circuit number in the “Test Circuit” section.  
14  
BATTERY BACKUP SWITCHING IC  
S-8424A Series  
Rev.4.0_00  
9. S-8424AAJFxx  
Table 11 Electrical Characteristics  
(Unless otherwise specified: Ta = 25°C)  
Parameter  
Symbol  
Conditions  
Min.  
Typ.  
Max.  
Unit  
Test  
Circuit  
1
Output voltage 1  
Dropout voltage 1  
Load stability 1  
Input stability 1  
VRO  
VIN = 6 V, IRO = 10 mA  
3.038  
3.100  
123  
50  
3.162  
167  
100  
20  
V
Vdrop1  
ΔVRO1  
VIN = 6 V, IRO = 10 mA  
mV  
mV  
mV  
VIN = 6 V, IRO = 0.1 to 15 mA  
VIN = 6 to 16 V, IRO = 10 mA  
ΔVRO2  
ΔVRO  
ΔTa VRO  
5
Output voltage temperature coefficient 1  
Ta = −40°C to +85°C  
100  
ppm/°C  
Output voltage 2  
Dropout voltage 2  
Load stability 2  
Input stability 2  
VOUT  
Vdrop2  
VIN = 6 V, IOUT = 50 mA  
3.038  
3.100  
401  
50  
3.162  
540  
100  
20  
V
VIN = 6 V, IOUT = 50 mA  
mV  
mV  
mV  
ΔVOUT1  
ΔVOUT2  
VIN = 6 V, IOUT = 0.1 to 60 mA  
VIN = 6 to 16 V, IOUT = 50 mA  
5
ΔVOUT  
ΔTa VOUT  
Output voltage temperature coefficient 2  
Ta = −40°C to +85°C  
100  
ppm/°C  
Primary power input voltage  
CS detection voltage  
VIN  
VIN voltage detection  
16  
V
V
V
V
VDET1  
+VDET1  
VDET2  
4.312  
4.436  
2.156  
4.400  
4.545  
2.200  
4.488  
4.654  
2.244  
2
CS release voltage  
RESET detection voltage  
VOUT voltage detection  
RESET release voltage  
+VDET2  
VDET3  
+VDET3  
Vopr  
VBAT voltage detection  
2.256  
2.548  
2.682  
1.7  
2.312  
2.600  
2.748  
2.367  
2.652  
2.814  
16  
V
V
V
V
PREEND detection voltage  
PREEND release voltage  
Operating voltage  
VIN or VBAT  
Δ − VDET1  
ΔTa • −VDET1  
Detection voltage temperature coefficient  
Ta = −40°C to +85°C  
Ta = −40°C to +85°C  
100  
100  
ppm/°C  
ppm/°C  
Δ − VDET2  
ΔTa • −VDET2  
Δ − VDET3  
ΔTa • −VDET3  
Ta = −40°C to +85°C  
100  
ppm/°C  
RESET  
PREEND  
CS  
Sink current  
ISINK  
VDS = 0.5 V, VIN = VBAT = 2.0 V  
1.50  
2.30  
mA  
mA  
mA  
μA  
3
1.50  
1.50  
2.30  
2.30  
Leakage current  
Switch voltage  
ILEAK  
VSW1  
VDS = 16 V, VIN = 16 V  
0.1  
+VDET1  
× 0.75  
VOUT  
× 0.93  
+VDET1  
× 0.77  
VOUT  
× 0.95  
+VDET1  
× 0.79  
VOUT  
× 0.97  
0.1  
VBAT = 2.8 V, VIN voltage detection  
V
V
4
5
CS output inhibit voltage  
VSW2  
ILEAK  
VBAT = 3.0 V, VOUT voltage detection  
VIN = 6 V, VBAT = 0 V  
VBAT switch leakage current  
VBAT switch resistance  
μA  
6
7
RSW  
VIN = Open, VBAT = 3.0 V, IOUT = 10 to 500 μA  
30  
60  
Ω
ΔVSW1  
Switch voltage temperature coefficient  
Ta = −40°C to +85°C  
100  
100  
ppm/°C  
ppm/°C  
4
ΔTa VSW1  
ΔVSW2  
CS output inhibit voltage temperature  
Ta = −40°C to +85°C  
5
8
ΔTa VSW2  
coefficient  
Current consumption  
ISS1  
IBAT1  
IBAT2  
VIN = 6 V, VBAT = 3.0 V, Unload  
7
0.26  
1.0  
15  
0.50  
2.1  
3.5  
4.0  
μA  
μA  
μA  
μA  
V
VIN = Open, VBAT = 3.0 V, Unload  
Ta = 25°C  
Ta = 85°C  
Backup power supply input voltage  
VBAT  
1.7  
7
Remark The number in the Test Circuit column corresponds to the circuit number in the “Test Circuit” section.  
15  
BATTERY BACKUP SWITCHING IC  
S-8424A Series  
Rev.4.0_00  
10. S-8424AAKxx  
Table 12 Electrical Characteristics  
(Unless otherwise specified: Ta = 25°C)  
Test  
Parameter  
Output voltage 1  
Symbol  
Conditions  
VIN = 6 V, IRO = 10 mA  
Min.  
Typ.  
Max.  
Unit  
Circuit  
1
VRO  
3.136  
3.200  
123  
50  
3.264  
167  
100  
20  
V
Dropout voltage 1  
Load stability 1  
Input stability 1  
Vdrop1  
ΔVRO1  
VIN = 6 V, IRO = 10 mA  
mV  
mV  
mV  
VIN = 6 V, IRO = 0.1 to 15 mA  
VIN = 6 to 16 V, IRO = 10 mA  
ΔVRO2  
ΔVRO  
ΔTa VRO  
5
Output voltage temperature coefficient 1  
Ta = −40°C to +85°C  
100  
ppm/°C  
Output voltage 2  
Dropout voltage 2  
Load stability 2  
Input stability 2  
VOUT  
Vdrop2  
VIN = 6 V, IOUT = 50 mA  
3.136  
3.200  
401  
50  
3.264  
540  
100  
20  
V
VIN = 6 V, IOUT = 50 mA  
mV  
mV  
mV  
ΔVOUT1  
ΔVOUT2  
VIN = 6 V, IOUT = 0.1 to 60 mA  
VIN = 6 to 16 V, IOUT = 50 mA  
5
ΔVOUT  
ΔTa VOUT  
Output voltage temperature coefficient 2  
Ta = −40°C to +85°C  
100  
ppm/°C  
Primary power input voltage  
CS detection voltage  
VIN  
VIN voltage detection  
16  
V
V
V
V
VDET1  
+VDET1  
VDET2  
4.508  
4.639  
2.352  
4.600  
4.753  
2.400  
4.692  
4.867  
2.448  
2
CS release voltage  
RESET detection voltage  
VOUT voltage detection  
RESET release voltage  
+VDET2  
VDET3  
+VDET3  
Vopr  
VBAT voltage detection  
2.467  
2.548  
2.682  
1.7  
2.528  
2.600  
2.748  
2.589  
2.652  
2.814  
16  
V
V
V
V
PREEND detection voltage  
PREEND release voltage  
Operating voltage  
VIN or VBAT  
Δ − VDET1  
ΔTa • −VDET1  
Detection voltage temperature coefficient  
Ta = −40°C to +85°C  
Ta = −40°C to +85°C  
100  
100  
ppm/°C  
ppm/°C  
Δ − VDET2  
ΔTa • −VDET2  
Δ − VDET3  
ΔTa • −VDET3  
Ta = −40°C to +85°C  
100  
ppm/°C  
RESET  
PREEND  
CS  
Sink current  
ISINK  
VDS = 0.5 V, VIN = VBAT = 2.0 V  
1.50  
2.30  
mA  
mA  
mA  
μA  
3
1.50  
1.50  
2.30  
2.30  
Leakage current  
Switch voltage  
ILEAK  
VSW1  
VDS = 16 V, VIN = 16 V  
0.1  
+VDET1  
× 0.75  
VOUT  
× 0.93  
+VDET1  
× 0.77  
VOUT  
× 0.95  
+VDET1  
× 0.79  
VOUT  
× 0.97  
0.1  
VBAT = 2.8 V, VIN voltage detection  
V
V
4
5
CS output inhibit voltage  
VSW2  
ILEAK  
VBAT = 3.0 V, VOUT voltage detection  
VIN = 6 V, VBAT = 0 V  
VBAT switch leakage current  
VBAT switch resistance  
μA  
6
7
RSW  
VIN = Open, VBAT = 3.0 V, IOUT = 10 to 500 μA  
30  
60  
Ω
ΔVSW1  
Switch voltage temperature coefficient  
Ta = −40°C to +85°C  
100  
100  
ppm/°C  
ppm/°C  
4
ΔTa VSW1  
ΔVSW2  
CS output inhibit voltage temperature  
coefficient  
Ta = −40°C to +85°C  
5
8
ΔTa VSW2  
Current consumption  
ISS1  
IBAT1  
IBAT2  
VIN = 6 V, VBAT = 3.0 V, Unload  
7
0.26  
1.0  
15  
0.50  
2.1  
3.5  
4.0  
μA  
μA  
μA  
μA  
V
VIN = Open, VBAT = 3.0 V, Unload  
Ta = 25°C  
Ta = 85°C  
Backup power supply input voltage  
VBAT  
1.7  
7
Remark The number in the Test Circuit column corresponds to the circuit number in the “Test Circuit” section.  
16  
BATTERY BACKUP SWITCHING IC  
S-8424A Series  
Rev.4.0_00  
Test Circuits  
1.  
2.  
V
VBAT  
VIN  
VRO or VOUT  
Ω
100 k  
VOUT  
Ω
100 k  
VIN  
V
VSS  
Ω
100 k  
μ
F
VBAT  
VIN  
10  
PREEND  
VIN  
V
RESET  
CS  
VSS  
V
V
V
To measure VDET3, apply 6 V to VIN.  
3.  
4.  
VOUT  
VIN  
VBAT VOUT  
VIN  
VBAT  
CS  
VIN  
A
A
A
VBAT  
V
V
PREEND  
RESET  
VIN  
VSS  
VSS  
VDS  
Measure the value after applying 6 V to VIN.  
5.  
6.  
8.  
Oscilloscope  
Ω
VIN  
VOUT  
VIN  
VSS  
100 k  
.
F.G  
VBAT  
Oscilloscope  
CS  
VBAT  
VIN  
A
VSS  
VBAT  
7.  
VOUT  
VIN  
VIN  
VBAT  
IOUT  
VBAT  
VIN  
ISS  
V
A
A
IBAT  
VBAT  
VSS  
VSS  
VBAT  
VIN  
Leave open and measure the value after applying  
6 V to VIN.  
To measure IBAT2, apply 6 V to VIN and then leave  
VIN open and measure IBAT  
.
Figure 4 Test Circuits  
17  
BATTERY BACKUP SWITCHING IC  
S-8424A Series  
Rev.4.0_00  
Operation Timing Chart  
VIN (V)  
VRO (V)  
VOUT (V)  
VBAT (V)  
VCS (V)  
(
VPREEND V)  
(
VRESET V)  
Remark CS, PREEND and RESET are pulled up to VOUT. Y-axis is an arbitrary scale.  
Figure 5 Operation Timing Chart  
18  
BATTERY BACKUP SWITCHING IC  
S-8424A Series  
Rev.4.0_00  
Operation  
The internal configuration of the S-8424A Series is as follows.  
)
IN  
RO  
Voltage regulator 1, which stabilizes input voltage (V and outputs it to V  
)
IN  
OUT  
Voltage regulator 2, which stabilizes input voltage (V and outputs it to V  
)
IN  
CS voltage detector, which monitors input voltage (V  
)
BAT  
PREEND voltage detector, which monitors output voltage (V  
)
OUT  
RESET voltage detector, which monitors output voltage (V  
Switch unit  
The functions and operations of the above-listed elements are described below.  
1. Voltage Regulators  
The S-8424A Series features on-chip voltage regulators with a small dropout voltage. The voltage of the VRO  
and VOUT pins (the output pins of the voltage regulator) can separately be selected for the output voltage in  
0.1 V steps between the range of 2.3 to 5.4 V.  
[Dropout voltage Vdrop1, Vdrop2  
]
Assume that the voltage output from the VRO pin is VRO(E) under the conditions of output voltage 1  
described in the electrical characteristics table. VIN1 is defined as the input voltage at which output voltage  
from the VRO pin becomes 98% of VRO(E) when the input voltage VIN is decreased. Then, the dropout  
voltage Vdrop1 is calculated by the following expression.  
Vdrop1 = VIN1 VRO(E) × 0.98  
Similarly, assume that the voltage of the VOUT pin is VOUT(E) under the conditions of output voltage 2  
described in the electrical characteristics table. VIN2 is defined as the input voltage at which the output  
voltage from the VOUT pin becomes 98% of VOUT(E). Then, the dropout voltage Vdrop2 is calculated by  
the following expression.  
Vdrop2 = VIN2 VOUT(E) × 0.98  
2. Voltage Detector  
The S-8424A Series incorporates three high-precision, low power consuming voltage detectors with  
hysteresis characteristics. The power of the CS voltage detector is supplied from the VIN and VBAT pins.  
Therefore, the output is stable as long as the primary or backup power supplies are within the operating  
voltage range (1.7 to 16 V). All outputs are Nch open-drain, and need pull-up resistors of about 100 kΩ.  
2.1 CS Voltage Detector  
The CS voltage detector monitors the input voltage VIN (VIN pin voltage). The detection voltage can be  
selected from between 2.4 and 5.3 V in 0.1 V steps. The result of detection is output at the CS pin:  
“Low” for lower voltage than the detection level and “High” for higher voltage than the release level  
(however, when the VOUT pin voltage is the CS output inhibit voltage (VSW2), a low level is output).  
Input voltage  
Release voltage  
Detection voltage  
Output voltage  
Figure 6 Definition of Detection and Release Voltages  
19  
BATTERY BACKUP SWITCHING IC  
S-8424A Series  
Rev.4.0_00  
2.2 PREEND Voltage Detector  
The PREEND voltage detector monitors the input voltage VBAT (VBAT pin voltage). The detection voltage  
can be selected from between 1.7 V and 3.4 V in 0.1 V steps. A higher voltage can also be seclected  
keeping a constant difference with the RESET voltage. This function enables the warning that the backup  
battery is running out. The detection result is output to the PREEND pin: “Low” for lower voltages than  
the detection voltage and “High” for higher voltages than the release voltage. The power supply of the  
PREEND voltage detector is supplied from the VIN pin. The output is valid only when the voltage is  
supplied from the VIN pin to the VOUT pin (V V  
). The output is the low level when the voltage is  
SW1  
IN  
supplied from the VBAT pin to the VOUT pin (V < V  
).  
SW1  
IN  
2.3 RESET Voltage Detector  
The RESET voltage detector monitors the output voltage VOUT (VOUT pin voltage). The detection  
voltage can be selected from between 1.7 V and 3.4 V in 0.1 V steps. The result of detection is output at  
the RESET pin: “Low” for lower voltages than the detection level and “High” for higher voltages than  
the release level. RESET outputs the normal logic if the V  
OUT  
pin voltage is 1.0 V or more.  
Caution The PREEND and RESET voltage detectors use the different pins, respectively.  
Practically, the current is taken from the VBAT side, and consider the I/O voltage  
difference (Vdif) of M1 when M1 is ON.  
3. Switch Unit  
The switch unit consists of the VSW1 and VSW2 detectors, a switch controller, voltage regulator 2, and switch  
transistor M1 (Refer to “Figure 7 Switch Unit”).  
VOUT  
M1  
VIN  
REG2  
VBAT  
VSW2  
detector  
Switch  
controller  
VSW1  
detector  
Figure 7 Switch Unit  
3.1 VSW1 Detector  
The VSW1 detector monitors the power supply voltage VIN and sends the results of detection to the switch  
controller. The detection voltage (VSW1) can be set to 77 2% or 85 2% of the CS release voltage  
+VDET1.  
20  
BATTERY BACKUP SWITCHING IC  
S-8424A Series  
Rev.4.0_00  
3.2 VSW2 Detector  
The VSW2 detector monitors the VOUT pin voltage and keeps the CS release voltage output low until the  
VOUT pin voltage rises to VSW2 voltage. The CS pin output then changes from low to high if the VIN pin  
voltage is more than the CS release voltage (+VDET1) when the VOUT pin voltage rises to 95 2% of the  
output voltage of voltage regulator 2 (VOUT). The CS pin output changes from high to low regardless of  
the VSW2 voltage when the VIN pin voltage drops to less than the CS detection voltage (VDET1).  
The CS pin output remains high if the VIN pin voltage stays higher than the CS detection voltage (VDET1  
)
when the VOUT pin voltage drops to less than the VSW2 voltage due to an undershoot.  
3.3 Switch Controller  
The switch controller controls voltage regulator 2 and switch transistor M1. There are two statuses  
corresponding to the power supply voltage VIN (or power supply voltage VBAT) sequence: a special  
sequence status and a normal sequence status. When the power supply voltage VIN rises and becomes  
equal to or exceeds the CS release voltage (+VDET1), the normal sequence status is entered, but until then  
the special sequence status is maintained.  
(1) Special sequence status  
The switch controller sets voltage regulator 2 ON and switch transistor M1 OFF from the initial status  
until the primary power supply voltage VIN is connected and reaches more than the CS release  
voltage (+VDET1) in order to prevent consumption of the backup power supply regardless of the VSW1  
detector status. This status is called the special sequence status.  
(2) Normal sequence status  
The switch controller enters the normal sequence status from the special sequence status once the  
primary power supply voltage VIN reaches more than the CS release voltage (+VDET1).  
Once the normal sequence is entered, the switch controller switches voltage regulator 2 and switch  
transistor M1 ON/OFF as shown in Table 13 according to the power supply voltage VIN. The time  
required for voltage regulator 2 to be switched from OFF to ON is a few hundred μs at most. During  
this interval, voltage regulator 2 and switch transistor M1 may both switch OFF and the VOUT pin  
voltage may drop. To prevent this, connect a capacitor of 10 μF or more to the VOUT pin.  
When the VOUT pin voltage becomes lower than the RESET detection voltage, the status returns to  
the special sequence status.  
Table 13 ON/OFF Switching of Voltage Regulator 2 and  
Switch Transistor M1 According to Power Supply Voltage (VIN  
)
Power Supply Voltage (VIN  
VIN > VSW1  
Voltage Regulator 2  
Switch Transistor M1  
VOUT Pin Voltage  
)
VOUT  
ON  
OFF  
ON  
VIN < VSW1  
OFF  
VBAT Vdif  
21  
BATTERY BACKUP SWITCHING IC  
S-8424A Series  
Rev.4.0_00  
3.4 Switch Transistor M1  
Voltage regulator 2 is also used to switch from VIN pin to VOUT pin. Therefore, no reverse current flows  
from VOUT pin to VIN pin when voltage regulator 2 is OFF. The output voltage of voltage regulator 2 can  
be selected from between 2.3 V and 5.4 V in 0.1 V steps.  
The on-resistance of switch transistor M1 is 60 Ω or lower (IOUT = 10 to 500 μA).  
Therefore, when M1 is switched ON and VOUT pin is connected to VBAT pin, the voltage drop (Vdif  
)
caused by M1 is 60 × IOUT (output current) at maximum., and VBAT – Vdif (max.) is output to the VOUT pin at  
minimum.  
When voltage regulator 2 is ON and M1 is OFF, the leakage current of M1 is kept below 0.1 μA max. (VIN  
= 6 V, Ta = 25°C) with the VBAT pin grounded (VSS pin).  
VOUT  
Vdif  
VIN  
REG2  
VBAT  
M1  
Figure 8 Definition of Vdif  
22  
BATTERY BACKUP SWITCHING IC  
S-8424A Series  
Rev.4.0_00  
Transient Response  
1. Line Transient Response Against Input Voltage Variation  
The input voltage variation differs depending on whether the power supply input (0 V to 10 V square wave) is  
applied or the power supply variation (6 V and 10 V square waves) is applied. This section describes the  
ringing waveforms and parameter dependency of each type. The test circuit is shown for reference.  
Power supply application: 0 V to 10 V Square wave  
Fast amplifier  
10 V  
VOUT  
S-8424A  
Series  
VIN  
Oscilloscope  
Input voltage  
0 V  
RL  
COUT  
VSS  
Overshoot  
P.G.  
Undershoot  
Output voltage  
Figure 9 Power Supply Application:  
0 V to 10 V Square Wave  
Figure 10 Test Circuit  
Power Supply Application  
VOUT pin  
VRO pin  
COUT 22 F, I  
50 mA, Ta 25 C  
CRO 22 F, I  
30 mA, Ta 25 C  
= = °  
=
μ
=
=
°
=
μ
OUT  
RO  
10 V  
10 V  
Input Voltage  
(5 V/div)  
Input Voltage  
(5 V/div)  
0 V  
0 V  
Output Voltage  
(0.5 V/div)  
Output Voltage  
(0.5 V/div)  
t (100 s/div)  
μ
t (100 s/div)  
μ
Figure 11 Ringing Waveform of Power Supply  
Application (VOUT Pin)  
Figure 12 Ringing Waveform of Power Supply  
Application (VRO Pin)  
23  
BATTERY BACKUP SWITCHING IC  
S-8424A Series  
Rev.4.0_00  
Power supply variation: 6 V and 10 V square waves  
Fast amplifier  
10 V  
Input  
6 V  
voltage  
VOUT  
S-8424A Series  
VSS  
Oscillo-scope  
VIN  
RL  
COUT  
Output  
voltage  
Overshoot  
P.G.  
Undershoot  
Figure 13 Power Supply Variation:  
6 V and 10 V Square Waves  
Figure 14 Test Circuit  
Power Supply Variation  
VOUT pin  
COUT 22 F, I  
50 mA, Ta 25 C  
= °  
=
μ
=
OUT  
10 V  
10 V  
Input Voltage  
6 V  
6 V  
(4 V/div)  
Output Voltage  
(50 mV/div)  
t (100 μs/div)  
Figure 15 Ringing Waveform of Power Supply Variation (VOUT Pin)  
VRO pin  
CRO 22 F, I  
30 mA, Ta 25 C  
= °  
=
μ
=
RO  
10 V  
10 V  
6 V  
Input Voltage  
6 V  
(4 V/div)  
Output Voltage  
(50 mV/div)  
t (100 μs/div)  
Figure 16 Ringing Waveform of Power Supply Variation (VRO Pin)  
24  
BATTERY BACKUP SWITCHING IC  
S-8424A Series  
Rev.4.0_00  
OUT  
OUT  
IN  
Reference data: Dependency of output current (I ), load capacitance (C ), input variation width (ΔV ),  
temperature (Ta)  
For reference, the following pages describe the results of measuring the ringing amounts at the VOUT and  
VRO pins using the output current (IOUT), load capacitance (COUT), input variation width (ΔVIN), and  
temperature (Ta) as parameters.  
1.1 IOUT Dependency  
(1) VOUT pin  
(2) VRO pin  
COUT 22 F, V  
6 V and 10 V, Ta 25 C  
CRO 22 F, V  
6 V and 10 V, Ta 25 C  
=
μ
=
=
°
=
μ
=
°
=
IN  
IN  
0.25  
0.25  
0.20  
0.15  
0.20  
0.15  
0.10  
0.05  
0.00  
0.10  
0.05  
0.00  
0
20  
IRO (mA)  
40  
60  
0
20  
40  
60  
IOUT (mA)  
1.2 COUT Dependency  
(1) VOUT pin  
(2) VRO pin  
IOUT 50 mA, V  
6 V and 10 V, Ta 25 C  
°
=
=
=
IRO = 30 mA, VIN = 6 V and 10 V, Ta = 25°C  
IN  
0.50  
0.50  
0.40  
0.30  
0.40  
0.30  
0.20  
0.10  
0.20  
0.10  
0.00  
0.00  
0
0
10  
20  
30  
40 50  
10  
20  
30  
40 50  
COUT ( F)  
μ
CRO (μF)  
Overshoot  
Undershoot  
25  
BATTERY BACKUP SWITCHING IC  
S-8424A Series  
Rev.4.0_00  
1.3 ΔVIN Dependency  
ΔVIN shows the difference between the low voltage fixed to 6 V and the high voltage.  
For example, ΔVIN = 2 V means the difference between 6 V and 8 V.  
(1) VOUT pin  
(2) VRO pin  
0.30  
IRO 30 mA, C  
22 F, Ta 25 C  
=
=
RO  
μ
=
°
IOUT 50 mA, C  
22 F, Ta 25 C  
μ = °  
=
=
OUT  
0.30  
0.25  
0.20  
0.15  
0.10  
0.25  
0.20  
0.15  
0.10  
0.05  
0.05  
0.00  
0.00  
0
1
2
3
4
5
0
1
2
3
4
5
V (V)  
Δ
IN  
V (V)  
Δ
IN  
1.4 Temperature Dependency  
(1) VOUT pin  
(2) VRO pin  
0.30  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
0.25  
0.20  
0.15  
0.10  
VIN  
6
=
=
10 V,  
= ↔  
VIN  
6
=
=
10 V,  
= ↔  
IOUT 50 mA,  
COUT 22  
0.05  
0.00  
IOUT 30 mA,  
CRO 22 F  
F
μ
μ
–50  
0
50  
100  
–50  
0
50  
100  
Ta ( C)  
°
Ta ( C)  
°
Overshoot  
Undershoot  
26  
BATTERY BACKUP SWITCHING IC  
S-8424A Series  
Rev.4.0_00  
2. Load Transient Response Based on Output Current Fluctuation  
The overshoot and undershoot are caused in the output voltage if the output current fluctuates between 10 μA and  
50 mA (VRO is between 10 μA and 30 mA) while the input voltage is constant. Figure 17 shows the output  
voltage variation due to the output current. Figure 18 shows the test circuit for reference. The latter half of this  
section describes ringing waveform and parameter dependency.  
Output  
50 mA  
current  
Oscilloscope  
VOUT  
VIN  
10 μA  
S-8424A  
Series  
VSS  
COUT  
Overshoot  
Undershoot  
Output  
current  
Figure 17 Output Voltage Variation due to  
Output Current  
Figure 18 Test Circuit  
Figure 19 shows the ringing waveforms at the VOUT pin and Figure 20 shows the ringing waveforms at the VRO  
pin due to the load variation, respectively.  
VOUT pin  
VIN = 6.0 V, COUT = 22 μF, Ta = 25°C  
50 mA  
50 mA  
Output current  
10 μA  
10 μA  
Output voltage  
(50 mV/div)  
t (50 μs/div)  
Figure 19 Ringing Waveform due to Load Variation (VOUT Pin)  
t (500 ms/div)  
VRO pin  
VIN=6.0 V, CRO=22 μF, Ta=25°C  
30 mA  
30 mA  
Output current  
10 μA  
10 μA  
Output voltage  
(20 mV/div)  
t (20 ms/div)  
t (50 μs/div)  
Figure 20 Ringing Waveform due to Load Variation (VRO Pin)  
27  
BATTERY BACKUP SWITCHING IC  
S-8424A Series  
Rev.4.0_00  
IN  
OUT  
OUT  
Reference data: Dependency of input voltage (V ), load capacitance (C ), output variation width (ΔI ), and  
temperature (Ta)  
2.1 VIN Dependency  
(1) VOUT pin  
(2) VRO pin  
CRO = 22 μF, IRO = 30 mA and 10 μA, Ta = 25°C  
COUT = 22 μF, IOUT = 50 mA and 10 μA, Ta = 25°C  
0.12  
0.12  
0.10  
0.08  
0.10  
0.08  
0.06  
0.04  
0.06  
0.04  
0.02  
0.00  
0.02  
0.00  
4
5
6
7
8
9 10  
4
5
6
7
8
9 10  
VIN (V)  
VIN (V)  
2.2 COUT Dependency  
(1) VOUT pin  
(2) VRO pin  
VIN 6.0 V, I  
50 mA and 10 A, Ta 25 C  
VIN = 6.0 V, IRO = 30 mA and 10 μA, Ta = 25°C  
0.30  
=
=
μ
=
°
OUT  
0.60  
0.25  
0.20  
0.50  
0.40  
0.15  
0.10  
0.30  
0.20  
0.05  
0.00  
0.10  
0.00  
0
10  
20  
30  
40 50  
0
10  
20  
30 40 50  
COUT ( F)  
μ
CRO (μF)  
Overshoot  
Undershoot  
28  
BATTERY BACKUP SWITCHING IC  
S-8424A Series  
Rev.4.0_00  
2.3 ΔIOUT Dependency  
ΔIOUT and ΔIRO show the fluctuation between the low current stabilized at 10 μA and the high current. For  
example, ΔIOUT = 10 mA means a fluctuation between 10 μA and 10 mA.  
(1) VOUT pin  
(2) VRO pin  
CRO=22 μF, VIN=6.0 V, Ta=25°C  
0.12  
=
μ
= = °  
6 V, Ta 25 C  
OUT  
C
IN  
22 F, V  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
0
10 20 30 40 50 60  
ΔIRO (mA)  
0 10 20 30 40 50 60  
Δ
IOUT (mA)  
2.4 Temperature Dependency  
(1) VOUT pin  
(2) VRO pin  
VIN=6.0 V, IOUT=50 mA 10 μA, COUT=22 μF  
VIN=6.0 V, IRO=30 mA 10 μA, CRO=22 μF  
0.16  
0.08  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0.00  
0
50  
Ta (°C)  
100  
50  
0
50  
Ta (°C)  
100  
50  
Overshoot  
Undershoot  
29  
BATTERY BACKUP SWITCHING IC  
S-8424A Series  
Rev.4.0_00  
Standard Circuit  
VRO  
+
μ
F
10  
Ω
1 k  
VRO  
VBAT  
VIN  
VOUT  
VOUT  
+
+
μ
F
10  
μ
F
3 V  
0.1  
6 V  
10 μF  
S-8424A  
Series  
VOUT  
Ω
100 k  
VSS  
CS  
RESET  
PREEND  
VOUT  
VOUT  
Ω
100 k  
Ω
100 k  
Figure 21 Standard Circuit  
Caution 1. Be sure to add a 10 μF or more capacitor to the VOUT and VRO pins.  
2. The above connections and values will not guarantee correct operation. Before setting these  
values, perform sufficient evaluation on the application to be actually used.  
30  
BATTERY BACKUP SWITCHING IC  
S-8424A Series  
Rev.4.0_00  
Precautions  
In applications with small IRO or IOUT, the output voltages VRO and VOUT may rise, causing the load stability to  
exceed standard levels. Set IRO and IOUT to 10 μA or more.  
Attach the proper capacitor to the VOUT pin to prevent the RESET voltage detector (which monitors the VOUT  
pin) from coming active due to undershoot.  
Watch for overshoot and ensure it does not exceed the ratings of the IC chips and/or capacitors attached to the  
VRO and VOUT pins.  
Add a 10 μF or more capacitor to the VOUT and VRO pins.  
When VIN rises from the voltage more than VSW1, a low pulse of less than 4 ms flows through the  
pin  
PREEND  
even when VBAT is more than the  
release voltage. Thus when monitoring the  
PREEND  
pin, make  
PREEND  
sure to take the 4 ms interval or more after the rise of VIN.  
Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in  
electrostatic protection circuit.  
Application Circuits  
1. When Using Timer Micro controllers for Backup to display PREEND in the primary CPU  
+
10  
F
μ
Ω
100 k  
VOUT  
Ω
100 k  
VIN  
+
S-8424A  
Series  
VCC  
μ
F
10  
CS  
CS  
Timer  
Ω
1 k  
6 V  
VBAT  
PREEND  
microcontroller  
0.1  
F
μ
3 V  
RESET  
RESET  
VRO  
+
10  
F
μ
VSS  
Ω
100 k  
VCC  
RESET  
INT  
Main CPU  
Address data  
Figure 22 Application Circuit 1  
31  
BATTERY BACKUP SWITCHING IC  
S-8424A Series  
Rev.4.0_00  
2. When Using Secondary Battery as Backup Battery  
+
+
10  
F
10  
F
μ
μ
VRO  
VOUT  
VCC  
VIN  
Ω
100 k  
Ω
100 k  
S-8424A  
Microcontroller  
INT  
+
Series  
10  
F
μ
VBAT  
CS  
6 V  
0.1  
F
μ
RESET  
3 V  
RESET  
VSS  
Figure 23 Application Circuit 2  
Remark The backup battery can be floating-recharged by using voltage regulator 1.  
3. Memory Card  
Card unit  
VIN  
VIN  
VOUT  
μ
F
10  
+
+
S-8424A  
Series  
F
10  
μ
Ω
100 k  
SRAM  
CS  
Ω
Ω
100 k  
100 k  
BDT2  
BDT1  
PREEND  
RESET  
CS  
VBAT  
3 V  
VSS  
0.1 F  
μ
CS  
Figure 24 Application Circuit 3  
Caution The above connections and values will not guarantee correct operation. Before setting these  
values, perform sufficient evaluation on the application to be actually used.  
32  
BATTERY BACKUP SWITCHING IC  
S-8424A Series  
Rev.4.0_00  
Characteristics  
1. Voltage Regulator Unit (VRO = VOUT = 3.0 V)  
1.1 Input Voltage (VIN) vs. Output Voltage (VRO) Characteristics (REG1)  
(1) Ta = 85°C (2) Ta = 25°C  
IRO = 10 mA, 30 mA, 50 mA, 70 mA, 90 mA IRO = 10 mA, 30 mA, 50 mA, 70 mA, 90 mA  
3.2  
2.8  
2.4  
2.0  
3.2  
2.8  
2.4  
2.0  
IRO 10 mA  
=
IRO 10 mA  
=
IRO 90 mA  
=
IRO 90 mA  
=
2.0  
3.0  
4.0  
5.0  
2.0  
3.0  
4.0  
5.0  
VIN (V)  
VIN (V)  
(3) Ta = −40°C  
IRO = 10 mA, 30 mA, 50 mA, 70 mA, 90 mA  
3.2  
IRO 10 mA  
=
2.8  
2.4  
2.0  
IRO 90 mA  
=
2.0  
3.0  
4.0  
5.0  
VIN (V)  
1.2 Input Voltage (VIN) vs. Output Voltage (VOUT) Characteristics (REG2)  
(1) Ta = 85°C (2) Ta = 25°C  
IOUT = 10 mA, 30 mA, 50 mA, 70 mA, 90 mA  
IOUT = 10 mA, 30 mA, 50 mA, 70 mA, 90 mA  
3.2  
2.8  
3.2  
IOUT 10 mA  
=
IOUT  
mA  
= 10  
2.8  
2.4  
2.0  
IOUT  
mA  
= 90  
IOUT 90 mA  
=
2.4  
2.0  
2.0  
3.0  
4.0  
5.0  
2.0  
3.0  
4.0  
5.0  
VIN (V)  
VIN (V)  
(3) Ta = −40°C  
IOUT = 10 mA, 30 mA, 50 mA, 70 mA, 90 mA  
IOUT = 10 mA  
3.2  
2.8  
IOUT = 90 mA  
2.4  
2.0  
2.0  
3.0  
4.0  
5.0  
VIN (V)  
33  
BATTERY BACKUP SWITCHING IC  
S-8424A Series  
Rev.4.0_00  
1.3 Output Current (IRO) vs. Dropout Voltage (Vdrop1) Characteristics  
1.4 Output Current (IOUT) vs. Dropout Voltage (Vdrop2) Characteristics  
1.0  
1.0  
°
Ta 85 C  
=
25°C  
40 C  
0.8  
0.6  
0.4  
0.2  
0.0  
0.8  
°
°
Ta 85 C  
=
°C  
25  
0.6  
0.4  
0.2  
0.0  
°
40 C  
0
0.02  
0.04  
0.06  
0
0.02  
0.04  
0.06  
IRO  
(A)  
IOUT (A)  
1.5 Output Current (IRO) vs. Output Voltage (VRO) Characteristics  
1.6 Output Current (IOUT) vs. Output Voltage (VOUT) Characteristics  
3.25  
3.25  
°
Ta 40 C  
=
°
Ta  
40 C  
°
=
3.15  
3.15  
3.05  
2.95  
°
25 C  
25 C  
°
°
85 C  
85 C  
3.05  
2.95  
VIN 6 V  
VIN = 6 V  
=
2.85  
2.85  
μ
μ
100  
μ
μ
100  
10 m  
1
10 m  
1
1
1
IRO (A)  
IRO (A)  
1.7 Output voltage (VRO) Temperature Characteristics  
1.8 Output voltage (VOUT) Temperature Characteristics  
30  
30  
VIN 6 V, I  
50 mA  
=
=
OUT  
VIN =  
mA  
6 V, IRO = 30  
20  
10  
0
20  
10  
0
°
Based on VOUT voltage when Ta is 25 C  
°
Based on VRO voltage when Ta is 25 C  
10  
10  
20  
20  
30  
30  
40  
20  
0
20  
40  
60 80 100  
40 20  
0
20 40  
60 80 100  
°
°
Ta ( C)  
Ta ( C)  
1.9 Input Stability (VRO) Temperature Characteristics  
1.10 Input Stability (VOUT) Temperature Characteristics  
20  
20  
15  
10  
15  
10  
5
0
5
0
40  
20  
0
20  
40  
60  
80 100  
40  
20  
0
20  
40  
60  
80 100  
°
Ta ( C)  
Ta (°C)  
1.11 Load Stability (VRO) Temperature Characteristics  
1.12 Load Stability (VRO) Temperature Characteristics  
40  
40  
30  
20  
10  
0
30  
20  
10  
0
40  
20  
0
20  
40  
60  
80  
100  
40  
20  
0
20  
40  
60  
80 100  
°
Ta (°C)  
Ta ( C)  
34  
BATTERY BACKUP SWITCHING IC  
S-8424A Series  
Rev.4.0_00  
2. Voltage Detector  
2.1 CS Voltage Detector (VDET1 = 3.3 V)  
(1) Detection voltage (VDET1) temperature  
(2) Output current (ISINK) characteristics  
characteristics  
20  
30  
25  
°
C
Ta = 25  
Based on CS ( VDET1) voltage when Ta is 25°C  
10  
0
VIN  
= 3 V  
20  
15  
10  
10  
20  
VIN  
= 1.7 V  
5
0
40  
20  
0
20  
40  
60  
80 100  
0.0  
1.0  
2.0  
3.0  
4.0  
°
Ta ( C)  
VDS (V)  
(3) Output current (ISINK) temperature characteristics  
10  
8
6
4
VIN  
= VBAT = 2.0 V, VDS = 0.5 V  
2
0
40  
20  
0
20  
40  
60  
80 100  
°
Ta ( C)  
2.2 RESET Voltage Detector (VDET2 = 2.2 V)  
(1) Detection voltage (VDET2) temperature  
(2) Output current (ISINK) characteristics  
characteristics  
20  
30  
Based on RESET ( VDET2) voltage  
VIN 3 V  
25  
20  
15  
10  
5
=
°
Ta 25 C  
=
10  
0
°
when Ta is 25 C  
VIN 1.7 V  
=
10  
20  
0
40  
20  
0
20  
40  
60  
80 100  
0.0  
1.0  
2.0  
3.0  
4.0  
°
Ta ( C)  
VDS (V)  
(3) Output current (ISINK) temperature characteristics  
10  
VIN = VBAT = 2.0 V, VDS = 0.5 V  
8
6
4
2
0
0
20 40  
60  
80 100  
40 20  
Ta (°C)  
35  
BATTERY BACKUP SWITCHING IC  
S-8424A Series  
Rev.4.0_00  
2.3 PREEND Voltage Detector (VDET3 = 2.6 V)  
(1) Detection voltage (VDET3) temperature  
(2) Output current (ISINK) characteristics  
characteristics  
30  
20  
VIN  
= 3 V  
Based on PREEND ( VDET3) voltage  
°C  
Ta = 25  
25  
10  
0
°
when Ta is 25 C  
20  
15  
VIN  
= 1.7 V  
10  
5
10  
20  
0
0.0  
40  
20  
0
20  
40  
60  
80 100  
1.0  
2.0  
3.0  
4.0  
VDS (V)  
VDS (V)  
(3) Output current (ISINK) temperature characteristics  
10  
8
6
4
VIN  
V
2.0 V, V  
0.5 V  
=
=
=
BAT  
DS  
2
0
40  
20  
0
20  
40  
60  
80 100  
°
Ta ( C)  
36  
BATTERY BACKUP SWITCHING IC  
S-8424A Series  
Rev.4.0_00  
3. Switch Unit  
3.1 Switch Voltage (VSW1) Temperature  
3.2 CS Output Inhibit Voltage (VSW2) Temperature  
Characteristics  
Characteristics  
20  
20  
Based on VSW2 voltage when Ta is 25°C  
10  
10  
°
Based on VSW1 voltage when Ta is 25 C  
0
10  
20  
0
10  
20  
40 20  
0
20  
40  
60  
80 100  
40  
20  
0
20  
40  
60  
80 100  
°
Ta ( C)  
°
Ta ( C)  
3.3 Input Voltage (VBAT) vs. VBAT Switch  
3.4 VBAT Switch Resistance (RSW) Temperature  
Characteristics  
Resistance(RSW) Characteristics  
60  
60  
50  
40  
50  
μ
A
VBAT 3 V, I  
500  
=
=
OUT  
μ
IOUT  
A
= 500  
40  
30  
20  
10  
0
30  
20  
10  
0
40  
20  
0
20  
40  
60  
80 100  
1
2
3
4
5
°
Ta ( C)  
V
BAT (V)  
3.5 VBAT Switch Leakage Current (ILEAK) Temperature  
Characteristics  
30  
25  
VIN 6.0 V, V  
0 V  
=
=
BAT  
20  
15  
10  
5
0
40  
20  
0
20  
40  
60  
80 100  
°
Ta ( C)  
37  
BATTERY BACKUP SWITCHING IC  
S-8424A Series  
Rev.4.0_00  
4. Consumption Current  
4.1 VIN vs. VIN Consumption Current (ISS1  
)
4.2 VBAT vs. VBAT2 Consumption Current (IBAT2)  
Characteristics  
Characteristics  
16  
2.0  
°
Ta 85 C  
=
°
Ta 85 C  
=
°
25 C  
12  
8
°
25 C  
1.5  
1.0  
0.5  
0.0  
°
40 C  
°
40 C  
4
0
0
2
4
6
8
10 12 14 16 18  
2.0  
2.4  
2.8  
3.2  
3.6  
4.0  
VIN (V)  
VBAT (V)  
4.3 Consumption Current Temperature  
Characteristics  
(1) ISS1  
(2) IBAT2  
16  
2.0  
12  
VIN  
3.0 V  
=
= 6.0 V, VBAT  
1.5  
1.0  
VIN open, V  
= BAT = 3.0 V  
8
4
0
0.5  
0.0  
40  
20  
0
20  
40  
60  
80 100  
40 20  
0
20  
40  
60  
80 100  
°
Ta ( C)  
°
Ta ( C)  
38  
+0.3  
-0.2  
3.00  
5
8
1
4
0.17±0.05  
0.2±0.1  
0.65  
No. FT008-A-P-SD-1.2  
TSSOP8-E-PKG Dimensions  
FT008-A-P-SD-1.2  
TITLE  
No.  
ANGLE  
UNIT  
mm  
ABLIC Inc.  
4.0±0.1  
2.0±0.05  
ø1.55±0.05  
0.3±0.05  
+0.1  
-0.05  
8.0±0.1  
ø1.55  
(4.4)  
+0.4  
-0.2  
6.6  
8
1
4
5
Feed direction  
No. FT008-E-C-SD-1.0  
TITLE  
TSSOP8-E-Carrier Tape  
FT008-E-C-SD-1.0  
No.  
ANGLE  
UNIT  
mm  
ABLIC Inc.  
13.4±1.0  
17.5±1.0  
Enlarged drawing in the central part  
ø21±0.8  
2±0.5  
ø13±0.5  
No. FT008-E-R-SD-1.0  
TSSOP8-E-Reel  
FT008-E-R-SD-1.0  
TITLE  
No.  
3,000  
QTY.  
ANGLE  
UNIT  
mm  
ABLIC Inc.  
13.4±1.0  
17.5±1.0  
Enlarged drawing in the central part  
ø21±0.8  
2±0.5  
ø13±0.5  
No. FT008-E-R-S1-1.0  
TITLE  
TSSOP8-E-Reel  
FT008-E-R-S1-1.0  
No.  
QTY.  
ANGLE  
UNIT  
4,000  
mm  
ABLIC Inc.  
Disclaimers (Handling Precautions)  
1. All the information described herein (product data, specifications, figures, tables, programs, algorithms and  
application circuit examples, etc.) is current as of publishing date of this document and is subject to change without  
notice.  
2. The circuit examples and the usages described herein are for reference only, and do not guarantee the success of  
any specific mass-production design.  
ABLIC Inc. is not liable for any losses, damages, claims or demands caused by the reasons other than the products  
described herein (hereinafter "the products") or infringement of third-party intellectual property right and any other  
right due to the use of the information described herein.  
3. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by the incorrect information described  
herein.  
4. Be careful to use the products within their ranges described herein. Pay special attention for use to the absolute  
maximum ratings, operation voltage range and electrical characteristics, etc.  
ABLIC Inc. is not liable for any losses, damages, claims or demands caused by failures and / or accidents, etc. due to  
the use of the products outside their specified ranges.  
5. Before using the products, confirm their applications, and the laws and regulations of the region or country where they  
are used and verify suitability, safety and other factors for the intended use.  
6. When exporting the products, comply with the Foreign Exchange and Foreign Trade Act and all other export-related  
laws, and follow the required procedures.  
7. The products are strictly prohibited from using, providing or exporting for the purposes of the development of  
weapons of mass destruction or military use. ABLIC Inc. is not liable for any losses, damages, claims or demands  
caused by any provision or export to the person or entity who intends to develop, manufacture, use or store nuclear,  
biological or chemical weapons or missiles, or use any other military purposes.  
8. The products are not designed to be used as part of any device or equipment that may affect the human body, human  
life, or assets (such as medical equipment, disaster prevention systems, security systems, combustion control  
systems, infrastructure control systems, vehicle equipment, traffic systems, in-vehicle equipment, aviation equipment,  
aerospace equipment, and nuclear-related equipment), excluding when specified for in-vehicle use or other uses by  
ABLIC, Inc. Do not apply the products to the above listed devices and equipments.  
ABLIC Inc. is not liable for any losses, damages, claims or demands caused by unauthorized or unspecified use of  
the products.  
9. In general, semiconductor products may fail or malfunction with some probability. The user of the products should  
therefore take responsibility to give thorough consideration to safety design including redundancy, fire spread  
prevention measures, and malfunction prevention to prevent accidents causing injury or death, fires and social  
damage, etc. that may ensue from the products' failure or malfunction.  
The entire system in which the products are used must be sufficiently evaluated and judged whether the products are  
allowed to apply for the system on customer's own responsibility.  
10. The products are not designed to be radiation-proof. The necessary radiation measures should be taken in the  
product design by the customer depending on the intended use.  
11. The products do not affect human health under normal use. However, they contain chemical substances and heavy  
metals and should therefore not be put in the mouth. The fracture surfaces of wafers and chips may be sharp. Be  
careful when handling these with the bare hands to prevent injuries, etc.  
12. When disposing of the products, comply with the laws and ordinances of the country or region where they are used.  
13. The information described herein contains copyright information and know-how of ABLIC Inc. The information  
described herein does not convey any license under any intellectual property rights or any other rights belonging to  
ABLIC Inc. or a third party. Reproduction or copying of the information from this document or any part of this  
document described herein for the purpose of disclosing it to a third-party is strictly prohibited without the express  
permission of ABLIC Inc.  
14. For more details on the information described herein or any other questions, please contact ABLIC Inc.'s sales  
representative.  
15. This Disclaimers have been delivered in a text using the Japanese language, which text, despite any translations into  
the English language and the Chinese language, shall be controlling.  
2.4-2019.07  
www.ablic.com  

相关型号:

S-8424AAFPA-TF-G

BATTERY BACKUP SWITCHING IC
SII

S-8424AAFPA-TF-U

BATTERY BACKUP SWITCHING IC
SII

S-8424AAGFT-TB-G

BATTERY BACKUP SWITCHING IC
SII

S-8424AAGFT-TB-U

BATTERY BACKUP SWITCHING IC
SII

S-8424AAGFT-TB-x

BATTERY BACKUP SWITCHING IC
SII

S-8424AAGFT-TB-X

BATTERY BACKUP SWITCHING IC
ABLIC

S-8424AAGPA-TF-G

BATTERY BACKUP SWITCHING IC
SII

S-8424AAGPA-TF-U

BATTERY BACKUP SWITCHING IC
SII

S-8424AAHFT-TB-G

BATTERY BACKUP SWITCHING IC
SII

S-8424AAHFT-TB-U

BATTERY BACKUP SWITCHING IC
SII

S-8424AAHFT-TB-x

BATTERY BACKUP SWITCHING IC
SII

S-8424AAHFT-TB-X

BATTERY BACKUP SWITCHING IC
ABLIC