APA150-PQG208A [ACTEL]

Field Programmable Gate Array, 6144-Cell, CMOS, PQFP208,;
APA150-PQG208A
型号: APA150-PQG208A
厂家: Actel Corporation    Actel Corporation
描述:

Field Programmable Gate Array, 6144-Cell, CMOS, PQFP208,

文件: 总10页 (文件大小:84K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Au t o m o t ive Su p p le m e n t  
TM  
Automotive-Grade ProASICPLUS Flash Family FPGAs  
High-Speed, Very Long-Line Network  
High Performance, Low-Skew, Splittable Global Network  
100% Utilization and >95% Routability  
Features and Benefits  
High Capacity  
75,000 to 1 Million System Gates  
27k to 198kbits of Two-Port SRAM  
66 to 642 User I/Os  
I/O  
Schmitt-Trigger Option on Every Input  
2.5V/3.3V Support with Individually-Selectable Voltage and  
Slew Rate  
Reprogrammable Flash Technology  
Bidirectional Global I/Os  
0.22µ 4LM Flash-based CMOS Process  
Live at Power-Up, Single-Chip Solution  
No Configuration Device Required  
Retains Programmed Design during  
Power-Down/Power-Up Cycles  
Compliance with PCI Specification Revision 2.2  
Boundary-Scan Test IEEE Std. 1149.1 (JTAG) Compliant  
Pin Compatible Packages across ProASICPLUS Family  
Unique Clock Conditioning Circuitry  
PLLs with Flexible Phase, Multiply/Divide and Delay  
Capabilities  
Internal and/or External Dynamic PLL Configuration  
Two LVPECL Differential Pairs for Clock or Data Inputs  
Extended Temperature Range  
Supports Automotive Temperature Range -40 to 125°C (Junction)  
Performance  
3.3V, 32-Bit PCI (up to 50 MHz)  
Two Integrated PLLs  
External System Performance up to 150 MHz  
Standard FPGA and ASIC Design Flow  
Flexibility with Choice of Industry-Standard Frontend Tools  
Efficient Design through Front-End Timing and Gate  
Optimization  
Secure Programming  
Industrys Most Effective Security Key (FlashLock™)  
Prevents Read Back of Programming Bitstream  
ISP Support  
In-System Programming (ISP) via JTAG Port  
Low Pow er  
SRAMs and FIFOs  
Low Impedance Flash Switches  
ACTgen Netlist Generation Ensures Optimal Usage of  
Embedded Memory Blocks  
Segmented Hierarchical Routing Structure  
Small, Efficient, Configurable (Combinatorial or Sequential)  
Logic Cells  
24 SRAM and FIFO Configurations with Synchronous and  
Asynchronous Operation up to 150 MHz (typical)  
High Performance Routing Hierarchy  
Ultra-Fast Local and Long-Line Network  
Table 1 Automotive-Grade ProASICPLUS Product Profile  
De vice  
APA075  
75,000  
3,072  
APA150  
150,000  
6,144  
APA300  
300,000  
8,192  
APA450  
450,000  
12,288  
108k  
APA600  
600,000  
21,504  
126k  
APA750 APA1000  
Maximum System Gates  
Maximum Tiles (Registers)  
750,000  
32,768  
144k  
1,000,000  
56,320  
198k  
Embedded RAM Bits (k=1,024  
bits)  
27k  
36k  
72k  
Embedded RAM Blocks (256x9)  
12  
2
16  
2
32  
2
48  
2
56  
2
64  
2
88  
2
LVPECL  
PLL  
2
2
2
2
2
2
2
Global Netw orks  
Maximum Clocks  
Maximum User I/Os  
JTAG ISP  
4
4
4
4
4
4
4
24  
158  
Yes  
Yes  
32  
186  
Yes  
Yes  
32  
186  
Yes  
Yes  
48  
344  
Yes  
Yes  
56  
370  
Yes  
Yes  
64  
562  
Yes  
Yes  
88  
642  
Yes  
Yes  
PCI  
Package (by pin count)  
TQFP  
100  
208  
144  
100  
208  
PQFP  
208  
208  
208  
208  
896  
208  
896  
FBGA  
144, 256  
144, 256 144, 256, 484  
256, 484  
Fe b ru a ry 2004  
1
© 2004 Actel Corporation  
Au t o m o t ive -Gra d e Pro ASICPLUS Fla sh Fa m ily FPGAs  
Ordering Information  
APA1000  
FG  
896  
A
Application  
A = Automotive (-40 to 125˚C)  
Package Lead Count  
Package Type  
=
=
=
TQ  
PQ  
FG  
Thin Quad Flat Pack (1.4mm pitch)  
Plastic Quad Flat Pack (0.5mm pitch)  
Fine Pitch Ball Grid Array (1.0mm pitch)  
Part Number  
APA075 = 75,000 Equivalent System Gates  
APA150 = 150,000 Equivalent System Gates  
APA300 = 300,000 Equivalent System Gates  
APA450 = 450,000 Equivalent System Gates  
APA600 = 600,000 Equivalent System Gates  
APA750 = 750,000 Equivalent System Gates  
APA1000 = 1,000,000 Equivalent System Gates  
Plastic Device Resources  
Use r I/Os*  
TQFP  
PQFP  
FBGA  
FBGA  
FBGA  
FBGA  
De vice  
APA075  
APA150  
APA300  
APA450  
APA600  
APA750  
100-Pin  
208-Pin  
144-Pin  
256-Pin  
484-Pin  
896-Pin  
66  
158  
158  
158  
158  
158  
158  
158  
100  
100  
100  
100  
66  
186  
186  
186  
186  
344  
370  
562  
642  
APA1000  
Package Definitions  
TQFP = Thin Quad Flat Pack, PQFP = Plastic Quad Flat Pack, FBGA = Fine Pitch Ball Grid Array  
*Each pair of PECL I/Os were counted as one user I/O.  
Speed Grade Matrix  
St d  
Automotive-Grade  
Contact your local Actel sales representative for device availability.  
2
A u t o m o t i v e S u p p l e m e n t  
Au t o m o t ive -Gra d e Pro ASICPLUS Fla sh Fa m ily FPGAs  
General Description  
PLUS  
ProASIC  
devices offer a reprogrammable design  
resources, and abundant Flash switches allows 100%  
utilization and over 95% routability for highly congested  
designs. Tiles and larger functions are interconnected  
through a four-level routing hierarchy.  
integration solution at the automotive temperature  
range (-40°C to +125°C) through the use of nonvolatile  
Flash technology. ProASIC  
PLUS  
devices have a fine-grain  
PLUS  
architecture, similar to ASICs, and enable engineers to  
design high-density systems using existing ASIC or FPGA  
design flows and tools. Automotive-grade ProASIC  
devices offer up to 1 million system gates, support up to  
198kbits of two-port SRAM and 642 user I/Os and provide  
50 MHz PCI performance.  
Automotive-grade  
ProASIC  
devices  
feature  
embedded two-port SRAM blocks with built-in FIFO/RAM  
control logic and user-defined depth and width. Users  
PLUS  
can  
select  
programming  
for  
synchronous  
or  
asynchronous operation, as well as parity generation or  
checking.  
PLUS  
The nonvolatile and reprogrammable Flash technology  
The automotive-grade ProASIC  
devices offer  
a
PLUS  
enables ProASIC  
devices to be live at power-up, and  
unique clock conditioning circuit (CCC), with two clock  
conditioning blocks in each device. Each block provides a  
phase-locked loop (PLL) core, delay lines, phase shifts (0°,  
90°, 180°, 270°), and clock multipliers/dividers, as well as  
the circuitry required to provide bidirectional access to  
the PLL. The PLL block contains four programmable  
frequency dividers, which allow the incoming clock  
signal to be divided by a wide range of factors from 1 to  
64. The clock conditioning circuit can perform a positive/  
negative clock delay operation in increments of 0.25 ns  
by up to 8 ns. The PLL can be configured internally or  
externally during operation without redesigning or  
reprogramming the part. In addition to the PLL, there  
are two LVPECL differential input pairs to accommodate  
high speed clock and data inputs.  
no external boot PROM is required to support device  
programming. While on-board security mechanisms  
prevent any access to the programmed information,  
reprogramming can be performed in-system to support  
future design iterations and field upgrades. The  
PLUS  
ProASIC  
device architecture mitigates the complexity  
of ASIC migration at higher user volume, making the  
PLUS  
automotive-grade ProASIC  
a cost-effective solution  
for in-cabin telematics and automobile interconnect  
applications.  
PLUS  
The ProASIC  
family is built on an advanced Flash-  
based 0.22µm LVCMOS process with four layers of metal.  
Standard CMOS design techniques are used to  
implement logic and control functions, including the  
PLLs and LVPECL inputs, resulting in predictable  
performance fully compatible with gate arrays.  
PLUS  
PLUS  
The automotive-grade ProASIC  
devices are available  
in a variety of high-performance plastic packages to  
simplify the system board design.  
The ProASIC  
architecture provides granularity  
comparable to gate arrays. The device core consists of a  
Sea-of-Tiles . Each tile can be configured as a flip-flop,  
latch, or three-input/one-output logic function by  
programming the appropriate Flash switches. The  
combination of fine granularity, flexible routing  
To support for comprehensive, lower cost board-level  
PLUS  
testing, Actels ProASIC  
devices are fully compatible  
with IEEE Standard 1149.1 for test access port and  
boundary-scan test architecture.  
Au t o m o t iv e Su p p le m e n t  
3
Au t o m o t ive -Gra d e Pro ASICPLUS Fla sh Fa m ily FPGAs  
Operating Conditions  
Table 1 Absolute Maximum Ratings*  
Pa ra m e t e r  
Supply Voltage Core (VDD  
Co n d it io n  
Min im u m  
–0.3  
–0.3  
–0.3  
–1.0  
10  
Ma xim u m  
3.0  
Un it s  
V
)
Supply Voltage I/O Ring (VDDP  
)
4.0  
V
DC Input Voltage  
VDDP + 0.3  
VDDP + 1.0  
V
PCI DC Input Voltage  
PCI DC Input Clamp Current (absolute)  
LVPECL Input Voltage  
GND  
V
V
IN < –1V or VIN = VDDP + 1V  
mA  
V
–0.3  
0
VDDP + 0.5  
0
V
Note: *Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. Exposure to  
absolute maximum rated conditions for extended periods may affect device reliability.  
Performance Retention  
Actel guarantees the performance numbers presented in the Actel Designer timing analysis software and in this  
datasheet, as long as the specified device performance retention period is not exceeded. For devices operated and  
stored at 110°C or less, the performance retention period is 20 years after programming. For devices operated and  
stored at temperatures greater than 110°C, refer to Table 2 on page 5 to determine the performance retention period.  
Actel does not guarantee performance if the performance retention period is exceeded. Evaluate the percentage of  
time spent at the highest temperature, then determine the next highest temperature to which the device will be  
exposed. In Table 2 on page 5, find the temperature profile that most closely matches the application.  
For example, the ambient temperature of a system cycles between 100°C (25% of the time) and 50°C (75% of the  
time). No forced ventilation cooling system is in use. An APA600-PQ208A FPGA operates in the system, dissipating 1W.  
The package thermal resistance (junction-to-ambient) in still air is 20°C/W, indicating that the junction temperature of  
the FPGA will be 120°C (25% of the time) and 70°C (75% of the time). The entry in Table 2 on page 5, which most  
closely matches the application, is 25% at 125°C with 75% at 110°C. Performance retention in this example is at least  
16.0 years.  
Note that exceeding the stated retention period may result in a performance degradation in the FPGA below the  
worst-case performance indicated in the Actel Timer. To ensure that performance does not degrade below the worst-  
case values in the Actel Timer, the FPGA must be reprogrammed within the performance retention period. In addition,  
note that performance retention is independent of whether or not the FPGA is operating. The retention period of a  
device in storage at a given temperature will be the same as the retention period of a device operating at that  
junction temperature.  
4
A u t o m o t i v e S u p p l e m e n t  
Au t o m o t ive -Gra d e Pro ASICPLUS Fla sh Fa m ily FPGAs  
Table 2 Performance Retention  
Tim e a t TJ 110°C o r b e lo w  
Tim e a t TJ 125°C o r b e lo w  
Min im u m Pro g ra m Re t e n t io n (Ye a rs)  
100%  
99%  
98%  
95%  
90%  
85%  
80%  
75%  
70%  
60%  
50%  
25%  
0%  
0%  
1%  
20.0  
19.8  
19.6  
19.0  
18.2  
17.4  
16.7  
16.0  
15.4  
14.3  
13.3  
11.4  
10.0  
2%  
5%  
10%  
15%  
20%  
25%  
30%  
40%  
50%  
75%  
100%  
Table 3 Nominal Supply Voltages  
Mo d e  
VDD  
2.5V  
2.5V  
VDDP  
2.5V  
3.3V  
2.5V Output  
3.3V Output*  
PLUS  
Note: *Automotive-grade ProASIC  
devices do not support mixed-mode I/Os.  
Table 4 Recommended Maximum Operating Conditions for Programming and PLL Supplies*  
Au t o m o t ive  
Pa ra m e t e r  
Co n d it io n  
During Programming  
Min im u m  
15.8  
Ma xim u m  
Un it s  
V
V
16.5  
16.5  
–13.2  
0
PP  
Normal Operation  
0
V
V
During Programming  
Normal Operation  
–13.8  
–13.8  
V
PN  
V
I
During Programming  
During Programming  
25  
mA  
mA  
V
PP  
I
10  
PN  
AVDD  
AGND  
V
V
DD  
DD  
GND  
GND  
V
Note: *Devices should not be operated outside the Recommended Operating Conditions.  
Au t o m o t iv e Su p p le m e n t  
5
Au t o m o t ive -Gra d e Pro ASICPLUS Fla sh Fa m ily FPGAs  
Table 5 Recommended Operating Conditions*  
Lim it s  
Pa ra m e t e r  
Sym b o l  
Au t o m o t ive  
2.5V ± 5%  
DC Supply Voltage (2.5V I/Os)  
DC Supply Voltage (3.3V I/Os)  
VDD & VDDP  
VDDP  
VDD  
3.3V ± 5%  
2.5V ± 5%  
Operating Junction Temperature Range  
T
-40°C to125°C  
J
Note: *Devices should not be operated outside the Recommended Operating Conditions.  
Table 6 DC Electrical Specifications (VDD and VDDP = 2.5V ±5%)  
Au t o m o t ive 1  
Sym b o l  
Pa ra m e t e r  
Co n d it io n s  
Min .  
Typ .  
Ma x.  
Un it s  
VOH  
Output High Voltage  
High Drive (OB25LPH)  
IOH = –6 mA  
IOH = –12 mA  
2.1  
2.0  
1.7  
IOH = –24 mA  
V
IOH = –3 mA  
IOH = –6 mA  
2.1  
1.9  
1.7  
Low Drive (OB25LPL)  
IOH = –8 mA  
VOL  
Output Low Voltage  
High Drive (OB25LPH)  
IOL = 8 mA  
IOL = 15 mA  
IOL = 24 mA  
0.2  
0.4  
0.7  
V
IOL = 4 mA  
IOL = 8 mA  
0.2  
0.4  
0.7  
Low Drive (OB25LPL)  
IOL = 15 mA  
V
Input High Voltage  
Input Low Voltage  
1.7  
VDDP  
0.3  
+
V
IH  
V
–0.3  
6
0.7  
56  
V
IL  
RWEAKPULLUP Weak Pull-up Resistance  
(OTB25LPU)  
V 1.25V  
kΩ  
IN  
HYST  
Input Hysteresis Schmitt  
Input Current  
0.3  
–240  
–50  
0.35  
5.0  
0.45  
– 20  
50  
V
I
with pull up (VIN = GND)  
µA  
µA  
mA  
IN  
without pull up (VIN = GND or VDD  
)
IDDQ  
Quiescent Supply Current  
(standby)  
V
IN = GND2 or VDD  
20  
IOZ  
Tristate Output Leakage Current VOH = GND or VDD  
Output Short Circuit Current High  
–50  
50  
µA  
IOSH  
High Drive (OB25LPH)  
Low Drive (OB25LPL)  
V
IN = VSS  
–120  
–100  
mA  
VIN = VSS  
IOSL  
Output Short Circuit Current Low  
High Drive (OB25LPH)  
V
IN = VDDP  
100  
30  
mA  
Low Drive (OB25LPL)  
VIN = VDDP  
CI/O  
I/O Pad Capacitance  
10  
10  
pF  
pF  
CCLK  
Clock Input Pad Capacitance  
No t e s:  
1. All process conditions. Junction Temperature: –40 to +125°C.  
2. No pull-up resistor.  
6
A u t o m o t i v e S u p p l e m e n t  
Au t o m o t ive -Gra d e Pro ASICPLUS Fla sh Fa m ily FPGAs  
Table 7 DC Electrical Specifications (VDDP = 3.3V ±5% and VDD 2.5V ±5% )  
Au t o m o t ive 1  
Typ .  
Sym b o l  
Pa ra m e t e r  
Co n d it io n s  
Min .  
Ma x.  
Un it s  
VOH  
Output High Voltage  
3.3V I/O, High Drive (OB33P) IOH = –24 mA  
IOH = –14 mA  
0.9 VDDP  
2.4  
V
IOH = –6 mA  
0.9 VDDP  
2.4  
3.3V I/O, Low Drive (OB33L)  
Output Low Voltage  
3.3V I/O, High Drive (OB33P) IOL = 20 mA  
OL = 28 mA  
IOH = –12 mA  
VOL  
IOL = 15 mA  
0.1VDDP  
0.4  
0.7  
I
V
V
3.3V I/O, Low Drive (OB33L) IOL = 7 mA  
OL = 10 mA  
OL = 15 mA  
0.1VDDP  
0.4  
0.7  
I
I
V
Input High Voltage  
3.3V LVTTL/LVCMOS  
IH  
2
VDDP + 0.3  
V
Input Low Voltage  
IL  
3.3V LVTTL/LVCMOS  
–0.3  
7
0.8  
43  
V
RWEAKPULLUP Weak  
(IOB33U)  
Pull-up  
Resistance V 1.5V  
kΩ  
IN  
RWEAKPULLUP Weak  
(IOB25U)  
Pull-up  
Resistance V 1.5V  
7
43  
kΩ  
IN  
I
Input Current  
with pull up (VIN = GND)  
without pull up (VIN = GND or VDD  
IN = GND2 or VDD  
–300  
–50  
–40  
50  
µA  
µA  
IN  
)
IDDQ  
IOZ  
Quiescent Supply Current  
(standby)  
V
5.0  
20  
mA  
Tristate  
Current  
Output  
Leakage VOH = GND or VDD  
–10  
10  
µA  
mA  
mA  
IOSH  
Output Short Circuit Current  
High  
3.3V High Drive (OB33P)  
3.3V Low Drive (OB33L)  
VIN = GND  
–200  
–100  
VIN = GND  
IOSL  
Output Short Circuit Current  
Low  
3.3V High Drive  
3.3V Low Drive  
VIN = VDD  
200  
100  
VIN = VDD  
CI/O  
I/O Pad Capacitance  
10  
10  
pF  
pF  
CCLK  
Clock Input Pad Capacitance  
No t e s:  
1. All process conditions. Junction Temperature: –40 to +125°C.  
2. No pull-up resistor.  
Au t o m o t iv e Su p p le m e n t  
7
Au t o m o t ive -Gra d e Pro ASICPLUS Fla sh Fa m ily FPGAs  
Table 8 DC Specifications (3.3V PCI Revision 2.2 Operation)1  
Au t o m o t ive 2  
Ma x.  
Sym b o l  
VDD  
Pa ra m e t e r  
Co n d it io n  
Min .  
2.375  
Un it s  
V
Supply Voltage for Core  
Supply Voltage for I/O Ring  
Input High Voltage  
2.625  
3.465  
VDDP  
3.135  
V
V
0.5VDDP  
–0.5  
VDDP + 0.5  
0.3VDDP  
V
IH  
V
Input Low Voltage  
V
IL  
I
Input Pull-up Voltage3  
Input Leakage Current4  
Output High Voltage  
Output Low Voltage  
Input Pin Capacitance (except CLK)  
CLK Pin Capacitance  
0.7VDDP  
–50  
V
IPU  
I
0 < VIN < VCCI  
IOUT = –500 µA  
IOUT = 1500 µA  
50  
µA  
V
IL  
VOH  
0.9VDDP  
VOL  
0.1VDDP  
10  
V
CIN  
pF  
pF  
CCLK  
No t e s:  
5
12  
1. For PCI operation, use OTB33PH, OB33PH, IOB33PH, IB33, or IB33S macro library cells only.  
2. All process conditions. Junction Temperature: –40 to +125°C.  
3. This specification is guaranteed by design. It is the minimum voltage to which pull-up resistors are calculated to pull a  
floated network. Designers with applications sensitive to static power utilization should ensure that the input buffer is  
conducting minimum current at this input voltage.  
4. Input leakage currents include hi-Z output leakage for all bidirectional buffers with tristate outputs.  
8
A u t o m o t i v e S u p p l e m e n t  
Au t o m o t ive -Gra d e Pro ASICPLUS Fla sh Fa m ily FPGAs  
Table 9 AC Specifications (3.3V PCI Revision 2.2 Operation)  
Au t o m o t ive  
Sym b o l Pa ra m e t e r  
Co n d it io n  
Min .  
–12VCCI  
Ma x.  
Un it s  
mA  
*
IOH(AC) Switching Current High 0 < VOUT 0.3VCCI  
*
0.3VCCI VOUT < 0.9VCCI  
(–17.1 + (VDDP VOUT))  
mA  
*
0.7VCCI < VOUT < VCCI  
See equation C – page 124 of  
the PCI Specification  
document rev. 2.2  
*
(Test Point)  
V
OUT = 0.7VCC  
–32VCCI  
mA  
mA  
mA  
*
IOL(AC)  
Switching Current Low VCCI > VOUT 0.6VCCI  
16VDDP  
1
0.6VCCI > VOUT > 0.1VCCI  
(26.7VOUT  
)
0.18VCCI > VOUT > 0*  
See equation D – page 124 of  
the PCI Specification  
document rev. 2.2  
(Test Point)  
VOUT = 0.18VCC  
38VCCI  
mA  
mA  
mA  
V/ns  
V/ns  
ICL  
Low Clamp Current  
High Clamp Current  
Output Rise Slew Rate  
Output Fall Slew Rate  
–3 < VIN –1  
–25 + (VIN + 1)/0.015  
ICH  
VCCI + 4 > VIN VCCI + 1  
0.2VCCI to 0.6VCCI load*  
0.6VCCI to 0.2VCCI load*  
25 + (VIN VDDP – 1)/0.015  
slewR  
slewF  
1
1
4
4
Note: * Refer to the PCI Specification document rev. 2.2.  
Pad Loading Applicable to the Rising Edge PCI  
pin  
1/2 in. max  
output  
buffer  
10 pF  
1kΩ  
Pad Loading Applicable to the Falling Edge PCI  
pin  
1kΩ  
output  
buffer  
10 pF  
Au t o m o t iv e Su p p le m e n t  
9
Actel and the Actel logo are registered trademarks of Actel Corporation.  
All other trademarks are the property of their owners.  
http://www.actel.com  
Actel Corporation  
Actel Europe Ltd.  
Actel Japan  
Actel Hong Kong  
2061 Stierlin Court  
Mountain View, CA  
94043-4655 USA  
Dunlop House, Riverside Way  
Camberley, Surrey GU15 3YL  
United Kingdom  
EXOS Ebisu Bldg. 4F  
1-24-14 Ebisu Shibuya-ku  
Tokyo 150 Japan  
39th Floor, One Pacific Place  
88 Queensway, Admiralty  
Hong Kong  
Phone 650.318.4200  
Fax 650.318.4600  
Phone +44 (0)1276.401450  
Fax +44 (0)1276.401490  
Phone +81.03.3445.7671  
Fax +81.03.3445.7668  
Phone 852.227.35712  
Fax 852.227.35999  
51700051-0/2.04  

相关型号:

APA150-PQG208IX95

Field Programmable Gate Array, CMOS, PQFP208, 0.50 MM PITCH, ROHS COMPLIANT, PLASTIC, QFP-208
ACTEL

APA150-PQGB

ProASIC Flash Family FPGAs
ACTEL

APA150-PQGES

ProASIC Flash Family FPGAs
ACTEL

APA150-PQGI

ProASIC Flash Family FPGAs
ACTEL

APA150-PQGM

ProASIC Flash Family FPGAs
ACTEL

APA150-PQGPP

ProASIC Flash Family FPGAs
ACTEL

APA150-PQI

ProASIC Flash Family FPGAs
ACTEL

APA150-PQM

ProASIC Flash Family FPGAs
ACTEL

APA150-PQPP

ProASIC Flash Family FPGAs
ACTEL

APA150-TQ100A

Field Programmable Gate Array, 6144-Cell, CMOS, PQFP100,
ACTEL

APA150-TQ100X79

Field Programmable Gate Array, 150000 Gates, 180MHz, 6144-Cell, CMOS, PQFP100, 0.50 MM PITCH, TQFP-100
ACTEL

APA150-TQ1152ES

ProASIC Flash Family FPGAs
ACTEL