M1425-VQG100C [ACTEL]

Field Programmable Gate Array, 2500 Gates, 125MHz, CMOS, PQFP100, 1 MM HEIGHT, PLASTIC, VQFP-100;
M1425-VQG100C
型号: M1425-VQG100C
厂家: Actel Corporation    Actel Corporation
描述:

Field Programmable Gate Array, 2500 Gates, 125MHz, CMOS, PQFP100, 1 MM HEIGHT, PLASTIC, VQFP-100

文件: 总20页 (文件大小:105K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Actel  
Mask Programmed Gate Arrays  
F e a t u r e s  
Available in commercial or industrial temperature ranges  
• PLCC, PQFP, VQFP, and TQFP packages available  
Mask Programmed versions of Actel Field Programmable  
Gate Arrays (FPGAs)  
Meets all internal worst-case FPGA performance  
specifications  
• Significant cost reduction for medium- to high-volume  
applications  
Lower I/O capacitance than FPGA  
Lower power dissipation than FPGA  
• Pin-for-pin compatible with Actel FPGAs  
• PCI Local Bus Revision 2 Compliant  
D e s c r i p t i o n  
Automatic translation from Actel FPGA netlist to MPGA  
Test vectors generated from customer simulation vectors  
• Short lead times for prototype and production devices  
The Actel Mask Programmed Gate Array (MPGA) products  
are masked versions of the popular Actel FPGA families.  
These semi-custom devices offer the customer a design path  
that provides significant cost reduction without significant  
risk or engineering effort. For medium- to high-volume  
applications in which the design is fixed, the Actel FPGA used  
for prototyping and initial production can be replaced by the  
corresponding MPGA device.  
MPGA available for all ACT 1, ACT 2, 1200XL, ACT 3, and  
3200DX devices  
Device sizes from 1,200 to 10,000 gates  
Up to 175 user I/Os  
P r o d u c t F a m i l y P r o f i l e  
Capacity  
Available Packages  
MPGA  
Device  
Type  
Gate Array  
Equivalent  
Gates  
PLD  
Equivalent  
Gates  
Flip-Flops  
User I/Os  
(Maximum) (Maximum)  
PLCC  
PQFP  
VQFP  
TQFP  
M1010  
M1020  
1,200  
2,000  
3,000  
6,000  
147  
273  
57  
69  
44, 68-pin  
100-pin  
100-pin  
80-pin  
80-pin  
44, 68,  
84-pin  
M1225  
M1240  
M1280  
2,500  
4,000  
8,000  
6,250  
10,000  
20,000  
382  
568  
998  
83  
104  
140  
84-pin  
84-pin  
84-pin  
100-pin  
100-pin  
100, 144-pin  
176-pin  
176-pin  
100, 160,  
208-pin  
M1415  
M1425  
1,500  
2,500  
3,750  
6,250  
312  
435  
80  
100  
140  
167  
175  
126  
152  
176  
202  
250  
288  
84-pin  
84-pin  
84-pin  
100-pin  
100, 160-pin  
160-pin  
100-pin  
100-pin  
100-pin  
M1440  
4,000  
10,000  
15,000  
25,000  
1,600  
706  
176-pin  
176-pin  
M1460  
6,000  
976  
160, 208-pin  
208-pin  
M14100  
M3265  
10,000  
6,500  
1153  
747  
84-pin  
84-pin  
84-pin  
100, 160-pin  
160, 208-pin  
160, 208-pin  
208, 240-pin  
208, 240-pin  
240-pin  
176-pin  
176-pin  
176-pin  
M32100  
M32140  
M32200  
M32300  
M32400  
10,000  
14,000  
20,000  
30,000  
40,000  
25,000  
35,000  
50,000  
75,000  
100,000  
1031  
1410  
1822  
2804  
3759  
S e p t e m b e r 1 9 9 7  
1 -3 8 9  
© 1997 Actel Corporation  
The granular, regular structure of the Actel antifuse-based  
FPGA products enables easy conversion to MPGA. Actel  
provides all required engineering services to convert the  
cost-reduction path becomes a key factor to ensure continued  
success and profitability of the end product. Once the design  
has stabilized and volumes are increasing, a choice can be  
customer design from FPGA to MPGA, using proprietary made to convert the design to an MPGA. Since the MPGA  
software to automatically convert the FPGA logic design into product is pin-for-pin compatible with the FPGA, no board  
the MPGA device. Test vector generation is made easy by redesign is required, and the MPGA can directly replace the  
software that converts the customer's third-party simulation  
vectors into the final vectors used to test the device in  
production.  
FPGA.  
A typical design process uses the FPGA device as the  
prototyping and initial production product of choice and  
converts to the MPGA as volumes warrant. Figure 1 shows the  
design process for Actel FPGA and MPGA devices. This option  
gives you the flexibility to adjust volumes as the demand for  
the end product changes. Since the MPGA is a semicustom  
device, all production is built to your order. If the design is  
All Actel MPGA devices are pin-for-pin compatible with the  
corresponding FPGA, and therefore no board redesign is  
required. MPGA devices meet all worst-case timing  
specifications of the FPGA devices. MPGA devices are  
available for all plastic packaged devices from ACT 1, ACT 2,  
1200XL, ACT 3, and 3200DX families. See the “Product Plan” already completed in the FPGA, any demand upsides can be  
on page 1-260 for a detailed list of available device and  
package combinations.  
satisfied by temporarily switching production back to the  
FPGA. Since Actel FPGAs are standard off-the-shelf devices,  
additional product requirements can be met within a short  
lead time.  
A c t e l F P G A t o M P G A D e s i g n F l o w  
Actels three families of FPGA devices offer a wide selection  
of device sizes, package choices, performance characteristics,  
and price points. The FPGA families provide the ideal  
prototyping tool and are cost-effective for low- to  
medium-volume applications. As volumes increase, a  
The Actel FPGA devices offer the easiest and fastest way to  
bring a new product to market, and the three FPGA families  
offer a wide selection of low-cost, high-performance devices.  
The addition of the MPGA devices offers a simple, low-risk  
cost-reduction path as production volumes increase.  
1 -3 9 0  
A c t e l M a s k P r o g r a m m e d G a t e A r r a y s  
CAE Tools  
Design Entry  
Simulation  
Designer/Designer  
Advantage System  
• ACTmap FPGA Fitter  
• ACTgen Macro Builder  
• Auto Place and Route  
• ChipEdit  
Design  
Start  
Checklist  
MPGA  
back-annotation  
(optional)  
simulation  
vectors  
netlist  
• Timer  
• Backannotation  
Actel MPGA Tools  
• Simulation  
• Timing Analysis  
• Power Calculation  
FPGA Programmers  
• Activator 2  
• Activator 2S  
• Data I/O Unisite, 3900  
Autosite  
Actel MPGA  
prototype  
devices  
Actel  
FPGA  
devices  
Device Test  
In-System Test  
Prototype Approval  
Final Review  
Actel MPGA  
production  
devices  
FPGA Design Flow  
MPGA Design Flow  
(Note: Shaded items are completed by the customer.)  
Figure 1 Actel Device Design Flow  
1 -3 9 1  
P r o d u c t P l a n  
Availability  
Application  
ACT 1 Family  
Commercial  
Industrial  
M1010 Device  
44-pin Plastic Leaded Chip Carrier (PLCC)  
68-pin Plastic Leaded Chip Carrier (PLCC)  
80-pin Very Thin Plastic Quad Flatpack (VQFP)  
100-pin Plastic Quad Flatpack (PQFP)  
M1020 Device  
44-pin Plastic Leaded Chip Carrier (PLCC)  
68-pin Plastic Leaded Chip Carrier (PLCC)  
80-pin Very Thin Plastic Quad Flatpack (VQFP)  
84-pin Plastic Leaded Chip Carrier (PLCC)  
100-pin Plastic Quad Flatpack (PQFP)  
ACT 2/1200XL Family  
M1225 Device  
84-pin Plastic Leaded Chip Carrier (PLCC)  
100-pin Plastic Quad Flatpack (PQFP)  
100-pin Thin Plastic Quad Flatpack (TQFP)  
M1240 Device  
84-pin Plastic Leaded Chip Carrier (PLCC)  
100-pin Plastic Quad Flatpack (PQFP)  
144-pin Plastic Quad Flatpack (PQFP)  
176-pin Thin Plastic Quad Flatpack (TQFP)  
M1280 Device  
84-pin Plastic Leaded Chip Carrier (PLCC)  
100-pin Plastic Quad Flatpack (PQFP)  
160-pin Plastic Quad Flatpack (PQFP)  
176-pin Thin Plastic Quad Flatpack (TQFP)  
ACT 3 Family  
M1415 Device  
84-pin Plastic Leaded Chip Carrier (PLCC)  
100-pin Plastic Quad Flatpack (PQFP)  
100-pin Very Thin Plastic Quad Flatpack (VQFP)  
Note:M1425 Device  
84-pin Plastic Leaded Chip Carrier (PLCC)  
100-pin Plastic Quad Flatpack (PQFP)  
100-pin Very Thin Plastic Quad Flatpack (VQFP)  
160-pin Plastic Quad Flatpack (PQFP)  
M1440 Device  
84-pin Plastic Leaded Chip Carrier (PLCC)  
100-pin Very Thin Plastic Quad Flatpack (VQFP)  
160-pin Plastic Quad Flatpack (PQFP)  
176-pin Thin Plastic Quad Flatpack (TQFP)  
M1460 Device  
160-pin Plastic Quad Flatpack (PQFP)  
176-pin Thin Plastic Quad Flatpack (TQFP)  
208-pin Plastic Quad Flatpack (PQFP)  
M14100 Device  
208-pin Plastic Quad Flatpack (PQFP)  
1 -3 9 2  
A c t e l M a s k P r o g r a m m e d G a t e A r r a y s  
P r o d u c t P l a n (c o n t in u e d )  
Availability  
Application  
3200DX Family  
M3265 Device  
84-pin Plastic Leaded Chip Carrier (PLCC)  
100-pin Plastic Quad Flatpack (PQFP)  
160-pin Plastic Quad Flatpack (PQFP)  
176-pin Thin Plastic Quad Flatpack (TQFP)  
M32100 Device  
84-pin Plastic Leaded Chip Carrier (PLCC)  
160-pin Plastic Quad Flatpack (PQFP)  
208-pin Plastic Quad Flatpack (PQFP)  
176-pin Thin Plastic Quad Flatpack (TQFP)  
P
P
P
P
P
P
P
P
P
P
P
P
M32140 Device  
84-pin Plastic Leaded Chip Carrier (PLCC)  
160-pin Plastic Quad Flatpack (PQFP)  
208-pin Plastic Quad Flatpack (PQFP)  
176-pin Thin Plastic Quad Flatpack (TQFP)  
M32200 Device  
208-pin Plastic Quad Flatpack (PQFP)  
240-pin Plastic Quad Flatpack (PQFP)  
176-pin This Plastic Quad Flatpack (TQFP)  
M32300 Device  
208-pin Plastic Quad Flatpack (PQFP)  
240-pin Plastic Quad Flatpack (PQFP)  
Availability:  
P
=
=
=
Available  
Planned  
Not Planned  
A C T 1 D e v i c e R e s o u r c e s  
User I/Os  
Gate Array  
Equivalent  
Gates  
PLCC  
PQFP  
VQFP  
80-pin  
MPGA  
Device Type  
44-pin  
68-pin  
84-pin  
100-pin  
M1010  
M1020  
1200  
2000  
34  
34  
57  
57  
57  
69  
57  
69  
57  
69  
A C T 2 /1 2 0 0 X L D e v i c e R e s o u r c e s  
User I/Os  
Gate Array  
Equivalent  
Gates  
PLCC  
84-pin  
PQFP  
VQFP  
TQFP  
MPGA  
Device Type  
100-pin  
144-pin  
160-pin  
208-pin  
100-pin  
176-pin  
M1225  
M1240  
M1280  
2500  
4000  
8000  
72  
72  
72  
83  
83  
83  
104  
83  
104  
140  
125  
140  
1 -3 9 3  
A C T 3 D e v i c e R e s o u r c e s  
User I/Os  
PQFP  
Gate Array  
Equivalent  
Gates  
PLCC  
84-pin  
VQFP  
TQFP  
MPGA  
Device Type  
100-pin  
160-pin  
208-pin  
100-pin  
176-pin  
M1415  
M1425  
M1440  
M1460  
M14100  
1500  
2500  
4000  
6000  
10000  
70  
70  
70  
80  
80  
80  
83  
83  
100  
131  
131  
140  
151  
167  
175  
3 2 0 0 D X D e v i c e R e s o u r c e s  
User I/Os  
PQFP  
Gate Array  
Equivalent  
Gates  
PLCC  
84-pin  
TQFP  
MPGA  
Device Type  
100-pin  
160-pin  
208-pin  
240-pin  
176-pin  
M3265  
M32100  
M32140  
M32200  
M32300  
M32400  
6500  
10000  
14000  
20000  
30000  
40000  
72  
72  
72  
83  
125  
125  
125  
126  
151  
151  
156  
176  
176  
176  
TBD  
TBD  
TBD  
O r d e r i n g I n f o r m a t i o n  
M14100  
RQ  
208  
C
Application (Temperature Range)  
C = Commercial (0 to +70°C)  
I
= Industrial (–40 to +85°C)  
Package Lead Count  
Package Type  
PL = Plastic Leaded Chip Carrier (PLCC)  
PQ = Plastic Quad Flatpack (PQFP)  
TQ = Thin (1.4 mm) Plastic Quad Flatpack (TQFP)  
VQ = Very Thin (1.0 mm) Plastic Quad Flatpack (VQFP)  
RQ = Power Plastic Quad Flatpack (RQFP)  
Part Number  
M1010= 1200 Gates—ACT 1  
M1020= 2000 Gates—ACT 1  
M1225= 2500 Gates—ACT 2/1200XL  
M1240= 4000 Gates—ACT 2/1200XL  
M1280= 8000 Gates—ACT 2/1200XL  
M1415= 1500 Gates—ACT 3  
M1425= 2500 Gates—ACT 3  
M1440= 4000 Gates—ACT 3  
M1460= 6000 Gates—ACT 3  
M14100=10000 Gates—ACT 3  
M3265= 6500 Gates—3200DX  
M32100=10000 Gates—3200DX  
M32140=14000 Gates—3200DX  
M32200=20000 Gates—3200DX  
M32300=30000 Gates—3200DX  
M32400=40000 Gates—3200DX  
1 -3 9 4  
A c t e l M a s k P r o g r a m m e d G a t e A r r a y s  
1
A b s o l u t e M a x i m u m R a t i n g s  
R e c o m m e n d e d O p e r a t i n g C o n d i t i o n s  
F r e e a ir t e m p e r a t u r e r a n g e  
Parameter  
Commercial Industrial Units  
Symbol  
Parameter  
Limits  
Units  
Temperature Range  
0 to +70  
–40 to +85  
°C  
%V  
V
V
DC Supply Voltage  
Input Voltage  
–0.3 to +7.0  
V
V
V
CC  
Power Supply  
Tolerance  
±5  
±10  
CC  
–0.3 to V +0.3  
I
CC  
V
Output Voltage  
–0.3 to V +0.3  
O
CC  
I/O Source Sink  
Current  
I
±20  
mA  
IO  
T
Storage Temperature  
–55 to +125  
°C  
STG  
Note:  
1. Stresses beyond those listed under “Absolute Maximum  
Ratings” may cause permanent damage to the device. Exposure  
to absolute maximum rated conditions for extended periods  
may affect device reliability. Device should not be operated  
outside the Recommended Operating Conditions.  
E l e c t r i c a l S p e c i f i c a t i o n s  
Commercial  
Industrial  
Symbol  
Parameter  
Test Condition  
Min.  
Max.  
Min.  
Max.  
Units  
1,2  
V
HIGH Level Output  
I
I
I
I
= –6 mA (CMOS)  
3.7  
2.4  
3.7  
2.4  
V
V
OH  
OH  
OH  
OL  
OL  
3
= –8 mA (TTL)  
1,2  
V
LOW Level Output  
= +6 mA (CMOS)  
0.4  
0.4  
0.4  
0.4  
V
OL  
3
= +8 mA (TTL)  
V
V
V
HIGH Level Input  
LOW Level Input  
Input Leakage  
TTL Inputs  
TTL Inputs  
2.0  
–0.3  
–1  
V
+ 0.3  
2.0  
–0.3  
–1  
V + 0.3  
CC  
V
IH  
IL  
CC  
0.8  
+1  
0.8  
V
I
I
V = V or GND  
+1  
+10  
10  
µA  
µA  
pF  
IN  
OZ  
I
CC  
3-state Output Leakage  
V = V or GND  
–10  
+10  
10  
–10  
O
CC  
3
C
I/O Capacitance  
IO  
I
Standby Supply Current  
V = V or GND,  
CC(S)  
I
CC  
I
= 0 mA  
100  
500  
µA  
O
Notes:  
1. Actel devices can drive and receive either CMOS or TTL signal levels. No assignment of I/Os as TTL or CMOS is required.  
2. Tested one output at a time, V = min.  
CC  
3. Not tested, for information only.  
1 -3 9 5  
C h i p -t o -C h i p P e r f o r m a n c e  
Chip #1  
Chip #2  
35 pF  
up to 1000  
clock loads  
CLK  
CLK  
t
t
t
(GLOBAL CLOCK  
TO OUTPUT PAD)  
TRACE  
(INPUT SETUP)  
Chip-to-Chip Performance  
(Worst-Case Commercial)  
t
(GLOBAL CLOCK  
TO OUPUT PAD)  
t
t
Total  
16.8  
MHz  
60  
TRACE  
(INPUT SETUP)  
Actel MPGA  
12.7  
1.0  
3.1  
1 -3 9 6  
A c t e l M a s k P r o g r a m m e d G a t e A r r a y s  
P i n D e s c r i p t i o n  
note between the device types. First, dedicated FPGA global  
and debugging pins are general purpose MPGA I/O pins. Also,  
dedicated FPGA programming voltage pins are Vcc or ground  
pins on an MPGA. Refer to Table 1 for a complete  
cross-reference of pin descriptions between the FPGA and  
MPGA.  
Package pin assignments for an FPGA design are directly  
transferred to the equivalent MPGA package because all I/O  
and power pins are located in identical positions. While the  
conversion of package pin assignments is transparent in the  
end product, there are two small functional differences to  
Table 1 FPGA-to-MPGA Pin Cross-Reference  
FPGA Pin Description  
MPGA Pin Description  
No Change  
CLK  
Clock (ACT 1 only)  
TTL Clock input for ACT 1 global clock distribution net-  
work. This pin can also be used as an I/O.  
If desired, TTL Clock input signals may be moved to any  
MPGA I/O location.  
CLKA Clock A (ACT 3, 3200DX, 1200XL, and ACT 2  
only)  
No Change  
If desired, TTL Clock input signals may be moved to any  
MPGA I/O location.  
TTL Clock input for clock distribution networks. This pin  
can also be used as an I/O.  
CLKB Clock B (ACT 3, 3200DX, 1200XL, and ACT 2  
only)  
No Change  
If desired, TTL Clock input signals may be moved to any  
MPGA I/O location.  
TTL Clock input for clock distribution networks. This pin  
can also be used as an I/O.  
DCLK Diagnostic Clock  
I/O  
TTL Clock input for diagnostic probe and device program-  
ming. Function is controlled by the MODE pin.  
This pin is used as an I/O only. It is not used for diagnos-  
tic probe or device programming functions on an MPGA.  
GND  
Ground  
Ground  
LOW supply voltage.  
LOW supply voltage.  
HCLK Dedicated (Hard-wired) Array Clock  
(ACT 3 only)  
No Change  
If desired, TTL Clock input signals may be moved to any  
MPGA I/O location.  
TTL Clock input for ACT 3 sequential modules. This pin  
can also be used as an I/O.  
I/O  
Input/Output  
I/O  
The I/O pin functions as an input, output, three-state, or  
bidirectional buffer. Unused pins are automatically driven  
LOW by the Designer software.  
User-defined MPGA I/O pins function identically to their  
FPGA counterparts. However, unused pins are NC (no  
connection) pins.  
IOCLK Dedicated (Hard-wired) I/O Clock  
(ACT 3 only)  
No Change  
If desired, TTL Clock input signals may be moved to any  
MPGA I/O location.  
TTL Clock input for ACT 3 I/O modules. This pin can also  
be used as an I/O.  
IOPCL Dedicated (Hard-wired) I/O Preset/Clear  
(ACT 3 only)  
No Change  
If desired, this input signal may be moved to any MPGA  
I/O location.  
TTL input for ACT 3 I/O preset or clear. This pin can also  
be used as an I/O.  
MODE Mode  
TEST (No Connection)  
The MODE pin controls the use of diagnostic pins (DCLK,  
PRA, PRB, SDI). When the MODE pin is HIGH, the spe-  
cial functions are active.When the MODE pin is LOW, the  
pins function as I/Os.  
This pin is reserved for parametric testing and should be  
connected to ground (LOW supply voltage).  
1 -3 9 7  
 
Table 1 FPGA-to-MPGA Pin Cross-Reference (continued)  
FPGA Pin Description  
MPGA Pin Description  
NC No Connection  
NC  
No Connection  
This pin is not connected to circuitry within the device.  
This pin is not connected to circuitry within the device.  
PRA  
Probe A  
I/O  
The Probe A pin is used for FPGA diagnostics. Function  
is controlled by the MODE pin.  
This pin is used as an I/O only. It is not used for diagnos-  
tic probe or device programming functions on an MPGA.  
PRB  
Probe B  
I/O  
The Probe B pin is used for FPGA diagnostics. Function  
is controlled by the MODE pin.  
This pin is used as an I/O only. It is not used for diagnos-  
tic probe or device programming functions on an MPGA.  
QCLKA/B,C,D  
Quadrant Clock (Input/Output)  
(3200DX only)  
No Change  
If desired, TTL Clock input signals may be moved to any  
MPGA location.  
These four pins are the quadrant clock inputs. When not  
used as a register control signal, these pins can function  
as general purpose I/O.  
SDI  
Serial Data Input  
I/O  
Serial data input for diagnostic probe and device pro-  
gramming. Function is controlled by the MODE pin.  
This pin is used as an I/O only. It is not used for diagnos-  
tic probe or device programming functions on an MPGA.  
TCK  
Test Clock (3200DX only)  
No Change  
No Change  
No Change  
No Change  
Clock signal to shift the JTAG data into the device. This  
pin functions as an I/O when the JTAG fuse is not pro-  
grammed  
TDI  
Test Data In (3200DX only)  
Serial data input or JTAG instructions and data. Data is  
shifted in on the rising edge of TCLK. This pin functions  
as an I/O when the JTAG fuse is not programmed.  
TDO  
Test Data Out (3200DX only)  
Serial data output for JTAG instructions and test data.  
This pin functions as an I/O when the JTAG fuse is not  
programmed.  
TMS  
Test Mode Select (3200DX only)  
Serial data input for JTAG test mode. Data is shifted in on  
the rising edge of TCLK. This pin functions as an I/O  
when the JTAG fuse is not programmed.  
V
Supply Voltage  
V
CC  
CC  
HIGH supply voltage.  
HIGH supply voltage.  
1 -3 9 8  
A c t e l M a s k P r o g r a m m e d G a t e A r r a y s  
M P G A A r c h i t e c t u r e  
where  
CEQ is the equivalent capacitance in picofarads (pF)  
The Actel MPGA is built using a “sea-of-gates” architecture. A  
solid, regularly ordered array of transistors is overlaid with a  
multilevel metal interconnect. Surrounding this logic core is  
an array of programmable power and I/O pads. Separate grids  
provide power and ground supplies for the core logic and I/O  
cells.  
V is the DC supply voltage in volts (V)  
CC  
f is the switching frequency in megahertz (MHz)  
Upon receipt of the “Design Start Checklist” and associated  
materials, Actel calculates the MPGA active power  
dissipation for each design based on this formula. This  
calculation is immediately relayed to you so that you can  
update system power specifications accordingly. Typically,  
power dissipation of an Actel design is significantly lower for  
the MPGA version versus the FPGA version.  
The highly dense structure of Actel MPGAs provides for a  
cost-effective solution while maintaining the high  
performance of each particular design. This architecture  
reduces die size for low cost while minimizing gate length and  
shortening routing paths for excellent system performance.  
The robust power supply grids provide high I/O current drive  
without sacrificing high noise immunity. Since Actel FPGAs  
use a similar gate array architecture, design migration is a  
straightforward, simple process. Because of the advanced  
technology employed by the MPGA, the internal and external  
performance of each design is virtually assured to be  
preserved or improved after migration. To simplify migration  
further, the I/O pads are carefully arranged to allow FPGA pin  
assignments to be directly transferred to the full line of  
MPGA packages. For more information about the ease of  
design migration from Actel FPGAs to MPGAs, see the  
application note “Designing for Migration to Actel MPGAs.”  
T i m i n g C h a r a c t e r i s t i c s  
The timing characteristics for Actel MPGA devices are  
consistent across family and device types. Typical I/O buffer,  
internal logic cell, and internal routing delays are common to  
all MPGA devices. The advanced technology of the devices  
ensures converted designs meet or exceed FPGA  
performance. Refer to the MPGA Timing Model diagram and  
Timing Characteristics chart for detailed timing and delay  
estimates.  
T i m i n g D e r a t i n g  
Timing derating factors due to temperature, voltage, and  
process variations are summarized in the following tables and  
graphs. Use these derating factors to determine device  
performance at any particular condition within the electrical  
and environmental specifications.  
P o w e r D i s s i p a t i o n  
The power dissipation for an Actel MPGA is composed of two  
parts: static power and active power. The static power is a  
product of the standby supply current (Icc) and the DC  
supply voltage (Vcc). Specifications for Icc and Vcc are  
located in the “Electrical Specifications” section of this data  
sheet. The active power is a product of equivalent  
capacitance, square of the DC supply voltage, and average  
switching frequency of the circuit. It is expressed in the  
formula  
MPGA devices are manufactured in a CMOS process.  
Therefore, device performance varies according to  
temperature, voltage, and process variations. Minimum  
timing parameters reflect maximum operating voltage,  
minimum operating temperature, and best-case processing.  
Maximum timing parameters reflect minimum operating  
voltage, maximum operating temperature, and worst-case  
processing.  
2
Power (µW) = CEQ • V  
• f  
CC  
1 -3 9 9  
T i m i n g D e r a t i n g F a c t o r , T e m p e r a t u r e a n d V o l t a g e  
Industrial  
Minimum  
0.85  
Maximum  
1.07  
(Commercial Minimum/Maximum Specification) x  
T i m i n g D e r a t i n g F a c t o r f o r D e s i g n s a t T y p i c a l T e m p e r a t u r e ( T = 2 5 °C )  
J
a n d V o l t a g e ( V  
= 5 . 0 V )  
C C  
(Commercial Maximum Specification) x  
0.86  
Temperature Derating Curve  
Voltage Derating Curve  
1.40  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
1.30  
1.20  
1.10  
1.00  
0.90  
0.80  
0.70  
Factor  
Factor  
4.5 4.75 5.0 5.25 5.5  
(Volts)  
-20 0 20 40 60 80  
V
Junction Temperature (°C)  
CC  
Note: This derating factor applies to all routing and propagation delays.  
1 -4 0 0  
A c t e l M a s k P r o g r a m m e d G a t e A r r a y s  
M P G A T i m i n g M o d e l  
Input Delays  
Internal Delays  
Predicted  
Routing  
Delays  
Output Delays  
Combinatorial  
Logic Module  
I/O Module  
t
= 0.3 ns  
IRD2  
t
= 2.0ns  
INY  
I/O Module  
t
= 1.5 ns  
t
t
t
= 0.2 ns  
= 0.7 ns  
= 1.4 ns  
PD  
RD1  
• • •  
RD4  
RD8  
t
t
= 5.5 ns  
= 6.1 ns  
DHL  
DLH  
Sequential  
Logic Module  
D
Q
t
= 1.5 ns  
CO  
t
= 1.5 ns  
= 0.0 ns  
SUD  
t
HD  
Array Clock  
f
= 167 MHz  
MAX  
t
= t  
= 5.0 ns  
CKH  
CKL  
O u t p u t B u f f e r D e l a y s  
E
D
PAD To AC test loads (shown below)  
TRIBUFF  
V
V
V
CC  
CC  
CC  
In  
GND  
1.4 V  
50%  
En  
Out  
GND  
En  
50%  
GND  
50%  
50%  
CC  
50%  
50%  
V
V
V
OH  
OH  
1.4 V  
90%  
Out  
Out  
1.4 V  
10%  
1.4 V  
V
V
GND  
OL  
OL  
t
t
t
t
t
t
ENHZ  
DLH  
DHL  
ENZL  
ENLZ  
ENZH  
1 -4 0 1  
A C T e s t L o a d s  
Load 2  
Load 1  
(Used to measure rising/falling edges)  
(Used to measure propagation delay)  
V
GND  
CC  
To the output under test  
35 pF  
R to V for t /t  
CC  
PLZ PZL  
R to GND for t  
/t  
PHZ PZH  
R = 1 kΩ  
To the output under test  
35 pF  
I n p u t B u f f e r D e l a y s  
M o d u l e D e l a y s  
S
A
B
Y
Y
PAD  
INBUF  
V
CC  
GND  
S, A or B  
50% 50%  
V
CC  
50%  
Out  
50%  
In  
0 V  
50%  
1. 4 V  
1.4 V  
GND  
V
CC  
t
t
PD  
PD  
Out  
GND  
V
50%  
Out  
CC  
GND  
50%  
50%  
t
t
t
t
PD  
INY  
INY  
PD  
S e q u e n t i a l M o d u l e T i m i n g C h a r a c t e r i s t i c s  
F lip -F lo p s  
D
Q
CLK  
CLR  
(Positive edge triggered)  
t
HD  
D
t
t
t
A
WCLKA  
SUD  
CLK  
t
WCLKA  
t
CO  
Q
t
CLR  
CLR  
t
WASYN  
1 -4 0 2  
A c t e l M a s k P r o g r a m m e d G a t e A r r a y s  
S e q u e n t i a l T i m i n g C h a r a c t e r i s t i c s (c o n t in u e d )  
In p u t B u ffe r La t c h e s (3 2 0 0 DX o n ly )  
PAD  
DATA  
IBDL  
G
PAD  
CLK  
CLKBUF  
DATA  
G
t
INH  
t
INSU  
t
HEXT  
CLK  
t
SUEXT  
O u t p u t B u ffe r La t c h e s (3 2 0 0 DX o n ly )  
D
G
PAD  
OBDLHS  
D
t
OUTSU  
G
t
OUTH  
1 -4 0 3  
D e c o d e M o d u l e T i m i n g (3 2 0 0 DX o n ly )  
A
B
C
D
E
F
Y
G
V
CC  
A–G, H  
50%  
V
CC  
Y
t
PHL  
t
PLH  
S R A M T i m i n g C h a r a c t e r i s t i c (3 2 0 0 DX o n ly )  
Read Port  
Write Port  
WRAD [5:0]  
RDAD [5:0]  
LEW  
RAM Array  
BLKEN  
32x8 or 64x4  
WEN  
REN  
(256 bits)  
WCLK  
RCLK  
WD [7:0]  
RD [7:0]  
1 -4 0 4  
A c t e l M a s k P r o g r a m m e d G a t e A r r a y s  
D u a l -P o r t S R A M T i m i n g W a v e f o r m s  
S R AM Wr it e O p e r a t io n (3 2 0 0 DX o n ly )  
t
t
RCKHL  
RCKHL  
WCLK  
t
t
t
t
t
ADSU  
ADH  
WD[7:0]  
WRAD[5:0]  
Valid  
WENSU  
WENH  
BENH  
WEN  
t
BENSU  
Valid  
BLKEN  
Note: Identical timing for falling-edge clock.  
S R AM S y n c h r o n o u s R e a d O p e r a t io n (3 2 0 0 DX o n ly )  
t
t
RCKHL  
RCKHL  
RCLK  
REN  
t
t
RENSU  
RENH  
t
t
ADH  
ADSU  
Valid  
RDAD[5:0]  
t
RCO  
t
DOH  
Old Data  
New Data  
RD[7:0]  
Note: Identical timing for falling-edge clock  
1 -4 0 5  
S R AM As y n c h r o n o u s R e a d O p e r a t io n —T y p e 1 (3 2 0 0 DX o n ly )  
((Read Address Controlled)  
t
RENHA  
t
RENSUA  
(Data 2 in hold state)  
REN  
t
RDADV  
RDAD[5:0]  
ADDR1  
ADDR2  
t
RPD  
t
DOH  
Data 1  
Data 2  
RD[7:0]  
S R AM As y n c h r o n o u s R e a d O p e r a t io n —T y p e 2 (3 2 0 0 DX o n ly )  
(Write Address Controlled)  
WEN  
t
t
WENSU  
WENH  
WD[7:0]  
WRAD[5:0]  
BLKEN  
Valid  
t
t
ADH  
ADSU  
WCLK  
t
RPD  
t
DOH  
Old Data  
New Data  
RD[7:0]  
t
RENH  
REN  
1 -4 0 6  
A c t e l M a s k P r o g r a m m e d G a t e A r r a y s  
M P G A T i m i n g C h a r a c t e r i s t i c s  
(Wo r s t -C a s e C o m m e r c ia l C o n d it io n s , V  
= 4 . 7 5 V, T = 7 0 °C )  
J
C C  
Preliminary Information  
Logic Module Propagation Delays  
Parameter  
Description  
Min.  
Max.  
Units  
t
t
t
Internal Array Module  
Sequential Clock to Q  
1.5  
1.5  
1.5  
ns  
ns  
ns  
PD  
CO  
CLR  
Asynchronous Clear to Q  
1
Predicted Routing Delays  
t
t
t
t
t
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
0.2  
0.3  
0.5  
0.7  
1.4  
ns  
ns  
ns  
ns  
ns  
RD1  
RD2  
RD3  
RD4  
RD8  
Logic Module Sequential Timing  
t
t
t
t
t
t
t
f
Flip-Flop Data Input Setup  
1.5  
0.0  
1.5  
0.0  
2.0  
2.0  
8.0  
ns  
ns  
SUD  
Flip-Flop Data Input Hold  
Latch Data Input Setup  
HD  
ns  
SUD  
HD  
Latch Data Input Hold  
ns  
Asynchronous Pulse Width  
Flip-Flop Clock Pulse Width  
Flip-Flop Clock Input Period  
Flip-Flop Clock Frequency  
ns  
WASYN  
WCLKA  
A
ns  
ns  
125  
2.0  
MHz  
MAX  
I/O Module Input Propagation Delay  
t
Input Data Pad to Y  
ns  
INY  
1
Predicted Input Routing Delays  
t
t
t
t
t
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
0.2  
0.3  
0.5  
0.7  
1.4  
ns  
ns  
ns  
ns  
ns  
IRD1  
IRD2  
IRD3  
IRD4  
IRD8  
Note:  
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device  
performance. Postroute timing analysis or simulation is required to determine actual worst-case performance. Postroute timing is based  
on actual routing delay measurements performed on the device prior to shipment.  
1 -4 0 7  
M P G A T i m i n g C h a r a c t e r i s t i c s (c o n t in u e d )  
(Wo r s t -C a s e C o m m e r c ia l C o n d it io n s )  
Preliminary Information  
1
I/O Module – TTL Output Timing  
Parameter  
Description  
Min.  
Max.  
Units  
t
t
t
t
t
t
Data to Pad, High to Low  
Data to Pad, Low to High  
Enable to Pad, Z to High  
Enable to Pad, Z to Low  
Enable to Pad, High to Z  
Enable to Pad, Low to Z  
Delta Low to High  
6.8  
3.9  
ns  
ns  
DHL  
DLH  
4.5  
ns  
ENZH  
ENZL  
ENHZ  
ENLZ  
6.8  
ns  
3.8  
ns  
2.0  
ns  
d
0.05  
0.09  
ns/pF  
ns/pF  
TLH  
THL  
d
Delta High to Low  
1
I/O Module – CMOS Output Timing  
t
t
t
t
t
t
Data to Pad, High to Low  
Data to Pad, Low to High  
Enable to Pad, Z to High  
Enable to Pad, Z to Low  
Enable to Pad, High to Z  
Enable to Pad, Low to Z  
Delta Low to High  
5.5  
6.1  
ns  
ns  
DHL  
DLH  
6.7  
ns  
ENZH  
ENZL  
ENHZ  
ENLZ  
5.6  
ns  
3.8  
ns  
2.0  
ns  
d
0.09  
0.07  
ns/pF  
ns/pF  
TLH  
THL  
d
Delta High to Low  
Global Clock Networks (for Fanout = 1000)  
t
t
t
t
t
t
f
Input Low to High  
Input High to Low  
Min. Pulse Width High  
Min. Pulse Width Low  
Maximum Skew  
5.0  
5.0  
ns  
ns  
CKH  
CKL  
PWH  
PWL  
CKSW  
P
2.9  
2.9  
ns  
ns  
0.4  
ns  
Minimum Period  
6.0  
ns  
Maximum Frequency  
167  
MHz  
MAX  
Note:  
1. Delays based on 35pF loading.  
1 -4 0 8  

相关型号:

M14256

Memory Card IC 256/128 Kbit Serial IC Bus EEPROM
STMICROELECTR

M1426

Mini size of Discrete semiconductor elements
ETC

M143-SERIES

Peripheral IC
ETC

M143331FAP

Thick Film Low Profile SIP Conformal Coated Resistor Networks
TTELEC

M143331FM1

Thick Film Low Profile SIP Conformal Coated Resistor Networks
TTELEC

M143331FM2

Thick Film Low Profile SIP Conformal Coated Resistor Networks
TTELEC

M143331GAP

Thick Film Low Profile SIP Conformal Coated Resistor Networks
TTELEC

M143331GM1

Thick Film Low Profile SIP Conformal Coated Resistor Networks
TTELEC

M143331GM2

Thick Film Low Profile SIP Conformal Coated Resistor Networks
TTELEC

M143331JAP

Thick Film Low Profile SIP Conformal Coated Resistor Networks
TTELEC

M143331JM1

Thick Film Low Profile SIP Conformal Coated Resistor Networks
TTELEC

M143331JM2

Thick Film Low Profile SIP Conformal Coated Resistor Networks
TTELEC