M1AGL1000V5-VQ144 [ACTEL]

IGLOO Low-Power Flash FPGAs with Flash Freeze Technology; IGLOO低功耗FPGA中的Flash和Flash Freeze技术
M1AGL1000V5-VQ144
型号: M1AGL1000V5-VQ144
厂家: Actel Corporation    Actel Corporation
描述:

IGLOO Low-Power Flash FPGAs with Flash Freeze Technology
IGLOO低功耗FPGA中的Flash和Flash Freeze技术

文件: 总212页 (文件大小:6544K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
v1.3  
®
IGLOO Low-Power Flash FPGAs  
with Flash*Freeze Technology  
Advanced I/O  
Features and Benefits  
• 700 Mbps DDR, LVDS-Capable I/Os (AGL250 and above)  
Low Power  
• 1.2 V, 1.5 V, 1.8 V, 2.5 V, and 3.3 V Mixed-Voltage Operation  
• Bank-Selectable I/O Voltages—up to 4 Banks per Chip  
• 1.2 V to 1.5 V Core Voltage Support for Low Power  
• Supports Single-Voltage System Operation  
• 5 µW Power Consumption in Flash*Freeze Mode  
• Low-Power Active FPGA Operation  
• Flash*Freeze Technology Enables Ultra-Low Power  
Consumption while Maintaining FPGA Content  
• Easy Entry to / Exit from Ultra-Low-Power Flash*Freeze  
Mode  
• Single-Ended  
I/O  
Standards:  
LVTTL,  
LVCMOS  
1
3.3 V / 2.5 V / 1.8 V / 1.5 V / 1.2 V, 3.3 V PCI / 3.3 V PCI-X , and  
1
LVCMOS 2.5 V / 5.0 V Input  
• Differential I/O Standards: LVPECL, LVDS, B-LVDS, and M-  
LVDS (AGL250 and above)  
• I/O Registers on Input, Output, and Enable Paths  
• Hot-Swappable and Cold-Sparing I/Os  
1
• Programmable Output Slew Rate and Drive Strength  
High Capacity  
• Weak Pull-Up/-Down  
• 15 k to 1 Million System Gates  
• Up to 144 kbits of True Dual-Port SRAM  
• Up to 300 User I/Os  
• IEEE 1149.1 (JTAG) Boundary Scan Test  
• Pin-Compatible Packages across the IGLOO Family  
Clock Conditioning Circuit (CCC) and PLL1  
Reprogrammable Flash Technology  
• 130-nm, 7-Layer Metal, Flash-Based CMOS Process  
• Live-at-Power-Up (LAPU) Level 0 Support  
• Single-Chip Solution  
• Six CCC Blocks, One with an Integrated PLL  
• Configurable  
Phase  
Shift, Multiply/Divide,  
Delay  
Capabilities, and External Feedback  
• Retains Programmed Design When Powered Off  
• Wide Input Frequency Range (1.5 MHz up to 250 MHz)  
In-System Programming (ISP) and Security  
Embedded Memory  
• Secure ISP Using On-Chip 128-Bit Advanced Encryption  
• 1 kbit of FlashROM User Nonvolatile Memory  
1
®
®
Standard (AES) Decryption (except ARM -enabled IGLOO  
• SRAMs and FIFOs with Variable-Aspect-Ratio 4,608-Bit RAM  
1
devices) via JTAG (IEEE 1532–compliant)  
Blocks (×1, ×2, ×4, ×9, and ×18 organizations)  
1
®
HighFla-PsheLrofcokrmance Routing Hierarchy  
to Secure FPGA Contents  
ARMTruPerDoucael-sPsoortrSSRAuMpp(eoxrctepitn×I1G8)LOO FPGAs  
• M1 IGLOO Devices—Cortex™-M1 Soft Processor Available  
with or without Debug  
• Segmented, Hierarchical Routing and Clock Structure  
IGLOO Product Family  
IGLOO Devices  
AGL015  
AGL030  
AGL060 AGL125  
AGL250  
AGL400  
AGL600  
AGL1000  
ARM-Enabled IGLOO Devices  
System Gates  
M1AGL250 M1AGL400 M1AGL600 M1AGL1000  
15 k  
128  
384  
5
30 k  
256  
768  
5
60 k  
512  
1,536  
10  
125 k  
1,024  
3,072  
16  
250 k  
2,048  
6,144  
24  
400 k  
600 k  
1 M  
Typical Equivalent Macrocells  
VersaTiles (D-flip-flops)  
Flash*Freeze Mode (typical, µW)  
RAM kbits (1,024 bits)  
4,608-Bit Blocks  
9,216  
32  
13,824  
36  
24,576  
53  
18  
36  
36  
54  
108  
24  
144  
32  
4
8
8
12  
FlashROM Bits  
1 k  
1 k  
1 k  
Yes  
1
1 k  
Yes  
1
1 k  
Yes  
1
1 k  
Yes  
1
1 k  
Yes  
1
1 k  
Yes  
1
1
Secure (AES) ISP  
2
Integrated PLL in CCCs  
3
VersaNet Globals  
6
6
18  
18  
18  
18  
18  
18  
I/O Banks  
2
2
2
2
4
4
4
4
Maximum User I/Os  
49  
81  
96  
133  
143  
194  
235  
300  
Package Pins  
UC/CS  
4
4,5  
UC81/CS81  
CS121  
CS196  
CS196  
CS196  
CS281  
CS281  
QFN  
QN68  
QN48, QN68, QN132  
QN132  
QN132 QN132  
VQFP  
FBGA  
VQ100  
VQ100  
VQ100  
FG144  
VQ100  
FG144  
5
FG144  
FG144,  
FG256,  
FG484  
FG144,  
FG256,  
FG484  
FG144,  
FG256,  
FG484  
Notes:  
1. AES is not available for ARM-enabled IGLOO devices.  
2. AGL060 in CS121 does not support the PLL.  
3. Six chip (main) and twelve quadrant global networks are available for AGL060 and above.  
4. The M1AGL250 device does not support this package.  
5. Device/package support TBD  
6. For higher densities and support of additional features, refer to the IGLOOe Low-Power Flash FPGAs with Flash*Freeze  
Technology handbook.  
1 AGL015 and AGL030 devices do not support this feature.  
‡ Supported only by AGL015 and AGL030 devices.  
December 2008  
I
© 2008 Actel Corporation  
IGLOO Low-Power Flash FPGAs  
1
I/Os Per Package  
IGLOO Devices  
AGL015 AGL030 AGL060 AGL125  
AGL250  
AGL400  
AGL600  
AGL1000  
ARM-Enabled  
IGLOO Devices  
M1AGL250 3  
I/O Type  
M1AGL400 M1AGL600 M1AGL1000  
Package  
QN48  
QN68  
UC81  
49  
34  
49  
66  
66  
CS81  
CS121  
VQ100  
QN132  
CS196  
FG144  
FG256  
CS281  
FG484  
Notes:  
96  
71  
80  
77  
81  
71  
84  
133  
97  
68  
87 7  
143  
97  
13  
19 7  
35  
24  
143  
97  
178  
35  
25  
38  
96 7  
97  
177  
215  
235  
25  
43  
53  
60  
97  
177  
215  
300  
25  
44  
53  
74  
194  
38  
1. When considering migrating your design to a lower- or higher-density device, refer to the IGLOO Low-Power Flash FPGAs  
handbook to ensure compliance with design and board migration requirements.  
2. Each used differential I/O pair reduces the number of single-ended I/Os available by two.  
3. The M1AGL250 device does not support QN132 or CS196 packages. Refer to the IGLOO Low-Power Flash FPGAs  
handbook for position assignments of the 15 LVPECL pairs.  
4. FG256 and FG484 are footprint-compatible packages.  
5. When the Flash*Freeze pin is used to directly enable Flash*Freeze mode and not used as a regular I/O, the number of  
single-ended user I/Os available is reduced by one.  
6. "G" indicates RoHS-compliant packages. Refer to "IGLOO Ordering Information" on page III for the location of the  
"G" in the part number.  
7. Device/package support TBD.  
IGLOO FPGAs Package Sizes Dimensions  
Package  
UC81 CS81 CS121 QN68 QN132 CS196  
CS281  
FG144  
VQ100  
FG256  
FG484  
Length  
×
Width 4 × 4 5 × 5  
6 × 6  
8 × 8  
8 × 8  
8 × 8  
10 × 10 13 × 13 14 × 14 17 × 17 23 × 23  
(mm\mm)  
Nominal Area  
(mm2)  
16  
25  
36  
64  
64  
64  
100  
169  
196  
289  
529  
Pitch (mm)  
0.4  
0.5  
0.5  
0.4  
0.5  
0.5  
0.5  
1.0  
0.5  
1.0  
1.0  
Height (mm)  
0.80  
0.80  
0.99  
0.90  
0.75  
1.20  
1.05  
1.45  
1.00  
1.60  
2.23  
II  
v1.3  
IGLOO Low-Power Flash FPGAs  
IGLOO Ordering Information  
_
AGL1000  
V2  
FG  
G
144  
I
Application (Temperature Range)  
Blank = Commercial (0°C to +70°C Ambient Temperature)  
I = Industrial (40°C to +85°C Ambient Temperature)  
PP = Pre-Production  
ES = Engineering Sample (Room Temperature Only)  
Package Lead Count  
Lead-Free Packaging  
Blank = Standard Packaging  
G= RoHS-Compliant Packaging  
Package Type  
=
=
=
=
=
UC  
CS  
QN  
VQ  
FG  
Micro Chip Scale Package (0.4 mm pitch)  
Chip Scale Package (0.4 mm and 0.5 mm pitches)  
Quad Flat Pack No Leads (0.4 mm and 0.5 mm pitch)  
Very Thin Quad Flat Pack (0.5 mm pitch)  
Fine Pitch Ball Grid Array (1.0 mm pitch)  
Speed Grade  
F = 20% Slower than Standard*  
Blank = Standard  
Supply Voltage  
2 = 1.2 V to 1.5 V  
5 = 1.5 V only  
Part Number  
IGLOO Devices  
AGL015 = 15,000 System Gates  
AGL030 = 30,000 System Gates  
AGL060 = 60,000 System Gates  
AGL125 = 125,000 System Gates  
AGL250 = 250,000 System Gates  
AGL400 = 400,000 System Gates  
AGL600 = 600,000 System Gates  
AGL1000 = 1,000,000 System Gates  
IGLOO Devices with Cortex-M1  
M1AGL250= 250,000 System Gates  
M1AGL400= 400,000 System Gates  
M1AGL600= 600,000 System Gates  
M1AGL1000= 1,000,000 System Gates  
Notes:  
1. Marking Information: IGLOO V2 devices do not have V2 marking, but IGLOO V5 devices are marked accordingly.  
2. The DC and switching characteristics for the –F speed grade targets are based only on simulation.  
The characteristics provided for the –F speed grade are subject to change after establishing FPGA specifications. Some  
restrictions might be added and will be reflected in future revisions of this document. The –F speed grade is only  
supported in the commercial temperature range.  
v1.3  
III  
IGLOO Low-Power Flash FPGAs  
Temperature Grade Offerings  
AGL015  
AGL030  
AGL060  
AGL125  
AGL250  
AGL400  
AGL600  
AGL1000  
Package  
QN48  
QN68  
UC81  
M1AGL250 4 M1AGL400 M1AGL600 M1AGL1000  
C, I  
C, I  
C, I  
C, I  
CS81  
CS121  
VQ100  
QN132  
CS196  
FG144  
FG256  
CS281  
FG484  
Notes:  
C, I  
C, I  
C, I 3  
C, I  
C, I  
C, I  
C, I  
C, I  
C, I  
C, I  
3
C, I  
C, I  
C, I  
C, I  
C, I  
C, I  
C, I 3  
C, I  
C, I  
C, I  
C, I  
C, I  
C, I  
C, I  
C, I  
C, I  
1. C = Commercial temperature range: 0°C to 70°C ambient temperature.  
2. I = Industrial temperature range: –40°C to 85°C ambient temperature.  
3. Device/package support TBD.  
4. The M1AGL250 device does not support FG256 or QN132 packages.  
Speed Grade and Temperature Grade Matrix  
Temperature Grade  
–F 1  
Std.  
C 2  
3
I
Notes:  
1. The characteristics provided for the –F speed grade are subject to change after establishing FPGA specifications. Some  
restrictions might be added and will be reflected in future revisions of this document. The –F speed grade is only supported in  
the commercial temperature range.  
2. C = Commercial temperature range: 0°C to 70°C ambient temperature.  
3. I = Industrial temperature range: –40°C to 85°C ambient temperature.  
References made to IGLOO devices also apply to ARM-enabled IGLOOe devices. The ARM-enabled part numbers start with  
M1 (Cortex-M1).  
Contact your local Actel representative for device availability:  
http://www.actel.com/contact/default.aspx.  
AGL015 and AGL030  
The AGL015 and AGL030 are architecturally compatible; there are no RAM or PLL features.  
IV  
v1.3  
1 – IGLOO Device Family Overview  
General Description  
The IGLOO family of flash FPGAs, based on a 130-nm flash process, offers the lowest power FPGA, a  
single-chip solution, small footprint packages, reprogrammability, and an abundance of advanced  
features.  
The Flash*Freeze technology used in IGLOO devices enables entering and exiting an ultra-low-  
power mode that consumes as little as 5 µW while retaining SRAM and register data. Flash*Freeze  
technology simplifies power management through I/O and clock management with rapid recovery  
to operation mode.  
The Low Power Active capability (static idle) allows for ultra-low-power consumption (from 12 µW)  
while the IGLOO device is completely functional in the system. This allows the IGLOO device to  
control system power management based on external inputs (e.g., scanning for keyboard stimulus)  
while consuming minimal power.  
Nonvolatile flash technology gives IGLOO devices the advantage of being a secure, low power,  
single-chip solution that is live at power-up (LAPU). IGLOO is reprogrammable and offers time-to-  
market benefits at an ASIC-level unit cost.  
These features enable designers to create high-density systems using existing ASIC or FPGA design  
flows and tools.  
IGLOO devices offer 1 kbit of on-chip, reprogrammable, nonvolatile FlashROM storage as well as  
clock conditioning circuitry based on an integrated phase-locked loop (PLL). The AGL015 and  
AGL030 devices have no PLL or RAM support. IGLOO devices have up to 1 million system gates,  
supported with up to 144 kbits of true dual-port SRAM and up to 300 user I/Os.  
M1 IGLOO devices support the high-performance, 32-bit Cortex-M1 processor developed by ARM  
for implementation in FPGAs. Cortex-M1 is a soft processor that is fully implemented in the FPGA  
fabric. It has a three-stage pipeline that offers a good balance between low-power consumption  
and speed when implemented in an M1 IGLOO device. The processor runs the ARMv6-M instruction  
set, has a configurable nested interrupt controller, and can be implemented with or without the  
debug block. Cortex-M1 is available for free from Actel for use in M1 IGLOO FPGAs.  
The ARM-enabled devices have Actel ordering numbers that begin with M1AGL and do not support  
AES decryption.  
Flash*Freeze Technology  
The IGLOO device offers unique Flash*Freeze technology, allowing the device to enter and exit  
ultra-low-power Flash*Freeze mode. IGLOO devices do not need additional components to turn off  
I/Os or clocks while retaining the design information, SRAM content, and registers. Flash*Freeze  
technology is combined with in-system programmability, which enables users to quickly and easily  
upgrade and update their designs in the final stages of manufacturing or in the field. The ability of  
IGLOO V2 devices to support a wide range of core voltage (1.2 V to 1.5 V) allows further reduction  
in power consumption, thus achieving the lowest total system power.  
When the IGLOO device enters Flash*Freeze mode, the device automatically shuts off the clocks  
and inputs to the FPGA core; when the device exits Flash*Freeze mode, all activity resumes and  
data is retained.  
The availability of low-power modes, combined with reprogrammability, a single-chip and single-  
voltage solution, and availability of small-footprint, high pin-count packages, make IGLOO devices  
the best fit for portable electronics.  
v1.3  
1-1  
IGLOO Device Family Overview  
Flash Advantages  
Low Power  
Flash-based IGLOO devices exhibit power characteristics similar to those of an ASIC, making them  
an ideal choice for power-sensitive applications. IGLOO devices have only a very limited power-on  
current surge and no high-current transition period, both of which occur on many FPGAs.  
IGLOO devices also have low dynamic power consumption to further maximize power savings;  
power is even further reduced by the use of a 1.2 V core voltage.  
Low dynamic power consumption, combined with low static power consumption and Flash*Freeze  
technology, gives the IGLOO device the lowest total system power offered by any FPGA.  
Security  
The nonvolatile, flash-based IGLOO devices do not require a boot PROM, so there is no vulnerable  
external bitstream that can be easily copied. IGLOO devices incorporate FlashLock, which provides a  
unique combination of reprogrammability and design security without external overhead,  
advantages that only an FPGA with nonvolatile flash programming can offer.  
IGLOO devices utilize a 128-bit flash-based lock and a separate AES key to secure programmed  
intellectual property and configuration data. In addition, all FlashROM data in IGLOO devices can  
be encrypted prior to loading, using the industry-leading AES-128 (FIPS192) bit block cipher  
encryption standard. AES was adopted by the National Institute of Standards and Technology  
(NIST) in 2000 and replaces the 1977 DES standard. IGLOO devices have a built-in AES decryption  
engine and a flash-based AES key that make them the most comprehensive programmable logic  
device security solution available today. IGLOO devices with AES-based security allow for secure,  
remote field updates over public networks such as the Internet, and ensure that valuable IP  
remains out of the hands of system overbuilders, system cloners, and IP thieves. The contents of a  
programmed IGLOO device cannot be read back, although secure design verification is possible.  
Security, built into the FPGA fabric, is an inherent component of the IGLOO family. The flash cells  
are located beneath seven metal layers, and many device design and layout techniques have been  
used to make invasive attacks extremely difficult. The IGLOO family, with FlashLock and AES  
security, is unique in being highly resistant to both invasive and noninvasive attacks. Your valuable  
IP is protected and secure, making remote ISP possible. An IGLOO device provides the most  
impenetrable security for programmable logic designs.  
Single Chip  
Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed,  
the configuration data is an inherent part of the FPGA structure, and no external configuration  
data needs to be loaded at system power-up (unlike SRAM-based FPGAs). Therefore, flash-based  
IGLOO FPGAs do not require system configuration components such as EEPROMs or  
microcontrollers to load device configuration data. This reduces bill-of-materials costs and PCB  
area, and increases security and system reliability.  
Live at Power-Up  
The Actel flash-based IGLOO devices support Level 0 of the LAPU classification standard. This  
feature helps in system component initialization, execution of critical tasks before the processor  
wakes up, setup and configuration of memory blocks, clock generation, and bus activity  
management. The LAPU feature of flash-based IGLOO devices greatly simplifies total system design  
and reduces total system cost, often eliminating the need for CPLDs and clock generation PLLs. In  
addition, glitches and brownouts in system power will not corrupt the IGLOO device's flash  
configuration, and unlike SRAM-based FPGAs, the device will not have to be reloaded when system  
power is restored. This enables the reduction or complete removal of the configuration PROM,  
expensive voltage monitor, brownout detection, and clock generator devices from the PCB design.  
Flash-based IGLOO devices simplify total system design and reduce cost and design risk while  
increasing system reliability and improving system initialization time.  
IGLOO flash FPGAs allow the user to quickly enter and exit Flash*Freeze mode. This is done almost  
instantly (within 1 µs) and the device retains configuration and data in registers and RAM. Unlike  
SRAM-based FPGAs the device does not need to reload configuration and design state from  
1-2  
v1.3  
IGLOO Low-Power Flash FPGAs  
external memory components; instead it retains all necessary information to resume operation  
immediately.  
Reduced Cost of Ownership  
Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike  
SRAM-based FPGAs, Flash-based IGLOO devices allow all functionality to be live at power-up; no  
external boot PROM is required. On-board security mechanisms prevent access to all the  
programming information and enable secure remote updates of the FPGA logic. Designers can  
perform secure remote in-system reprogramming to support future design iterations and field  
upgrades with confidence that valuable intellectual property cannot be compromised or copied.  
Secure ISP can be performed using the industry-standard AES algorithm. The IGLOO family device  
architecture mitigates the need for ASIC migration at higher user volumes. This makes the IGLOO  
family a cost-effective ASIC replacement solution, especially for applications in the consumer,  
networking/communications, computing, and avionics markets.  
Firm-Error Immunity  
Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere,  
strike a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the  
configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way.  
These errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be  
a complete system failure. Firm errors do not exist in the configuration memory of IGLOO flash-  
based FPGAs. Once it is programmed, the flash cell configuration element of IGLOO FPGAs cannot  
be altered by high-energy neutrons and is therefore immune to them. Recoverable (or soft) errors  
occur in the user data SRAM of all FPGA devices. These can easily be mitigated by using error  
detection and correction (EDAC) circuitry built into the FPGA fabric.  
Advanced Flash Technology  
The IGLOO family offers many benefits, including nonvolatility and reprogrammability, through an  
advanced flash-based, 130-nm LVCMOS process with seven layers of metal. Standard CMOS design  
techniques are used to implement logic and control functions. The combination of fine granularity,  
enhanced flexible routing resources, and abundant flash switches allows for very high logic  
utilization without compromising device routability or performance. Logic functions within the  
device are interconnected through a four-level routing hierarchy.  
IGLOO family FPGAs utilize design and process techniques to minimize power consumption in all  
modes of operation.  
Advanced Architecture  
The proprietary IGLOO architecture provides granularity comparable to standard-cell ASICs. The  
IGLOO device consists of five distinct and programmable architectural features (Figure 1-1 on  
page 1-4 and Figure 1-2 on page 1-4):  
Flash*Freeze technology  
FPGA VersaTiles  
Dedicated FlashROM  
Dedicated SRAM/FIFO memory†  
Extensive CCCs and PLLs†  
Advanced I/O structure  
The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input  
logic function, a D-flip-flop (with or without enable), or a latch by programming the appropriate  
flash switch interconnections. The versatility of the IGLOO core tile as either a three-input lookup  
table (LUT) equivalent or a D-flip-flop/latch with enable allows for efficient use of the FPGA fabric.  
The VersaTile capability is unique to the Actel ProASIC® family of third-generation-architecture  
flash FPGAs. VersaTiles are connected with any of the four levels of routing hierarchy. Flash  
switches are distributed throughout the device to provide nonvolatile, reconfigurable interconnect  
programming. Maximum core utilization is possible for virtually any design.  
The AGL015 and AGL030 do not support PLL or SRAM.  
v1.3  
1-3  
IGLOO Device Family Overview  
In addition, extensive on-chip programming circuitry allows for rapid, single-voltage (3.3 V)  
programming of IGLOO devices via an IEEE 1532 JTAG interface.  
Bank 0  
CCC  
RAM Block  
4,608-Bit Dual-Port  
SRAM or FIFO Block*  
I/Os  
VersaTile  
ISP AES  
Decryption*  
User Nonvolatile  
FlashRom  
Flash*Freeze  
Technology  
Charge  
Pumps  
Bank 1  
* Not supported by AGL015 and AGL030 devices  
Figure 1-1 • IGLOO Device Architecture Overview with Two I/O Banks (AGL015, AGL030, AGL060, and  
AGL125)  
Bank 0  
CCC  
RAM Block  
4,608-Bit Dual-Port  
SRAM or FIFO Block  
I/Os  
VersaTile  
RAM Block  
4,608-Bit Dual-Port  
SRAM or FIFO Block  
ISP AES  
Decryption*  
User Nonvolatile  
FlashRom  
Flash*Freeze  
Technology  
Charge  
Pumps  
(AGL600 and AGL1000)  
Bank 2  
Figure 1-2 • IGLOO Device Architecture Overview with Four I/O Banks (AGL250, AGL600, AGL400, and  
AGL1000)  
1-4  
v1.3  
IGLOO Low-Power Flash FPGAs  
Flash*Freeze Technology  
The IGLOO device has an ultra-low power static mode, called Flash*Freeze mode, which retains all  
SRAM and register information and can still quickly return to normal operation. Flash*Freeze  
technology enables the user to quickly (within 1 µs) enter and exit Flash*Freeze mode by activating  
the Flash*Freeze pin while all power supplies are kept at their original values. In addition, I/Os and  
global I/Os can still be driven and can be toggling without impact on power consumption, clocks  
can still be driven or can be toggling without impact on power consumption, and the device retains  
all core registers, SRAM information, and states. I/O states are tristated during Flash*Freeze mode  
or can be set to a certain state using weak pull-up or pull-down I/O attribute configuration. No  
power is consumed by the I/O banks, clocks, JTAG pins, or PLL, and the device consumes as little as  
5 µW in this mode.  
Flash*Freeze technology allows the user to switch to active mode on demand, thus simplifying the  
power management of the device.  
The Flash*Freeze pin (active low) can be routed internally to the core to allow the user's logic to  
decide when it is safe to transition to this mode. It is also possible to use the Flash*Freeze pin as a  
regular I/O if Flash*Freeze mode usage is not planned, which is advantageous because of the  
inherent low power static (as low as 12 µW) and dynamic capabilities of the IGLOO device. Refer to  
Figure 1-3 for an illustration of entering/exiting Flash*Freeze mode.  
Actel IGLOOe  
FPGA  
Flash*Freeze  
Mode Control  
Flash*Freeze Pin  
Figure 1-3 • IGLOO Flash*Freeze Mode  
VersaTiles  
The IGLOO core consists of VersaTiles, which have been enhanced beyond the ProASICPLUS® core  
tiles. The IGLOO VersaTile supports the following:  
All 3-input logic functions—LUT-3 equivalent  
Latch with clear or set  
D-flip-flop with clear or set  
Enable D-flip-flop with clear or set  
Refer to Figure 1-4 for VersaTile configurations.  
Enable D-Flip-Flop with Clear or Set  
D-Flip-Flop with Clear or Set  
LUT-3 Equivalent  
X1  
Data  
Y
Data  
CLK  
CLR  
Y
X2  
X3  
LUT-3  
Y
D-FF  
CLK  
D-FF  
Enable  
CLR  
Figure 1-4 • VersaTile Configurations  
v1.3  
1-5  
IGLOO Device Family Overview  
User Nonvolatile FlashROM  
Actel IGLOO devices have 1 kbit of on-chip, user-accessible, nonvolatile FlashROM. The FlashROM  
can be used in diverse system applications:  
Internet protocol addressing (wireless or fixed)  
System calibration settings  
Device serialization and/or inventory control  
Subscription-based business models (for example, set-top boxes)  
Secure key storage for secure communications algorithms  
Asset management/tracking  
Date stamping  
Version management  
The FlashROM is written using the standard IGLOO IEEE 1532 JTAG programming interface. The  
core can be individually programmed (erased and written), and on-chip AES decryption can be used  
selectively to securely load data over public networks (except in the AGL015 and AGL030 devices),  
as in security keys stored in the FlashROM for a user design.  
The FlashROM can be programmed via the JTAG programming interface, and its contents can be  
read back either through the JTAG programming interface or via direct FPGA core addressing. Note  
that the FlashROM can only be programmed from the JTAG interface and cannot be programmed  
from the internal logic array.  
The FlashROM is programmed as 8 banks of 128 bits; however, reading is performed on a byte-by-  
byte basis using a synchronous interface. A 7-bit address from the FPGA core defines which of the 8  
banks and which of the 16 bytes within that bank are being read. The three most significant bits  
(MSBs) of the FlashROM address determine the bank, and the four least significant bits (LSBs) of  
the FlashROM address define the byte.  
The Actel IGLOO development software solutions, Libero® Integrated Design Environment (IDE)  
and Designer, have extensive support for the FlashROM. One such feature is auto-generation of  
sequential programming files for applications requiring a unique serial number in each part.  
Another feature allows the inclusion of static data for system version control. Data for the  
FlashROM can be generated quickly and easily using Actel Libero IDE and Designer software tools.  
Comprehensive programming file support is also included to allow for easy programming of large  
numbers of parts with differing FlashROM contents.  
SRAM and FIFO  
IGLOO devices (except the AGL015 and AGL030 devices) have embedded SRAM blocks along their  
north and south sides. Each variable-aspect-ratio SRAM block is 4,608 bits in size. Available memory  
configurations are 256×18, 512×9, 1k×4, 2k×2, and 4k×1 bits. The individual blocks have  
independent read and write ports that can be configured with different bit widths on each port.  
For example, data can be sent through a 4-bit port and read as a single bitstream. The embedded  
SRAM blocks can be initialized via the device JTAG port (ROM emulation mode) using the UJTAG  
macro (except in the AGL015 and AGL030 devices).  
In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the  
SRAM block to be configured as a synchronous FIFO without using additional core VersaTiles. The  
FIFO width and depth are programmable. The FIFO also features programmable Almost Empty  
(AEMPTY) and Almost Full (AFULL) flags in addition to the normal Empty and Full flags. The  
embedded FIFO control unit contains the counters necessary for generation of the read and write  
address pointers. The embedded SRAM/FIFO blocks can be cascaded to create larger configurations.  
PLL and CCC  
IGLOO devices provide designers with very flexible clock conditioning circuit (CCC) capabilities.  
Each member of the IGLOO family contains six CCCs. One CCC (center west side) has a PLL. The  
AGL015 and AGL030 do not have a PLL.  
The six CCC blocks are located at the four corners and the centers of the east and west sides. One  
CCC (center west side) has a PLL.  
1-6  
v1.3  
IGLOO Low-Power Flash FPGAs  
All six CCC blocks are usable; the four corner CCCs and the east CCC allow simple clock delay  
operations as well as clock spine access.  
The inputs of the six CCC blocks are accessible from the FPGA core or from one of several inputs  
located near the CCC that have dedicated connections to the CCC block.  
The CCC block has these key features:  
Wide input frequency range (fIN_CCC) = 1.5 MHz up to 250 MHz  
Output frequency range (fOUT_CCC) = 0.75 MHz up to 250 MHz  
2 programmable delay types for clock skew minimization  
Clock frequency synthesis (for PLL only)  
Additional CCC specifications:  
Internal phase shift = 0°, 90°, 180°, and 270°. Output phase shift depends on the output  
divider configuration (for PLL only).  
Output duty cycle = 50% 1.5% or better (for PLL only)  
Low output jitter: worst case < 2.5% × clock period peak-to-peak period jitter when single  
global network used (for PLL only)  
Maximum acquisition time is 300 µs (for PLL only)  
Exceptional tolerance to input period jitter—allowable input jitter is up to 1.5 ns (for PLL  
only)  
Four precise phases; maximum misalignment between adjacent phases of 40 ps × 250 MHz /  
fOUT_CCC (for PLL only)  
Global Clocking  
IGLOO devices have extensive support for multiple clocking domains. In addition to the CCC and  
PLL support described above, there is a comprehensive global clock distribution network.  
Each VersaTile input and output port has access to nine VersaNets: six chip (main) and three  
quadrant global networks. The VersaNets can be driven by the CCC or directly accessed from the  
core via multiplexers (MUXes). The VersaNets can be used to distribute low-skew clock signals or for  
rapid distribution of high-fanout nets.  
I/Os with Advanced I/O Standards  
The IGLOO family of FPGAs features a flexible I/O structure, supporting a range of voltages (1.2 V,  
1.5 V, 1.8 V, 2.5 V, and 3.3 V). IGLOO FPGAs support many different I/O standards—single-ended  
and differential.  
The I/Os are organized into banks, with two or four banks per device. The configuration of these  
banks determines the I/O standards supported.  
Each I/O module contains several input, output, and enable registers. These registers allow the  
implementation of the following:  
Single-Data-Rate applications  
Double-Data-Rate applications—DDR LVDS, B-LVDS, and M-LVDS I/Os for point-to-point  
communications  
IGLOO banks for the AGL250 device and above support LVPECL, LVDS, B-LVDS, and M-LVDS. B-LVDS  
and M-LVDS can support up to 20 loads.  
v1.3  
1-7  
IGLOO Device Family Overview  
Part Number and Revision Date  
Part Number 51700095-001-6  
Revised December 2008  
List of Changes  
The following table lists critical changes that were made in the current version of the document.  
Previous Version  
Changes in Current Version (v1.3)  
QN48 and QN68 were added to the AGL030 for the following tables:  
"IGLOO Product Family"  
Page  
v1.2  
(October 2008)  
N/A  
"IGLOO Ordering Information"  
"Temperature Grade Offerings"  
QN132 is fully supported by AGL125 so footnote 3 was removed.  
v1.1  
(July 2008)  
This document was updated to include AGL400 device information. The following  
sections were updated:  
N/A  
"IGLOO Product Family"  
"IGLOO Ordering Information"  
"Temperature Grade Offerings"  
"IGLOO Product Family"  
Figure 1-2 · IGLOO Device Architecture Overview with Four I/O Banks (AGL250,  
AGL600, AGL400, and AGL1000)  
v1.0  
(March 2008)  
As a result of the Libero IDE v8.4 release, Actel now offers a wide range of core  
voltage support. The document was updated to change 1.2 V / 1.5 V to 1.2 V to  
1.5 V.  
N/A  
N/A  
51700095-001-3 This document was divided into two sections and given a version number, starting  
(March 2008)  
at v1.0. The first section of the document includes features, benefits, ordering  
information, and temperature and speed grade offerings. The second section is a  
device family overview.  
51700095-001-2 The "Low Power" section was updated to change "1.2 V and 1.5 V Core Voltage"  
(February 2008) to "1.2 V and 1.5 V Core and I/O Voltage." The text "(from 12 µW)" was removed  
from "Low-Power Active FPGA Operation."  
I
1.2_V was added to the list of core and I/O voltages in the "Advanced I/O" and  
"I/Os with Advanced I/O Standards" sections.  
I, 1-7  
I
The "Embedded Memory" section was updated to remove the footnote reference  
from the section heading and place it instead after "4,608-Bit" and "True Dual-Port  
SRAM (except ×18)."  
1-8  
v1.3  
IGLOO Low-Power Flash FPGAs  
Previous Version  
Changes in Current Version (v1.3)  
Page  
51700095-001-1 This document was updated to include AGL015 device information. QN68 is a new  
N/A  
(January 2008)  
package that was added because it is offered in the AGL015. The following  
sections were updated:  
"Features and Benefits"  
"IGLOO Ordering Information"  
"Temperature Grade Offerings"  
"IGLOO Product Family"  
"IGLOO FPGAs Package Sizes Dimensions"  
"AGL015 and AGL030" note  
"IGLOO Device Family Overview"  
The "Temperature Grade Offerings" table was updated to include M1AGL600.  
IV  
III  
In the "IGLOO Ordering Information" table, the QN package measurements were  
updated to include both 0.4 mm and 0.5 mm.  
In the "General Description" section, the number of I/Os was updated from 288 to  
300.  
1-5  
51700095-001-0 The "Low Power" section was updated to change the description of low-power I, 1-1, 1-5  
(January 2008)  
active FPGA operation to "from 12 µW" from "from 25 µW." The same update  
was made in the "General Description" section and the "Flash*Freeze  
Technology" section.  
Advance v0.7  
(November  
2007)  
This document was previously in datasheet Advance v0.7. As a result of moving to  
the handbook format, Actel has restarted the version numbers. The new version  
number is 51700095-001-0.  
N/A  
Advance v0.6  
(November  
2007)  
Table 1 • IGLOO Product Family, the "I/Os Per Package1" table, and the i, ii, iv  
Temperature Grade Offerings table were updated to reflect the following: CS196  
is now supported for AGL250; device/package support for QN132 is to be  
determined for AGL250; the CS281 package was added for AGL600 and AGL1000.  
Table 2 • IGLOO FPGAs Package Sizes Dimensions is new, and package sizes were  
removed from the "I/Os Per Package1" table.  
ii  
The "I/Os Per Package1"table was updated to reflect 77 instead of 79 single-  
ended I/Os for the VG100 package for AGL030.  
ii  
Advance v0.6  
(November  
2007)  
A note was added to "IGLOO Ordering Information" regarding marking  
information.  
iii  
Advance v0.5  
(September  
2007)  
Table 1 • IGLOO Product Family, the "I/Os Per Package1" table, and the "IGLOO i, ii, iii, iv  
Ordering Information", and the Temperature Grade Offerings table were  
updated to add the UC81 package.  
Advance v0.4  
(September  
2007)  
Table 1 • IGLOO Product Family was updated for AGL030 in the Package Pins  
section to change CS181 to CS81.  
i
Advance v0.3  
(August 2007)  
Cortex-M1 device information was added to Table 1 • IGLOO Product Family, the i, ii, iii, iv  
"I/Os Per Package1" table, "IGLOO Ordering Information", and Temperature  
Grade Offerings.  
The number of single-ended I/Os for the CS81 package for AGL030 was updated  
to 66 in the "I/Os Per Package1" table.  
ii  
Advance v0.2  
(July 2007)  
In Table 1 • IGLOO Product Family, the CS81 package was added for AGL030. The  
CS196 was replaced by the CS121 for AGL060. Table note 3 was moved to the  
specific packages to which it applies for AGL060: QN132 and FG144.  
i
The CS81 and CS121 packages were added to the "I/Os Per Package1" table. The  
number of single-ended I/Os was removed for the CS196 package in AGL060.  
Table note 6 was moved to the specific packages to which it applies for AGL060:  
QN132 and FG144.  
ii  
v1.3  
1-9  
IGLOO Device Family Overview  
Previous Version  
Changes in Current Version (v1.3)  
Page  
The CS81 and CS121 packages were added to the Temperature Grade Offerings  
table. The temperature grade offerings were removed for the CS196 package in  
AGL060. Table note 3 was moved to the specific packages to which it applies for  
AGL060: QN132 and FG144.  
iv  
Advance v0.1  
The words "ambient temperature" were added to the temperature range in the  
"IGLOO Ordering Information", Temperature Grade Offerings, and "Speed Grade  
and Temperature Grade Matrix" sections.  
iii, iv  
Datasheet Categories  
Categories  
In order to provide the latest information to designers, some datasheets are published before data  
has been fully characterized. Datasheets are designated as "Product Brief," "Advance,"  
"Preliminary," and "Production." The definition of these categories are as follows:  
Product Brief  
The product brief is a summarized version of a datasheet (advance or production) and contains  
general product information. This document gives an overview of specific device and family  
information.  
Advance  
This version contains initial estimated information based on simulation, other products, devices, or  
speed grades. This information can be used as estimates, but not for production. This label only  
applies to the DC and Switching Characteristics chapter of the datasheet and will only be used  
when the data has not been fully characterized.  
Preliminary  
The datasheet contains information based on simulation and/or initial characterization. The  
information is believed to be correct, but changes are possible.  
Unmarked (production)  
This version contains information that is considered to be final.  
Export Administration Regulations (EAR)  
The products described in this document are subject to the Export Administration Regulations  
(EAR). They could require an approved export license prior to export from the United States. An  
export includes release of product or disclosure of technology to a foreign national inside or  
outside the United States.  
Actel Safety Critical, Life Support, and High-Reliability  
Applications Policy  
The Actel products described in this advance status document may not have completed Actel’s  
qualification process. Actel may amend or enhance products during the product introduction and  
qualification process, resulting in changes in device functionality or performance. It is the  
responsibility of each customer to ensure the fitness of any Actel product (but especially a new  
product) for a particular purpose, including appropriateness for safety-critical, life-support, and  
other high-reliability applications. Consult Actel’s Terms and Conditions for specific liability  
exclusions relating to life-support applications. A reliability report covering all of Actel’s products is  
available on the Actel website at http://www.actel.com/documents/ORT_Report.pdf. Actel also  
offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your  
local Actel sales office for additional reliability information.  
1-10  
v1.3  
2 – IGLOO DC and Switching Characteristics  
General Specifications  
DC and switching characteristics for –F speed grade targets are based only on simulation.  
The characteristics provided for the –F speed grade are subject to change after establishing FPGA  
specifications. Some restrictions might be added and will be reflected in future revisions of this  
document. The –F speed grade is only supported in the commercial temperature range.  
Operating Conditions  
Stresses beyond those listed in Table 2-1 may cause permanent damage to the device.  
Exposure to absolute maximum rating conditions for extended periods may affect device reliability.  
Absolute Maximum Ratings are stress ratings only; functional operation of the device at these or  
any other conditions beyond those listed under the Recommended Operating Conditions specified  
in Table 2-2 on page 2-2 is not implied.  
Table 2-1 • Absolute Maximum Ratings  
Symbol  
VCC  
Parameter  
Limits  
Units  
DC core supply voltage  
JTAG DC voltage  
–0.3 to 1.65  
V
V
V
V
V
V
VJTAG  
VPUMP  
VCCPLL  
–0.3 to 3.75  
Programming voltage  
Analog power supply (PLL)  
–0.3 to 3.75  
–0.3 to 1.65  
–0.3 to 3.75  
VCCI and VMV 3 DC I/O buffer supply voltage  
VI  
I/O input voltage  
–0.3 V to 3.6 V (when I/O hot insertion mode is enabled)  
–0.3 V to (VCCI + 1 V) or 3.6 V, whichever voltage is lower  
(when I/O hot-insertion mode is disabled)  
2
TSTG  
Storage Temperature  
Junction Temperature  
–65 to +150  
+125  
°C  
°C  
2
TJ  
Notes:  
1. The device should be operated within the limits specified by the datasheet. During transitions, the input  
signal may undershoot or overshoot according to the limits shown in Table 2-4 on page 2-3.  
2. For flash programming and retention, maximum limits refer to Table 2-3 on page 2-2, and for  
recommended operating limits, refer to Table 2-2 on page 2-2.  
3. VMV pins must be connected to the corresponding VCCI pins. See Pin Descriptions for further information.  
Advance v0.5  
2-1  
IGLOO DC and Switching Characteristics  
Table 2-2 • Recommended Operating Conditions 4  
Symbol  
Parameter  
Commercial  
0 to +70 6  
0 to + 85  
Industrial  
–40 to +85 7  
–40 to +100  
Units  
°C  
TA  
TJ  
Ambient Temperature  
Junction Temperature 8  
°C  
3
VCC  
1.5 V DC core supply voltage1  
1.425 to 1.575 1.425 to 1.575  
V
1.2 V–1.5 V wide range core  
voltage 2  
1.14 to 1.575  
1.14 to 1.575  
V
VJTAG  
JTAG DC voltage  
1.4 to 3.6  
3.15 to 3.45  
0 to 3.45  
1.4 to 3.6  
3.15 to 3.45  
0 to 3.45  
V
V
V
V
V
VPUMP  
Programming voltage  
Programming Mode  
Operation 5  
1.5 V DC core supply voltage1  
9
VCCPLL  
Analog power supply (PLL)  
1.4 to 1.6  
1.4 to 1.6  
1.2 V–1.5 V wide range core 1.14 to 1.575  
1.14 to 1.575  
voltage2  
VCCI and 1.2 V DC core supply voltage2  
1.14 to 1.26  
1.14 to 1.26  
V
V
V
V
V
VMV 10  
1.5 V DC supply voltage  
1.425 to 1.575 1.425 to 1.575  
1.8 V DC supply voltage  
2.5 V DC supply voltage  
1.7 to 1.9  
2.3 to 2.7  
2.7 to 3.6  
1.7 to 1.9  
2.3 to 2.7  
2.7 to 3.6  
3.3 V wide range DC supply  
voltage 11  
3.3 V DC supply voltage  
LVDS differential I/O  
3.0 to 3.6  
3.0 to 3.6  
V
V
V
2.375 to 2.625 2.375 to 2.625  
3.0 to 3.6 3.0 to 3.6  
LVPECL differential I/O  
Notes:  
1. For IGLOO® V5 devices  
2. For IGLOO V2 devices only, operating at VCCI VCC  
3. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each  
I/O standard are given in Table 2-24 on page 2-23. VCCI should be at the same voltage within a given I/O  
bank.  
4. All parameters representing voltages are measured with respect to GND unless otherwise specified.  
5. VPUMP can be left floating during operation (not programming mode).  
6. Maximum TJ = 85 °C.  
7. Maximum TJ = 100 °C.  
8. To ensure targeted reliability standards are met across ambient and junction operating temperatures, Actel  
recommends that the user follow best design practices using Actel’s timing and power simulation tools.  
9. VCCPLL pins should be tied to VCC pins. See Pin Descriptions for further information.  
10. VMV pins must be connected to the corresponding VCCI pins. See Pin Descriptions for further information.  
11. 3.3 V wide range is compliant to the JDEC8a specification and supports 3.0 V VCCI operation.  
Table 2-3 • Flash Programming Limits – Retention, Storage, and Operating Temperature1  
Program Retention  
Maximum Storage  
Maximum Operating Junction  
Temperature TJ (°C) 2  
Product Grade Programming Cycles (biased/unbiased) Temperature TSTG (°C) 2  
Commercial  
Industrial  
Notes:  
500  
500  
20 years  
20 years  
110  
110  
100  
100  
1. This is a stress rating only; functional operation at any condition other than those indicated is not implied.  
2. These limits apply for program/data retention only. Refer to Table 2-1 on page 2-1 and Table 2-2 for device  
operating conditions and absolute limits.  
2-2  
Advance v0.5  
IGLOO DC and Switching Characteristics  
Table 2-4 • Overshoot and Undershoot Limits 1  
Average VCCI–GND Overshoot or  
Undershoot Duration  
Maximum Overshoot/  
Undershoot2  
VCCI  
as a Percentage of Clock Cycle2  
2.7 V or less  
10%  
5%  
1.4 V  
1.49 V  
1.1 V  
3 V  
10%  
5%  
1.19 V  
0.79 V  
0.88 V  
0.45 V  
0.54 V  
3.3 V  
3.6 V  
Notes:  
10%  
5%  
10%  
5%  
1. Based on reliability requirements at junction temperature at 85°C.  
2. The duration is allowed at one out of six clock cycles. If the overshoot/undershoot occurs at one out of two  
cycles, the maximum overshoot/undershoot has to be reduced by 0.15 V.  
3. This table does not provide PCI overshoot/undershoot limits.  
I/O Power-Up and Supply Voltage Thresholds for Power-On Reset  
(Commercial and Industrial)  
Sophisticated power-up management circuitry is designed into every IGLOO device. These circuits  
ensure easy transition from the powered-off state to the powered-up state of the device. The many  
different supplies can power up in any sequence with minimized current spikes or surges. In  
addition, the I/O will be in a known state through the power-up sequence. The basic principle is  
shown in Figure 2-1 on page 2-4 and Figure 2-2 on page 2-5.  
There are five regions to consider during power-up.  
IGLOO I/Os are activated only if ALL of the following three conditions are met:  
1. VCC and VCCI are above the minimum specified trip points (Figure 2-1 on page 2-4 and  
Figure 2-2 on page 2-5).  
2. VCCI > VCC – 0.75 V (typical)  
3. Chip is in the operating mode.  
VCCI Trip Point:  
Ramping up (V5 devices): 0.6 V < trip_point_up < 1.2 V  
Ramping down (V5 Devices): 0.5 V < trip_point_down < 1.1 V  
Ramping up (V2 devices): 0.75 V < trip_point_up < 1.05 V  
Ramping down (V2 devices): 0.65 V < trip_point_down < 0.95 V  
VCC Trip Point:  
Ramping up (V5 devices): 0.6 V < trip_point_up < 1.1 V  
Ramping down (V5 devices): 0.5 V < trip_point_down < 1.0 V  
Ramping up (V2 devices): 0.65 V < trip_point_up < 1.05 V  
Ramping down (V2 devices): 0.55 V < trip_point_down < 0.95 V  
VCC and VCCI ramp-up trip points are about 100 mV higher than ramp-down trip points. This  
specifically built-in hysteresis prevents undesirable power-up oscillations and current surges. Note  
the following:  
During programming, I/Os become tristated and weakly pulled up to VCCI.  
JTAG supply, PLL power supplies, and charge pump VPUMP supply have no influence on I/O  
behavior.  
Advance v0.5  
2-3  
IGLOO DC and Switching Characteristics  
PLL Behavior at Brownout Condition  
Actel recommends using monotonic power supplies or voltage regulators to ensure proper power-  
up behavior. Power ramp-up should be monotonic at least until VCC and VCCPLX exceed brownout  
activation levels (see Figure 2-1 and Figure 2-2 on page 2-5 for more details).  
When PLL power supply voltage and/or VCC levels drop below the VCC brownout levels (0.75 V  
0.25 V for V5 devices, and 0.75 V 0.2 V for V2 devices), the PLL output lock signal goes low and/or  
the output clock is lost. Refer to the Brownout Voltage section in the Power-Up/-Down Behavior of  
Low-Power Flash Devices chapter of the ProASIC®3 and ProASIC3E handbooks for information on  
clock and lock recovery.  
Internal Power-Up Activation Sequence  
1. Core  
2. Input buffers  
3. Output buffers, after 200 ns delay from input buffer activation  
To make sure the transition from input buffers to output buffers is clean, ensure that there is no  
path longer than 100 ns from input buffer to output buffer in your design.  
VCC = VCCI + VT  
where VT can be from 0.58 V to 0.9 V (typically 0.75 V)  
VCC  
VCC = 1.575 V  
Region 5: I/O buffers are ON  
and power supplies are within  
specification.  
Region 4: I/O  
buffers are ON.  
I/Os are functional  
Region 1: I/O Buffers are OFF  
I/Os meet the entire datasheet  
and timer specifications for  
speed, VIH/VIL , VOH/VOL , etc.  
(except differential inputs)  
but slower because VCCI is  
below specification. For the  
same reason, input buffers do not  
meet VIH/VIL levels, and output  
buffers do not meet VOH/VOL levels.  
VCC = 1.425 V  
Region 2: I/O buffers are ON.  
Region 3: I/O buffers are ON.  
I/Os are functional; I/O DC  
specifications are met,  
but I/Os are slower because  
the VCC is below specification.  
I/Os are functional (except differential inputs)  
but slower because VCCI/VCC are below  
specification. For the same reason, input  
buffers do not meet VIH/VIL levels, and  
output buffers do not meet VOH/VOL levels.  
Activation trip point:  
Va = 0.85 V 0.25 V  
Deactivation trip point:  
Region 1: I/O buffers are OFF  
Vd = 0.75 V 0.25 V  
VCCI  
Activation trip point:  
Min VCCI datasheet specification  
Va = 0.9 V 0.3 V  
Deactivation trip point:  
Vd = 0.8 V 0.3 V  
voltage at a selected I/O  
standard; i.e., 1.425 V or 1.7 V  
or 2.3 V or 3.0 V  
Figure 2-1 • V5 Devices – I/O State as a Function of VCCI and VCC Voltage Levels  
2-4  
Advance v0.5  
IGLOO DC and Switching Characteristics  
V
= V + VT  
CCI  
CC  
where VT can be from 0.58 V to 0.9 V (typically 0.75 V)  
V
CC  
V
= 1.575 V  
CC  
Region 5: I/O buffers are ON  
and power supplies are within  
specification.  
Region 4: I/O  
buffers are ON.  
I/Os are functional  
(except differential inputs)  
Region 1: I/O Buffers are OFF  
I/Os meet the entire datasheet  
and timer specifications for  
speed, VIH/VIL , VOH/VOL , etc.  
but slower because VCCI is  
below specification. For the  
same reason, input buffers do not  
meet VIH/VIL levels, and output  
buffers do not meet VOH/VOL levels.  
V
= 1.14 V  
CC  
Region 2: I/O buffers are ON.  
Region 3: I/O buffers are ON.  
I/Os are functional; I/O DC  
specifications are met,  
but I/Os are slower because  
the VCC is below specification.  
I/Os are functional (except differential inputs)  
but slower because VCCI/VCC are below  
specification. For the same reason, input  
buffers do not meet VIH/VIL levels, and  
output buffers do not meet VOH/VOL levels.  
Activation trip point:  
= 0.85 V 0.2 V  
V
a
Deactivation trip point:  
= 0.75 V 0.2 V  
Region 1: I/O buffers are OFF  
V
d
V
Activation trip point:  
= 0.9 V 0.15 V  
CCI  
Min V datasheet specification  
CCI  
V
voltage at a selected I/O  
standard; i.e., 1.14 V,1.425 V, 1.7 V,  
2.3 V, or 3.0 V  
a
Deactivation trip point:  
= 0.8 V 0.15 V  
V
d
Figure 2-2 • V2 Devices – I/O State as a Function of VCCI and VCC Voltage Levels  
Thermal Characteristics  
Introduction  
The temperature variable in the Actel Designer software refers to the junction temperature, not  
the ambient temperature. This is an important distinction because dynamic and static power  
consumption cause the chip junction to be higher than the ambient temperature.  
EQ 2-1 can be used to calculate junction temperature.  
TJ = Junction Temperature = T + TA  
EQ 2-1  
where:  
TA = Ambient Temperature  
T = Temperature gradient between junction (silicon) and ambient T = θja * P  
θ
ja = Junction-to-ambient of the package. θja numbers are located in Table 2-5 on page 2-6.  
P = Power dissipation  
Advance v0.5  
2-5  
IGLOO DC and Switching Characteristics  
Package Thermal Characteristics  
The device junction-to-case thermal resistivity is θjc and the junction-to-ambient air thermal  
resistivity is θja. The thermal characteristics for θja are shown for two air flow rates. The absolute  
maximum junction temperature is 110°C. EQ 2-2 shows a sample calculation of the absolute  
maximum power dissipation allowed for a 484-pin FBGA package at commercial temperature and  
in still air.  
Max. junction temp. (° C) Max. ambient temp. (° C)  
100° C 70° C  
Maximum Power Allowed = ---------------------------------------------------------------------------------------------------------------------------------------- = -------------------------------------- = 1. 463 W  
θja(° C/W)  
20.5°C/W  
EQ 2-2  
Table 2-5 • Package Thermal Resistivities  
θja  
Pin  
Count  
200 ft./  
min.  
500 ft./  
min.  
Package Type  
Device  
AGL015  
θjc  
TBD  
0.4  
Still Air  
TBD  
21.4  
21.2  
21.1  
21.0  
35.3  
57.8  
26.9  
26.6  
20.5  
13.6  
55.2  
31.6  
38.6  
28.1  
23.3  
Units  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
Quad Flat No Lead  
68  
TBD  
16.8  
16.6  
16.5  
16.4  
29.4  
47.6  
22.9  
22.8  
17.0  
10.4  
49.4  
26.2  
34.7  
24.4  
19.0  
TBD  
15.3  
15.0  
14.9  
14.8  
27.1  
43.3  
21.5  
21.5  
15.9  
9.4  
AGL030  
132  
132  
132  
132  
100  
196  
144  
256  
484  
896  
144  
144  
256  
256  
484  
AGL060  
0.3  
AGL125  
0.2  
AGL250  
0.1  
Very Thin Quad Flat Pack (VQFP)  
Chip Scale Package (CSP)  
All devices  
All devices  
See note*  
See note*  
See note*  
See note*  
AGL060  
10.0  
Fine Pitch Ball Grid Array (FBGA)  
3.8  
3.8  
3.2  
2.4  
18.6  
6.3  
47.2  
24.2  
33.0  
22.7  
16.7  
AGL1000  
AGL250  
12.0  
6.6  
AGL1000  
AGL1000  
8.0  
* This information applies to all IGLOO devices except those listed below. Detailed device/package thermal  
information for all IGLOO devices will be available in future revisions of the datasheet.  
Temperature and Voltage Derating Factors  
Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays (normalized to TJ = 70°C,  
VCC = 1.425 V)  
For IGLOO V2 or V5 devices, 1.5 V DC Core Supply Voltage  
Junction Temperature (°C)  
Array Voltage  
VCC (V)  
1.425  
1.5  
–40°C  
0.95  
0.88  
0.82  
0°C  
0.96  
0.89  
0.84  
25°C  
0.98  
0.91  
0.85  
70°C  
1.00  
0.93  
0.87  
85°C  
1.01  
0.93  
0.88  
110°C  
1.02  
0.94  
0.89  
1.575  
2-6  
Advance v0.5  
IGLOO DC and Switching Characteristics  
Table 2-7 • Temperature and Voltage Derating Factors for Timing Delays (normalized to TJ = 70°C,  
VCC = 1.14 V)  
For IGLOO V2, 1.2 V DC Core Supply Voltage  
Junction Temperature (°C)  
Array Voltage  
VCC (V)  
1.14  
1.2  
–40°C  
0.97  
0.86  
0.79  
0°C  
0.98  
0.87  
0.80  
25°C  
0.99  
0.89  
0.81  
70°C  
1.00  
0.89  
0.82  
85°C  
1.01  
0.90  
0.83  
110°C  
1.01  
0.91  
0.83  
1.26  
Calculating Power Dissipation  
Quiescent Supply Current  
Quiescent supply current (IDD) calculation depends on multiple factors, including operating  
voltages (VCC, VCCI, and VJTAG), operating temperature, system clock frequency, and power modes  
usage. Actel recommends using the PowerCalculator and SmartPower software estimation tools to  
evaluate the projected static and active power based on the user design, power mode usage,  
operating voltage, and temperature.  
Table 2-8 • Quiescent Supply Current (IDD) Characteristics, IGLOO Flash*Freeze Mode*  
Core  
Voltage AGL015 AGL030 AGL060 AGL125 AGL250 AGL400 AGL600 AGL1000 Units  
Typical  
(25°C)  
1.2 V  
1.5 V  
4
4
6
8
13  
18  
20  
34  
27  
51  
30  
72  
44  
µA  
µA  
6
10  
127  
* IDD includes VCC, VPUMP, VCCI, VJTAG, and VCCPLL currents. Values do not include I/O static contribution (PDC6 and  
PDC7).  
Table 2-9 • Quiescent Supply Current (IDD) Characteristics, IGLOO Sleep Mode (VCC = 0 V)*  
Core  
Voltage AGL015 AGL030 AGL060 AGL125 AGL250 AGL400 AGL600 AGL1000 Units  
VCCI/VJTAG = 1.2 V (per 1.2 V  
bank) Typical (25°C)  
1.7  
1.8  
1.9  
1.7  
1.8  
1.9  
1.7  
1.8  
1.9  
1.7  
1.8  
1.9  
1.7  
1.8  
1.9  
1.7  
1.8  
1.9  
1.7  
1.8  
1.9  
1.7  
1.8  
1.9  
µA  
µA  
µA  
VCCI/VJTAG = 1.5 V (per 1.2 V /  
bank) Typical (25°C)  
1.5 V  
VCCI / VJTAG = 1.8 V 1.2 V /  
(per  
bank)  
Typical 1.5 V  
(25°C)  
VCCI / VJTAG = 2.5 V 1.2 V /  
2.2  
2.5  
2.2  
2.5  
2.2  
2.5  
2.2  
2.5  
2.2  
2.5  
2.2  
2.5  
2.2  
2.5  
2.2  
2.5  
µA  
µA  
(per  
bank)  
Typical 1.5 V  
(25°C)  
VCCI / VJTAG = 3.3 V 1.2 V /  
(per  
bank)  
Typical 1.5 V  
(25°C)  
* IDD includes VCC, VPUMP, and VCCPLL currents. Values do not include I/O static contribution (PDC6 and PDC7).  
Table 2-10 • Quiescent Supply Current (IDD) Characteristics, IGLOO Shutdown Mode (VCC, VCCI = 0 V)*  
Core Voltage  
AGL015  
AGL030  
Units  
Typical (25°C)  
1.2 V / 1.5 V  
0
0
µA  
* IDD includes VCC, VPUMP, VCCI, VJTAG , and VCCPLL currents. Values do not include I/O static contribution (PDC6  
and PDC7).  
Advance v0.5  
2-7  
IGLOO DC and Switching Characteristics  
Table 2-11 • Quiescent Supply Current (IDD), No IGLOO Flash*Freeze Mode1  
Core  
Voltage AGL015 AGL030 AGL060 AGL125 AGL250 AGL400 AGL600 AGL1000 Units  
ICCA Current2  
Typical (25°C)  
1.2 V  
1.5 V  
5
6
10  
20  
13  
28  
18  
44  
25  
66  
28  
82  
42  
µA  
µA  
14  
16  
137  
I
CCI or IJTAG Current3, 4  
VCCI/VJTAG 1.2  
(per bank) Typical  
(25°C)  
=
V
1.2 V  
1.7  
1.8  
1.9  
2.2  
2.5  
1.7  
1.8  
1.9  
2.2  
2.5  
1.7  
1.8  
1.9  
2.2  
2.5  
1.7  
1.8  
1.9  
2.2  
2.5  
1.7  
1.8  
1.9  
2.2  
2.5  
1.7  
1.8  
1.9  
2.2  
2.5  
1.7  
1.8  
1.9  
2.2  
2.5  
1.7  
1.8  
1.9  
2.2  
2.5  
µA  
µA  
µA  
µA  
µA  
VCCI / VJTAG = 1.5 V 1.2 V /  
(per bank) Typical 1.5 V  
(25°C)  
VCCI/VJTAG = 1.8 V 1.2 V /  
(per bank) Typical 1.5 V  
(25°C)  
VCCI/VJTAG = 2.5 V 1.2 V /  
(per bank) Typical 1.5 V  
(25°C)  
VCCI/VJTAG = 3.3 V 1.2 V /  
(per bank) Typical 1.5 V  
(25°C)  
Notes:  
1. To calculate total device IDD, multiply the number of banks used by ICCI and add ICCA contribution.  
2. Includes VCC, VPUMP and VCCPLL currents.  
3. Per VCCI or VJTAG bank  
4. Values do not include I/O static contribution (PDC6 and PDC7).  
2-8  
Advance v0.5  
IGLOO DC and Switching Characteristics  
Power per I/O Pin  
Table 2-12 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings  
Applicable to Advanced I/O Banks  
Static Power  
PDC6 (mW)1  
Dynamic Power  
VCCI (V)  
PAC9 (µW/MHz)2  
Single-Ended  
3.3 V LVTTL /  
3.3  
16.27  
3.3 V LVCMOS  
2.5 V LVCMOS  
1.8 V LVCMOS  
1.5 V LVCMOS (JESD8-11)  
1.2 V LVCMOS3  
3.3 V PCI  
2.5  
1.8  
1.5  
1.2  
3.3  
3.3  
4.65  
1.61  
0.96  
0.58  
17.67  
17.67  
3.3 V PCI-X  
Differential  
LVDS  
2.5  
3.3  
2.26  
5.72  
0.89  
1.63  
LVPECL  
Notes:  
1. PDC6 is the static power (where applicable) measured on VCCI  
.
2. PAC9 is the total dynamic power measured on VCCI  
3. Applicable for IGLOO V2 devices only  
.
Table 2-13 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings  
Applicable to Standard Plus I/O Banks  
Static Power  
PDC6 (mW)1  
Dynamic Power  
VCCI (V)  
PAC9 (µW/MHz)2  
Single-Ended  
3.3 V LVTTL /  
3.3  
16.41  
3.3 V LVCMOS  
2.5 V LVCMOS  
1.8 V LVCMOS  
1.5 V LVCMOS (JESD8-11)  
1.2 V LVCMOS3  
3.3 V PCI  
2.5  
1.8  
1.5  
1.2  
3.3  
3.3  
4.75  
1.66  
1.00  
0.61  
17.78  
17.78  
3.3 V PCI-X  
Notes:  
1. PDC6 is the static power (where applicable) measured on VCCI  
.
2. PAC9 is the total dynamic power measured on VCCI  
3. Applicable for IGLOO V2 devices only.  
.
Advance v0.5  
2-9  
IGLOO DC and Switching Characteristics  
Table 2-14 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings  
Applicable to Standard I/O Banks  
Static Power  
PDC6 (mW)1  
Dynamic Power  
P
AC9 (µW/MHz)2  
VCCI (V)  
Single-Ended  
3.3 V LVTTL /  
3.3  
17.24  
3.3 V LVCMOS  
2.5 V LVCMOS  
1.8 V LVCMOS  
1.5 V LVCMOS (JESD8-11)  
1.2 V LVCMOS3  
Notes:  
2.5  
1.8  
1.5  
1.2  
5.64  
2.63  
1.97  
0.57  
1. PDC6 is the static power (where applicable) measured on VCCI  
.
2. PAC9 is the total dynamic power measured on VCCI  
3. Applicable for IGLOO V2 devices only.  
.
Table 2-15 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings1  
Applicable to Advanced I/O Banks  
Static Power  
PDC7 (mW)2  
Dynamic Power  
PAC10 (µW/MHz)3  
CLOAD (pF)  
VCCI (V)  
Single-Ended  
3.3 V LVTTL / 3.3 V LVCMOS  
2.5 V LVCMOS  
1.8 V LVCMOS  
1.5 V LVCMOS (JESD8-11)  
1.2 V LVCMOS4  
3.3 V PCI  
5
5
3.3  
2.5  
1.8  
1.5  
1.2  
3.3  
3.3  
136.95  
76.84  
49.31  
33.36  
16.24  
194.05  
194.05  
5
5
5
10  
10  
3.3 V PCI-X  
Differential  
LVDS  
2.5  
3.3  
7.74  
78.72  
LVPECL  
19.54  
143.99  
Notes:  
1. Dynamic power consumption is given for standard load and software default drive strength and output  
slew.  
2. PDC7 is the static power (where applicable) measured on VCCI  
.
3. PAC10 is the total dynamic power measured on VCCI  
.
4. Applicable for IGLOO V2 devices only.  
2-10  
Advance v0.5  
IGLOO DC and Switching Characteristics  
Table 2-16 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings1  
Applicable to Standard Plus I/O Banks  
Static Power  
PDC7 (mW)2  
Dynamic Power  
PAC10 (µW/MHz)3  
CLOAD (pF)  
VCCI (V)  
Single-Ended  
3.3 V LVTTL / 3.3 V LVCMOS  
2.5 V LVCMOS  
1.8 V LVCMOS  
1.5 V LVCMOS (JESD8-11)  
1.2 V LVCMOS4  
3.3 V PCI  
5
5
3.3  
2.5  
1.8  
1.5  
1.2  
3.3  
3.3  
122.16  
68.37  
34.53  
23.66  
14.90  
181.06  
181.06  
5
5
5
10  
10  
3.3 V PCI-X  
Notes:  
1. Dynamic power consumption is given for standard load and software default drive strength and output  
slew.  
2. PDC7 is the static power (where applicable) measured on VCCI  
.
3. PAC10 is the total dynamic power measured on VCCI  
.
4. Applicable for IGLOO V2 devices only.  
Table 2-17 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings1  
Applicable to Standard I/O Banks  
Static Power  
PDC7 (mW)2  
Dynamic Power  
CLOAD (pF)  
VCCI (V)  
PAC10 (µW/MHz)3  
Single-Ended  
3.3 V LVTTL / 3.3 V LVCMOS  
2.5 V LVCMOS  
5
5
5
5
5
3.3  
2.5  
1.8  
1.5  
1.2  
104.38  
59.86  
31.26  
21.96  
13.49  
1.8 V LVCMOS  
1.5 V LVCMOS (JESD8-11)  
1.2 V LVCMOS4  
Notes:  
1. Dynamic power consumption is given for standard load and software default drive strength and output  
slew.  
2. PDC7 is the static power (where applicable) measured on VCCI  
.
3. PAC10 is the total dynamic power measured on VCCI  
.
4. Applicable for IGLOO V2 devices only.  
Advance v0.5  
2-11  
IGLOO DC and Switching Characteristics  
Power Consumption of Various Internal Resources  
Table 2-18 • Different Components Contributing to Dynamic Power Consumption in IGLOO Devices  
For IGLOO V2 or V5 Devices, 1.5 V DC Core Supply Voltage  
Device Specific Dynamic Power  
(µW/MHz)  
Parameter  
Definition  
AGL1000 AGL600 AGL400 AGL250 AGL125 AGL060 AGL030 AGL015  
PAC1  
Clock contribution of a  
Global Rib  
14.48  
12.77  
12.77  
11.03  
11.03  
9.3  
9.3  
9.3  
PAC2  
PAC3  
PAC4  
Clock contribution of a  
Global Spine  
2.48  
1.85  
1.58  
1.58  
0.81  
0.81  
0.41  
0.41  
Clock contribution of a  
VersaTile row  
0.81  
Clock contribution of a  
VersaTile used as a  
sequential module  
0.11  
0.057  
0.207  
0.17  
0.7  
PAC5  
PAC6  
PAC7  
First contribution of a  
VersaTile used as a  
sequential module  
Second contribution of  
a VersaTile used as a  
sequential module  
Contribution of a  
VersaTile used as a  
combinatorial module  
PAC8  
PAC9  
Average contribution  
of a routing net  
Contribution of an I/O  
input pin (standard-  
dependent)  
See Table 2-12 on page 2-9 through Table 2-14 on page 2-10.  
PAC10  
PAC11  
PAC12  
PAC13  
Contribution of an I/O  
output pin (standard-  
dependent)  
See Table 2-15 on page 2-10 through Table 2-17 on page 2-11.  
Average contribution  
of a RAM block during  
a read operation  
25.00  
30.00  
2.70  
Average contribution  
of a RAM block during  
a write operation  
Dynamic PLL  
contribution  
* For a different output load, drive strength, or slew rate, Actel recommends using the Actel power spreadsheet  
calculator or SmartPower tool in Actel Libero® Integrated Design Environment (IDE).  
2-12  
Advance v0.5  
IGLOO DC and Switching Characteristics  
Table 2-19 • Different Components Contributing to the Static Power Consumption in IGLOO Devices  
For IGLOO V2 or V5 Devices, 1.5 V DC Core Supply Voltage  
Device-Specific Static Power (mW)  
Parameter  
Definition  
AGL1000 AGL600 AGL400 AGL250 AGL125 AGL060 AGL030 AGL015  
PDC1  
Array static power in  
Active mode  
See Table 2-11 on page 2-8.  
PDC2  
PDC3  
Array static power in  
Static (Idle) mode  
See Table 2-10 on page 2-7.  
See Table 2-8 on page 2-7.  
Array static power in  
Flash*Freeze mode  
PDC4  
PDC5  
Static PLL contribution  
1.84  
Bank quiescent power  
(VCCI-dependent)  
See Table 2-11 on page 2-8.  
PDC6  
I/O input pin static  
power (standard-  
dependent)  
See Table 2-12 on page 2-9 through Table 2-14 on page 2-10.  
See Table 2-15 on page 2-10 through Table 2-17 on page 2-11.  
PDC7  
I/O output pin static  
power (standard-  
dependent)  
* For a different output load, drive strength, or slew rate, Actel recommends using the Actel power spreadsheet  
calculator or SmartPower tool in Actel Libero® Integrated Design Environment (IDE).  
Advance v0.5  
2-13  
IGLOO DC and Switching Characteristics  
Table 2-20 • Different Components Contributing to Dynamic Power Consumption in IGLOO Devices  
For IGLOO V2 Devices, 1.2 V DC Core Supply Voltage  
Device Specific Dynamic Power  
(µW/MHz)  
Parameter  
Definition  
AGL1000 AGL600 AGL400 AGL250 AGL125 AGL060 AGL030 AGL015  
PAC1  
Clock contribution of a  
Global Rib  
9.28  
8.19  
8.19  
7.07  
7.07  
5.96  
5.96  
5.96  
PAC2  
PAC3  
PAC4  
Clock contribution of a  
Global Spine  
1.59  
1.19  
1.01  
1.01  
0.52  
0.52  
0.26  
0.26  
Clock contribution of a  
VersaTile row  
0.52  
Clock contribution of a  
VersaTile used as a  
sequential module  
0.07  
0.045  
0.186  
0.11  
PAC5  
PAC6  
PAC7  
First contribution of a  
VersaTile used as a  
sequential module  
Second contribution of  
a VersaTile used as a  
sequential module  
Contribution of a  
VersaTile used as a  
combinatorial module  
PAC8  
PAC9  
Average contribution  
of a routing net  
0.45  
Contribution of an I/O  
input pin (standard-  
dependent)  
See Table 2-12 on page 2-9 through Table 2-14 on page 2-10.  
PAC10  
PAC11  
PAC12  
PAC13  
Contribution of an I/O  
output pin (standard-  
dependent)  
See Table 2-15 on page 2-10 through Table 2-17 on page 2-11.  
Average contribution  
of a RAM block during  
a read operation  
25.00  
30.00  
2.10  
Average contribution  
of a RAM block during  
a write operation  
Dynamic PLL  
contribution  
* For a different output load, drive strength, or slew rate, Actel recommends using the Actel power spreadsheet  
calculator or SmartPower tool in Libero IDE.  
2-14  
Advance v0.5  
IGLOO DC and Switching Characteristics  
Table 2-21 • Different Components Contributing to the Static Power Consumption in IGLOO Device  
For IGLOO V2 Devices, 1.2 V DC Core Supply Voltage  
Device Specific Static Power (mW)  
Parameter  
Definition  
AGL1000 AGL600 AGL400 AGL250 AGL125 AGL060 AGL030 AGL015  
PDC1  
Array static power in  
Active mode  
See Table 2-11 on page 2-8.  
PDC2  
PDC3  
Array static power in  
Static (Idle) mode  
See Table 2-10 on page 2-7.  
See Table 2-8 on page 2-7.  
Array static power in  
Flash*Freeze mode  
PDC4  
PDC5  
Static PLL contribution  
0.90  
Bank quiescent power  
(VCCI-Dependent)  
See Table 2-11 on page 2-8.  
PDC6  
I/O input pin static  
power (standard-  
dependent)  
See Table 2-12 on page 2-9 through Table 2-14 on page 2-10.  
See Table 2-15 on page 2-10 through Table 2-17 on page 2-11.  
PDC7  
I/O output pin static  
power (standard-  
dependent)  
* For a different output load, drive strength, or slew rate, Actel recommends using the Actel power spreadsheet  
calculator or SmartPower tool in Actel Libero® Integrated Design Environment (IDE).  
Advance v0.5  
2-15  
IGLOO DC and Switching Characteristics  
Power Calculation Methodology  
This section describes a simplified method to estimate power consumption of an application. For  
more accurate and detailed power estimations, use the SmartPower tool in Actel Libero IDE  
software.  
The power calculation methodology described below uses the following variables:  
The number of PLLs as well as the number and the frequency of each output clock  
generated  
The number of combinatorial and sequential cells used in the design  
The internal clock frequencies  
The number and the standard of I/O pins used in the design  
The number of RAM blocks used in the design  
Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 2-22 on  
page 2-18.  
Enable rates of output buffers—guidelines are provided for typical applications in  
Table 2-23 on page 2-18.  
Read rate and write rate to the memory—guidelines are provided for typical applications in  
Table 2-23 on page 2-18. The calculation should be repeated for each clock domain defined  
in the design.  
Methodology  
Total Power Consumption—P  
TOTAL  
PTOTAL = PSTAT + PDYN  
PSTAT is the total static power consumption.  
DYN is the total dynamic power consumption.  
Total Static Power Consumption—P  
P
STAT  
PSTAT = (PDC1 or PDC2 or PDC3) + NBANKS * PDC5 + NINPUTS * PDC6 + NOUTPUTS * PDC7  
NINPUTS is the number of I/O input buffers used in the design.  
N
OUTPUTS is the number of I/O output buffers used in the design.  
BANKS is the number of I/O banks powered in the design.  
N
Total Dynamic Power Consumption—P  
DYN  
PDYN = PCLOCK + PS-CELL + PC-CELL + PNET + PINPUTS + POUTPUTS + PMEMORY + PPLL  
Global Clock Contribution—P  
CLOCK  
PCLOCK = (PAC1 + NSPINE* PAC2 + NROW * PAC3 + NS-CELL* PAC4) * FCLK  
NSPINE is the number of global spines used in the user design—guidelines are provided  
in Table 2-22 on page 2-18.  
NROW is the number of VersaTile rows used in the design—guidelines are provided in  
Table 2-22 on page 2-18.  
FCLK is the global clock signal frequency.  
N
S-CELL is the number of VersaTiles used as sequential modules in the design.  
AC1, PAC2, PAC3, and PAC4 are device-dependent.  
Sequential Cells Contribution—P  
P
S-CELL  
PS-CELL = NS-CELL * (PAC5 + α1 / 2 * PAC6) * FCLK  
NS-CELL is the number of VersaTiles used as sequential modules in the design. When a  
multi-tile sequential cell is used, it should be accounted for as 1.  
α1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-22 on  
page 2-18.  
FCLK is the global clock signal frequency.  
2-16  
Advance v0.5  
IGLOO DC and Switching Characteristics  
Combinatorial Cells Contribution—P  
C-CELL  
PC-CELL = NC-CELL* α1 / 2 * PAC7 * FCLK  
NC-CELL is the number of VersaTiles used as combinatorial modules in the design.  
α1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-22 on  
page 2-18.  
FCLK is the global clock signal frequency.  
Routing Net Contribution—P  
NET  
PNET = (NS-CELL + NC-CELL) * α1 / 2 * PAC8 * FCLK  
NS-CELL is the number of VersaTiles used as sequential modules in the design.  
NC-CELL is the number of VersaTiles used as combinatorial modules in the design.  
α1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-22 on  
page 2-18.  
FCLK is the global clock signal frequency.  
I/O Input Buffer Contribution—P  
INPUTS  
PINPUTS = NINPUTS * α2 / 2 * PAC9 * FCLK  
NINPUTS is the number of I/O input buffers used in the design.  
α2 is the I/O buffer toggle rate—guidelines are provided in Table 2-22 on page 2-18.  
F
CLK is the global clock signal frequency.  
I/O Output Buffer Contribution—P  
OUTPUTS  
POUTPUTS = NOUTPUTS * α2 / 2 * β1 * PAC10 * FCLK  
NOUTPUTS is the number of I/O output buffers used in the design.  
α2 is the I/O buffer toggle rate—guidelines are provided in Table 2-22 on page 2-18.  
β1 is the I/O buffer enable rate—guidelines are provided in Table 2-23 on page 2-18.  
F
CLK is the global clock signal frequency.  
RAM Contribution—P  
MEMORY  
PMEMORY = PAC11 * NBLOCKS * FREAD-CLOCK * β2 + PAC12 * NBLOCK * FWRITE-CLOCK * β3  
NBLOCKS is the number of RAM blocks used in the design.  
F
READ-CLOCK is the memory read clock frequency.  
β2 is the RAM enable rate for read operations.  
WRITE-CLOCK is the memory write clock frequency.  
F
β3 is the RAM enable rate for write operations—guidelines are provided in Table 2-23  
on page 2-18.  
PLL Contribution—P  
PLL  
PPLL = PDC4 + PAC13 *FCLKOUT  
FCLKOUT is the output clock frequency.1  
1. If a PLL is used to generate more than one output clock, include each output clock in the formula by adding its  
corresponding contribution (PAC13* FCLKOUT product) to the total PLL contribution.  
Advance v0.5  
2-17  
IGLOO DC and Switching Characteristics  
Guidelines  
Toggle Rate Definition  
A toggle rate defines the frequency of a net or logic element relative to a clock. It is a percentage.  
If the toggle rate of a net is 100%, this means that this net switches at half the clock frequency.  
Below are some examples:  
The average toggle rate of a shift register is 100% because all flip-flop outputs toggle at  
half of the clock frequency.  
The average toggle rate of an 8-bit counter is 25%:  
Bit 0 (LSB) = 100%  
Bit 1  
Bit 2  
= 50%  
= 25%  
Bit 7 (MSB) = 0.78125%  
Average toggle rate = (100% + 50% + 25% + 12.5% + . . . + 0.78125%) / 8  
Enable Rate Definition  
Output enable rate is the average percentage of time during which tristate outputs are enabled.  
When nontristate output buffers are used, the enable rate should be 100%.  
Table 2-22 • Toggle Rate Guidelines Recommended for Power Calculation  
Component  
Definition  
Toggle rate of VersaTile outputs  
I/O buffer toggle rate  
Guideline  
10%  
α1  
α2  
10%  
Table 2-23 • Enable Rate Guidelines Recommended for Power Calculation  
Component  
Definition  
I/O output buffer enable rate  
Guideline  
100%  
β1  
β2  
β3  
RAM enable rate for read operations  
RAM enable rate for write operations  
12.5%  
12.5%  
2-18  
Advance v0.5  
IGLOO DC and Switching Characteristics  
User I/O Characteristics  
Timing Model  
I/O Module  
(Non-Registered)  
Combinational Cell  
Y
Combinational Cell  
Y
LVPECL (Applicable to  
Advanced I/O Banks Only)L  
t
= 1.22 ns  
t
= 1.20 ns  
PD  
PD  
t
= 1.72 ns  
DP  
I/O Module  
(Non-Registered)  
Combinational Cell  
Y
Output drive strength = 12 mA  
High slew rate  
LVTTL  
t
= 3.05 ns (Advanced I/O Banks)  
DP  
t
= 1.80 ns  
PD  
I/O Module  
(Non-Registered)  
Combinational Cell  
Y
I/O Module  
(Registered)  
Output drive strength = 8 mA  
LVTTL  
t
= 1.20 ns  
High slew rate  
= 4.12 ns (Advanced I/O Banks)  
PY  
t
DP  
LVPECL  
(Applicable  
to Advanced  
I/O Banks only)  
t
= 1.49 ns  
PD  
I/O Module  
(Non-Registered)  
D
Q
Combinational Cell  
Y
Output drive strength = 4 mA  
High slew rate  
LVCMOS 1.5 V  
t
t
= 0.43 ns  
ICLKQ  
ISUD  
t
= 4.42 ns (Advanced I/O Banks)  
DP  
t
= 0.86 ns  
= 0.47 ns  
PD  
Input LVTTL  
Clock  
I/O Module  
(Registered)  
Register Cell  
Register Cell  
Combinational Cell  
Y
t
= 0.87 ns (Advanced I/O Banks)  
PY  
D
Q
D
Q
D
t
Q
LVTTL 3.3 V Output drive  
strength = 12 mA High slew rate  
I/O Module  
t
= 0.92 ns  
PD  
t
= 3.05 ns  
(Non-Registered)  
DP  
(Advanced I/O Banks)  
t
t
= 0.90 ns  
= 0.82 ns  
CLKQ  
= 1.02 ns  
= 0.52 ns  
t
t
= 0.90 ns  
= 0.82 ns  
OCLKQ  
CLKQ  
LVDS,  
BLVDS,  
M-LVDS  
SUD  
t
OSUD  
SUD  
Input LVTTL  
Clock  
Input LVTTL  
Clock  
(Applicable for  
Advanced I/O  
Banks only)  
t
= 1.35 ns  
PY  
t
= 0.87 ns  
t
= 0.87 ns  
PY  
PY  
(Advanced I/O Banks)  
(Advanced I/O Banks)  
Figure 2-3 • Timing Model  
Operating Conditions: Std. Speed, Commercial Temperature Range (TJ = 70°C), Worst-Case  
VCC = 1.425 V, for DC 1.5 V Core Voltage, Applicable to V2 and V5 Devices  
Advance v0.5  
2-19  
IGLOO DC and Switching Characteristics  
tPY  
tDIN  
D
Q
PAD  
DIN  
Y
CLK  
To Array  
I/O Interface  
tPY = MAX(tPY(R), tPY(F))  
tDIN = MAX(tDIN(R), tDIN(F))  
VIH  
Vtrip  
Vtrip  
VCC  
VIL  
PAD  
Y
50%  
50%  
GND  
tPY  
(R)  
tPY  
(F)  
VCC  
50%  
50%  
DIN  
GND  
tDOUT  
(R)  
tDOUT  
(F)  
Figure 2-4 • Input Buffer Timing Model and Delays (example)  
2-20  
Advance v0.5  
IGLOO DC and Switching Characteristics  
tDOUT  
D Q  
tDP  
PAD  
DOUT  
CLK  
Std  
Load  
D
From Array  
tDP = MAX(tDP(R), tDP(F))  
tDOUT = MAX(tDOUT(R), tDOUT(F))  
I/O Interface  
tDOUT  
tDOUT  
(F)  
VCC  
(R)  
50%  
50%  
D
0 V  
VCC  
50%  
50%  
DOUT  
PAD  
0 V  
VOH  
Vtrip  
Vtrip  
VOL  
tDP  
(R)  
tDP  
(F)  
Figure 2-5 • Output Buffer Model and Delays (example)  
Advance v0.5  
2-21  
IGLOO DC and Switching Characteristics  
t
EOUT  
D
Q
CLK  
t , t , t , t , t , t  
E
ZL ZH HZ LZ ZLS ZHS  
EOUT  
D
Q
PAD  
DOUT  
t
CLK  
D
= MAX(t  
(r), t  
(f))  
V
I/O Interface  
EOUT  
EOUT  
EOUT  
V
CC  
D
E
CC  
50%  
50%  
t
EOUT (F)  
t
EOUT (R)  
V
CC  
50%  
50%  
50%  
ZH  
50%  
t
LZ  
EOUT  
PAD  
t
t
t
ZL  
V
HZ  
CCI  
90% V  
CCI  
V
V
trip  
trip  
V
10% V  
OL  
CCI  
V
CC  
D
E
V
CC  
50%  
50%  
t
t
EOUT (F)  
EOUT (R)  
V
CC  
50%  
50%  
EOUT  
PAD  
50%  
t
ZHS  
t
V
ZLS  
OH  
V
V
trip  
trip  
V
OL  
Figure 2-6 • Tristate Output Buffer Timing Model and Delays (example)  
2-22  
Advance v0.5  
IGLOO DC and Switching Characteristics  
Overview of I/O Performance  
Summary of I/O DC Input and Output Levels – Default I/O Software  
Settings  
Table 2-24 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and  
Industrial Conditions—Software Default Settings  
Applicable to Advanced I/O Banks  
1
1
VIL  
Strength Rate Min., V Max., V  
VIH  
Min., V  
VOL  
VOH  
Min., V  
2.4  
IOL IOH  
Drive  
Slew  
I/O Standard  
Max., V Max., V  
mA mA  
3.3 V LVTTL /  
3.3 V LVCMOS  
12 mA High  
–0.3  
–0.3  
–0.3  
0.8  
0.8  
0.7  
2
3.6  
0.4  
12  
12  
3.3 V LVCMOS  
Wide Range  
Any2  
High  
2
3.6  
0.2  
VCCI – 0.2 0.1 0.1  
2.5 V LVCMOS  
1.8 V LVCMOS  
12 mA High  
12 mA High  
1.7  
2.7  
1.9  
0.7  
1.7  
12  
12  
12  
12  
–0.3 0.35 * VCCI 0.65 * VCCI  
0.45  
VCCI  
0.45  
1.5 V LVCMOS  
1.2 V LVCMOS3  
12 mA High  
–0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI  
–0.3 0.35 * VCCI 0.65 * VCCI 1.26 0.25 * VCCI  
0.75 *  
VCCI  
12  
2
12  
2
2 mA  
High  
0.75 *  
VCCI  
3.3 V PCI  
3.3 V PCI-X  
Notes:  
Per PCI specifications  
Per PCI-X specifications  
1. Currents are measured at 85°C junction temperature.  
2. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JDEC8a specification.  
3. Applicable to V2 Devices only.  
Table 2-25 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and  
Industrial Conditions—Software Default Settings  
Applicable to Standard Plus I/O Banks  
VIL  
Max, V  
VIH  
Min, V  
VOL  
Max, V  
0.4  
VOH  
Min, V  
2.4  
IOL IOH  
mA mA  
Drive  
Slew  
I/O Standard  
Strength Rate Min., V  
Max, V  
3.3 V LVTTL /  
3.3 V LVCMOS  
12 mA High –0.3  
0.8  
0.8  
0.7  
2
3.6  
12  
12  
3.3 V LVCMOS  
Wide Range  
Any2  
High  
–0.3  
2
3.6  
0.2  
VCCI – 0.2 0.1 0.1  
2.5 V LVCMOS  
1.8 V LVCMOS  
12 mA High –0.3  
1.7  
2.7  
1.9  
0.7  
1.7  
12  
8
12  
8
8 mA  
4 mA  
2 mA  
High –0.3 0.35 * VCCI 0.65 * VCCI  
0.45  
VCCI –  
0.45  
1.5 V LVCMOS  
1.2 V LVCMOS3  
High –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI  
High –0.3 0.35 * VCCI 0.65 * VCCI 1.26 0.25 * VCCI  
0.75 *  
VCCI  
4
2
4
2
0.75 *  
VCCI  
3.3 V PCI  
3.3 V PCI-X  
Notes:  
Per PCI specifications  
Per PCI-X specifications  
1. Currents are measured at 85°C junction temperature.  
2. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JDEC8a specification.  
3. Applicable to V2 Devices only.  
Advance v0.5  
2-23  
IGLOO DC and Switching Characteristics  
Table 2-26 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and  
Industrial Conditions—Software Default Settings  
Applicable to Standard I/O Banks  
1
1
VIL  
Max, V  
VIH  
Min, V  
VOL  
Max, V  
0.4  
VOH  
Min, V  
2.4  
IOL IOH  
Drive  
Slew  
I/O Standard  
Strength Rate Min, V  
Max, V  
mA mA  
3.3 V LVTTL /  
3.3 V LVCMOS  
8 mA  
Any2  
High  
High  
–0.3  
–0.3  
–0.3  
0.8  
0.8  
0.7  
2
3.6  
8
8
3.3 V LVCMOS  
Wide Range  
2
3.6  
0.2  
VCCI – 0.2 0.1 0.1  
2.5 V LVCMOS  
1.8 V LVCMOS  
8 mA  
4 mA  
High  
High  
1.7  
2.7  
1.9  
0.7  
1.7  
8
4
8
4
–0.3 0.35 * VCCI 0.65 * VCCI  
0.45  
VCCI  
0.45  
1.5 V LVCMOS  
1.2 V LVCMOS3  
Notes:  
2 mA  
1 mA  
High  
High  
–0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI  
–0.3 0.35 * VCCI 0.65 * VCCI 1.26 0.25 * VCCI  
0.75 *  
VCCI  
2
1
2
1
0.75 *  
VCCI  
1. Currents are measured at 85°C junction temperature.  
2. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JDEC8a  
specification.  
3. Applicable to V2 Devices only.  
Table 2-27 • Summary of Maximum and Minimum DC Input Levels  
Applicable to Commercial and Industrial Conditions  
Commercial1  
Industrial2  
IIL  
µA  
10  
10  
10  
10  
10  
10  
10  
10  
IIH  
µA  
10  
10  
10  
10  
10  
10  
10  
10  
IIL  
µA  
15  
15  
15  
15  
15  
15  
15  
15  
IIH  
µA  
15  
15  
15  
15  
15  
15  
15  
15  
DC I/O Standards  
3.3 V LVTTL / 3.3 V LVCMOS  
3.3 V LVCMOS Wide Range  
2.5 V LVCMOS  
1.8 V LVCMOS  
1.5 V LVCMOS  
1.2 V LVCMOS3  
3.3 V PCI  
3.3 V PCI-X  
Notes:  
1. Commercial range (0°C < TA < 70°C)  
2. Industrial range (–40°C < TA < 85°C)  
3. Applicable to V2 Devices only.  
2-24  
Advance v0.5  
IGLOO DC and Switching Characteristics  
Summary of I/O Timing Characteristics – Default I/O Software Settings  
Table 2-28 • Summary of AC Measuring Points  
Standard  
Measuring Trip Point (Vtrip  
)
3.3 V LVTTL / 3.3 V LVCMOS  
2.5 V LVCMOS  
1.8 V LVCMOS  
1.5 V LVCMOS  
1.2 V LVCMOS  
3.3 V PCI  
1.4 V  
1.2 V  
0.90 V  
0.75 V  
0.60 V  
0.285 * VCCI (RR)  
0.615 * VCCI (FF)  
0.285 * VCCI (RR)  
0.615 * VCCI (FF)  
3.3 V PCI-X  
Table 2-29 • I/O AC Parameter Definitions  
Parameter  
Parameter Definition  
Data to Pad delay through the Output Buffer  
Pad to Data delay through the Input Buffer  
tDP  
tPY  
tDOUT  
tEOUT  
tDIN  
tHZ  
Data to Output Buffer delay through the I/O interface  
Enable to Output Buffer Tristate Control delay through the I/O interface  
Input Buffer to Data delay through the I/O interface  
Enable to Pad delay through the Output Buffer—HIGH to Z  
Enable to Pad delay through the Output Buffer—Z to HIGH  
Enable to Pad delay through the Output Buffer—LOW to Z  
Enable to Pad delay through the Output Buffer—Z to LOW  
Enable to Pad delay through the Output Buffer with delayed enable—Z to HIGH  
Enable to Pad delay through the Output Buffer with delayed enable—Z to LOW  
tZH  
tLZ  
tZL  
tZHS  
tZLS  
Advance v0.5  
2-25  
IGLOO DC and Switching Characteristics  
Table 2-30 • Summary of I/O Timing Characteristics—Software Default Settings, Std. Speed Grade,  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Applicable to Advanced I/O Banks  
3.3 V LVTTL /  
12 mA High 5 pF  
0.97 2.09 0.19 0.85 0.66 2.13 1.67 2.67 3.04 5.66 5.20 ns  
3.3 V LVCMOS  
2.5 V LVCMOS 12 mA High 5 pF  
1.8 V LVCMOS 12 mA High 5 pF  
1.5 V LVCMOS 12 mA High 5 pF  
0.97 2.09 0.19 1.07 0.66 2.13 1.82 2.73 2.93 5.66 5.35 ns  
0.97 2.24 0.19 1.01 0.66 2.28 1.99 3.02 3.39 5.81 5.52 ns  
0.97 2.50 0.19 1.17 0.66 2.55 2.26 3.20 3.48 6.08 5.79 ns  
3.3 V PCI  
Per PCI High 10pF 25 2 0.97 2.32 0.19 0.73 0.66 2.36 1.77 2.67 3.04 5.89 5.30 ns  
spec  
3.3 V PCI-X  
Per PCI-X High 10pF 25 2 0.97 2.32 0.19 0.70 0.66 2.36 1.77 2.67 3.04 5.89 5.30 ns  
spec  
LVDS  
24 mA High  
24 mA High  
0.97 1.67 0.19 1.31  
0.97 1.67 0.19 1.16  
ns  
ns  
LVPECL  
Notes:  
1. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
2. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-12 on  
page 2-62 for connectivity. This resistor is not required during normal operation.  
2-26  
Advance v0.5  
IGLOO DC and Switching Characteristics  
Table 2-31 • Summary of I/O Timing Characteristics—Software Default Settings, Std. Speed Grade,  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Applicable to Standard Plus I/O Banks  
3.3 V LVTTL /  
12 mA High 5 pF  
0.97 1.75 0.19 0.85 0.66 1.78 1.39 2.36 2.79 5.31 4.92 ns  
3.3 V LVCMOS  
2.5 V LVCMOS 12 mA High 5 pF  
1.8 V LVCMOS 8 mA High 5 pF  
1.5 V LVCMOS 4 mA High 5 pF  
0.97 1.75 0.19 1.08 0.66 1.78 1.51 2.38 2.69 5.32 5.04 ns  
0.97 1.97 0.19 1.01 0.66 2.01 1.76 2.46 2.66 5.54 5.29 ns  
0.97 2.25 0.19 1.17 0.66 2.29 1.99 2.53 2.68 5.82 5.52 ns  
3.3 V PCI  
Per PCI High 10pF 25 2 0.97 1.96 0.19 0.73 0.66 2.00 1.50 2.36 2.79 5.53 5.03 ns  
spec  
3.3 V PCI-X  
Per  
PCI-X  
spec  
High 10pF 25 2 0.97 1.96 0.19 0.70 0.66 2.00 1.50 2.36 2.79 5.53 5.03 ns  
Notes:  
1. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
2. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-12 on  
page 2-62 for connectivity. This resistor is not required during normal operation.  
Table 2-32 • Summary of I/O Timing Characteristics—Software Default Settings, Std. Speed Grade,  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Applicable to Standard I/O Banks  
3.3 V LVTTL /  
8 mA High  
5 pF  
0.97 1.85 0.19 0.83 0.66 1.88 1.45 1.96 2.26 ns  
3.3 V LVCMOS  
2.5 V LVCMOS  
1.8 V LVCMOS  
1.5 V LVCMOS  
Notes:  
8 mA High  
4 mA High  
2 mA High  
5 pF  
5 pF  
5 pF  
0.97 1.88 0.19 1.04 0.66 1.92 1.62 1.95 2.14 ns  
0.97 2.18 0.19 0.98 0.66 2.22 1.93 1.96 2.06 ns  
0.97 2.51 0.19 1.13 0.66 2.56 2.20 1.99 2.03 ns  
1. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
2. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-12 on  
page 2-62 for connectivity. This resistor is not required during normal operation.  
Advance v0.5  
2-27  
IGLOO DC and Switching Characteristics  
Table 2-33 • Summary of I/O Timing Characteristics—Software Default Settings, Std. Speed Grade,  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V  
Applicable to Advanced I/O Banks  
3.3 V LVTTL /  
12 mA High 5 pF  
1.55 2.66 0.26 0.98 1.10 2.71 2.18 3.23 3.92 8.52 7.99 ns  
3.3 V LVCMOS  
2.5 V LVCMOS 12 mA High 5 pF  
1.8 V LVCMOS 12 mA High 5 pF  
1.5 V LVCMOS 12 mA High 5 pF  
1.55 2.63 0.26 1.20 1.10 2.68 2.30 3.28 3.77 8.48 8.10 ns  
1.55 2.71 0.26 1.11 1.10 2.76 2.44 3.56 4.17 8.57 8.24 ns  
1.55 2.95 0.26 1.27 1.10 3.00 2.70 3.74 4.21 8.81 8.51 ns  
1.55 3.61 0.26 1.58 1.10 3.45 3.33 3.94 3.66 9.05 8.93 ns  
1.2 V LVCMOS  
3.3 V PCI  
2 mA  
High 5 p  
Per PCI High 10pF 252 1.55 2.90 0.26 0.86 1.10 2.95 2.29 3.23 3.92 8.76 8.10 ns  
spec  
3.3 V PCI-X  
Per PCI-X High 10pF 252 1.55 2.90 0.25 0.86 1.10 2.95 2.29 3.23 3.92 8.76 8.10 ns  
spec  
LVDS  
24 mA High  
24 mA High  
1.55 2.19 0.25 1.52  
1.55 2.24 0.25 1.37  
ns  
ns  
LVPECL  
Notes:  
1. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating  
values.  
2. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-12 on  
page 2-62 for connectivity. This resistor is not required during normal operation.  
2-28  
Advance v0.5  
IGLOO DC and Switching Characteristics  
Table 2-34 • Summary of I/O Timing Characteristics—Software Default Settings, Std. Speed Grade,  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V  
Applicable to Standard Plus I/O Banks  
3.3 V LVTTL /  
12 mA High 5 pF  
1.55 2.30 0.26 0.97 1.10 2.34 1.87 2.91 3.62 8.15 7.67 ns  
3.3 V LVCMOS  
2.5 V LVCMOS 12 mA High 5 pF  
1.55 2.28 0.26 1.20 1.10 2.32 1.95 2.92 3.50 8.13 7.75 ns  
1.55 2.42 0.26 1.11 1.10 2.47 2.16 2.98 3.38 8.28 7.97 ns  
1.55 2.67 0.26 1.27 1.10 2.72 2.39 3.05 3.36 8.53 8.20 ns  
1.55 3.23 0.26 1.58 1.10 3.09 2.76 3.30 3.49 8.69 8.36 ns  
1.8 V LVCMOS  
1.5 V LVCMOS  
1.2 V LVCMOS  
3.3 V PCI  
8 mA High 5 pF  
4 mA High 5 pF  
2 mA High 5 pF  
Per PCI High 10pF 25 2 1.55 2.52 0.26 0.85 1.10 2.57 1.98 2.91 3.62 8.37 7.78 ns  
spec  
3.3 V PCI-X  
Per PCI-X High 10pF 25 2 1.55 2.52 0.25 0.85 1.10 2.57 1.98 2.91 3.62 8.37 7.78 ns  
spec  
Notes:  
1. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating  
values.  
2. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-12 on  
page 2-62 for connectivity. This resistor is not required during normal operation.  
Table 2-35 • Summary of I/O Timing Characteristics—Software Default Settings, Std. Speed Grade,  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V  
Applicable to Standard I/O Banks  
3.3 V LVTTL /  
8 mA High  
5 pF  
1.55 2.37 0.26 0.94 1.10 2.42 1.92 2.39 2.94 ns  
3.3 V LVCMOS  
2.5 V LVCMOS  
1.8 V LVCMOS  
1.5 V LVCMOS  
1.2 V LVCMOS  
Notes:  
8 mA High  
4 mA High  
2 mA High  
1 mA High  
5 pF  
5 pF  
5 pF  
5 pF  
1.55 2.38 0.26 1.15 1.10 2.42 2.05 2.37 2.79 ns  
1.55 2.60 0.26 1.08 1.10 2.64 2.33 2.37 2.61 ns  
1.55 2.91 0.26 1.22 1.10 2.96 2.60 2.39 2.54 ns  
1.55 3.60 0.26 1.52 1.10 3.45 3.04 2.52 2.50 ns  
1. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating  
values.  
2. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-12 on  
page 2-62 for connectivity. This resistor is not required during normal operation.  
Advance v0.5  
2-29  
IGLOO DC and Switching Characteristics  
Detailed I/O DC Characteristics  
Table 2-36 • Input Capacitance  
Symbol  
CIN  
Definition  
Conditions  
Min.  
Max.  
Units  
pF  
Input capacitance  
VIN = 0, f = 1.0 MHz  
VIN = 0, f = 1.0 MHz  
8
8
CINCLK  
Input capacitance on the clock pin  
pF  
Table 2-37 • I/O Output Buffer Maximum Resistances1  
Applicable to Advanced I/O Banks  
RPULL-DOWN  
RPULL-UP  
Standard  
Drive Strength  
2 mA  
()2  
()3  
3.3 V LVTTL / 3.3 V LVCMOS  
100  
100  
50  
300  
300  
150  
150  
75  
4 mA  
6 mA  
8 mA  
50  
12 mA  
16 mA  
24 mA  
2 mA  
25  
17  
50  
11  
33  
2.5 V LVCMOS  
100  
100  
50  
300  
300  
150  
150  
75  
4 mA  
6 mA  
8 mA  
50  
12 mA  
16 mA  
24 mA  
2 mA  
25  
17  
50  
11  
33  
1.8 V LVCMOS  
100  
100  
50  
200  
200  
100  
100  
50  
4 mA  
6 mA  
8 mA  
50  
12 mA  
16 mA  
2 mA  
25  
20  
40  
1.5 V LVCMOS  
200  
100  
67  
224  
112  
75  
4 mA  
6 mA  
8 mA  
33  
37  
12 mA  
2 mA  
33  
37  
1.2 V LVCMOS  
3.3 V PCI/PCI-X  
TBD  
25  
TBD  
75  
Per PCI/PCI-X  
specification  
Notes:  
1. These maximum values are provided for informational reasons only. Minimum output buffer resistance  
values depend on VCCI, drive strength selection, temperature, and process. For board design considerations  
and detailed output buffer resistances, use the corresponding IBIS models located on the Actel website at  
http://www.actel.com/download/ibis/default.aspx.  
2. R(PULL-DOWN-MAX) = (VOLspec) / IOLspec  
3. R(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHspec  
2-30  
Advance v0.5  
IGLOO DC and Switching Characteristics  
Table 2-38 • I/O Output Buffer Maximum Resistances1  
Applicable to Standard Plus I/O Banks  
RPULL-DOWN  
RPULL-UP  
Standard  
Drive Strength  
2 mA  
()2  
100  
100  
50  
()3  
3.3 V LVTTL / 3.3 V LVCMOS  
300  
300  
150  
150  
75  
4 mA  
6 mA  
8 mA  
50  
12 mA  
16 mA  
2 mA  
25  
25  
75  
2.5 V LVCMOS  
100  
100  
50  
200  
200  
100  
100  
50  
4 mA  
6 mA  
8 mA  
50  
12 mA  
2 mA  
25  
1.8 V LVCMOS  
1.5 V LVCMOS  
200  
100  
50  
225  
112  
56  
4 mA  
6 mA  
8 mA  
50  
56  
2 mA  
200  
100  
TBD  
25  
224  
112  
TBD  
75  
4 mA  
1.2 V LVCMOS  
3.3 V PCI/PCI-X  
2 mA  
Per PCI/PCI-X  
specification  
Notes:  
1. These maximum values are provided for informational reasons only. Minimum output buffer resistance  
values depend on VCCI, drive strength selection, temperature, and process. For board design considerations  
and detailed output buffer resistances, use the corresponding IBIS models located on the Actel website at  
http://www.actel.com/download/ibis/default.aspx.  
2. R(PULL-DOWN-MAX) = (VOLspec) / IOLspec  
3. R(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHspec  
Advance v0.5  
2-31  
IGLOO DC and Switching Characteristics  
Table 2-39 • I/O Output Buffer Maximum Resistances1  
Applicable to Standard I/O Banks  
RPULL-DOWN  
RPULL-UP  
Standard  
Drive Strength  
2 mA  
()2  
()3  
3.3 V LVTTL / 3.3 V LVCMOS  
100  
100  
50  
300  
300  
150  
150  
200  
200  
100  
100  
225  
112  
224  
TBD  
4 mA  
6 mA  
8 mA  
50  
2.5 V LVCMOS  
2 mA  
100  
100  
50  
4 mA  
6 mA  
8 mA  
50  
1.8 V LVCMOS  
2 mA  
200  
100  
200  
TBD  
4 mA  
1.5 V LVCMOS  
1.2 V LVCMOS  
Notes:  
2 mA  
1 mA  
1. These maximum values are provided for informational reasons only. Minimum output buffer resistance  
values depend on VCCI, drive strength selection, temperature, and process. For board design considerations  
and detailed output buffer resistances, use the corresponding IBIS models located on the Actel website at  
http://www.actel.com/download/ibis/default.aspx.  
2. R(PULL-DOWN-MAX) = (VOLspec) / IOLspec  
3. R(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHspec  
Table 2-40 • I/O Weak Pull-Up/Pull-Down Resistances  
Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values  
1
2
R(WEAK PULL-UP)  
R(WEAK PULL-DOWN)  
()  
()  
VCCI  
Min.  
10 k  
11 k  
18 k  
19 k  
TBD  
Max.  
45 k  
55 k  
70 k  
90 k  
TBD  
Min.  
Max.  
45 k  
3.3 V  
2.5 V  
1.8 V  
1.5 V  
1.2 V  
Notes:  
10 k  
12 k  
17 k  
19 k  
TBD  
74 k  
110 k  
140 k  
TBD  
1. R(WEAK PULL-UP-MAX) = (VOLspec) / I(WEAK PULL-UP-MIN)  
2. R(WEAK PULL-UP-MAX) = (VCCImax – VOHspec) / I(WEAK PULL-UP-MIN)  
2-32  
Advance v0.5  
IGLOO DC and Switching Characteristics  
Table 2-41 • I/O Short Currents IOSH/IOSL  
Applicable to Advanced I/O Banks  
Drive Strength  
I
OSL (mA)*  
IOSH (mA)*  
27  
3.3 V LVTTL / 3.3 V LVCMOS  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
24 mA  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
24 mA  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
2 mA  
25  
25  
27  
51  
54  
51  
54  
103  
132  
268  
16  
109  
127  
181  
18  
2.5 V LVCMOS  
16  
18  
32  
37  
32  
37  
65  
74  
83  
87  
169  
9
124  
11  
1.8 V LVCMOS  
17  
22  
35  
44  
45  
51  
91  
74  
91  
74  
1.5 V LVCMOS  
13  
16  
25  
33  
32  
39  
66  
55  
66  
55  
1.2 V LVCMOS  
3.3 V PCI/PCI-X  
TBD  
103  
TBD  
109  
Per PCI/PCI-X  
specification  
* TJ = 100°C  
Advance v0.5  
2-33  
IGLOO DC and Switching Characteristics  
Table 2-42 • I/O Short Currents IOSH/IOSL  
Applicable to Standard Plus I/O Banks  
Drive Strength  
2 mA  
I
OSL (mA)*  
25  
IOSH (mA)*  
27  
3.3 V LVTTL / 3.3 V LVCMOS  
4 mA  
25  
27  
6 mA  
51  
54  
8 mA  
51  
54  
12 mA  
16 mA  
2 mA  
103  
103  
16  
109  
109  
18  
2.5 V LVCMOS  
4 mA  
16  
18  
6 mA  
32  
37  
8 mA  
32  
37  
12 mA  
2 mA  
65  
74  
1.8 V LVCMOS  
1.5 V LVCMOS  
9
11  
4 mA  
17  
22  
6 mA  
35  
44  
8 mA  
35  
44  
2 mA  
13  
16  
4 mA  
25  
33  
1.2 V LVCMOS  
3.3 V PCI/PCI-X  
2 mA  
TBD  
103  
TBD  
109  
Per PCI/PCI-X  
specification  
* TJ = 100°C  
Table 2-43 • I/O Short Currents IOSH/IOSL  
Applicable to Standard I/O Banks  
Drive Strength  
IOSL (mA)*  
IOSH (mA)*  
3.3 V LVTTL / 3.3 V LVCMOS  
2.5 V LVCMOS  
2 mA  
4 mA  
6 mA  
8 mA  
2 mA  
4 mA  
6 mA  
8 mA  
2 mA  
4 mA  
2 mA  
1 mA  
25  
25  
51  
51  
16  
16  
32  
32  
9
27  
27  
54  
54  
18  
18  
37  
37  
11  
22  
16  
TBD  
1.8 V LVCMOS  
17  
13  
TBD  
1.5 V LVCMOS  
1.2 V LVCMOS  
* TJ = 100°C  
2-34  
Advance v0.5  
IGLOO DC and Switching Characteristics  
The length of time an I/O can withstand IOSH/IOSL events depends on the junction temperature. The  
reliability data below is based on a 3.3 V, 12 mA I/O setting, which is the worst case for this type of  
analysis.  
For example, at 110°C, the short current condition would have to be sustained for more than three  
months to cause a reliability concern. The I/O design does not contain any short circuit protection,  
but such protection would only be needed in extremely prolonged stress conditions.  
Table 2-44 • Duration of Short Circuit Event before Failure  
Temperature  
–40°C  
0°C  
Time before Failure  
> 20 years  
> 20 years  
> 20 years  
5 years  
25°C  
70°C  
85°C  
2 years  
100°C  
110°C  
6 months  
3 months  
Table 2-45 • I/O Input Rise Time, Fall Time, and Related I/O Reliability  
Input Rise/Fall Time  
(min.)  
Input Rise/Fall Time  
(max.)  
Input Buffer  
Reliability  
LVTTL/LVCMOS  
No requirement  
No requirement  
10 ns *  
10 ns *  
20 years (110°C)  
10 years (100°C)  
LVDS/B-LVDS/M-LVDS/  
LVPECL  
* The maximum input rise/fall time is related to the noise induced into the input buffer trace. If the  
noise is low, then the rise time and fall time of input buffers can be increased beyond the  
maximum value. The longer the rise/fall times, the more susceptible the input signal is to the  
board noise. Actel recommends signal integrity evaluation/characterization of the system to  
ensure that there is no excessive noise coupling into input signals.  
Advance v0.5  
2-35  
IGLOO DC and Switching Characteristics  
Single-Ended I/O Characteristics  
3.3 V LVTTL / 3.3 V LVCMOS  
Low-Voltage Transistor–Transistor Logic (LVTTL) is a general-purpose standard (EIA/JESD) for 3.3 V  
applications. It uses an LVTTL input buffer and push-pull output buffer. Furthermore, all LVCMOS  
3.3 V software macros comply with LVCMOS 3.3 V wide range as specified in the JESD8a  
specification.  
Table 2-46 • Minimum and Maximum DC Input and Output Levels  
Applicable to Advanced I/O Banks  
3.3 V LVTTL /  
3.3 V LVCMOS  
VIL  
VIH  
VOL  
VOH IOL IOH  
IOSL  
IOSH  
IIL IIH  
Drive  
Strength  
Min., V Max., V Min., V Max., V Max., V Min., V mA mA Max., mA1 Max., mA1 µA2 µA2  
2 mA  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
2
2
2
2
2
2
2
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
2.4  
2.4  
2.4  
2.4  
2.4  
2.4  
2.4  
2
4
6
8
2
4
6
8
25  
25  
27  
27  
10 10  
10 10  
10 10  
10 10  
10 10  
10 10  
10 10  
4 mA  
6 mA  
51  
54  
8 mA  
51  
54  
12 mA  
16 mA  
24 mA  
Notes:  
12 12  
16 16  
24 24  
103  
132  
268  
109  
127  
181  
1. Currents are measured at 100°C junction temperature and maximum voltage.  
2. Currents are measured at 85°C junction temperature.  
3. Software default selection highlighted in gray.  
Table 2-47 • Minimum and Maximum DC Input and Output Levels  
Applicable to Standard Plus I/O Banks  
3.3 V LVTTL /  
3.3 V LVCMOS  
VIL  
VIH  
VOL  
VOH  
IOL IOH  
IOSL  
IOSH  
IIL IIH  
Drive  
Strength  
Min., V Max., V Min., V Max., V Max., V Min., V mA mA Max., mA1 Max., mA1 µA2 µA2  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
Notes:  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
2
2
2
2
2
2
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
2.4  
2.4  
2.4  
2.4  
2.4  
2.4  
2
4
6
2
25  
25  
27  
27  
10 10  
10 10  
10 10  
10 10  
10 10  
10 10  
4
6
51  
54  
8
8
51  
54  
12 12  
16 16  
103  
103  
109  
109  
1. Currents are measured at 100°C junction temperature and maximum voltage.  
2. Currents are measured at 85°C junction temperature.  
3. Software default selection highlighted in gray.  
2-36  
Advance v0.5  
IGLOO DC and Switching Characteristics  
Table 2-48 • Minimum and Maximum DC Input and Output Levels  
Applicable to Standard I/O Banks  
3.3 V LVTTL /  
3.3 V LVCMOS  
VIL  
VIH  
VOL  
VOH IOL IOH  
IOSL  
IOSH  
IIL IIH  
Drive  
Strength  
Min., V Max., V Min., V Max., V Max., V Min., V mA mA Max., mA1 Max., mA1 µA2 µA2  
2 mA  
4 mA  
6 mA  
8 mA  
Notes:  
–0.3  
–0.3  
–0.3  
–0.3  
0.8  
0.8  
0.8  
0.8  
2
2
2
2
3.6  
3.6  
3.6  
3.6  
0.4  
0.4  
0.4  
0.4  
2.4  
2.4  
2.4  
2.4  
2
4
6
8
2
25  
25  
51  
51  
27  
27  
54  
54  
10 10  
10 10  
10 10  
10 10  
4
6
8
1. Currents are measured at 100°C junction temperature and maximum voltage.  
2. Currents are measured at 85°C junction temperature.  
3. Software default selection highlighted in gray.  
Table 2-49 • Minimum and Maximum DC Input and Output Levels for LVCMOS 3.3 V Wide Range  
Applicable to Advanced, Standard Plus, and Standard I/O Banks  
3.3 V LVCMOS Wide  
Range  
VIL  
VIH  
VOL  
VOH  
IOL IOH  
IIL  
IIH  
Drive  
Strength  
Min., V  
Max., V  
Min., V  
Max., V  
Max., V  
Min., V mA mA µA2 µA2  
VCCI – 0.2 0.1 0.1 10 10  
All2  
–0.3  
0.8  
2
3.6  
0.2  
Notes:  
1. Currents are measured at 100°C junction temperature and maximum voltage.  
2. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JDEC8a  
specification.  
R to VCCI for tLZ/tZL/tZLS  
R = 1 k  
Test Point  
Datapath  
R to GND for tHZ/tZH/tZHS  
Test Point  
5 pF  
Enable Path  
35 pF for tZH/tZHS/tZL/tZLS  
5 pF for tHZ/tLZ  
Figure 2-7 • AC Loading  
Table 2-50 • AC Waveforms, Measuring Points, and Capacitive Loads  
Input LOW (V)  
Input HIGH (V)  
Measuring Point* (V)  
CLOAD (pF)  
0
3.3  
1.4  
5
* Measuring point = Vtrip. See Table 2-28 on page 2-25 for a complete table of trip points.  
Advance v0.5  
2-37  
IGLOO DC and Switching Characteristics  
Timing Characteristics  
Applies to 1.5 V DC Core Voltage  
Table 2-51 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Applicable to Advanced I/O Banks  
Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ  
tZLS  
tZHS Units  
4 mA  
Std.  
Std.  
Std.  
Std.  
Std.  
Std.  
0.97 4.46 0.19 0.85 0.66 4.55 3.88 2.24 2.19 8.08 7.41  
ns  
ns  
ns  
ns  
ns  
ns  
6 mA  
0.97 3.74 0.19 0.85 0.66 3.81 3.36 2.49 2.63 7.34 6.89  
0.97 3.74 0.19 0.85 0.66 3.81 3.36 2.49 2.63 7.34 6.89  
0.97 3.23 0.19 0.85 0.66 3.29 2.97 2.66 2.91 6.82 6.50  
0.97 3.08 0.19 0.85 0.66 3.13 2.88 2.70 2.99 6.66 6.41  
0.97 3.00 0.19 0.85 0.66 3.05 2.90 2.74 3.27 6.58 6.43  
8 mA  
12 mA  
16 mA  
24 mA  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Table 2-52 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Applicable to Advanced I/O Banks  
Drive Strength  
4 mA  
Speed Grade tDOUT tDP tDIN tPY tEOUT tZL  
tZH  
tLZ  
tHZ tZLS tZHS Units  
Std.  
Std.  
Std.  
Std.  
Std.  
Std.  
0.97 2.73 0.19 0.85 0.66 2.78 2.21 2.25 2.31 6.31 5.74  
0.97 2.31 0.19 0.85 0.66 2.36 1.84 2.50 2.76 5.89 5.37  
0.97 2.31 0.19 0.85 0.66 2.36 1.84 2.50 2.76 5.89 5.37  
0.97 2.09 0.19 0.85 0.66 2.13 1.67 2.67 3.04 5.66 5.20  
0.97 2.05 0.19 0.85 0.66 2.09 1.63 2.70 3.12 5.62 5.16  
0.97 2.07 0.19 0.85 0.66 2.11 1.59 2.75 3.41 5.64 5.12  
ns  
ns  
ns  
ns  
ns  
ns  
6 mA  
8 mA  
12 mA  
16 mA  
24 mA  
Notes:  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Table 2-53 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Applicable to Standard Plus Banks  
Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ  
tZLS  
tZHS Units  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
Std.  
Std.  
Std.  
Std.  
Std.  
0.97 3.94 0.19 0.85 0.66 4.01 3.45 1.98 2.02 7.54 6.98  
ns  
ns  
ns  
ns  
ns  
0.97 3.24 0.19 0.85 0.66 3.30 2.98 2.20 2.42 6.83 6.51  
0.97 3.24 0.19 0.85 0.66 3.30 2.98 2.20 2.42 6.83 6.51  
0.97 2.76 0.19 0.85 0.66 2.81 2.62 2.36 2.68 6.35 6.15  
0.97 2.76 0.19 0.85 0.66 2.81 2.62 2.36 2.68 6.35 6.15  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
2-38  
Advance v0.5  
IGLOO DC and Switching Characteristics  
Table 2-54 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Applicable to Standard Plus Banks  
Drive Strength  
4 mA  
Speed Grade tDOUT tDP tDIN tPY tEOUT tZL  
tZH  
tLZ  
tHZ tZLS tZHS Units  
Std.  
Std.  
Std.  
Std.  
Std.  
0.97 2.32 0.19 0.85 0.66 2.36 1.89 1.98 2.13 5.89 5.42  
0.97 1.94 0.19 0.85 0.66 1.98 1.56 2.20 2.53 5.51 5.09  
0.97 1.94 0.19 0.85 0.66 1.98 1.56 2.20 2.53 5.51 5.09  
0.97 1.75 0.19 0.85 0.66 1.78 1.39 2.36 2.79 5.31 4.92  
0.97 1.75 0.19 0.85 0.66 1.78 1.39 2.36 2.79 5.31 4.92  
ns  
ns  
ns  
ns  
ns  
6 mA  
8 mA  
12 mA  
16 mA  
Notes:  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Table 2-55 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Applicable to Standard Banks  
Drive Strength  
2 mA  
Speed Grade  
Std.  
tDOUT  
0.97  
0.97  
0.97  
0.97  
tDP  
tDIN  
tPY  
tEOUT  
0.66  
0.66  
0.66  
0.66  
tZL  
tZH  
tLZ  
tHZ  
Units  
ns  
3.80 0.19 0.83  
3.80 0.19 0.83  
3.15 0.19 0.83  
3.15 0.19 0.83  
3.87 3.40 1.74 1.78  
3.87 3.40 1.74 1.78  
3.20 2.93 1.96 2.17  
3.20 2.93 1.96 2.17  
4 mA  
Std.  
ns  
6 mA  
Std.  
ns  
8 mA  
Std.  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Table 2-56 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Applicable to Standard Banks  
Drive Strength  
2 mA  
Speed Grade  
Std.  
tDOUT  
0.97  
0.97  
0.97  
0.97  
tDP  
tDIN  
tPY  
tEOUT  
0.66  
0.66  
0.66  
0.66  
tZL  
tZH  
tLZ  
tHZ  
Units  
ns  
2.19 0.19 0.83  
2.19 0.19 0.83  
1.85 0.19 0.83  
1.85 0.19 0.83  
2.23 1.79 1.74 1.87  
2.23 1.79 1.74 1.87  
1.88 1.45 1.96 2.26  
1.88 1.45 1.96 2.26  
4 mA  
Std.  
ns  
6 mA  
Std.  
ns  
8 mA  
Std.  
ns  
Notes:  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Advance v0.5  
2-39  
IGLOO DC and Switching Characteristics  
Applies to 1.2 V DC Core Voltage  
Table 2-57 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V  
Applicable to Advanced I/O Banks  
Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ  
tZLS  
tZHS Units  
4 mA  
Std.  
Std.  
Std.  
Std.  
Std.  
Std.  
1.55 5.11 0.26 0.98 1.10 5.21 4.47 2.80 3.01 11.01 10.28  
ns  
ns  
ns  
ns  
ns  
ns  
6 mA  
1.55 4.37 0.26 0.98 1.10 4.45 3.93 3.05 3.46 10.26 9.74  
1.55 4.37 0.26 0.98 1.10 4.45 3.93 3.05 3.46 10.26 9.74  
1.55 3.84 0.26 0.98 1.10 3.91 3.53 3.23 3.75 9.72 9.34  
1.55 3.68 0.26 0.98 1.10 3.75 3.44 3.27 3.83 9.56 9.25  
1.55 3.60 0.26 0.98 1.10 3.67 3.46 3.31 4.12 9.48 9.27  
8 mA  
12 mA  
16 mA  
24 mA  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating  
values.  
Table 2-58 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V  
Applicable to Advanced I/O Banks  
Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ  
tZLS  
tZHS Units  
4 mA  
Std.  
Std.  
Std.  
Std.  
Std.  
Std.  
1.55 3.32 0.26 0.98 1.10 3.38 2.75 2.80 3.16 9.19 8.56  
ns  
ns  
ns  
ns  
ns  
ns  
6 mA  
1.55 2.90 0.26 0.98 1.10 2.95 2.37 3.06 3.62 8.76 8.18  
1.55 2.90 0.26 0.98 1.10 2.95 2.37 3.06 3.62 8.76 8.18  
1.55 2.66 0.26 0.98 1.10 2.71 2.18 3.23 3.92 8.52 7.99  
1.55 2.62 0.26 0.98 1.10 2.67 2.15 3.27 3.99 8.48 7.95  
1.55 2.64 0.26 0.98 1.10 2.69 2.10 3.32 4.29 8.50 7.91  
8 mA  
12 mA  
16 mA  
24 mA  
Notes:  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating  
values.  
Table 2-59 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V  
Applicable to Standard Plus Banks  
Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ  
tZLS  
tZHS Units  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
Std.  
Std.  
Std.  
Std.  
Std.  
1.55 4.55 0.26 0.97 1.10 4.64 3.98 2.52 2.81 10.44 9.79  
ns  
ns  
ns  
ns  
ns  
1.55 3.83 0.26 0.97 1.10 3.90 3.50 2.75 3.22 9.71 9.31  
1.55 3.83 0.26 0.97 1.10 3.90 3.50 2.75 3.22 9.71 9.31  
1.55 3.34 0.26 0.97 1.10 3.40 3.13 2.92 3.49 9.21 8.94  
1.55 3.34 0.26 0.97 1.10 3.40 3.13 2.92 3.49 9.21 8.94  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating  
values.  
2-40  
Advance v0.5  
IGLOO DC and Switching Characteristics  
Table 2-60 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V  
Applicable to Standard Plus Banks  
Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ  
tZLS  
tZHS Units  
4 mA  
Std.  
Std.  
Std.  
Std.  
Std.  
1.55 2.88 0.26 0.97 1.10 2.93 2.38 2.52 2.94 8.74 8.19  
ns  
ns  
ns  
ns  
ns  
6 mA  
1.55 2.49 0.26 0.97 1.10 2.54 2.04 2.75 3.36 8.35 7.85  
1.55 2.49 0.26 0.97 1.10 2.54 2.04 2.75 3.36 8.35 7.85  
1.55 2.30 0.26 0.97 1.10 2.34 1.87 2.91 3.62 8.15 7.67  
1.55 2.30 0.26 0.97 1.10 2.34 1.87 2.91 3.62 8.15 7.67  
8 mA  
12 mA  
16 mA  
Notes:  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating  
values.  
Table 2-61 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V  
Applicable to Standard Banks  
Drive Strength  
2 mA  
Speed Grade  
Std.  
tDOUT  
1.55  
1.55  
1.55  
1.55  
tDP  
tDIN  
tPY  
tEOUT  
1.10  
1.10  
1.10  
1.10  
tZL  
tZH  
tLZ  
tHZ  
Units  
ns  
4.38 0.26 0.94  
4.38 0.26 0.94  
3.71 0.26 0.94  
3.71 0.26 0.94  
4.46 3.91 2.16 2.43  
4.46 3.91 2.16 2.43  
3.78 3.43 2.39 2.83  
3.78 3.43 2.39 2.83  
4 mA  
Std.  
ns  
6 mA  
Std.  
ns  
8 mA  
Std.  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating  
values.  
Table 2-62 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V  
Applicable to Standard Banks  
Drive Strength  
2 mA  
Speed Grade  
Std.  
tDOUT  
1.55  
1.55  
1.55  
1.55  
tDP  
tDIN  
tPY  
tEOUT  
1.10  
1.10  
1.10  
1.10  
tZL  
tZH  
tLZ  
tHZ  
Units  
ns  
2.73 0.26 0.94  
2.73 0.26 0.94  
2.37 0.26 0.94  
2.37 0.26 0.94  
2.78 2.26 2.16 2.54  
2.78 2.26 2.16 2.54  
2.42 1.92 2.39 2.94  
2.42 1.92 2.39 2.94  
4 mA  
Std.  
ns  
6 mA  
Std.  
ns  
8 mA  
Std.  
ns  
Notes:  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating  
values.  
Advance v0.5  
2-41  
IGLOO DC and Switching Characteristics  
2.5 V LVCMOS  
Low-Voltage CMOS for 2.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-  
purpose 2.5 V applications. It uses a 5 V–tolerant input buffer and push-pull output buffer.  
Table 2-63 • Minimum and Maximum DC Input and Output Levels  
Applicable to Advanced I/O Banks  
2.5 V  
LVCMOS  
VIL  
VIH  
VOL  
VOH  
IOL IOH  
IOSH  
IOSL  
IIL  
IIH  
Drive  
Strength Min., V Max., V Min., V Max., V Max., V Min., V mA mA Max., mA1 Max., mA1 µA2 µA2  
2 mA  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
0.7  
0.7  
0.7  
0.7  
0.7  
0.7  
0.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
2.7  
2.7  
2.7  
2.7  
2.7  
2.7  
2.7  
0.7  
0.7  
0.7  
0.7  
0.7  
0.7  
0.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
2
4
6
8
2
4
6
8
16  
16  
18  
18  
10 10  
10 10  
10 10  
10 10  
10 10  
10 10  
10 10  
4 mA  
6 mA  
32  
37  
8 mA  
32  
37  
12 mA  
16 mA  
24 mA  
Notes:  
12 12  
16 16  
24 24  
65  
74  
83  
87  
169  
124  
1. Currents are measured at 100°C junction temperature and maximum voltage.  
2. Currents are measured at 85°C junction temperature.  
3. Software default selection highlighted in gray.  
Table 2-64 • Minimum and Maximum DC Input and Output Levels  
Applicable to Standard Plus I/O Banks  
2.5 V  
LVCMOS  
VIL  
VIH  
VOL  
VOH  
IOL IOH  
IOSH  
IOSL  
IIL  
IIH  
Drive  
Strength Min., V Max., V Min., V Max., V Max., V Min., V mA mA Max., mA1 Max., mA1 µA2 µA2  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
Notes:  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
0.7  
0.7  
0.7  
0.7  
0.7  
1.7  
1.7  
1.7  
1.7  
1.7  
2.7  
2.7  
2.7  
2.7  
2.7  
0.7  
0.7  
0.7  
0.7  
0.7  
1.7  
1.7  
1.7  
1.7  
1.7  
2
4
6
8
2
4
6
8
16  
16  
32  
32  
65  
18  
18  
37  
37  
74  
10 10  
10 10  
10 10  
10 10  
10 10  
12 12  
1. Currents are measured at 100°C junction temperature and maximum voltage.  
2. Currents are measured at 85°C junction temperature.  
3. Software default selection highlighted in gray.  
2-42  
Advance v0.5  
IGLOO DC and Switching Characteristics  
Table 2-65 • Minimum and Maximum DC Input and Output Levels  
Applicable to Standard I/O Banks  
2.5 V  
LVCMOS  
VIL  
VIH  
VOL  
VOH  
IOL IOH  
IOSH  
IOSL  
IIL  
IIH  
Drive  
Strength Min., V Max., V Min., V Max., V Max., V Min., V mA mA Max., mA1 Max., mA1 µA2 µA2  
2 mA  
4 mA  
6 mA  
8 mA  
Notes:  
–0.3  
–0.3  
–0.3  
–0.3  
0.7  
0.7  
0.7  
0.7  
1.7  
1.7  
1.7  
1.7  
2.7  
2.7  
2.7  
2.7  
0.7  
0.7  
0.7  
0.7  
1.7  
1.7  
1.7  
1.7  
2
4
6
8
2
16  
16  
32  
32  
18  
18  
37  
37  
10 10  
10 10  
10 10  
10 10  
4
6
8
1. Currents are measured at 100°C junction temperature and maximum voltage.  
2. Currents are measured at 85°C junction temperature.  
3. Software default selection highlighted in gray.  
R to VCCI for tLZ/tZL/tZLS  
R to GND for tHZ/tZH/tZHS  
R = 1 k  
Test Point  
Enable Path  
Test Point  
Datapath  
5 pF  
35 pF for tZH/tZHS/tZL/tZLS  
5 pF for tHZ/tLZ  
Figure 2-8 • AC Loading  
Table 2-66 • AC Waveforms, Measuring Points, and Capacitive Loads  
Input LOW (V)  
Input HIGH (V)  
Measuring Point* (V)  
CLOAD (pF)  
0
2.5  
1.2  
5
* Measuring point = Vtrip. See Table 2-28 on page 2-25 for a complete table of trip points.  
Advance v0.5  
2-43  
IGLOO DC and Switching Characteristics  
Timing Characteristics  
Applies to 1.5 V DC Core Voltage  
Table 2-67 • 2.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Advanced I/O Banks  
Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ  
tZLS  
tZHS Units  
4 mA  
Std.  
Std.  
Std.  
Std.  
Std.  
Std.  
0.97 4.96 0.19 1.07 0.66 5.05 4.58 2.26 1.99 8.58 8.11  
ns  
ns  
ns  
ns  
ns  
ns  
6 mA  
0.97 4.15 0.19 1.07 0.66 4.23 3.93 2.54 2.51 7.76 7.46  
0.97 4.15 0.19 1.07 0.66 4.23 3.93 2.54 2.51 7.76 7.46  
0.97 3.57 0.19 1.07 0.66 3.64 3.46 2.73 2.83 7.17 6.99  
0.97 3.39 0.19 1.07 0.66 3.45 3.35 2.77 2.92 6.98 6.88  
0.97 3.37 0.19 1.07 0.66 3.37 3.37 2.83 3.25 6.90 6.90  
8 mA  
12 mA  
16 mA  
24 mA  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Table 2-68 • 2.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Advanced I/O Banks  
Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ  
tZLS  
tZHS Units  
4 mA  
Std.  
Std.  
Std.  
Std.  
Std.  
Std.  
0.97 2.77 0.19 1.07 0.66 2.82 2.59 2.26 2.08 6.35 6.12  
ns  
ns  
ns  
ns  
ns  
ns  
6 mA  
0.97 2.34 0.19 1.07 0.66 2.38 2.07 2.54 2.60 5.91 5.60  
0.97 2.34 0.19 1.07 0.66 2.38 2.07 2.54 2.60 5.91 5.60  
0.97 2.09 0.19 1.07 0.66 2.13 1.82 2.73 2.93 5.66 5.35  
0.97 2.04 0.19 1.07 0.66 2.08 1.77 2.77 3.01 5.61 5.31  
0.97 2.05 0.19 1.07 0.66 2.09 1.71 2.83 3.35 5.62 5.24  
8 mA  
12 mA  
16 mA  
24 mA  
Notes:  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Table 2-69 • 2.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Standard Plus Banks  
Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ  
tZLS  
tZHS Units  
4 mA  
6 mA  
8 mA  
12 mA  
Std.  
Std.  
Std.  
Std.  
0.97 4.42 0.19 1.08 0.66 4.50 4.09 1.96 1.85 8.03 7.62  
ns  
ns  
ns  
ns  
0.97 3.62 0.19 1.08 0.66 3.69 3.51 2.21 2.31 7.22 7.04  
0.97 3.62 0.19 1.08 0.66 3.69 3.51 2.21 2.31 7.22 7.04  
0.97 3.08 0.19 1.08 0.66 3.14 3.08 2.39 2.61 6.67 6.61  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
2-44  
Advance v0.5  
IGLOO DC and Switching Characteristics  
Table 2-70 • 2.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Standard Plus Banks  
Drive Strength  
4 mA  
Speed Grade tDOUT tDP tDIN tPY tEOUT tZL  
tZH  
tLZ  
tHZ tZLS tZHS Units  
Std.  
Std.  
Std.  
Std.  
0.97 2.36 0.19 1.08 0.66 2.40 2.21 1.96 1.92 5.93 5.74  
0.97 1.97 0.19 1.08 0.66 2.00 1.74 2.21 2.39 5.53 5.27  
0.97 1.97 0.19 1.08 0.66 2.00 1.74 2.21 2.39 5.53 5.27  
0.97 1.75 0.19 1.08 0.66 1.78 1.51 2.38 2.69 5.32 5.04  
ns  
ns  
ns  
ns  
6 mA  
8 mA  
12 mA  
Notes:  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Table 2-71 • 2.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Standard Banks  
Drive Strength  
2 mA  
Speed Grade  
Std.  
tDOUT  
0.97  
0.97  
0.97  
0.97  
tDP  
tDIN  
tPY  
tEOUT  
0.66  
0.66  
0.66  
0.66  
tZL  
tZH  
tLZ  
tHZ  
Units  
ns  
4.27 0.19 1.04  
4.27 0.19 1.04  
3.54 0.19 1.04  
3.54 0.19 1.04  
4.35 4.06 1.71 1.62  
4.35 4.06 1.71 1.62  
3.60 3.47 1.95 2.07  
3.60 3.47 1.95 2.07  
4 mA  
Std.  
ns  
6 mA  
Std.  
ns  
8 mA  
Std.  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Table 2-72 • 2.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Standard Banks  
Drive Strength  
2 mA  
Speed Grade  
Std.  
tDOUT  
0.97  
0.97  
0.97  
0.97  
tDP  
tDIN  
tPY  
tEOUT  
0.66  
0.66  
0.66  
0.66  
tZL  
tZH  
tLZ  
tHZ  
Units  
ns  
2.24 0.19 1.04  
2.24 0.19 1.04  
1.88 0.19 1.04  
1.88 0.19 1.04  
2.28 2.08 1.71 1.68  
2.28 2.08 1.71 1.68  
1.92 1.62 1.95 2.14  
1.92 1.62 1.95 2.14  
4 mA  
Std.  
ns  
6 mA  
Std.  
ns  
8 mA  
Std.  
ns  
Notes:  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Advance v0.5  
2-45  
IGLOO DC and Switching Characteristics  
Applies to 1.2 V Core Voltage  
Table 2-73 • 2.5 V LCMOS Low Slew – Applies to 1.2 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V  
Applicable to Advanced I/O Banks  
Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ  
tZLS  
tZHS Units  
4 mA  
Std.  
Std.  
Std.  
Std.  
Std.  
Std.  
1.55 5.58 0.26 1.20 1.10 5.68 5.14 2.80 2.78 11.49 10.95  
ns  
ns  
ns  
ns  
ns  
ns  
6 mA  
1.55 4.75 0.26 1.20 1.10 4.84 4.47 3.09 3.31 10.65 10.28  
1.55 4.75 0.26 1.20 1.10 4.84 4.47 3.09 3.31 10.65 10.28  
1.55 4.15 0.26 1.20 1.10 4.23 3.99 3.28 3.65 10.04 9.80  
1.55 3.97 0.26 1.20 1.10 4.04 3.88 3.33 3.74 9.85 9.69  
1.55 3.90 0.26 1.20 1.10 3.96 3.90 3.38 4.07 9.77 9.71  
8 mA  
12 mA  
16 mA  
24 mA  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating  
values.  
Table 2-74 • 2.5 V LCMOS High Slew – Applies to 1.2 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V  
Applicable to Advanced I/O Banks  
Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ  
tZLS  
tZHS Units  
4 mA  
Std.  
Std.  
Std.  
Std.  
Std.  
Std.  
1.55 3.32 0.26 1.20 1.10 3.38 3.09 2.80 2.89 9.19 8.90  
ns  
ns  
ns  
ns  
ns  
ns  
6 mA  
1.55 2.88 0.26 1.20 1.10 2.93 2.56 3.09 3.43 8.74 8.37  
1.55 2.88 0.26 1.20 1.10 2.93 2.56 3.09 3.43 8.74 8.37  
1.55 2.63 0.26 1.20 1.10 2.68 2.30 3.28 3.77 8.48 8.10  
1.55 2.58 0.26 1.20 1.10 2.63 2.25 3.33 3.86 8.44 8.06  
1.55 2.59 0.26 1.20 1.10 2.64 2.19 3.39 4.21 8.45 8.00  
8 mA  
12 mA  
16 mA  
24 mA  
Notes:  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating  
values.  
Table 2-75 • 2.5 V LCMOS Low Slew – Applies to 1.2 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V  
Applicable to Standard Plus Banks  
Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ  
tZLS  
tZHS Units  
4 mA  
6 mA  
8 mA  
12 mA  
Std.  
Std.  
Std.  
Std.  
1.55 5.01 0.26 1.20 1.10 5.11 4.60 2.49 2.60 10.92 10.41  
ns  
ns  
ns  
ns  
1.55 4.20 0.26 1.20 1.10 4.28 4.00 2.74 3.08 10.08 9.81  
1.55 4.20 0.26 1.20 1.10 4.28 4.00 2.74 3.08 10.08 9.81  
1.55 3.64 0.26 1.20 1.10 3.71 3.56 2.92 3.39 9.52 9.36  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating  
values.  
2-46  
Advance v0.5  
IGLOO DC and Switching Characteristics  
Table 2-76 • 2.5 V LCMOS High Slew – Applies to 1.2 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V  
Applicable to Standard Plus Banks  
Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ  
tZLS  
tZHS Units  
4 mA  
6 mA  
8 mA  
12 mA  
Notes:  
Std.  
Std.  
Std.  
Std.  
1.55 2.90 0.26 1.20 1.10 2.95 2.66 2.48 2.70 8.76 8.47  
ns  
ns  
ns  
ns  
1.55 2.50 0.26 1.20 1.10 2.54 2.18 2.74 3.19 8.35 7.99  
1.55 2.50 0.26 1.20 1.10 2.54 2.18 2.74 3.19 8.35 7.99  
1.55 2.28 0.26 1.20 1.10 2.32 1.95 2.92 3.50 8.13 7.75  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating  
values.  
Table 2-77 • 2.5 V LCMOS Low Slew – Applies to 1.2 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V  
Applicable to Standard Banks  
Drive Strength  
2 mA  
Speed Grade  
Std.  
tDOUT  
1.55  
1.55  
1.55  
1.55  
tDP  
tDIN  
tPY  
tEOUT  
1.10  
1.10  
1.10  
1.10  
tZL  
tZH  
tLZ  
tHZ  
Units  
ns  
4.84 0.26 1.15  
4.84 0.26 1.15  
4.08 0.26 1.15  
4.08 0.26 1.15  
4.93 4.56 2.12 2.22  
4.93 4.56 2.12 2.22  
4.16 3.96 2.37 2.69  
4.16 3.96 2.37 2.69  
4 mA  
Std.  
ns  
6 mA  
Std.  
ns  
8 mA  
Std.  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating  
values.  
Table 2-78 • 2.5 V LCMOS High Slew – Applies to 1.2 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V  
Applicable to Standard Banks  
Drive Strength  
2 mA  
Speed Grade  
Std.  
tDOUT  
1.55  
1.55  
1.55  
1.55  
tDP  
tDIN  
tPY  
tEOUT  
1.10  
1.10  
1.10  
1.10  
tZL  
tZH  
tLZ  
tHZ  
Units  
ns  
2.75 0.26 1.15  
2.75 0.26 1.15  
2.38 0.26 1.15  
2.38 0.26 1.15  
2.80 2.53 2.12 2.31  
2.80 2.53 2.12 2.31  
2.42 2.05 2.37 2.79  
2.42 2.05 2.37 2.79  
4 mA  
Std.  
ns  
6 mA  
Std.  
ns  
8 mA  
Std.  
ns  
Notes:  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating  
values.  
Advance v0.5  
2-47  
IGLOO DC and Switching Characteristics  
1.8 V LVCMOS  
Low-voltage CMOS for 1.8 V is an extension of the LVCMOS standard (JESD8-5) used for general-  
purpose 1.8 V applications. It uses a 1.8 V input buffer and a push-pull output buffer.  
Table 2-79 • Minimum and Maximum DC Input and Output Levels  
Applicable to Advanced I/O Banks  
1.8 V  
LVCMOS  
VIL  
VIH  
VOL  
VOH  
IOL IOH  
IOSH  
IOSL  
IIL IIH  
Drive  
Strength Min., V Max., V  
Min., V Max., V Max., V Min., V mA mA Max., mA1 Max., mA1 µA2 µA2  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
Notes:  
–0.3 0.35 * VCCI 0.65 * VCCI  
1.9  
1.9  
1.9  
1.9  
1.9  
1.9  
0.45  
0.45  
0.45  
0.45  
0.45  
0.45  
VCCI – 0.45  
VCCI – 0.45  
VCCI – 0.45  
VCCI – 0.45  
2
4
2
4
9
11  
22  
44  
51  
74  
74  
10 10  
10 10  
10 10  
10 10  
10 10  
10 10  
–0.3 0.35 * VCCI 0.65 * VCCI  
–0.3 0.35 * VCCI 0.65 * VCCI  
–0.3 0.35 * VCCI 0.65 * VCCI  
–0.3 0.35 * VCCI 0.65 * VCCI  
–0.3 0.35 * VCCI 0.65 * VCCI  
17  
35  
45  
91  
91  
6
6
8
8
VCCI – 0.45 12 12  
VCCI – 0.45 16 16  
1. Currents are measured at 100°C junction temperature and maximum voltage.  
2. Currents are measured at 85°C junction temperature.  
3. Software default selection highlighted in gray.  
Table 2-80 • Minimum and Maximum DC Input and Output Levels  
Applicable to Standard Plus I/O Banks  
1.8 V  
LVCMOS  
VIL  
VIH  
VOL  
VOH  
IOL IOH  
IOSH  
IOSL  
IIL IIH  
Drive  
Strength Min., V Max., V  
Min., V Max., V Max., V Min., V mA mA Max., mA1 Max., mA1 µA2 µA2  
2 mA  
4 mA  
6 mA  
8 mA  
Notes:  
–0.3 0.35 * VCCI 0.65 * VCCI  
1.9  
1.9  
1.9  
1.9  
0.45  
0.45  
0.45  
0.45  
VCCI – 0.45  
VCCI – 0.45  
VCCI – 0.45  
VCCI – 0.45  
2
4
2
4
9
11  
22  
44  
44  
10 10  
10 10  
10 10  
10 10  
–0.3 0.35 * VCCI 0.65 * VCCI  
–0.3 0.35 * VCCI 0.65 * VCCI  
–0.3 0.35 * VCCI 0.65 * VCCI  
17  
35  
35  
6
6
8
8
1. Currents are measured at 100°C junction temperature and maximum voltage.  
2. Currents are measured at 85°C junction temperature.  
3. Software default selection highlighted in gray.  
2-48  
Advance v0.5  
IGLOO DC and Switching Characteristics  
Table 2-81 • Minimum and Maximum DC Input and Output Levels  
Applicable to Standard I/O Banks  
1.8 V  
LVCMOS  
VIL  
VIH  
VOL  
VOH  
IOL IOH  
IOSH  
IOSL  
IIL IIH  
Drive  
Strength Min., V Max., V  
Min., V Max., V Max., V Min., V mA mA Max., mA1 Max., mA1 µA2 µA2  
2 mA  
4 mA  
Notes:  
–0.3 0.35 * VCCI 0.65 * VCCI  
–0.3 0.35 * VCCI 0.65 * VCCI  
1.9  
1.9  
0.45 VCCI – 0.45  
0.45 VCCI – 0.45  
2
4
2
4
9
11  
22  
10 10  
10 10  
17  
1. Currents are measured at 100°C junction temperature and maximum voltage.  
2. Currents are measured at 85°C junction temperature.  
3. Software default selection highlighted in gray.  
R to VCCI for tLZ/tZL/tZLS  
R to GND for tHZ/tZH/tZHS  
R = 1 k  
Test Point  
Enable Path  
Test Point  
Datapath  
5 pF  
35 pF for tZH/tZHS/tZL/tZLS  
5 pF for tHZ/tLZ  
Figure 2-9 • AC Loading  
Table 2-82 • AC Waveforms, Measuring Points, and Capacitive Loads  
Input LOW (V)  
Input HIGH (V)  
Measuring Point* (V)  
C
LOAD (pF)  
0
1.8  
0.9  
5
* Measuring point = Vtrip. See Table 2-28 on page 2-25 for a complete table of trip points.  
Advance v0.5  
2-49  
IGLOO DC and Switching Characteristics  
Timing Characteristics  
1.5 V DC Core Voltage  
Table 2-83 • 1.8 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V  
Applicable to Advanced I/O Banks  
Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL  
tZH  
tLZ tHZ tZLS  
tZHS Units  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
Std.  
Std.  
Std.  
Std.  
Std.  
Std.  
0.97 6.38 0.19 1.01 0.66 6.49 5.92 2.33 1.56 10.03 9.45  
0.97 5.35 0.19 1.01 0.66 5.45 5.04 2.67 2.38 8.98 8.57  
0.97 4.62 0.19 1.01 0.66 4.70 4.43 2.90 2.78 8.23 7.96  
0.97 4.37 0.19 1.01 0.66 4.45 4.30 2.95 2.89 7.98 7.83  
0.97 4.31 0.19 1.01 0.66 4.37 4.31 3.03 3.29 7.90 7.84  
0.97 4.31 0.19 1.01 0.66 4.37 4.31 3.03 3.29 7.90 7.84  
ns  
ns  
ns  
ns  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Table 2-84 • 1.8 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V  
Applicable to Advanced I/O Banks  
Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ  
tZLS  
tZHS Units  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
Notes:  
Std.  
Std.  
Std.  
Std.  
Std.  
Std.  
0.97 3.24 0.19 1.01 0.66 3.20 3.24 2.33 1.61 6.73 6.78  
ns  
ns  
ns  
ns  
ns  
ns  
0.97 2.62 0.19 1.01 0.66 2.67 2.50 2.66 2.46 6.20 6.04  
0.97 2.31 0.19 1.01 0.66 2.35 2.14 2.89 2.87 5.88 5.67  
0.97 2.25 0.19 1.01 0.66 2.29 2.07 2.95 2.98 5.82 5.60  
0.97 2.24 0.19 1.01 0.66 2.28 1.99 3.02 3.39 5.81 5.52  
0.97 2.24 0.19 1.01 0.66 2.28 1.99 3.02 3.39 5.81 5.52  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Table 2-85 • 1.8 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V  
Applicable to Standard Plus Banks  
Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL  
tZH  
tLZ tHZ tZLS  
tZHS Units  
2 mA  
4 mA  
6 mA  
8 mA  
Std.  
Std.  
Std.  
Std.  
0.97 5.78 0.19 1.01 0.66 5.89 5.31 1.95 1.46 9.42 8.84  
0.97 4.75 0.19 1.01 0.66 4.84 4.53 2.25 2.21 8.37 8.06  
0.97 4.07 0.19 1.01 0.66 4.14 3.97 2.46 2.57 7.67 7.50  
0.97 4.07 0.19 1.01 0.66 4.14 3.97 2.46 2.57 7.67 7.50  
ns  
ns  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
2-50  
Advance v0.5  
IGLOO DC and Switching Characteristics  
Table 2-86 • 1.8 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V  
Applicable to Standard Plus Banks  
Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ  
tZLS  
tZHS Units  
2 mA  
4 mA  
6 mA  
8 mA  
Notes:  
Std.  
Std.  
Std.  
Std.  
0.97 2.75 0.19 1.01 0.66 2.79 2.75 1.94 1.51 6.32 6.28  
ns  
ns  
ns  
ns  
0.97 2.25 0.19 1.01 0.66 2.29 2.09 2.24 2.29 5.82 5.62  
0.97 1.97 0.19 1.01 0.66 2.01 1.76 2.46 2.66 5.54 5.29  
0.97 1.97 0.19 1.01 0.66 2.01 1.76 2.46 2.66 5.54 5.29  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Table 2-87 • 1.8 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V  
Applicable to Standard Banks  
Drive Strength  
2 mA  
Speed Grade  
Std.  
tDOUT  
0.97  
tDP  
tDIN  
tPY tEOUT  
tZL  
tZH  
tLZ  
tHZ  
Units  
ns  
5.63 0.19 0.98 0.66  
4.69 0.19 0.98 0.66  
5.73  
4.78  
5.29 1.68 1.24  
4.51 1.97 1.98  
4 mA  
Std.  
0.97  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Table 2-88 • 1.8 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V  
Applicable to Standard Banks  
Drive Strength  
2 mA  
Speed Grade  
Std.  
tDOUT  
0.97  
tDP  
tDIN  
tPY  
tEOUT  
0.66  
0.66  
tZL  
tZH  
tLZ  
tHZ  
Units  
ns  
2.62 0.19 0.98  
2.18 0.19 0.98  
2.67 2.59 1.67 1.29  
2.22 1.93 1.96 2.06  
4 mA  
Std.  
0.97  
ns  
Notes:  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Advance v0.5  
2-51  
IGLOO DC and Switching Characteristics  
1.2 V DC Core Voltage  
Table 2-89 • 1.8 V LCMOS Low Slew – Applies to 1.2 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V  
Applicable to Advanced I/O Banks  
Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL  
tZH  
tLZ tHZ tZLS  
tZHS Units  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
Std.  
Std.  
Std.  
Std.  
Std.  
Std.  
1.55 6.96 0.26 1.11 1.10 7.09 6.49 2.85 2.27 12.89 12.29  
1.55 5.90 0.26 1.11 1.10 6.01 5.57 3.20 3.12 11.82 11.38  
1.55 5.15 0.26 1.11 1.10 5.24 4.95 3.44 3.54 11.05 10.76  
1.55 4.89 0.26 1.11 1.10 4.98 4.81 3.49 3.65 10.79 10.62  
1.55 4.83 0.26 1.11 1.10 4.90 4.83 3.57 4.06 10.71 10.64  
1.55 4.83 0.26 1.11 1.10 4.90 4.83 3.57 4.06 10.71 10.64  
ns  
ns  
ns  
ns  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating  
values.  
Table 2-90 • 1.8 V LCMOS High Slew – Applies to 1.2 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V  
Applicable to Advanced I/O Banks  
Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ  
tZLS  
tZHS Units  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
Notes:  
Std.  
Std.  
Std.  
Std.  
Std.  
Std.  
1.55 3.73 0.26 1.11 1.10 3.71 3.73 2.85 2.32 9.52 9.54  
ns  
ns  
ns  
ns  
ns  
ns  
1.55 3.11 0.26 1.11 1.10 3.16 2.97 3.19 3.21 8.97 8.78  
1.55 2.78 0.26 1.11 1.10 2.84 2.60 3.43 3.63 8.64 8.40  
1.55 2.72 0.26 1.11 1.10 2.77 2.52 3.49 3.74 8.58 8.33  
1.55 2.71 0.26 1.11 1.10 2.76 2.44 3.56 4.17 8.57 8.24  
1.55 2.71 0.26 1.11 1.10 2.76 2.44 3.56 4.17 8.57 8.24  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating  
values.  
Table 2-91 • 1.8 V LCMOS Low Slew – Applies to 1.2 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V  
Applicable to Standard Plus Banks  
Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL  
tZH  
tLZ tHZ tZLS  
tZHS Units  
2 mA  
4 mA  
6 mA  
8 mA  
Std.  
Std.  
Std.  
Std.  
1.55 6.31 0.26 1.11 1.10 6.43 5.81 2.46 2.14 12.24 11.62  
1.55 5.26 0.26 1.11 1.10 5.35 5.01 2.77 2.91 11.16 10.82  
1.55 4.55 0.26 1.11 1.10 4.64 4.44 2.98 3.29 10.45 10.25  
1.55 4.55 0.26 1.11 1.10 4.64 4.44 2.98 3.29 10.45 10.25  
ns  
ns  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating  
values.  
2-52  
Advance v0.5  
IGLOO DC and Switching Characteristics  
Table 2-92 • 1.8 V LCMOS High Slew – Applies to 1.2 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V  
Applicable to Standard Plus Banks  
Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ  
tZLS  
tZHS Units  
2 mA  
4 mA  
6 mA  
8 mA  
Notes:  
Std.  
Std.  
Std.  
Std.  
1.55 3.21 0.26 1.11 1.10 3.26 3.18 2.45 2.18 9.07 8.99  
ns  
ns  
ns  
ns  
1.55 2.71 0.26 1.11 1.10 2.76 2.50 2.76 2.99 8.56 8.31  
1.55 2.42 0.26 1.11 1.10 2.47 2.16 2.98 3.38 8.28 7.97  
1.55 2.42 0.26 1.11 1.10 2.47 2.16 2.98 3.38 8.28 7.97  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating  
values.  
Table 2-93 • 1.8 V LCMOS Low Slew – Applies to 1.2 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V  
Applicable to Standard Banks  
Drive Strength  
2 mA  
Speed Grade  
Std.  
tDOUT  
1.55  
tDP  
tDIN  
tPY tEOUT  
tZL  
tZH  
tLZ  
tHZ  
Units  
ns  
6.13 0.26 1.08 1.10  
5.16 0.26 1.08 1.10  
6.24  
5.26  
5.79 2.07 1.77  
4.99 2.37 2.53  
4 mA  
Std.  
1.55  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating  
values.  
Table 2-94 • 1.8 V LCMOS High Slew – Applies to 1.2 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V  
Applicable to Standard Banks  
Drive Strength  
2 mA  
Speed Grade  
Std.  
tDOUT  
1.55  
tDP  
tDIN  
tPY  
tEOUT  
1.10  
1.10  
tZL  
tZH  
tLZ  
tHZ  
Units  
ns  
3.05 0.26 1.08  
2.60 0.26 1.08  
3.11 3.01 2.07 1.81  
2.64 2.33 2.37 2.61  
4 mA  
Std.  
1.55  
ns  
Notes:  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating  
values.  
Advance v0.5  
2-53  
IGLOO DC and Switching Characteristics  
1.5 V LVCMOS (JESD8-11)  
Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-  
purpose 1.5 V applications. It uses a 1.5 V input buffer and a push-pull output buffer.  
Table 2-95 • Minimum and Maximum DC Input and Output Levels  
Applicable to Advanced I/O Banks  
1.5 V  
LVCMOS  
VIL  
VIH  
VOL  
VOH  
IOL IOH  
m
IOSH  
IOSL  
IIL IIH  
Drive  
Strength Min., V Max., V  
Min., V Max., V Max., V  
Min., V  
A mA Max., mA1 Max., mA1 µA2 µA2  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
Notes:  
–0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI  
–0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI  
–0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI  
–0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI  
2
4
2
4
13  
25  
32  
66  
66  
16  
33  
39  
55  
55  
10 10  
10 10  
10 10  
10 10  
10 10  
6
6
8
8
–0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 12 12  
1. Currents are measured at 100°C junction temperature and maximum voltage.  
2. Currents are measured at 85°C junction temperature.  
3. Software default selection highlighted in gray.  
Table 2-96 • Minimum and Maximum DC Input and Output Levels  
Applicable to Standard Plus I/O Banks  
1.5 V  
LVCMOS  
VIL  
VIH  
VOL  
VOH  
IOL IOH  
IOSH  
IOSL  
IIL IIH  
Drive  
Strength Min., V Max., V  
Min., V Max., V Max., V  
Min., V mA mA Max., mA1 Max., mA1 µA2 µA2  
2 mA  
4 mA  
Notes:  
–0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI  
–0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI  
2
4
2
4
13  
25  
16  
33  
10 10  
10 10  
1. Currents are measured at 100°C junction temperature and maximum voltage.  
2. Currents are measured at 85°C junction temperature.  
3. Software default selection highlighted in gray.  
Table 2-97 • Minimum and Maximum DC Input and Output Levels  
Applicable to Standard I/O Banks  
1.5 V  
LVCMOS  
VIL  
VIH  
VOL  
VOH  
IOL IOH  
IOSH  
IOSL  
IIL IIH  
Drive  
Strength Min., V Max., V  
Min., V Max., V Max., V  
Min., V mA mA Max., mA1 Max., mA1 µA2 µA2  
13 16 10 10  
2 mA  
–0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI  
2
2
Notes:  
1. Currents are measured at 100°C junction temperature and maximum voltage.  
2. Currents are measured at 85°C junction temperature.  
3. Software default selection highlighted in gray.  
2-54  
Advance v0.5  
IGLOO DC and Switching Characteristics  
R to VCCI for tLZ/tZL/tZLS  
R to GND for tHZ/tZH/tZHS  
R = 1 k  
Test Point  
Enable Path  
Test Point  
Datapath  
5 pF  
35 pF for tZH/tZHS/tZL/tZLS  
5 pF for tHZ/tLZ  
Figure 2-10 • AC Loading  
Table 2-98 • AC Waveforms, Measuring Points, and Capacitive Loads  
Input LOW (V)  
Input HIGH (V)  
Measuring Point* (V)  
C
LOAD (pF)  
0
1.5  
0.75  
5
* Measuring point = Vtrip. See Table 2-28 on page 2-25 for a complete table of trip points.  
Timing Characteristics  
1.5 V DC Core Voltage  
Table 2-99 • 1.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V  
Applicable to Advanced I/O Banks  
Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL  
tZH  
tLZ tHZ tZLS  
tZHS Units  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
Std.  
Std.  
Std.  
Std.  
Std.  
0.97 6.62 0.19 1.17 0.66 6.74 6.05 2.79 2.31 10.28 9.58  
0.97 5.74 0.19 1.17 0.66 5.85 5.33 3.06 2.78 9.38 8.86  
0.97 5.43 0.19 1.17 0.66 5.53 5.18 3.12 2.90 9.06 8.71  
0.97 5.35 0.19 1.17 0.66 5.45 5.19 3.21 3.36 8.98 8.72  
0.97 5.35 0.19 1.17 0.66 5.45 5.19 3.21 3.36 8.98 8.72  
ns  
ns  
ns  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Table 2-100 • 1.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V  
Applicable to Advanced I/O Banks  
Drive Strength  
2 mA  
Speed Grade tDOUT tDP tDIN tPY tEOUT tZL  
tZH  
tLZ  
tHZ tZLS tZHS Units  
Std.  
Std.  
Std.  
Std.  
Std.  
0.97 2.97 0.19 1.17 0.66 3.03 2.89 2.78 2.40 6.56 6.43  
0.97 2.60 0.19 1.17 0.66 2.64 2.44 3.05 2.88 6.18 5.97  
0.97 3.63 0.19 1.17 0.66 3.62 3.63 3.06 3.00 7.15 7.16  
0.97 2.50 0.19 1.17 0.66 2.55 2.26 3.20 3.48 6.08 5.79  
0.97 2.50 0.19 1.17 0.66 2.55 2.26 3.20 3.48 6.08 5.79  
ns  
ns  
ns  
ns  
ns  
4 mA  
6 mA  
8 mA  
12 mA  
Notes:  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Advance v0.5  
2-55  
IGLOO DC and Switching Characteristics  
Table 2-101 • 1.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V  
Applicable to Standard Plus Banks  
Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ  
tZLS  
tZHS Units  
2 mA  
4 mA  
Std.  
Std.  
0.97 5.93 0.19 1.17 0.66 6.04 5.46 2.30 2.15 9.57 8.99  
ns  
ns  
0.97 5.11 0.19 1.17 0.66 5.20 4.79 2.54 2.58 8.73 8.32  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Table 2-102 • 1.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V  
Applicable to Standard Plus Banks  
Drive Strength  
2 mA  
Speed Grade tDOUT tDP tDIN tPY tEOUT tZL  
tZH  
tLZ  
tHZ tZLS tZHS Units  
Std.  
Std.  
0.97 2.58 0.19 1.17 0.66 2.63 2.40 2.29 2.24 6.16 5.94  
0.97 2.25 0.19 1.17 0.66 2.29 1.99 2.53 2.68 5.82 5.52  
ns  
ns  
4 mA  
Notes:  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Table 2-103 • 1.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V  
Applicable to Standard Banks  
Drive Strength  
Speed Grade  
tDOUT  
tDP  
tDIN  
tPY  
tEOUT  
tZL  
tZH  
tLZ  
tHZ  
Units  
2 mA  
Std.  
0.97  
5.88 0.19 1.13  
0.66  
5.99 5.45 1.99 1.93  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Table 2-104 • 1.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V  
Applicable to Standard Banks  
Drive Strength  
2 mA  
Speed Grade  
tDOUT  
tDP  
tDIN  
tPY  
tEOUT  
tZL  
tZH  
tLZ  
tHZ  
Units  
Std.  
0.97  
2.51 0.19 1.13  
0.66  
2.56 2.20 1.99 2.03  
ns  
Notes:  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
1.2 V DC Core Voltage  
2-56  
Advance v0.5  
IGLOO DC and Switching Characteristics  
Table 2-105 • 1.5 V LCMOS Low Slew – Applies to 1.2 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V  
Applicable to Advanced I/O Banks  
Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL  
tZH  
tLZ tHZ tZLS  
tZHS Units  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
Std.  
Std.  
Std.  
Std.  
Std.  
1.55 7.16 0.26 1.27 1.10 7.29 6.60 3.32 3.01 13.10 12.41  
1.55 6.26 0.26 1.27 1.10 6.37 5.86 3.59 3.49 12.18 11.67  
1.55 5.93 0.26 1.27 1.10 6.04 5.70 3.65 3.62 11.85 11.51  
1.55 5.85 0.26 1.27 1.10 5.96 5.72 3.75 4.10 11.77 11.52  
1.55 5.85 0.26 1.27 1.10 5.96 5.72 3.75 4.10 11.77 11.52  
ns  
ns  
ns  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating  
values.  
Table 2-106 • 1.5 V LCMOS High Slew – Applies to 1.2 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V  
Applicable to Advanced I/O Banks  
Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ  
tZLS  
tZHS Units  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
Notes:  
Std.  
Std.  
Std.  
Std.  
Std.  
1.55 3.43 0.26 1.27 1.10 3.49 3.36 3.31 3.10 9.30 9.16  
ns  
ns  
ns  
ns  
ns  
1.55 3.04 0.26 1.27 1.10 3.10 2.89 3.58 3.59 8.91 8.70  
1.55 4.11 0.26 1.27 1.10 4.10 4.11 3.59 3.72 9.91 9.92  
1.55 2.95 0.26 1.27 1.10 3.00 2.70 3.74 4.21 8.81 8.51  
1.55 2.95 0.26 1.27 1.10 3.00 2.70 3.74 4.21 8.81 8.51  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating  
values.  
Table 2-107 • 1.5 V LCMOS Low Slew – Applies to 1.2 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V  
Applicable to Standard Plus Banks  
Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ  
tZLS  
tZHS Units  
2 mA  
4 mA  
Std.  
Std.  
1.55 6.42 0.26 1.27 1.10 6.54 5.95 2.81 2.81 12.35 11.76  
ns  
ns  
1.55 5.58 0.26 1.27 1.10 5.68 5.27 3.06 3.25 11.49 11.08  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating  
values.  
Table 2-108 • 1.5 V LCMOS High Slew – Applies to 1.2 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V  
Applicable to Standard Plus Banks  
Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ  
tZLS  
tZHS Units  
2 mA  
4 mA  
Notes:  
Std.  
Std.  
1.55 3.01 0.26 1.27 1.10 3.07 2.81 2.80 2.90 8.88 8.62  
ns  
ns  
1.55 2.67 0.26 1.27 1.10 2.72 2.39 3.05 3.36 8.53 8.20  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating  
values.  
Advance v0.5  
2-57  
IGLOO DC and Switching Characteristics  
Table 2-109 • 1.5 V LCMOS Low Slew – Applies to 1.2 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V  
Applicable to Standard Banks  
Drive Strength  
Speed Grade  
tDOUT  
tDP  
tDIN  
tPY  
tEOUT  
tZL  
tZH  
tLZ  
tHZ  
Units  
2 mA  
Std.  
1.55  
6.35 0.26 1.22  
1.10  
6.46 5.93 2.39 2.45  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating  
values.  
Table 2-110 • 1.5 V LCMOS High Slew – Applies to 1.2 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V  
Applicable to Standard Banks  
Drive Strength  
2 mA  
Speed Grade  
tDOUT  
tDP  
tDIN  
tPY  
tEOUT  
tZL  
tZH  
tLZ  
tHZ  
Units  
Std.  
1.55  
2.91 0.26 1.22  
1.10  
2.96 2.60 2.39 2.54  
ns  
Notes:  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating  
values.  
2-58  
Advance v0.5  
IGLOO DC and Switching Characteristics  
1.2 V LVCMOS (JESD8-12A)  
Low-Voltage CMOS for 1.2 V complies with the LVCMOS standard JESD8-12A for general purpose  
1.2 V applications. It uses a 1.2 V input buffer and a push-pull output buffer.  
Table 2-111 • Minimum and Maximum DC Input and Output Levels  
Applicable to Advanced I/O Banks  
1.2 V  
LVCMOS  
1
1
2
2
VIL  
VIH  
VOL  
VOH  
IOL IOH  
IOSH  
IOSL  
IIL IIH  
Drive  
Strength Min., V Max., V  
Min., V Max., V Max., V  
Min., V mA mA Max., mA Max., mA µA µA  
TBD TBD 10 10  
2 mA  
–0.3 0.35 * VCCI 0.65 * VCCI 1.26 0.25 * VCCI 0.75 * VCCI  
2
2
Notes:  
1. Currents are measured at 100°C junction temperature and maximum voltage.  
2. Currents are measured at 85°C junction temperature.  
3. Software default selection highlighted in gray.  
Table 2-112 • Minimum and Maximum DC Input and Output Levels  
Applicable to Standard Plus I/O Banks  
1.2 V  
LVCMOS  
1
1
2
2
VIL  
VIH  
VOL  
VOH  
IOL IOH  
IOSH  
IOSL  
IIL IIH  
Drive  
Strength Min., V Max., V  
Min., V Max., V Max., V  
Min., V mA mA Max., mA Max., mA µA µA  
TBD TBD 10 10  
2 mA  
–0.3 0.35 * VCCI 0.65 * VCCI 1.26 0.25 * VCCI 0.75 * VCCI  
2
2
Notes:  
1. Currents are measured at 100°C junction temperature and maximum voltage.  
2. Currents are measured at 85°C junction temperature.  
3. Software default selection highlighted in gray.  
Table 2-113 • Minimum and Maximum DC Input and Output Levels  
Applicable to Standard I/O Banks  
1.2 V  
LVCMOS  
1
1
2
2
VIL  
VIH  
VOL  
VOH  
IOL IOH  
IOSH  
IOSL  
IIL IIH  
Drive  
Strength Min., V Max., V  
Min., V Max., V Max., V  
Min., V mA mA Max., mA Max., mA µA µA  
1 mA  
–0.3 0.35 * VCCI 0.65 * VCCI 1.26 0.25 * VCCI 0.75 * VCCI  
1
1
TBD  
TBD  
10 10  
Notes:  
1. Currents are measured at 100°C junction temperature and maximum voltage.  
2. Currents are measured at 85°C junction temperature.  
3. Software default selection highlighted in gray.  
R to VCCI for tLZ/tZL/tZLS  
R to GND for tHZ/tZH/tZHS  
R = 1 k  
Test Point  
Enable Path  
Test Point  
Datapath  
5 pF  
35 pF for tZH/tZHS/tZL/tZLS  
5 pF for tHZ/tLZ  
Figure 2-11 • AC Loading  
Advance v0.5  
2-59  
IGLOO DC and Switching Characteristics  
Table 2-114 • AC Waveforms, Measuring Points, and Capacitive Loads  
Input LOW (V)  
Input HIGH (V)  
Measuring Point* (V)  
C
LOAD (pF)  
0
1.2  
0.6  
5
* Measuring point = Vtrip. See Table 2-28 on page 2-25 for a complete table of trip points.  
Timing Characteristics  
1.2 V DC Core Voltage  
Table 2-115 • 1.2 V LVCMOS Low Slew  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V  
Applicable to Advanced I/O Banks  
Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL  
tZH  
tLZ tHZ tZLS  
tZHS Units  
ns  
2 mA Std. 0.97 6.62 0.19 1.17 0.66 6.74 6.05 2.79 2.31 10.28 9.58  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Table 2-116 • 1.2 V LVCMOS High Slew  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V  
Applicable to Advanced I/O Banks  
Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
8.93 ns  
2 mA  
Std.  
1.55 3.61 0.26 1.58 1.10 3.45 3.33 3.94 3.66 9.05  
Notes:  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Table 2-117 • 1.2 V LVCMOS High Slew  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V  
Applicable to Standard Plus I/O Banks  
Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL  
tZH  
tLZ tHZ tZLS  
tZHS Units  
ns  
2 mA Std. 1.55 7.60 0.26 1.58 1.10 7.27 6.52 3.31 3.36 12.86 12.12  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Table 2-118 • 1.2 V LVCMOS High Slew  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V  
Applicable to Standard Plus I/O Banks  
Drive Strength  
2 mA  
Speed Grade tDOUT tDP tDIN tPY tEOUT tZL  
tZH  
tLZ  
tHZ tZLS tZHS Units  
ns  
Std. 1.55 3.23 0.26 1.58 1.10 3.09 2.76 3.30 3.49 8.69 8.36  
Notes:  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Table 2-119 • 1.2 V LVCMOS High Slew  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V  
Applicable to Standard Banks  
Drive Strength  
Speed Grade  
tDOUT  
tDP  
tDIN  
tPY  
tEOUT  
tZL  
tZH  
tLZ  
tHZ  
Units  
1 mA  
Std.  
1.55  
8.58 0.26 1.52  
1.10  
8.21 7.36 2.52 2.40  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating  
values.  
2-60  
Advance v0.5  
IGLOO DC and Switching Characteristics  
Table 2-120 • 1.2 V LCMOS High Slew – Applies to 1.2 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V  
Applicable to Standard Banks  
Drive Strength  
1 mA  
Speed Grade  
tDOUT  
tDP  
tDIN  
tPY  
tEOUT  
tZL  
tZH  
tLZ  
tHZ  
Units  
Std.  
1.55  
3.60 0.26 1.52  
1.10  
3.45 3.04 2.52 2.50  
ns  
Notes:  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating  
values.  
Advance v0.5  
2-61  
IGLOO DC and Switching Characteristics  
3.3 V PCI, 3.3 V PCI-X  
Peripheral Component Interface for 3.3 V standard specifies support for 33 MHz and 66 MHz PCI  
Bus applications.  
Table 2-121 • Minimum and Maximum DC Input and Output Levels  
Applicable to Advanced and Standard Plus I/Os  
3.3 V PCI/PCI-X  
VIL  
VIH  
VOL  
VOH  
IOL IOH  
IOSH  
IOSL  
IIL IIH  
Drive Strength Min, V Max, V Min, V Max, V Max, V Min, V mA mA Max, mA1 Max, mA1 µA2 µA2  
Per PCI  
Per PCI curves  
10 10  
specification  
Notes:  
1. Currents are measured at 100°C junction temperature and maximum voltage.  
2. Currents are measured at 85°C junction temperature.  
AC loadings are defined per the PCI/PCI-X specifications for the datapath; Actel loadings for enable  
path characterization are described in Figure 2-12.  
R to VCCI for tDP (F)  
R to GND for tDP (R)  
R to VCCI for tLZ/tZL/tZLS  
R to GND for tHZ/tZH/tZHS  
R = 25  
Test Point  
Datapath  
R = 1 k  
Test Point  
Enable Path  
10 pF for tZH /tZHS/tZL/tZLS  
5 pF for tHZ /tLZ  
Figure 2-12 • AC Loading  
AC loadings are defined per PCI/PCI-X specifications for the datapath; Actel loading for tristate is  
described in Table 2-122.  
Table 2-122 • AC Waveforms, Measuring Points, and Capacitive Loads  
Input LOW (V)  
Input HIGH (V)  
Measuring Point* (V)  
0.285 * VCCI for tDP(R)  
0.615 * VCCI for tDP(F)  
CLOAD (pF)  
0
3.3  
10  
* Measuring point = Vtrip. See Table 2-28 on page 2-25 for a complete table of trip points.  
2-62  
Advance v0.5  
IGLOO DC and Switching Characteristics  
Timing Characteristics  
1.5 V DC Core Voltage  
Table 2-123 • 3.3 V PCI/PCI-X  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Applicable to Advanced I/O Banks  
Speed Grade  
tDOUT  
tDP  
tDIN  
tPY  
tEOUT  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS  
Units  
Std.  
0.97  
2.32 0.19 0.70  
0.66  
2.36 1.77 2.67 3.04 5.89 5.30  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Table 2-124 • 3.3 V PCI/PCI-X  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Applicable to Standard Plus I/O Banks  
Speed Grade  
tDOUT  
tDP  
tDIN  
tPY  
tEOUT  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS  
Units  
Std.  
0.97  
1.96 0.19 0.70  
0.66  
2.00 1.50 2.36 2.79 5.53 5.03  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
1.2 V DC Core Voltage  
Table 2-125 • 3.3 V PCI/PCI-X  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V  
Applicable to Advanced I/O Banks  
Speed Grade  
tDOUT  
tDP  
tDIN  
tPY  
tEOUT  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS  
Units  
Std.  
1.55  
2.90 0.25 0.86  
1.10  
2.95 2.29 3.23 3.92 8.76 8.10  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating  
values.  
Table 2-126 • 3.3 V PCI/PCI-X  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V  
Applicable to Standard Plus I/O Banks  
Speed Grade  
tDOUT  
tDP  
tDIN  
tPY  
tEOUT  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS  
Units  
Std.  
1.55  
2.52 0.25 0.85  
1.10  
2.57 1.98 2.91 3.62 8.37 7.78  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating  
values.  
Advance v0.5  
2-63  
IGLOO DC and Switching Characteristics  
Differential I/O Characteristics  
Physical Implementation  
Configuration of the I/O modules as a differential pair is handled by Actel Designer software when  
the user instantiates a differential I/O macro in the design.  
Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output  
Register (OutReg), Enable Register (EnReg), and Double Data Rate (DDR). However, there is no  
support for bidirectional I/Os or tristates with the LVPECL standards.  
LVDS  
Low-Voltage Differential Signaling (ANSI/TIA/EIA-644) is a high-speed, differential I/O standard. It  
requires that one data bit be carried through two signal lines, so two pins are needed. It also  
requires external resistor termination.  
The full implementation of the LVDS transmitter and receiver is shown in an example in  
Figure 2-13. The building blocks of the LVDS transmitter-receiver are one transmitter macro, one  
receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end.  
The values for the three driver resistors are different from those used in the LVPECL  
implementation because the output standard specifications are different.  
Along with LVDS I/O, IGLOO also supports Bus LVDS structure and Multipoint LVDS (M-LVDS)  
configuration (up to 40 nodes).  
Bourns Part Number: CAT16-LV4F12  
FPGA  
FPGA  
OUTBUF_LVDS  
P
P
165 Ω  
165 Ω  
Z0 = 50 Ω  
140 Ω  
Z0 = 50 Ω  
INBUF_LVDS  
+
100 Ω  
N
N
Figure 2-13 • LVDS Circuit Diagram and Board-Level Implementation  
2-64  
Advance v0.5  
IGLOO DC and Switching Characteristics  
Table 2-127 • Minimum and Maximum DC Input and Output Levels  
DC Parameter  
Description  
Min.  
2.375  
0.9  
Typ.  
2.5  
Max.  
2.625  
1.25  
1.6  
Units  
V
VCCI  
VOL  
VOH  
Supply Voltage  
Output LOW Voltage  
1.075  
1.425  
0.91  
0.91  
V
Output HIGH Voltage  
1.25  
0.65  
0.65  
0
V
4
IOL  
Output Lower Current  
1.16  
1.16  
2.925  
10  
mA  
mA  
V
4
IOH  
Output HIGH Current  
VI  
Input Voltage  
3
IIH  
Input HIGH Leakage Current  
Input LOW Leakage Current  
Differential Output Voltage  
Output Common-Mode Voltage  
Input Common-Mode Voltage  
Input Differential Voltage  
µA  
µA  
mV  
V
3
IIL  
10  
VODIFF  
VOCM  
VICM  
250  
1.125  
0.05  
100  
350  
1.25  
1.25  
350  
450  
1.375  
2.35  
V
VIDIFF  
Notes:  
mV  
1.  
5%  
2. Differential input voltage = 350 mV.  
3. Currents are measured at 85°C junction temperature.  
4. IOL/IOH is defined by VODIFF/(resistor network).  
Table 2-128 • AC Waveforms, Measuring Points, and Capacitive Loads  
Input LOW (V)  
Input HIGH (V)  
Measuring Point* (V)  
1.075  
1.325  
Cross point  
* Measuring point = Vtrip. See Table 2-28 on page 2-25 for a complete table of trip points.  
Timing Characteristics  
1.5 V DC Core Voltage  
Table 2-129 • LVDS – Applies to 1.5 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Standard Banks  
Speed Grade  
tDOUT  
tDP  
tDIN  
tPY  
Units  
ns  
Std.  
0.97  
1.67  
0.19  
1.31  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 and Table 2-7  
on page 2-7 for derating values.  
1.2 V DC Core Voltage  
Table 2-130 • LVDS – Applies to 1.5 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V  
Applicable to Standard Banks  
Speed Grade  
tDOUT  
tDP  
tDIN  
tPY  
Units  
Std.  
1.55  
2.19  
0.25  
1.52  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 and Table 2-7  
on page 2-7 for derating values.  
Advance v0.5  
2-65  
IGLOO DC and Switching Characteristics  
B-LVDS/M-LVDS  
Bus LVDS (B-LVDS) and Multipoint LVDS (M-LVDS) specifications extend the existing LVDS standard  
to high-performance multipoint bus applications. Multidrop and multipoint bus configurations  
may contain any combination of drivers, receivers, and transceivers. Actel LVDS drivers provide the  
higher drive current required by B-LVDS and M-LVDS to accommodate the loading. The drivers  
require series terminations for better signal quality and to control voltage swing. Termination is  
also required at both ends of the bus since the driver can be located anywhere on the bus. These  
configurations can be implemented using the TRIBUF_LVDS and BIBUF_LVDS macros along with  
appropriate terminations. Multipoint designs using Actel LVDS macros can achieve up to 200 MHz  
with a maximum of 20 loads. A sample application is given in Figure 2-14. The input and output  
buffer delays are available in the LVDS section in Table 2-129 on page 2-65 and Table 2-130 on  
page 2-65.  
Example: For a bus consisting of 20 equidistant loads, the following terminations provide the  
required differential voltage, in worst-case Industrial operating conditions, at the farthest receiver:  
RS = 60 and RT = 70 , given Z0 = 50 (2") and Zstub = 50 (~1.5").  
Receiver  
Transceiver  
Driver  
D
Receiver  
Transceiver  
EN  
EN  
EN  
EN  
EN  
BIBUF_LVDS  
R
T
R
T
+
-
+
-
+
-
+
-
+
-
RS RS  
RS RS  
RS RS  
Zstub  
RS RS  
RS RS  
Zstub  
Z0  
Zstub  
Zstub  
Z0  
Zstub  
Zstub  
Z0  
Zstub  
Z0  
Zstub  
...  
Z0  
Z0  
Z0  
Z0  
RT  
RT  
Z0  
Z0  
Z0  
Z0  
Figure 2-14 • B-LVDS/M-LVDS Multipoint Application Using LVDS I/O Buffers  
LVPECL  
Low-Voltage Positive Emitter-Coupled Logic (LVPECL) is another differential I/O standard. It  
requires that one data bit be carried through two signal lines. Like LVDS, two pins are needed. It  
also requires external resistor termination.  
The full implementation of the LVDS transmitter and receiver is shown in an example in  
Figure 2-15. The building blocks of the LVPECL transmitter-receiver are one transmitter macro, one  
receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end.  
The values for the three driver resistors are different from those used in the LVDS implementation  
because the output standard specifications are different.  
Bourns Part Number: CAT16-PC4F12  
FPGA  
FPGA  
P
P
OUTBUF_LVPECL  
100 Ω  
100 Ω  
Z0 = 50 Ω  
187 W  
Z0 = 50 Ω  
INBUF_LVPECL  
+
100 Ω  
N
N
Figure 2-15 • LVPECL Circuit Diagram and Board-Level Implementation  
2-66  
Advance v0.5  
IGLOO DC and Switching Characteristics  
Table 2-131 • Minimum and Maximum DC Input and Output Levels  
DC Parameter  
VCCI  
Description  
Supply Voltage  
Min. Max. Min. Max. Min. Max. Units  
3.0  
3.3  
3.6  
V
V
VOL  
Output LOW Voltage  
0.96  
1.8  
0
1.27  
2.11  
3.3  
1.06  
1.92  
0
1.43  
2.28  
3.6  
1.30  
2.13  
0
1.57  
2.41  
3.9  
VOH  
Output HIGH Voltage  
V
VIL, VIH  
VODIFF  
VOCM  
Input LOW, Input HIGH Voltages  
Differential Output Voltage  
Output Common-Mode Voltage  
Input Common-Mode Voltage  
Input Differential Voltage  
V
0.625 0.97 0.625 0.97 0.625 0.97  
1.762 1.98 1.762 1.98 1.762 1.98  
V
V
VICM  
1.01  
300  
2.57  
1.01  
300  
2.57  
1.01  
300  
2.57  
V
VIDIFF  
mV  
Table 2-132 • AC Waveforms, Measuring Points, and Capacitive Loads  
Input LOW (V)  
Input HIGH (V)  
Measuring Point* (V)  
1.64  
1.94  
Cross point  
* Measuring point = Vtrip. See Table 2-28 on page 2-87 for a complete table of trip points.  
Timing Characteristics  
1.5 V DC Core Voltage  
Table 2-133 • LVPECL – Applies to 1.5 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Applicable to Standard Banks  
Speed Grade  
tDOUT  
tDP  
tDIN  
tPY  
Units  
Std.  
0.97  
1.67  
0.19  
1.16  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
1.2 V DC Core Voltage  
Table 2-134 • LVPECL – Applies to 1.2 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V  
Applicable to Standard Banks  
Speed Grade  
tDOUT  
tDP  
tDIN  
tPY  
Units  
Std.  
1.55  
2.24  
0.25  
1.37  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating  
values.  
Advance v0.5  
2-67  
IGLOO DC and Switching Characteristics  
I/O Register Specifications  
Fully Registered I/O Buffers with Synchronous Enable and Asynchronous  
Preset  
Preset  
L
D
DOUT  
Data_out  
PRE  
DFN1E1P1  
F
PRE  
DFN1E1P1  
Y
E
Core  
Array  
Data  
Enable  
CLK  
D
Q
D
Q
C
G
E
E
EOUT  
B
H
I
A
PRE  
DFN1E1P1  
J
D
Q
K
Data Input I/O Register with:  
Active High Enable  
E
Active High Preset  
Positive-Edge Triggered  
Data Output Register and  
Enable Output Register with:  
Active High Enable  
Active High Preset  
CLKBUF  
INBUF  
INBUF  
Postive-Edge Triggered  
Figure 2-16 • Timing Model of Registered I/O Buffers with Synchronous Enable and Asynchronous Preset  
2-68  
Advance v0.5  
IGLOO DC and Switching Characteristics  
Table 2-135 • Parameter Definition and Measuring Nodes  
Measuring Nodes  
(from, to)*  
Parameter Name  
tOCLKQ  
tOSUD  
Parameter Definition  
Clock-to-Q of the Output Data Register  
H, DOUT  
F, H  
Data Setup Time for the Output Data Register  
Data Hold Time for the Output Data Register  
Enable Setup Time for the Output Data Register  
Enable Hold Time for the Output Data Register  
Asynchronous Preset-to-Q of the Output Data Register  
tOHD  
F, H  
tOSUE  
G, H  
tOHE  
G, H  
tOPRE2Q  
tOREMPRE  
tORECPRE  
tOECLKQ  
tOESUD  
tOEHD  
L, DOUT  
Asynchronous Preset Removal Time for the Output Data Register  
Asynchronous Preset Recovery Time for the Output Data Register  
Clock-to-Q of the Output Enable Register  
L, H  
L, H  
H, EOUT  
J, H  
Data Setup Time for the Output Enable Register  
Data Hold Time for the Output Enable Register  
J, H  
tOESUE  
tOEHE  
Enable Setup Time for the Output Enable Register  
Enable Hold Time for the Output Enable Register  
Asynchronous Preset-to-Q of the Output Enable Register  
Asynchronous Preset Removal Time for the Output Enable Register  
Asynchronous Preset Recovery Time for the Output Enable Register  
Clock-to-Q of the Input Data Register  
K, H  
K, H  
I, EOUT  
I, H  
tOEPRE2Q  
tOEREMPRE  
tOERECPRE  
tICLKQ  
I, H  
A, E  
tISUD  
Data Setup Time for the Input Data Register  
C, A  
tIHD  
Data Hold Time for the Input Data Register  
C, A  
tISUE  
Enable Setup Time for the Input Data Register  
B, A  
tIHE  
Enable Hold Time for the Input Data Register  
B, A  
tIPRE2Q  
tIREMPRE  
tIRECPRE  
Asynchronous Preset-to-Q of the Input Data Register  
Asynchronous Preset Removal Time for the Input Data Register  
Asynchronous Preset Recovery Time for the Input Data Register  
D, E  
D, A  
D, A  
* See Figure 2-16 on page 2-68 for more information.  
Advance v0.5  
2-69  
IGLOO DC and Switching Characteristics  
Fully Registered I/O Buffers with Synchronous Enable and Asynchronous  
Clear  
DOUT  
FF  
Data_out  
Y
Core  
D
Q
D
Q
Data  
Array  
CC  
EE  
DFN1E1C1  
DFN1E1C1  
GG  
EOUT  
E
E
Enable  
CLK  
CLR  
BB  
CLR  
LL  
HH  
AA  
DD  
JJ  
D
Q
CLR  
DFN1E1C1  
KK  
E
Data Input I/O Register with  
Active High Enable  
CLR  
Active High Clear  
Positive-Edge Triggered  
Data Output Register and  
Enable Output Register with  
Active High Enable  
Active High Clear  
Positive-Edge Triggered  
INBUF  
INBUF  
CLKBUF  
Figure 2-17 • Timing Model of the Registered I/O Buffers with Synchronous Enable and Asynchronous Clear  
2-70  
Advance v0.5  
IGLOO DC and Switching Characteristics  
Table 2-136 • Parameter Definition and Measuring Nodes  
Measuring Nodes  
(from, to)*  
Parameter Name  
tOCLKQ  
tOSUD  
Parameter Definition  
Clock-to-Q of the Output Data Register  
HH, DOUT  
FF, HH  
Data Setup Time for the Output Data Register  
Data Hold Time for the Output Data Register  
Enable Setup Time for the Output Data Register  
Enable Hold Time for the Output Data Register  
Asynchronous Clear-to-Q of the Output Data Register  
tOHD  
FF, HH  
tOSUE  
GG, HH  
GG, HH  
LL, DOUT  
tOHE  
tOCLR2Q  
tOREMCLR  
tORECCLR  
tOECLKQ  
tOESUD  
tOEHD  
Asynchronous Clear Removal Time for the Output Data Register  
Asynchronous Clear Recovery Time for the Output Data Register  
Clock-to-Q of the Output Enable Register  
LL, HH  
LL, HH  
HH, EOUT  
JJ, HH  
Data Setup Time for the Output Enable Register  
Data Hold Time for the Output Enable Register  
JJ, HH  
tOESUE  
tOEHE  
Enable Setup Time for the Output Enable Register  
Enable Hold Time for the Output Enable Register  
Asynchronous Clear-to-Q of the Output Enable Register  
Asynchronous Clear Removal Time for the Output Enable Register  
Asynchronous Clear Recovery Time for the Output Enable Register  
Clock-to-Q of the Input Data Register  
KK, HH  
KK, HH  
II, EOUT  
II, HH  
tOECLR2Q  
tOEREMCLR  
tOERECCLR  
tICLKQ  
II, HH  
AA, EE  
CC, AA  
CC, AA  
BB, AA  
BB, AA  
DD, EE  
DD, AA  
DD, AA  
tISUD  
Data Setup Time for the Input Data Register  
tIHD  
Data Hold Time for the Input Data Register  
tISUE  
Enable Setup Time for the Input Data Register  
tIHE  
Enable Hold Time for the Input Data Register  
tICLR2Q  
tIREMCLR  
tIRECCLR  
Asynchronous Clear-to-Q of the Input Data Register  
Asynchronous Clear Removal Time for the Input Data Register  
Asynchronous Clear Recovery Time for the Input Data Register  
* See Figure 2-17 on page 2-70 for more information.  
Advance v0.5  
2-71  
IGLOO DC and Switching Characteristics  
Input Register  
tICKMPWH tICKMPWL  
50%  
50%  
50%  
50%  
50%  
50%  
50%  
CLK  
tIHD  
tISUD  
50%  
50%  
1
0
Data  
tIREMPRE  
tIRECPRE  
tIWPRE  
Enable  
Preset  
50%  
tIHE  
tISUE  
50%  
50%  
50%  
tIWCLR  
tIRECCLR  
50%  
tIREMCLR  
50%  
50%  
Clear  
tIPRE2Q  
50%  
50%  
tICLKQ  
50%  
Out_1  
tICLR2Q  
Figure 2-18 • Input Register Timing Diagram  
Timing Characteristics  
1.5 V DC Core Voltage  
Table 2-137 • Input Data Register Propagation Delays  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V  
Parameter  
tICLKQ  
Description  
Std. Units  
Clock-to-Q of the Input Data Register  
0.42  
0.47  
0.00  
0.67  
0.00  
0.79  
0.79  
0.00  
0.24  
0.00  
0.24  
0.19  
0.19  
0.31  
0.28  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tISUD  
Data Setup Time for the Input Data Register  
tIHD  
Data Hold Time for the Input Data Register  
tISUE  
Enable Setup Time for the Input Data Register  
Enable Hold Time for the Input Data Register  
tIHE  
tICLR2Q  
tIPRE2Q  
tIREMCLR  
tIRECCLR  
tIREMPRE  
tIRECPRE  
tIWCLR  
Asynchronous Clear-to-Q of the Input Data Register  
Asynchronous Preset-to-Q of the Input Data Register  
Asynchronous Clear Removal Time for the Input Data Register  
Asynchronous Clear Recovery Time for the Input Data Register  
Asynchronous Preset Removal Time for the Input Data Register  
Asynchronous Preset Recovery Time for the Input Data Register  
Asynchronous Clear Minimum Pulse Width for the Input Data Register  
Asynchronous Preset Minimum Pulse Width for the Input Data Register  
Clock Minimum Pulse Width HIGH for the Input Data Register  
Clock Minimum Pulse Width LOW for the Input Data Register  
tIWPRE  
tICKMPWH  
tICKMPWL  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
2-72  
Advance v0.5  
IGLOO DC and Switching Characteristics  
1.2 V DC Core Voltage  
Table 2-138 • Input Data Register Propagation Delays  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V  
Description  
Clock-to-Q of the Input Data Register  
Parameter  
tICLKQ  
Std. Units  
0.68  
0.97  
0.00  
1.02  
0.00  
1.19  
1.19  
0.00  
0.24  
0.00  
0.24  
0.19  
0.19  
0.31  
0.28  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tISUD  
Data Setup Time for the Input Data Register  
tIHD  
Data Hold Time for the Input Data Register  
tISUE  
Enable Setup Time for the Input Data Register  
tIHE  
Enable Hold Time for the Input Data Register  
tICLR2Q  
tIPRE2Q  
tIREMCLR  
tIRECCLR  
tIREMPRE  
tIRECPRE  
tIWCLR  
Asynchronous Clear-to-Q of the Input Data Register  
Asynchronous Preset-to-Q of the Input Data Register  
Asynchronous Clear Removal Time for the Input Data Register  
Asynchronous Clear Recovery Time for the Input Data Register  
Asynchronous Preset Removal Time for the Input Data Register  
Asynchronous Preset Recovery Time for the Input Data Register  
Asynchronous Clear Minimum Pulse Width for the Input Data Register  
Asynchronous Preset Minimum Pulse Width for the Input Data Register  
Clock Minimum Pulse Width HIGH for the Input Data Register  
Clock Minimum Pulse Width LOW for the Input Data Register  
tIWPRE  
tICKMPWH  
tICKMPWL  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating  
values.  
Output Register  
t
t
OCKMPWH OCKMPWL  
50%  
50%  
50%  
50%  
50%  
50%  
50%  
CLK  
t
t
OSUD OHD  
50%  
50%  
1
0
Data_out  
t
OREMPRE  
Enable  
Preset  
50%  
t
t
ORECPRE  
OWPRE  
t
OHE  
50%  
50%  
50%  
t
OSUE  
t
t
OREMCLR  
t
ORECCLR  
OWCLR  
50%  
50%  
50%  
Clear  
t
OPRE2Q  
50%  
50%  
50%  
DOUT  
t
OCLR2Q  
t
OCLKQ  
Figure 2-19 • Output Register Timing Diagram  
Advance v0.5  
2-73  
IGLOO DC and Switching Characteristics  
Timing Characteristics  
1.5 V DC Core Voltage  
Table 2-139 • Output Data Register Propagation Delays  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V  
Description  
Clock-to-Q of the Output Data Register  
Parameter  
tOCLKQ  
Std. Units  
1.00  
0.51  
0.00  
0.70  
0.00  
1.34  
1.34  
0.00  
0.24  
0.00  
0.24  
0.19  
0.19  
0.31  
0.28  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tOSUD  
Data Setup Time for the Output Data Register  
tOHD  
Data Hold Time for the Output Data Register  
tOSUE  
Enable Setup Time for the Output Data Register  
tOHE  
Enable Hold Time for the Output Data Register  
tOCLR2Q  
tOPRE2Q  
tOREMCLR  
tORECCLR  
tOREMPRE  
tORECPRE  
tOWCLR  
tOWPRE  
tOCKMPWH  
tOCKMPWL  
Asynchronous Clear-to-Q of the Output Data Register  
Asynchronous Preset-to-Q of the Output Data Register  
Asynchronous Clear Removal Time for the Output Data Register  
Asynchronous Clear Recovery Time for the Output Data Register  
Asynchronous Preset Removal Time for the Output Data Register  
Asynchronous Preset Recovery Time for the Output Data Register  
Asynchronous Clear Minimum Pulse Width for the Output Data Register  
Asynchronous Preset Minimum Pulse Width for the Output Data Register  
Clock Minimum Pulse Width HIGH for the Output Data Register  
Clock Minimum Pulse Width LOW for the Output Data Register  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
1.2 V DC Core Voltage  
Table 2-140 • Output Data Register Propagation Delays  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V  
Parameter  
tOCLKQ  
Description  
Clock-to-Q of the Output Data Register  
Std. Units  
1.52  
1.15  
0.00  
1.11  
0.00  
1.96  
1.96  
0.00  
0.24  
0.00  
0.24  
0.19  
0.19  
0.31  
0.28  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tOSUD  
Data Setup Time for the Output Data Register  
tOHD  
Data Hold Time for the Output Data Register  
tOSUE  
Enable Setup Time for the Output Data Register  
tOHE  
Enable Hold Time for the Output Data Register  
tOCLR2Q  
tOPRE2Q  
tOREMCLR  
tORECCLR  
tOREMPRE  
tORECPRE  
tOWCLR  
tOWPRE  
tOCKMPWH  
tOCKMPWL  
Asynchronous Clear-to-Q of the Output Data Register  
Asynchronous Preset-to-Q of the Output Data Register  
Asynchronous Clear Removal Time for the Output Data Register  
Asynchronous Clear Recovery Time for the Output Data Register  
Asynchronous Preset Removal Time for the Output Data Register  
Asynchronous Preset Recovery Time for the Output Data Register  
Asynchronous Clear Minimum Pulse Width for the Output Data Register  
Asynchronous Preset Minimum Pulse Width for the Output Data Register  
Clock Minimum Pulse Width HIGH for the Output Data Register  
Clock Minimum Pulse Width LOW for the Output Data Register  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating  
values.  
2-74  
Advance v0.5  
IGLOO DC and Switching Characteristics  
Output Enable Register  
tOECKMPWH tOECKMPWL  
50%  
50%  
50%  
50%  
50%  
50%  
50%  
CLK  
tOESUD tOEHD  
50%  
50%  
0
1
D_Enable  
50%  
Enable  
Preset  
tOEWPRE  
50%  
tOEREMPRE  
50%  
tOERECPRE  
50%  
tOESUE OEHE  
t
tOEREMCLR  
tOEWCLR tOERECCLR  
50%  
50%  
50%  
Clear  
EOUT  
tOECLR2Q  
tOEPRE2Q  
50%  
tOECLKQ  
50%  
50%  
Figure 2-20 • Output Enable Register Timing Diagram  
Timing Characteristics  
1.5 V DC Core Voltage  
Table 2-141 • Output Enable Register Propagation Delays  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V  
Parameter  
tOECLKQ  
tOESUD  
Description  
Std. Units  
Clock-to-Q of the Output Enable Register  
0.75  
0.51  
0.00  
0.73  
0.00  
1.13  
1.13  
0.00  
0.24  
0.00  
0.24  
0.19  
0.19  
0.31  
0.28  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Data Setup Time for the Output Enable Register  
tOEHD  
Data Hold Time for the Output Enable Register  
tOESUE  
Enable Setup Time for the Output Enable Register  
Enable Hold Time for the Output Enable Register  
Asynchronous Clear-to-Q of the Output Enable Register  
Asynchronous Preset-to-Q of the Output Enable Register  
Asynchronous Clear Removal Time for the Output Enable Register  
Asynchronous Clear Recovery Time for the Output Enable Register  
Asynchronous Preset Removal Time for the Output Enable Register  
Asynchronous Preset Recovery Time for the Output Enable Register  
tOEHE  
tOECLR2Q  
tOEPRE2Q  
tOEREMCLR  
tOERECCLR  
tOEREMPRE  
tOERECPRE  
tOEWCLR  
tOEWPRE  
Asynchronous Clear Minimum Pulse Width for the Output Enable Register  
Asynchronous Preset Minimum Pulse Width for the Output Enable Register  
tOECKMPWH Clock Minimum Pulse Width HIGH for the Output Enable Register  
tOECKMPWL Clock Minimum Pulse Width LOW for the Output Enable Register  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Advance v0.5  
2-75  
IGLOO DC and Switching Characteristics  
1.2 V DC Core Voltage  
Table 2-142 • Output Enable Register Propagation Delays  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V  
Description  
Clock-to-Q of the Output Enable Register  
Parameter  
tOECLKQ  
tOESUD  
Std. Units  
1.10  
1.15  
0.00  
1.22  
0.00  
1.65  
1.65  
0.00  
0.24  
0.00  
0.24  
0.19  
0.19  
0.31  
0.28  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Data Setup Time for the Output Enable Register  
tOEHD  
Data Hold Time for the Output Enable Register  
tOESUE  
Enable Setup Time for the Output Enable Register  
tOEHE  
Enable Hold Time for the Output Enable Register  
tOECLR2Q  
tOEPRE2Q  
tOEREMCLR  
tOERECCLR  
tOEREMPRE  
tOERECPRE  
tOEWCLR  
tOEWPRE  
Asynchronous Clear-to-Q of the Output Enable Register  
Asynchronous Preset-to-Q of the Output Enable Register  
Asynchronous Clear Removal Time for the Output Enable Register  
Asynchronous Clear Recovery Time for the Output Enable Register  
Asynchronous Preset Removal Time for the Output Enable Register  
Asynchronous Preset Recovery Time for the Output Enable Register  
Asynchronous Clear Minimum Pulse Width for the Output Enable Register  
Asynchronous Preset Minimum Pulse Width for the Output Enable Register  
tOECKMPWH Clock Minimum Pulse Width HIGH for the Output Enable Register  
tOECKMPWL Clock Minimum Pulse Width LOW for the Output Enable Register  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating  
values.  
2-76  
Advance v0.5  
IGLOO DC and Switching Characteristics  
DDR Module Specifications  
Input DDR Module  
Input DDR  
INBUF  
A
D
Out_QF  
(to core)  
Data  
FF1  
B
E
Out_QR  
(to core)  
CLK  
CLR  
CLKBUF  
FF2  
C
INBUF  
DDR_IN  
Figure 2-21 • Input DDR Timing Model  
Table 2-143 • Parameter Definitions  
Parameter Name  
tDDRICLKQ1  
tDDRICLKQ2  
tDDRISUD  
Parameter Definition  
Measuring Nodes (from, to)  
Clock-to-Out Out_QR  
Clock-to-Out Out_QF  
B, D  
B, E  
A, B  
A, B  
C, D  
C, E  
C, B  
C, B  
Data Setup Time of DDR input  
Data Hold Time of DDR input  
Clear-to-Out Out_QR  
Clear-to-Out Out_QF  
Clear Removal  
tDDRIHD  
tDDRICLR2Q1  
tDDRICLR2Q2  
tDDRIREMCLR  
tDDRIRECCLR  
Clear Recovery  
Advance v0.5  
2-77  
IGLOO DC and Switching Characteristics  
CLK  
t
t
DDRISUD  
DDRIHD  
Data  
CLR  
1
2
3
4
5
6
7
8
9
t
DDRIRECCLR  
t
DDRIREMCLR  
t
DDRICLKQ1  
t
t
DDRICLR2Q1  
Out_QF  
Out_QR  
6
2
4
t
DDRICLKQ2  
DDRICLR2Q2  
7
3
5
Figure 2-22 • Input DDR Timing Diagram  
Timing Characteristics  
1.5 V DC Core Voltage  
Table 2-144 • Input DDR Propagation Delays  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.25 V  
Parameter  
tDDRICLKQ1  
tDDRICLKQ2  
tDDRISUD1  
Description  
Std.  
0.48  
0.65  
0.50  
0.40  
0.00  
0.00  
0.82  
0.98  
0.00  
0.23  
0.19  
0.31  
0.28  
TBD  
Units  
Clock-to-Out Out_QR for Input DDR  
ns  
ns  
Clock-to-Out Out_QF for Input DDR  
Data Setup for Input DDR (negedge)  
ns  
tDDRISUD2  
Data Setup for Input DDR (posedge)  
ns  
tDDRIHD1  
Data Hold for Input DDR (negedge)  
ns  
tDDRIHD2  
Data Hold for Input DDR (posedge)  
ns  
tDDRICLR2Q1  
tDDRICLR2Q2  
tDDRIREMCLR  
tDDRIRECCLR  
tDDRIWCLR  
tDDRICKMPWH  
tDDRICKMPWL  
FDDRIMAX  
Asynchronous Clear-to-Out Out_QR for Input DDR  
Asynchronous Clear-to-Out Out_QF for Input DDR  
Asynchronous Clear Removal Time for Input DDR  
Asynchronous Clear Recovery Time for Input DDR  
Asynchronous Clear Minimum Pulse Width for Input DDR  
Clock Minimum Pulse Width HIGH for Input DDR  
Clock Minimum Pulse Width LOW for Input DDR  
Maximum Frequency for Input DDR  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating  
values.  
2-78  
Advance v0.5  
IGLOO DC and Switching Characteristics  
1.2 V DC Core Voltage  
Table 2-145 • Input DDR Propagation Delays  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V  
Description  
Clock-to-Out Out_QR for Input DDR  
Parameter  
tDDRICLKQ1  
tDDRICLKQ2  
tDDRISUD1  
Std.  
0.76  
0.94  
0.93  
0.84  
0.00  
0.00  
1.23  
1.42  
0.00  
0.24  
0.19  
0.31  
0.28  
TBD  
Units  
ns  
Clock-to-Out Out_QF for Input DDR  
ns  
Data Setup for Input DDR (negedge)  
ns  
tDDRISUD2  
Data Setup for Input DDR (posedge)  
ns  
tDDRIHD1  
Data Hold for Input DDR (negedge)  
ns  
tDDRIHD2  
Data Hold for Input DDR (posedge)  
ns  
tDDRICLR2Q1  
tDDRICLR2Q2  
tDDRIREMCLR  
tDDRIRECCLR  
tDDRIWCLR  
tDDRICKMPWH  
tDDRICKMPWL  
FDDRIMAX  
Asynchronous Clear-to-Out Out_QR for Input DDR  
Asynchronous Clear-to-Out Out_QF for Input DDR  
Asynchronous Clear Removal Time for Input DDR  
Asynchronous Clear Recovery Time for Input DDR  
Asynchronous Clear Minimum Pulse Width for Input DDR  
Clock Minimum Pulse Width HIGH for Input DDR  
Clock Minimum Pulse Width LOW for Input DDR  
Maximum Frequency for Input DDR  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating  
values.  
Advance v0.5  
2-79  
IGLOO DC and Switching Characteristics  
Output DDR Module  
Output DDR  
A
Data_F  
XX  
(from core)  
FF1  
Out  
B
C
0
1
CLK  
X
X
X
E
CLKBUF  
X
OUTBUF  
D
Data_R  
(from core)  
FF2  
B
C
X
X
CLR  
INBUF  
DDR_OUT  
Figure 2-23 • Output DDR Timing Model  
Table 2-146 • Parameter Definitions  
Parameter Name  
tDDROCLKQ  
Parameter Definition  
Clock-to-Out  
Measuring Nodes (from, to)  
B, E  
C, E  
C, B  
C, B  
A, B  
D, B  
A, B  
D, B  
tDDROCLR2Q  
tDDROREMCLR  
tDDRORECCLR  
tDDROSUD1  
Asynchronous Clear-to-Out  
Clear Removal  
Clear Recovery  
Data Setup Data_F  
Data Setup Data_R  
Data Hold Data_F  
Data Hold Data_R  
tDDROSUD2  
tDDROHD1  
tDDROHD2  
2-80  
Advance v0.5  
IGLOO DC and Switching Characteristics  
CLK  
tDDROHD2  
tDDROSUD2  
3
4
9
5
Data_F  
1
2
tDDROHD1  
tDDROREMCLR  
Data_R 6  
CLR  
7
8
10  
11  
tDDRORECCLR  
tDDROREMCLR  
tDDROCLR2Q  
tDDROCLKQ  
Out  
7
2
8
3
9
4
10  
Figure 2-24 • Output DDR Timing Diagram  
Timing Characteristics  
1.5 V DC Core Voltage  
Table 2-147 • Output DDR Propagation Delays  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V  
Parameter  
tDDROCLKQ  
tDDROSUD1  
tDDROSUD2  
tDDROHD1  
Description  
Std.  
1.07  
0.67  
0.67  
0.00  
0.00  
1.38  
0.00  
0.23  
0.19  
0.31  
0.28  
TBD  
Units  
ns  
Clock-to-Out of DDR for Output DDR  
Data_F Data Setup for Output DDR  
ns  
Data_R Data Setup for Output DDR  
ns  
Data_F Data Hold for Output DDR  
ns  
tDDROHD2  
Data_R Data Hold for Output DDR  
ns  
tDDROCLR2Q  
tDDROREMCLR  
tDDRORECCLR  
tDDROWCLR1  
tDDROCKMPWH  
tDDROCKMPWL  
FDDOMAX  
Asynchronous Clear-to-Out for Output DDR  
Asynchronous Clear Removal Time for Output DDR  
Asynchronous Clear Recovery Time for Output DDR  
Asynchronous Clear Minimum Pulse Width for Output DDR  
Clock Minimum Pulse Width HIGH for the Output DDR  
Clock Minimum Pulse Width LOW for the Output DDR  
Maximum Frequency for the Output DDR  
ns  
ns  
ns  
ns  
ns  
ns  
MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Advance v0.5  
2-81  
IGLOO DC and Switching Characteristics  
1.2 V DC Core Voltage  
Table 2-148 • Output DDR Propagation Delays  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V  
Description  
Clock-to-Out of DDR for Output DDR  
Parameter  
tDDROCLKQ  
tDDROSUD1  
tDDROSUD2  
tDDROHD1  
Std.  
1.60  
1.09  
1.16  
0.00  
0.00  
1.99  
0.00  
0.24  
0.19  
0.31  
0.28  
TBD  
Units  
ns  
Data_F Data Setup for Output DDR  
ns  
Data_R Data Setup for Output DDR  
ns  
Data_F Data Hold for Output DDR  
ns  
tDDROHD2  
Data_R Data Hold for Output DDR  
ns  
tDDROCLR2Q  
tDDROREMCLR  
tDDRORECCLR  
tDDROWCLR1  
tDDROCKMPWH  
tDDROCKMPWL  
FDDOMAX  
Asynchronous Clear-to-Out for Output DDR  
Asynchronous Clear Removal Time for Output DDR  
Asynchronous Clear Recovery Time for Output DDR  
Asynchronous Clear Minimum Pulse Width for Output DDR  
Clock Minimum Pulse Width HIGH for the Output DDR  
Clock Minimum Pulse Width LOW for the Output DDR  
Maximum Frequency for the Output DDR  
ns  
ns  
ns  
ns  
ns  
ns  
MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating  
values.  
2-82  
Advance v0.5  
IGLOO DC and Switching Characteristics  
VersaTile Characteristics  
VersaTile Specifications as a Combinatorial Module  
The IGLOO library offers all combinations of LUT-3 combinatorial functions. In this section, timing  
characteristics are presented for a sample of the library. For more details, refer to the IGLOO,  
Fusion, and ProASIC3 Macro Library Guide.  
A
Y
Y
INV  
A
A
B
NOR2  
OR2  
Y
B
A
B
A
B
Y
AND2  
Y
NAND2  
A
B
C
A
B
Y
XOR3  
XOR2  
Y
A
B
C
A
MAJ3  
0
Y
A
B
C
MUX2  
Y
B
S
NAND3  
1
Figure 2-25 • Sample of Combinatorial Cells  
Advance v0.5  
2-83  
IGLOO DC and Switching Characteristics  
t
PD  
Fanout = 4  
A
B
Net  
Y
NAND2 or Any  
Combinatorial  
Logic  
Length = 1 VersaTile  
t
= MAX(t  
, t  
,
PD  
PD(RR) PD(RF)  
t
, t  
) where edges are  
PD(FF) PD(FR)  
A
applicable for a particular  
combinatorial cell  
Net  
Y
Y
NAND2 or Any  
Combinatorial  
Logic  
Length = 1 VersaTile  
B
A
Net  
NAND2 or Any  
Combinatorial  
Logic  
Length = 1 VersaTile  
B
A
Net  
Y
NAND2 or Any  
Combinatorial  
Logic  
Length = 1 VersaTile  
B
VCC  
50%  
50%  
VCC  
A, B, C  
GND  
50%  
50%  
OUT  
OUT  
GND  
tPD  
tPD  
(FF)  
(RR)  
VCC  
tPD  
(FR)  
50%  
50%  
tPD  
GND  
(RF)  
Figure 2-26 • Timing Model and Waveforms  
2-84  
Advance v0.5  
IGLOO DC and Switching Characteristics  
Timing Characteristics  
1.5 V DC Core Voltage  
Table 2-149 • Combinatorial Cell Propagation Delays  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V  
Combinatorial Cell  
INV  
Equation  
Y =!A  
Parameter  
tPD  
Std.  
0.80  
0.84  
0.90  
1.19  
1.10  
1.37  
1.33  
1.79  
1.48  
1.21  
Units  
ns  
AND2  
Y = A · B  
tPD  
ns  
NAND2  
OR2  
Y = !(A · B)  
Y = A + B  
tPD  
ns  
tPD  
ns  
NOR2  
Y = !(A + B)  
Y = A B  
Y = MAJ(A , B, C)  
Y = A B C  
Y = A !S + B S  
Y = A · B · C  
tPD  
ns  
XOR2  
tPD  
ns  
MAJ3  
tPD  
ns  
XOR3  
tPD  
ns  
MUX2  
AND3  
tPD  
ns  
tPD  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
1.2 V DC Core Voltage  
Table 2-150 • Combinatorial Cell Propagation Delays  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V  
Combinatorial Cell  
INV  
Equation  
Y = !A  
Parameter  
tPD  
Std.  
1.34  
1.43  
1.59  
2.30  
2.07  
2.46  
2.46  
3.12  
2.83  
2.28  
Units  
ns  
AND2  
Y = A · B  
tPD  
ns  
NAND2  
OR2  
Y = !(A · B)  
Y = A + B  
tPD  
ns  
tPD  
ns  
NOR2  
Y = !(A + B)  
Y = A B  
Y = MAJ(A , B, C)  
Y = A B C  
Y = A !S + B S  
Y = A · B · C  
tPD  
ns  
XOR2  
tPD  
ns  
MAJ3  
tPD  
ns  
XOR3  
tPD  
ns  
MUX2  
AND3  
tPD  
ns  
tPD  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating  
values.  
Advance v0.5  
2-85  
IGLOO DC and Switching Characteristics  
VersaTile Specifications as a Sequential Module  
The IGLOO library offers a wide variety of sequential cells, including flip-flops and latches. Each has  
a data input and optional enable, clear, or preset. In this section, timing characteristics are  
presented for a representative sample from the library. For more details, refer to the IGLOO,  
Fusion, and ProASIC3 Macro Library Guide.  
Data  
CLK  
Out  
Data  
Out  
D
Q
D
Q
En  
DFN1  
DFN1E1  
CLK  
PRE  
Data  
Out  
Data  
Out  
Q
D
D
Q
En  
DFN1C1  
DFI1E1P1  
CLK  
CLK  
CLR  
Figure 2-27 • Sample of Sequential Cells  
2-86  
Advance v0.5  
IGLOO DC and Switching Characteristics  
t
t
CKMPWH CKMPWL  
50%  
50%  
50%  
50%  
50%  
50%  
50%  
CLK  
t
HD  
t
SUD  
50%  
50%  
Data  
EN  
0
50%  
t
t
RECPRE  
WPRE  
t
REMPRE  
t
HE  
50%  
50%  
50%  
t
PRE  
CLR  
Out  
SUE  
t
t
t
REMCLR  
RECCLR  
WCLR  
50%  
50%  
50%  
t
PRE2Q  
t
CLR2Q  
50%  
50%  
50%  
t
CLKQ  
Figure 2-28 • Timing Model and Waveforms  
Timing Characteristics  
1.5 V DC Core Voltage  
Table 2-151 • Register Delays  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V  
Parameter  
tCLKQ  
Description  
Std. Units  
Clock-to-Q of the Core Register  
0.89  
0.81  
0.00  
0.73  
0.00  
0.60  
0.62  
0.00  
0.24  
0.00  
0.23  
0.30  
0.30  
0.56  
0.56  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSUD  
Data Setup Time for the Core Register  
tHD  
Data Hold Time for the Core Register  
tSUE  
Enable Setup Time for the Core Register  
tHE  
Enable Hold Time for the Core Register  
tCLR2Q  
tPRE2Q  
tREMCLR  
tRECCLR  
tREMPRE  
tRECPRE  
tWCLR  
Asynchronous Clear-to-Q of the Core Register  
Asynchronous Preset-to-Q of the Core Register  
Asynchronous Clear Removal Time for the Core Register  
Asynchronous Clear Recovery Time for the Core Register  
Asynchronous Preset Removal Time for the Core Register  
Asynchronous Preset Recovery Time for the Core Register  
Asynchronous Clear Minimum Pulse Width for the Core Register  
tWPRE  
Asynchronous Preset Minimum Pulse Width for the Core Register  
Clock Minimum Pulse Width HIGH for the Core Register  
Clock Minimum Pulse Width LOW for the Core Register  
tCKMPWH  
tCKMPWL  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Advance v0.5  
2-87  
IGLOO DC and Switching Characteristics  
1.2 V DC Core Voltage  
Table 2-152 • Register Delays  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V  
Parameter  
tCLKQ  
Description  
Std. Units  
Clock-to-Q of the Core Register  
1.61  
1.17  
0.00  
1.29  
0.00  
0.87  
0.89  
0.00  
0.24  
0.00  
0.24  
0.46  
0.46  
0.95  
0.95  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSUD  
Data Setup Time for the Core Register  
tHD  
Data Hold Time for the Core Register  
tSUE  
Enable Setup Time for the Core Register  
tHE  
Enable Hold Time for the Core Register  
tCLR2Q  
tPRE2Q  
tREMCLR  
tRECCLR  
tREMPRE  
tRECPRE  
tWCLR  
Asynchronous Clear-to-Q of the Core Register  
Asynchronous Preset-to-Q of the Core Register  
Asynchronous Clear Removal Time for the Core Register  
Asynchronous Clear Recovery Time for the Core Register  
Asynchronous Preset Removal Time for the Core Register  
Asynchronous Preset Recovery Time for the Core Register  
Asynchronous Clear Minimum Pulse Width for the Core Register  
Asynchronous Preset Minimum Pulse Width for the Core Register  
Clock Minimum Pulse Width HIGH for the Core Register  
Clock Minimum Pulse Width LOW for the Core Register  
tWPRE  
tCKMPWH  
tCKMPWL  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating  
values.  
2-88  
Advance v0.5  
IGLOO DC and Switching Characteristics  
Global Resource Characteristics  
AGL250 Clock Tree Topology  
Clock delays are device-specific. Figure 2-29 is an example of a global tree used for clock routing.  
The global tree presented in Figure 2-29 is driven by a CCC located on the west side of the AGL250  
device. It is used to drive all D-flip-flops in the device.  
Central  
Global Rib  
CCC  
VersaTile  
Rows  
Global Spine  
Figure 2-29 • Example of Global Tree Use in an AGL250 Device for Clock Routing  
Advance v0.5  
2-89  
IGLOO DC and Switching Characteristics  
Global Tree Timing Characteristics  
Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not  
include I/O input buffer clock delays, as these are I/O standard–dependent, and the clock may be  
driven and conditioned internally by the CCC module. For more details on clock conditioning  
capabilities, refer to the "Clock Conditioning Circuits" section on page 2-98. Table 2-153 to  
Table 2-168 on page 2-97 present minimum and maximum global clock delays within each device.  
Minimum and maximum delays are measured with minimum and maximum loading.  
Timing Characteristics  
1.5 V DC Core Voltage  
Table 2-153 • AGL015 Global Resource  
Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V  
Std.  
Max.2  
Parameter  
tRCKL  
Description  
Input LOW Delay for Global Clock  
Min.1  
1.21  
Units  
ns  
1.42  
1.49  
tRCKH  
Input HIGH Delay for Global Clock  
1.23  
ns  
tRCKMPWH  
tRCKMPWL  
tRCKSW  
Minimum Pulse Width HIGH for Global Clock  
Minimum Pulse Width LOW for Global Clock  
Maximum Skew for Global Clock  
ns  
ns  
0.27  
ns  
FRMAX  
Maximum Frequency for Global Clock  
MHz  
Notes:  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential  
element, located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,  
located in a fully loaded row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Table 2-154 • AGL030 Global Resource  
Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V  
Std.  
Parameter  
tRCKL  
Description  
Input LOW Delay for Global Clock  
Min.1  
1.21  
Max.2  
Units  
ns  
1.42  
tRCKH  
Input HIGH Delay for Global Clock  
1.23  
1.49  
ns  
tRCKMPWH  
tRCKMPWL  
tRCKSW  
Minimum Pulse Width HIGH for Global Clock  
Minimum Pulse Width LOW for Global Clock  
Maximum Skew for Global Clock  
ns  
ns  
0.27  
ns  
FRMAX  
Maximum Frequency for Global Clock  
MHz  
Notes:  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential  
element, located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,  
located in a fully loaded row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
2-90  
Advance v0.5  
IGLOO DC and Switching Characteristics  
Table 2-155 • AGL060 Global Resource  
Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V  
Std.  
Parameter  
tRCKL  
Description  
Input LOW Delay for Global Clock  
Min.1  
1.33  
Max.2  
Units  
ns  
1.55  
tRCKH  
Input HIGH Delay for Global Clock  
1.35  
1.62  
ns  
tRCKMPWH  
tRCKMPWL  
tRCKSW  
Minimum Pulse Width HIGH for Global Clock  
Minimum Pulse Width LOW for Global Clock  
Maximum Skew for Global Clock  
ns  
ns  
0.27  
ns  
FRMAX  
Maximum Frequency for Global Clock  
MHz  
Notes:  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential  
element, located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,  
located in a fully loaded row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Table 2-156 • AGL125 Global Resource  
Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V  
Std.  
Parameter  
tRCKL  
Description  
Input LOW Delay for Global Clock  
Min.1  
1.36  
Max.2  
Units  
ns  
1.71  
tRCKH  
Input HIGH Delay for Global Clock  
1.39  
1.82  
ns  
tRCKMPWH  
tRCKMPWL  
tRCKSW  
Minimum Pulse Width HIGH for Global Clock  
Minimum Pulse Width LOW for Global Clock  
Maximum Skew for Global Clock  
ns  
ns  
0.43  
ns  
FRMAX  
Maximum Frequency for Global Clock  
MHz  
Notes:  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential  
element, located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,  
located in a fully loaded row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Advance v0.5  
2-91  
IGLOO DC and Switching Characteristics  
Table 2-157 • AGL250 Global Resource  
Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V  
Std.  
Max.2  
Parameter  
tRCKL  
Description  
Input LOW Delay for Global Clock  
Min.1  
1.39  
Units  
ns  
1.73  
1.84  
tRCKH  
Input HIGH Delay for Global Clock  
1.41  
ns  
tRCKMPWH  
tRCKMPWL  
tRCKSW  
Minimum Pulse Width HIGH for Global Clock  
Minimum Pulse Width LOW for Global Clock  
Maximum Skew for Global Clock  
ns  
ns  
0.43  
ns  
FRMAX  
Maximum Frequency for Global Clock  
MHz  
Notes:  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential  
element, located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,  
located in a fully loaded row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Table 2-158 • AGL400 Global Resource  
Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V  
Std.  
Parameter  
tRCKL  
Description  
Input Low Delay for Global Clock  
Min. 1  
Max. 2  
Units  
ns  
1.45  
1.79  
tRCKH  
Input High Delay for Global Clock  
1.48  
1.91  
ns  
tRCKMPWH  
tRCKMPWL  
tRCKSW  
Minimum Pulse Width High for Global Clock  
Minimum Pulse Width Low for Global Clock  
Maximum Skew for Global Clock  
ns  
ns  
0.43  
ns  
FRMAX  
Maximum Frequency for Global Clock  
MHz  
Notes:  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential  
element, located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,  
located in a fully loaded row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage-supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
2-92  
Advance v0.5  
IGLOO DC and Switching Characteristics  
Table 2-159 • AGL600 Global Resource  
Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V  
Std.  
Parameter  
tRCKL  
Description  
Input LOW Delay for Global Clock  
Min.1  
1.48  
Max.2  
Units  
ns  
1.82  
tRCKH  
Input HIGH Delay for Global Clock  
1.52  
1.94  
ns  
tRCKMPWH  
tRCKMPWL  
tRCKSW  
Minimum Pulse Width HIGH for Global Clock  
Minimum Pulse Width LOW for Global Clock  
Maximum Skew for Global Clock  
ns  
ns  
0.42  
ns  
FRMAX  
Maximum Frequency for Global Clock  
MHz  
Notes:  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential  
element, located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,  
located in a fully loaded row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Table 2-160 • AGL1000 Global Resource  
Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V  
Std.  
Parameter  
tRCKL  
Description  
Input LOW Delay for Global Clock  
Min.1  
1.55  
Max.2  
Units  
ns  
1.89  
tRCKH  
Input HIGH Delay for Global Clock  
1.60  
2.02  
ns  
tRCKMPWH  
tRCKMPWL  
tRCKSW  
Minimum Pulse Width HIGH for Global Clock  
Minimum Pulse Width LOW for Global Clock  
Maximum Skew for Global Clock  
ns  
ns  
0.42  
ns  
FRMAX  
Maximum Frequency for Global Clock  
MHz  
Notes:  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential  
element, located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,  
located in a fully loaded row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Advance v0.5  
2-93  
IGLOO DC and Switching Characteristics  
1.2 V DC Core Voltage  
Table 2-161 • AGL015 Global Resource  
Commercial-Case Conditions: TJ = 70°C, VCC = 1.14 V  
Std.  
Max.2  
Parameter  
tRCKL  
Description  
Input LOW Delay for Global Clock  
Min.1  
1.79  
Units  
ns  
2.09  
2.26  
tRCKH  
Input HIGH Delay for Global Clock  
1.87  
ns  
tRCKMPWH  
tRCKMPWL  
tRCKSW  
Minimum Pulse Width HIGH for Global Clock  
Minimum Pulse Width LOW for Global Clock  
Maximum Skew for Global Clock  
ns  
ns  
0.39  
ns  
FRMAX  
Maximum Frequency for Global Clock  
MHz  
Notes:  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential  
element, located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,  
located in a fully loaded row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Table 2-162 • AGL030 Global Resource  
Commercial-Case Conditions: TJ = 70°C, VCC = 1.14 V  
Std.  
Parameter  
tRCKL  
Description  
Input LOW Delay for Global Clock  
Min.1  
1.80  
Max.2  
Units  
ns  
2.09  
tRCKH  
Input HIGH Delay for Global Clock  
1.88  
2.27  
ns  
tRCKMPWH  
tRCKMPWL  
tRCKSW  
Minimum Pulse Width HIGH for Global Clock  
Minimum Pulse Width LOW for Global Clock  
Maximum Skew for Global Clock  
ns  
ns  
0.39  
ns  
FRMAX  
Maximum Frequency for Global Clock  
MHz  
Notes:  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential  
element, located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,  
located in a fully loaded row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
2-94  
Advance v0.5  
IGLOO DC and Switching Characteristics  
Table 2-163 • AGL060 Global Resource  
Commercial-Case Conditions: TJ = 70°C, VCC = 1.14 V  
Std.  
Parameter  
tRCKL  
Description  
Input LOW Delay for Global Clock  
Min.1  
2.04  
Max.2  
Units  
ns  
2.33  
tRCKH  
Input HIGH Delay for Global Clock  
2.10  
2.51  
ns  
tRCKMPWH  
tRCKMPWL  
tRCKSW  
Minimum Pulse Width HIGH for Global Clock  
Minimum Pulse Width LOW for Global Clock  
Maximum Skew for Global Clock  
ns  
ns  
0.40  
ns  
FRMAX  
Maximum Frequency for Global Clock  
MHz  
Notes:  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential  
element, located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,  
located in a fully loaded row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Table 2-164 • AGL125 Global Resource  
Commercial-Case Conditions: TJ = 70°C, VCC = 1.14 V  
Std.  
Parameter  
tRCKL  
Description  
Input LOW Delay for Global Clock  
Min.1  
2.08  
Max.2  
Units  
ns  
2.54  
tRCKH  
Input HIGH Delay for Global Clock  
2.15  
2.77  
ns  
tRCKMPWH  
tRCKMPWL  
tRCKSW  
Minimum Pulse Width HIGH for Global Clock  
Minimum Pulse Width LOW for Global Clock  
Maximum Skew for Global Clock  
ns  
ns  
0.62  
ns  
FRMAX  
Maximum Frequency for Global Clock  
MHz  
Notes:  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential  
element, located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,  
located in a fully loaded row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Advance v0.5  
2-95  
IGLOO DC and Switching Characteristics  
Table 2-165 • AGL250 Global Resource  
Commercial-Case Conditions: TJ = 70°C, VCC = 1.14 V  
Std.  
Max.2  
Parameter  
tRCKL  
Description  
Input LOW Delay for Global Clock  
Min.1  
2.11  
Units  
ns  
2.57  
2.81  
tRCKH  
Input HIGH Delay for Global Clock  
2.19  
ns  
tRCKMPWH  
tRCKMPWL  
tRCKSW  
Minimum Pulse Width HIGH for Global Clock  
Minimum Pulse Width LOW for Global Clock  
Maximum Skew for Global Clock  
ns  
ns  
0.62  
ns  
FRMAX  
Maximum Frequency for Global Clock  
MHz  
Notes:  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential  
element, located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,  
located in a fully loaded row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Table 2-166 • AGL400 Global Resource  
Commercial-Case Conditions: TJ = 70°C, VCC = 1.14 V  
Std.  
Parameter  
tRCKL  
Description  
Input LOW Delay for Global Clock  
Min.1  
2.18  
Max.2  
Units  
ns  
2.64  
tRCKH  
Input HIGH Delay for Global Clock  
2.27  
2.89  
ns  
tRCKMPWH  
tRCKMPWL  
tRCKSW  
Minimum Pulse Width HIGH for Global Clock  
Minimum Pulse Width LOW for Global Clock  
Maximum Skew for Global Clock  
ns  
ns  
0.62  
ns  
FRMAX  
Maximum Frequency for Global Clock  
MHz  
Notes:  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential  
element, located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,  
located in a fully loaded row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
2-96  
Advance v0.5  
IGLOO DC and Switching Characteristics  
Table 2-167 • AGL600 Global Resource  
Commercial-Case Conditions: TJ = 70°C, VCC = 1.14 V  
Std.  
Parameter  
tRCKL  
Description  
Input LOW Delay for Global Clock  
Min.1  
2.22  
Max.2  
Units  
ns  
2.67  
tRCKH  
Input HIGH Delay for Global Clock  
2.32  
2.93  
ns  
tRCKMPWH  
tRCKMPWL  
tRCKSW  
Minimum Pulse Width HIGH for Global Clock  
Minimum Pulse Width LOW for Global Clock  
Maximum Skew for Global Clock  
ns  
ns  
0.61  
ns  
FRMAX  
Maximum Frequency for Global Clock  
MHz  
Notes:  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential  
element, located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,  
located in a fully loaded row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Table 2-168 • AGL1000 Global Resource  
Commercial-Case Conditions: TJ = 70°C, VCC = 1.14 V  
Std.  
Parameter  
tRCKL  
Description  
Input LOW Delay for Global Clock  
Min.1  
2.31  
Max.2  
Units  
ns  
2.76  
tRCKH  
Input HIGH Delay for Global Clock  
2.42  
3.03  
ns  
tRCKMPWH  
tRCKMPWL  
tRCKSW  
Minimum Pulse Width HIGH for Global Clock  
Minimum Pulse Width LOW for Global Clock  
Maximum Skew for Global Clock  
ns  
ns  
0.61  
ns  
FRMAX  
Maximum Frequency for Global Clock  
MHz  
Notes:  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential  
element, located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,  
located in a fully loaded row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Advance v0.5  
2-97  
IGLOO DC and Switching Characteristics  
Clock Conditioning Circuits  
CCC Electrical Specifications  
Timing Characteristics  
Table 2-169 • IGLOO CCC/PLL Specification  
For IGLOO V2 or V5 Devices, 1.5 V DC Core Supply Voltage  
Parameter  
Min.  
1.5  
Typ.  
Max.  
250  
Units  
MHz  
MHz  
ps  
Clock Conditioning Circuitry Input Frequency fIN_CCC  
Clock Conditioning Circuitry Output Frequency fOUT_CCC  
Delay Increments in Programmable Delay Blocks 1, 2  
Number of Programmable Values in Each Programmable Delay Block  
Serial Clock (SCLK) for Dynamic PLL3  
0.75  
250  
360  
32  
100  
1
ns  
ns  
Input Cycle-to-Cycle Jitter (peak magnitude)  
CCC Output Peak-to-Peak Period Jitter FCCC_OUT  
Maximum Peak-to-Peak Period Jitter  
1 Global External 3 Global  
Network FB Used Networks  
Used  
0.50%  
1.00%  
2.50%  
Used  
0.70%  
1.20%  
2.75%  
0.75 MHz to 24 MHz  
24 MHz to 100 MHz  
0.75%  
1.50%  
3.75%  
100 MHz to 250 MHz  
Acquisition Time  
LockControl = 0  
300  
6.0  
µs  
LockControl = 1  
ms  
Tracking Jitter  
LockControl = 0  
2.5  
1.5  
ns  
ns  
%
ns  
ns  
ns  
LockControl = 1  
Output Duty Cycle  
48.5  
1.25  
51.5  
15.65  
15.65  
Delay Range in Block: Programmable Delay 1 1, 2, 4  
Delay Range in Block: Programmable Delay 2 1, 2, 4  
Delay Range in Block: Fixed Delay 1, 2, 4  
Notes:  
0.025  
3.5  
1. This delay is a function of voltage and temperature. See Table 2-6 on page 2-6 and Table 2-7 on page 2-7  
for deratings.  
2. TJ = 25°C, VCC = 1.5 V  
3. Maximum value obtained for a Std. speed grade device in Worst-Case Commercial Conditions. For specific  
junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
4. For the definitions of Type 1 and Type 2, refer to the PLL Block Diagram in the Clock Conditioning Circuits  
in IGLOO and ProASIC3 Devices chapter of the handbook.  
5. The AGL030 device does not support PLL.  
6. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to the PLL  
input clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by  
the period jitter parameter.  
2-98  
Advance v0.5  
IGLOO DC and Switching Characteristics  
Table 2-170 • IGLOO CCC/PLL Specification  
For IGLOO V2 Devices, 1.2 V DC Core Supply Voltage  
Parameter  
Min.  
1.5  
Typ.  
Max.  
160  
Units  
MHz  
MHz  
ps  
Clock Conditioning Circuitry Input Frequency fIN_CCC  
Clock Conditioning Circuitry Output Frequency fOUT_CCC  
Delay Increments in Programmable Delay Blocks 1, 2  
Number of Programmable Values in Each Programmable Delay Block  
Serial Clock (SCLK) for Dynamic PLL3  
0.75  
160  
580  
32  
60  
ns  
ns  
Input Cycle-to-Cycle Jitter (peak magnitude)  
CCC Output Peak-to-Peak Period Jitter FCCC_OUT  
0.25  
Maximum Peak-to-Peak Period Jitter  
1 Global External 3 Global  
Network FB Used Networks  
Used  
0.50%  
1.00%  
2.50%  
Used  
0.70%  
1.20%  
2.75%  
0.75 MHz to 24 MHz  
24 MHz to 100 MHz  
0.75%  
1.50%  
3.75%  
100 MHz to 160 MHz  
Acquisition Time  
LockControl = 0  
300  
6.0  
µs  
LockControl = 1  
ms  
Tracking Jitter  
LockControl = 0  
4
ns  
ns  
%
ns  
ns  
ns  
LockControl = 1  
3
Output Duty Cycle  
48.5  
2.3  
51.5  
20.86  
20.86  
Delay Range in Block: Programmable Delay 1 1, 2, 4  
Delay Range in Block: Programmable Delay 2 1, 2, 4  
Delay Range in Block: Fixed Delay 1, 2, 4  
Notes:  
0.025  
5.7  
1. This delay is a function of voltage and temperature. See Table 2-6 on page 2-6 and Table 2-7 on page 2-7  
for deratings.  
2. TJ = 25°C, VCC = 1.5 V  
3. Maximum value obtained for a Std. speed grade device in Worst-Case Commercial Conditions. For specific  
junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
4. For the definitions of Type 1 and Type 2, refer to the PLL Block Diagram in the Clock Conditioning Circuits  
in IGLOO and ProASIC3 Devices chapter of the handbook.  
5. The AGL030 device does not support PLL.  
6. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to the PLL  
input clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by  
the period jitter parameter.  
Advance v0.5  
2-99  
IGLOO DC and Switching Characteristics  
Output Signal  
Tperiod_max  
Tperiod_min  
Note: Peak-to-peak jitter measurements are defined by Tpeak-to-peak = Tperiod_max – Tperiod_min  
.
Figure 2-30 • Peak-to-Peak Jitter Definition  
2-100  
Advance v0.5  
IGLOO DC and Switching Characteristics  
Embedded SRAM and FIFO Characteristics  
SRAM  
RAM4K9  
RAM512X18  
RADDR8  
RADDR7  
RD17  
RD16  
ADDRA11 DOUTA8  
DOUTA7  
DOUTA0  
ADDRA10  
ADDRA0  
DINA8  
RADDR0  
RD0  
DINA7  
RW1  
RW0  
DINA0  
WIDTHA1  
WIDTHA0  
PIPEA  
PIPE  
WMODEA  
BLKA  
WENA  
REN  
RCLK  
CLKA  
ADDRB11 DOUTB8  
ADDRB10 DOUTB7  
WADDR8  
WADDR7  
ADDRB0  
DOUTB0  
WADDR0  
WD17  
WD16  
DINB8  
DINB7  
WD0  
DINB0  
WW1  
WW0  
WIDTHB1  
WIDTHB0  
PIPEB  
WMODEB  
BLKB  
WENB  
CLKB  
WEN  
WCLK  
RESET  
RESET  
Figure 2-31 • RAM Models  
Advance v0.5  
2-101  
IGLOO DC and Switching Characteristics  
Timing Waveforms  
tCYC  
tCKH  
tCKL  
CLK  
tAS tAH  
A0  
tBKS  
A1  
A2  
ADD  
BLK_B  
WEN_B  
DO  
tBKH  
tENS  
tENH  
tCKQ1  
Dn  
D0  
D1  
D2  
tDOH1  
Figure 2-32 • RAM Read for Pass-Through Output  
tCYC  
tCKH  
tCKL  
CLK  
tAS tAH  
A0  
A1  
A2  
ADD  
BLK_B  
WEN_B  
DO  
tBKS  
tBKH  
tENH  
tENS  
tCKQ2  
Dn  
D0  
D1  
tDOH2  
Figure 2-33 • RAM Read for Pipelined Output  
2-102  
Advance v0.5  
IGLOO DC and Switching Characteristics  
tCYC  
tCKH  
tAH  
tCKL  
CLK  
tAS  
A0  
A1  
A2  
ADD  
BLK_B  
WEN_B  
DI  
tBKS  
tBKH  
tENS  
tENH  
tDS  
tDH  
DI1  
DI0  
Dn  
D2  
DO  
Figure 2-34 • RAM Write, Output Retained (WMODE = 0)  
t
CYC  
t
t
CKH  
CKL  
CLK  
ADD  
t
t
AH  
AS  
A
A
A
2
0
1
t
BKS  
t
BKH  
BLK_B  
WEN_B  
DI  
t
ENS  
t
t
DH  
DS  
DI  
DI  
DI  
2
0
1
DO  
D
DI  
DI  
1
n
0
(pass-through)  
DO  
DI  
D
DI  
1
0
n
(pipelined)  
Figure 2-35 • RAM Write, Output as Write Data (WMODE = 1)  
Advance v0.5  
2-103  
IGLOO DC and Switching Characteristics  
CLK1  
tAS tAH  
ADD1  
DI1  
A0  
tDS tDH  
A1  
D2  
A3  
D3  
D1  
tCCKH  
CLK2  
WEN_B1  
WEN_B2  
tAS tAH  
A0  
A0  
D0  
A4  
D4  
ADD2  
DI2  
tCKQ1  
DO2  
(pass-through)  
Dn  
Dn  
D0  
tCKQ2  
DO2  
(pipelined)  
D0  
Figure 2-36 • Write Access after Write onto Same Address  
2-104  
Advance v0.5  
IGLOO DC and Switching Characteristics  
CLK1  
tAS tAH  
A0  
tDS tDH  
A2  
D2  
A3  
D3  
ADD1  
D0  
DI1  
tWRO  
CLK2  
WEN_B1  
WEN_B2  
ADD2  
tAS tAH  
A1  
A0  
tCKQ1  
A4  
DO2  
(pass-through)  
Dn  
D0  
D1  
tCKQ2  
DO2  
Dn  
D0  
(pipelined)  
Figure 2-37 • Read Access after Write onto Same Address  
Advance v0.5  
2-105  
IGLOO DC and Switching Characteristics  
CLK1  
t
t
AS  
AH  
A
t
A
A
t
ADD1  
0
1
0
WEN_B1  
CKQ1  
CKQ1  
DO1  
(pass-through)  
D
D
D
1
n
0
t
CKQ2  
DO1  
(pipelined)  
D
D
0
n
t
CCKH  
CLK2  
t
t
AH  
AS  
ADD2  
A
D
A
D
A
D
0
1
3
DI2  
1
2
3
WEN_B2  
Figure 2-38 • Write Access after Read onto Same Address  
tCYC  
tCKH  
tCKL  
CLK  
RESET_B  
DO  
tRSTBQ  
Dm  
Dn  
Figure 2-39 • RAM Reset  
2-106  
Advance v0.5  
IGLOO DC and Switching Characteristics  
Timing Characteristics  
1.5 V DC Core Voltage  
Table 2-171 • RAM4K9  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V  
Parameter  
tAS  
Description  
Std. Units  
0.83 ns  
0.16 ns  
0.81 ns  
0.16 ns  
1.65 ns  
0.16 ns  
0.71 ns  
0.36 ns  
3.53 ns  
3.06 ns  
1.81 ns  
TBD ns  
Address setup time  
tAH  
Address hold time  
tENS  
REN_B, WEN_B setup time  
tENH  
tBKS  
tBKH  
tDS  
REN_B, WEN_B hold time  
BLK_B setup time  
BLK_B hold time  
Input data (DI) setup time  
tDH  
Input data (DI) hold time  
tCKQ1  
Clock HIGH to new data valid on DO (output retained, WMODE = 0)  
Clock HIGH to new data valid on DO (flow-through, WMODE = 1)  
Clock HIGH to new data valid on DO (pipelined)  
Address collision clk-to-clk delay for reliable read access after write on same address  
tCKQ2  
tWRO  
tCCKH  
Address collision clk-to-clk delay for reliable write access after write/read on same TBD ns  
address  
tRSTBQ  
RESET_B LOW to data out LOW on DO (flow-through)  
RESET_B LOW to data out LOW on DO (pipelined)  
RESET_B removal  
2.06 ns  
2.06 ns  
0.61 ns  
3.21 ns  
0.68 ns  
6.24 ns  
160 MHz  
tREMRSTB  
tRECRSTB  
RESET_B recovery  
tMPWRSTB RESET_B minimum pulse width  
tCYC  
Clock cycle time  
FMAX  
Maximum frequency  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Advance v0.5  
2-107  
IGLOO DC and Switching Characteristics  
Table 2-172 • RAM512X18  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V  
Parameter  
tAS  
Description  
Std. Units  
0.83 ns  
0.16 ns  
0.73 ns  
0.08 ns  
0.71 ns  
0.36 ns  
4.21 ns  
1.71 ns  
TBD ns  
Address setup time  
tAH  
Address hold time  
tENS  
REN_B, WEN_B setup time  
REN_B, WEN_B hold time  
Input data (DI) setup time  
Input data (DI) hold time  
tENH  
tDS  
tDH  
tCKQ1  
tCKQ2  
tWRO  
tCCKH  
Clock HIGH to new data valid on DO (output retained, WMODE = 0)  
Clock HIGH to new data valid on DO (pipelined)  
Address collision clk-to-clk delay for reliable read access after write on same address  
Address collision clk-to-clk delay for reliable write access after write/read on same TBD ns  
address  
tRSTBQ  
RESET_B LOW to data out LOW on DO (flow-through)  
RESET_B LOW to data out LOW on DO (pipelined)  
RESET_B removal  
2.06 ns  
2.06 ns  
0.61 ns  
3.21 ns  
0.68 ns  
6.24 ns  
160 MHz  
tREMRSTB  
tRECRSTB  
RESET_B recovery  
tMPWRSTB RESET_B minimum pulse width  
tCYC  
Clock cycle time  
FMAX  
Maximum frequency  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
2-108  
Advance v0.5  
IGLOO DC and Switching Characteristics  
1.2 V DC Core Voltage  
Table 2-173 • RAM4K9  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V  
Parameter  
tAS  
Description  
Std. Units  
Address setup time  
1.53  
0.29  
1.50  
0.29  
3.05  
0.29  
1.33  
0.66  
6.61  
5.72  
3.38  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAH  
Address hold time  
tENS  
REN_B, WEN_B setup time  
tENH  
tBKS  
tBKH  
tDS  
REN_B, WEN_B hold time  
BLK_B setup time  
BLK_B hold time  
Input data (DI) setup time  
tDH  
Input data (DI) hold time  
tCKQ1  
Clock HIGH to new data valid on DO (output retained, WMODE = 0)  
Clock HIGH to new data valid on DO (flow-through, WMODE = 1)  
Clock HIGH to new data valid on DO (pipelined)  
tCKQ2  
tWRO  
tCCKH  
Address collision clk-to-clk delay for reliable read access after write on same address TBD  
Address collision clk-to-clk delay for reliable write access after write/read on same TBD  
address  
tRSTBQ  
RESET_B LOW to data out LOW on DO (flow-through)  
RESET_B LOW to data out LOW on DO (pipelined)  
RESET_B removal  
3.86  
3.86  
1.12  
5.93  
1.18  
10.90  
92  
ns  
ns  
tREMRSTB  
tRECRSTB  
ns  
RESET_B recovery  
ns  
tMPWRSTB RESET_B minimum pulse width  
ns  
tCYC  
Clock cycle time  
ns  
FMAX  
Maximum frequency  
MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating  
values.  
Advance v0.5  
2-109  
IGLOO DC and Switching Characteristics  
Table 2-174 • RAM512X18  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V  
Parameter  
tAS  
Description  
Std. Units  
Address setup time  
1.53  
0.29  
1.36  
0.15  
1.33  
0.66  
7.88  
3.20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAH  
Address hold time  
tENS  
REN_B, WEN_B setup time  
REN_B, WEN_B hold time  
Input data (DI) setup time  
Input data (DI) hold time  
tENH  
tDS  
tDH  
tCKQ1  
tCKQ2  
tWRO  
tCCKH  
Clock HIGH to new data valid on DO (output retained, WMODE = 0)  
Clock HIGH to new data valid on DO (pipelined)  
Address collision clk-to-clk delay for reliable read access after write on same address TBD  
Address collision clk-to-clk delay for reliable write access after write/read on same TBD  
address  
tRSTBQ  
RESET_B LOW to data out LOW on DO (flow through)  
RESET_B LOW to data out LOW on DO (pipelined)  
RESET_B removal  
3.86  
3.86  
1.12  
5.93  
1.18  
10.90  
92  
ns  
ns  
tREMRSTB  
tRECRSTB  
ns  
RESET_B recovery  
ns  
tMPWRSTB RESET_B minimum pulse width  
ns  
tCYC  
Clock cycle time  
ns  
FMAX  
Maximum frequency  
MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating  
values.  
2-110  
Advance v0.5  
IGLOO DC and Switching Characteristics  
FIFO  
FIFO4K18  
RW2  
RW1  
RW0  
RD17  
RD16  
WW2  
WW1  
WW0  
RD0  
ESTOP  
FSTOP  
FULL  
AFULL  
EMPTY  
AEVAL11  
AEVAL10  
AEMPTY  
AEVAL0  
AFVAL11  
AFVAL10  
AFVAL0  
REN  
RBLK  
RCLK  
WD17  
WD16  
WD0  
WEN  
WBLK  
WCLK  
RPIPE  
RESET  
Figure 2-40 • FIFO Model  
Advance v0.5  
2-111  
IGLOO DC and Switching Characteristics  
Timing Waveforms  
RCLK/  
WCLK  
tMPWRSTB  
tRSTCK  
RESET_B  
tRSTFG  
EMPTY  
AEMPTY  
FULL  
tRSTAF  
tRSTFG  
tRSTAF  
AFULL  
WA/RA  
(Address Counter)  
MATCH (A0)  
Figure 2-41 • FIFO Reset  
t
CYC  
RCLK  
t
RCKEF  
EMPTY  
tCKAF  
AEMPTY  
WA/RA  
NO MATCH  
NO MATCH  
Dist = AEF_TH  
MATCH (EMPTY)  
(Address Counter)  
Figure 2-42 • FIFO EMPTY Flag and AEMPTY Flag Assertion  
2-112  
Advance v0.5  
IGLOO DC and Switching Characteristics  
tCYC  
WCLK  
FULL  
tWCKFF  
tCKAF  
AFULL  
WA/RA  
NO MATCH  
NO MATCH  
Dist = AFF_TH  
MATCH (FULL)  
(Address Counter)  
Figure 2-43 • FIFO FULL Flag and AFULL Flag Assertion  
WCLK  
MATCH  
(EMPTY)  
WA/RA  
NO MATCH  
NO MATCH  
NO MATCH  
NO MATCH  
Dist = AEF_TH + 1  
(Address Counter)  
1st Rising  
2nd Rising  
Edge  
After 1st  
Write  
Edge  
After 1st  
Write  
RCLK  
EMPTY  
t
RCKEF  
t
CKAF  
AEMPTY  
Figure 2-44 • FIFO EMPTY Flag and AEMPTY Flag Deassertion  
RCLK  
WA/RA  
(Address Counter)  
Dist = AFF_TH – 1  
MATCH (FULL)  
NO MATCH  
NO MATCH  
1st Rising  
NO MATCH  
NO MATCH  
1st Rising  
Edge  
After 1st  
Read  
Edge  
After 2nd  
Read  
WCLK  
FULL  
tWCKF  
tCKAF  
AFULL  
Figure 2-45 • FIFO FULL Flag and AFULL Flag Deassertion  
Advance v0.5  
2-113  
IGLOO DC and Switching Characteristics  
Timing Characteristics  
1.5 V DC Core Voltage  
Table 2-175 • FIFO  
Worst Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V  
Parameter  
tENS  
Description  
Std.  
1.99  
0.16  
0.30  
0.00  
0.76  
0.25  
3.33  
1.80  
3.53  
3.35  
12.85  
3.48  
12.72  
2.02  
2.02  
0.61  
3.21  
0.68  
6.24  
160  
Units  
ns  
REN_B, WEN_B Setup Time  
REN_B, WEN_B Hold Time  
BLK_B Setup Time  
tENH  
ns  
tBKS  
ns  
tBKH  
BLK_B Hold Time  
ns  
tDS  
Input Data (DI) Setup Time  
Input Data (DI) Hold Time  
ns  
tDH  
ns  
tCKQ1  
tCKQ2  
tRCKEF  
tWCKFF  
tCKAF  
tRSTFG  
tRSTAF  
tRSTBQ  
Clock HIGH to New Data Valid on DO (flow-through)  
Clock HIGH to New Data Valid on DO (pipelined)  
RCLK HIGH to Empty Flag Valid  
ns  
ns  
ns  
WCLK HIGH to Full Flag Valid  
ns  
Clock HIGH to Almost Empty/Full Flag Valid  
RESET_B LOW to Empty/Full Flag Valid  
RESET_B LOW to Almost Empty/Full Flag Valid  
RESET_B LOW to Data Out LOW on DO (flow-through)  
RESET_B LOW to Data Out LOW on DO (pipelined)  
RESET_B Removal  
ns  
ns  
ns  
ns  
ns  
tREMRSTB  
tRECRSTB  
tMPWRSTB  
tCYC  
ns  
RESET_B Recovery  
ns  
RESET_B Minimum Pulse Width  
ns  
Clock Cycle Time  
ns  
FMAX  
Maximum Frequency for FIFO  
MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
2-114  
Advance v0.5  
IGLOO DC and Switching Characteristics  
1.2 V DC Core Voltage  
Table 2-176 • FIFO  
Worst Commercial-Case Conditions: TJ = 70°C, VCC = 1.14 V  
Parameter  
tENS  
Description  
Std.  
4.13  
0.31  
0.47  
0.00  
1.56  
0.49  
6.80  
3.62  
7.23  
6.85  
26.61  
7.12  
26.33  
4.09  
4.09  
1.23  
6.58  
1.18  
10.90  
92  
Units  
ns  
REN_B, WEN_B Setup Time  
tENH  
REN_B, WEN_B Hold Time  
ns  
tBKS  
BLK_B Setup Time  
ns  
tBKH  
BLK_B Hold Time  
ns  
tDS  
Input Data (DI) Setup Time  
ns  
tDH  
Input Data (DI) Hold Time  
ns  
tCKQ1  
tCKQ2  
tRCKEF  
tWCKFF  
tCKAF  
tRSTFG  
tRSTAF  
tRSTBQ  
Clock HIGH to New Data Valid on DO (flow-through)  
Clock HIGH to New Data Valid on DO (pipelined)  
RCLK HIGH to Empty Flag Valid  
WCLK HIGH to Full Flag Valid  
ns  
ns  
ns  
ns  
Clock HIGH to Almost Empty/Full Flag Valid  
RESET_B LOW to Empty/Full Flag Valid  
RESET_B LOW to Almost Empty/Full Flag Valid  
RESET_B LOW to Data Out LOW on DO (flow-through)  
RESET_B LOW to Data Out LOW on DO (pipelined)  
RESET_B Removal  
ns  
ns  
ns  
ns  
ns  
tREMRSTB  
tRECRSTB  
tMPWRSTB  
tCYC  
ns  
RESET_B Recovery  
ns  
RESET_B Minimum Pulse Width  
Clock Cycle Time  
ns  
ns  
FMAX  
Maximum Frequency for FIFO  
MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating  
values.  
Advance v0.5  
2-115  
IGLOO DC and Switching Characteristics  
Embedded FlashROM Characteristics  
tSU  
tSU  
tSU  
CLK  
tHOLD  
tHOLD  
tHOLD  
Address  
A0  
A1  
tCKQ2  
D0  
tCKQ2  
tCKQ2  
D1  
D0  
Data  
Figure 2-46 • Timing Diagram  
Timing Characteristics  
1.5 V DC Core Voltage  
Table 2-177 • Embedded FlashROM Access Time  
Worst Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V  
Parameter  
tSU  
Description  
Address Setup Time  
Std.  
0.57  
0.00  
34.14  
15  
Units  
ns  
tHOLD  
tCK2Q  
FMAX  
Address Hold Time  
ns  
Clock to Out  
ns  
Maximum Clock Frequency  
MHz  
1.2 V DC Core Voltage  
Table 2-178 • Embedded FlashROM Access Time  
Worst Commercial-Case Conditions: TJ = 70°C, VCC = 1.14 V  
Parameter  
tSU  
Description  
Std.  
0.59  
0.00  
52.90  
10  
Units  
ns  
Address Setup Time  
Address Hold Time  
Clock to Out  
tHOLD  
tCK2Q  
FMAX  
ns  
ns  
Maximum Clock Frequency  
MHz  
2-116  
Advance v0.5  
IGLOO DC and Switching Characteristics  
JTAG 1532 Characteristics  
JTAG timing delays do not include JTAG I/Os. To obtain complete JTAG timing, add I/O buffer  
delays to the corresponding standard selected; refer to the I/O timing characteristics in the "User  
I/O Characteristics" section on page 2-19 for more details.  
Timing Characteristics  
Table 2-179 • JTAG 1532  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V  
Parameter  
tDISU  
Description  
Std.  
1.00  
2.00  
1.00  
2.00  
8.00  
25.00  
15  
Units  
ns  
Test Data Input Setup Time  
Test Data Input Hold Time  
Test Mode Select Setup Time  
Test Mode Select Hold Time  
Clock to Q (data out)  
tDIHD  
ns  
tTMSSU  
ns  
tTMDHD  
tTCK2Q  
ns  
ns  
tRSTB2Q  
FTCKMAX  
tTRSTREM  
tTRSTREC  
tTRSTMPW  
Reset to Q (data out)  
ns  
TCK Maximum Frequency  
ResetB Removal Time  
MHz  
ns  
0.58  
0.00  
TBD  
ResetB Recovery Time  
ns  
ResetB Minimum Pulse  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Table 2-180 • JTAG 1532  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V  
Parameter  
tDISU  
Description  
Test Data Input Setup Time  
Std.  
1.50  
3.00  
1.50  
3.00  
11.00  
30.00  
9.00  
1.18  
0.00  
TBD  
Units  
ns  
tDIHD  
Test Data Input Hold Time  
Test Mode Select Setup Time  
Test Mode Select Hold Time  
Clock to Q (data out)  
ns  
tTMSSU  
ns  
tTMDHD  
tTCK2Q  
ns  
ns  
tRSTB2Q  
FTCKMAX  
tTRSTREM  
tTRSTREC  
tTRSTMPW  
Reset to Q (data out)  
ns  
TCK Maximum Frequency  
ResetB Removal Time  
MHz  
ns  
ResetB Recovery Time  
ns  
ResetB Minimum Pulse  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Advance v0.5  
2-117  
IGLOO DC and Switching Characteristics  
Part Number and Revision Date  
Part Number 51700095-002-4  
Revised October 2008  
List of Changes  
The following table lists critical changes that were made in the current version of the chapter.  
Previous Version  
Changes in Current Version (Advance v0.5)  
Page  
Advance v0.4  
(August 2008)  
The tables in the "Quiescent Supply Current" section were updated with  
values for AGL400.  
2-7  
The tables in the "Power Consumption of Various Internal Resources" section  
were updated with values for AGL400.  
2-12  
Table 2-158 · AGL400 Global Resource is new.  
2-92  
2-2  
Advance v0.3  
(July 2008)  
3.0  
V
LVCMOS  
wide  
range  
support  
data  
was  
added  
to  
Table 2-2 · Recommended Operating Conditions 4.  
3.3 V LVCMOS wide range support data was added to Table 2-24 · Summary of 2-23 to  
Maximum and Minimum DC Input and Output Levels Applicable to  
Commercial and Industrial Conditions—Software Default Settings to  
Table 2-26 · Summary of Maximum and Minimum DC Input and Output Levels  
Applicable to Commercial and Industrial Conditions—Software Default  
Settings.  
2-24  
3.3 V LVCMOS wide range support data was added to Table 2-27 · Summary of  
Maximum and Minimum DC Input Levels.  
2-24  
2-37  
2-37  
N/A  
3.3 V LVCMOS wide range support text was added to Table 2-49 · Minimum  
and Maximum DC Input and Output Levels for LVCMOS 3.3 V Wide Range.  
Table 2-49 · Minimum and Maximum DC Input and Output Levels for LVCMOS  
3.3 V Wide Range is new.  
Advance v0.2  
(July 2008)  
As a result of the Libero IDE v8.4 release, Actel now offers a wide range of  
core voltage support. The document was updated to change 1.2 V / 1.5 V to  
1.2 V to 1.5 V.  
Advance v0.1  
(January 2008)  
Tables have been updated to reflect default values in the software. The  
default I/O capacitance is 5 pF. Tables have been updated to include the  
LVCMOS 1.2 V I/O set.  
N/A  
DDR Tables have two additional data points added to reflect both edges for  
Input DDR setup and hold time.  
The power data table has been updated to match SmartPower data rather  
then simulation values.  
AGL015 global clock delays have been added.  
Table 2-1 · Absolute Maximum Ratings was updated to combine the VCCI and  
VMV parameters in one row. The word "output" from the parameter  
description for VCCI and VMV, and table note 3 was added.  
2-1  
2-118  
Advance v0.5  
IGLOO DC and Switching Characteristics  
Previous Version  
Changes in Current Version (Advance v0.5)  
Page  
Advance v0.1  
(January 2008)  
Table 2-2 · Recommended Operating Conditions 4 was updated to add  
references to tables notes 4, 6, 7, and 8. VMV was added to the VCCI parameter  
row, and table note 9 was added.  
2-2  
In Table 2-3 · Flash Programming Limits – Retention, Storage, and Operating  
Temperature1, the maximum operating junction temperature was changed  
from 110° to 100°.  
2-2  
2-3  
VMV was removed from Table 2-4 · Overshoot and Undershoot Limits 1. The  
table title was modified to remove "as measured on quiet I/Os." Table note 2  
was revised to remove "estimated SSO density over cycles." Table note 3 was  
revised to remove "refers only to overshoot/undershoot limits for  
simultaneous switching I/Os."  
The "PLL Behavior at Brownout Condition" section is new.  
2-4  
2-5  
Figure 2-2 · V2 Devices – I/O State as a Function of VCCI and VCC Voltage Levels  
is new.  
EQ 2-2 was updated. The temperature was changed to 100°C, and therefore  
the end result changed.  
2-6  
2-7  
The table notes for Table 2-8 · Quiescent Supply Current (IDD) Characteristics,  
IGLOO Flash*Freeze Mode*, Table 2-9 · Quiescent Supply Current (IDD  
)
Characteristics, IGLOO Sleep Mode (VCC = 0 V)*, and Table 2-10 · Quiescent  
Supply Current (IDD) Characteristics, IGLOO Shutdown Mode (VCC, VCCI = 0  
V)* were updated to remove VMV and include PDC6 and PDC7. VCCI and VJTAG  
were removed from the statement about IDD in the table note for  
Table 2-9 · Quiescent Supply Current (IDD) Characteristics, IGLOO Sleep Mode  
(VCC = 0 V)*.  
Note 2 of Table 2-11 · Quiescent Supply Current (IDD), No IGLOO Flash*Freeze  
Mode1 was updated to include VCCPLL. Note 4 was updated to include PDC6  
2-8  
2-9  
and PDC7  
.
Table 2-12 · Summary of I/O Input Buffer Power (per pin) – Default I/O  
Software Settings, Table 2-13 · Summary of I/O Input Buffer Power (per pin) – through  
Default I/O Software Settings, Table 2-14 · Summary of I/O Input Buffer Power  
(per pin) – Default I/O Software Settings, and Table 2-15 · Summary of I/O  
Output Buffer Power (per pin) – Default I/O Software Settings1 were updated  
to change PDC2 to PDC6 and PDC3 to PDC7. The table notes were updated to  
2-10  
reflect that power was measured on VCCI  
.
Table 2-19 · Different Components Contributing to the Static Power  
Consumption in IGLOO Devices and Table 2-21 · Different Components  
Contributing to the Static Power Consumption in IGLOO Device were updated  
to add PDC6 and PDC7, and to change the definition for PDC5 to bank quiescent  
power. Subtitles were added to indicate type of devices and core supply  
voltage.  
2-13,  
2-15  
The "Total Static Power Consumption—PSTAT" section was updated to revise  
2-16  
2-12  
the calculation of PSTAT, including PDC6 and PDC7  
.
In Table 2-18 · Different Components Contributing to Dynamic Power  
Consumption in IGLOO Devices, the description for PAC13 was changed from  
Static to Dynamic.  
Footnote 1 was updated to include information about PAC13. The PLL  
2-17  
Contribution equation was changed from: PPLL = PAC13 + PAC14 * FCLKOUT to PPLL  
= PDC4 + PAC13 * FCLKOUT  
.
Advance v0.5  
2-119  
IGLOO DC and Switching Characteristics  
Previous Version  
Changes in Current Version (Advance v0.5)  
Page  
Advance v0.6  
(November 2007)  
The "Timing Model" was updated to be consistent with the revised timing  
numbers.  
2-19  
In Table 2-26 · Summary of Maximum and Minimum DC Input and Output  
Levels Applicable to Commercial and Industrial Conditions—Software Default  
Settings, TJ was changed to TA in notes 1 and 2.  
2-24  
N/A  
All AC Loading figures for single-ended I/O standards were changed from  
Datapaths at 35 pF to 5 pF.  
The "1.2 V LVCMOS (JESD8-12A)" section is new.  
2-59  
N/A  
This document was previously in datasheet Advance v0.7. As a result of  
moving to the handbook format, Actel has restarted the version numbers. The  
new version number is Advance v0.1.  
Advance v0.6  
(continued)  
Table 2-4 • IGLOO CCC/PLL Specification and Table 2-5 • IGLOO CCC/PLL  
Specification were updated.  
2-19,  
2-20  
The former Table 2-16 • Maximum I/O Frequency for Single-Ended and  
Differential I/Os in All Banks in IGLOO Devices (maximum drive strength and  
high slew selected) was removed.  
N/A  
The "During Flash*Freeze Mode" section was updated to include information  
about the output of the I/O to the FPGA core.  
2-57  
2-61  
Table 2-31 • Flash*Freeze Pin Location in IGLOO Family Packages (device-  
independent) was updated to add UC81 and CS281. Flash*Freeze pins were  
assigned for CS81, CS121, and CS196.  
Figure 2-40 • Flash*Freeze Mode Type 2 – Timing Diagram was updated to  
modify the LSICC Signal.  
2-55  
3-6  
Information regarding calculation of the quiescent supply current was added  
to the "Quiescent Supply Current" section.  
Table 3-8 • Quiescent Supply Current (IDD  
Flash*Freeze Modewas updated.  
)
Characteristics, IGLOO  
3-6  
Table 3-9 • Quiescent Supply Current (IDD) Characteristics, IGLOO Sleep Mode  
(VCC = 0 V)was updated.  
3-6  
Table 3-11 • Quiescent Supply Current (IDD), No IGLOO Flash*Freeze Mode1  
was updated.  
3-7  
Table 3-115 • Minimum and Maximum DC Input and Output Levels was  
updated.  
3-58  
Table 3-156 • JTAG 1532 was updated and Table 3-155 • JTAG 1532 is new.  
3-104  
2-51  
Advance v0.3  
(August 2007)  
The "Power Conservation Techniques" section was updated to recommend  
that unused I/O signals be left floating.  
Advance v0.2  
(July 2007)  
The CS81 and CS121 packages were added to Table 2-31 • Flash*Freeze Pin  
Location in IGLOO Family Packages (device-independent).  
2-61  
3-2  
Advance v0.1  
The TJ parameter in Table 3-2 • Recommended Operating Conditions was  
changed to TA, ambient temperature, and table notes 4–6 were added.  
2-120  
Advance v0.5  
IGLOO DC and Switching Characteristics  
Actel Safety Critical, Life Support, and High-Reliability  
Applications Policy  
The Actel products described in this advance status datasheet may not have completed Actel’s  
qualification process. Actel may amend or enhance products during the product introduction and  
qualification process, resulting in changes in device functionality or performance. It is the  
responsibility of each customer to ensure the fitness of any Actel product (but especially a new  
product) for a particular purpose, including appropriateness for safety-critical, life-support, and  
other high-reliability applications. Consult Actel’s Terms and Conditions for specific liability  
exclusions relating to life-support applications. A reliability report covering all of Actel’s products is  
available on the Actel website at http://www.actel.com/documents/ORT_Report.pdf. Actel also  
offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your  
local Actel sales office for additional reliability information.  
Advance v0.5  
2-121  
IGLOO Packaging  
3 – Package Pin Assignments  
81-Pin µCSP  
A1 Ball Pad Corner  
9 8 7 6 5 4 3 2 1  
A
B
C
D
E
F
G
H
J
Note: This is the bottom view of the package.  
Figure 3-1 •  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.actel.com/products/solutions/package/docs.aspx.  
v1.7  
3-1  
Package Pin Assignments  
81-Pin µCSP  
81-Pin µCSP  
81-Pin µCSP  
Pin Number  
Pin Number  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
B1  
AGL030 Function  
IO00RSB0  
IO02RSB0  
IO06RSB0  
IO11RSB0  
IO16RSB0  
IO19RSB0  
IO22RSB0  
IO24RSB0  
IO26RSB0  
IO81RSB1  
IO04RSB0  
IO10RSB0  
IO13RSB0  
IO15RSB0  
IO20RSB0  
IO21RSB0  
IO28RSB0  
IO25RSB0  
IO79RSB1  
IO80RSB1  
IO08RSB0  
IO12RSB0  
IO17RSB0  
IO14RSB0  
IO18RSB0  
IO29RSB0  
IO27RSB0  
IO74RSB1  
IO76RSB1  
IO77RSB1  
VCC  
Pin Number  
AGL030 Function  
GEB0/IO71RSB1  
GEA0/IO72RSB1  
GEC0/IO73RSB1  
AGL030 Function  
IO63RSB1  
IO61RSB1  
IO59RSB1  
IO56RSB1  
IO52RSB1  
IO44RSB1  
TCK  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
F1  
J1  
J2  
J3  
J4  
J5  
J6  
J7  
J8  
J9  
V
CCIB1  
VCC  
VCCIB0  
GDC0/IO32RSB0  
GDA0/IO33RSB0  
GDB0/IO34RSB0  
IO68RSB1  
IO67RSB1  
IO64RSB1  
GND  
TMS  
VPUMP  
B2  
F2  
B3  
F3  
B4  
F4  
B5  
F5  
VCCIB1  
B6  
F6  
IO47RSB1  
IO36RSB0  
IO38RSB0  
IO40RSB0  
IO65RSB1  
IO66RSB1  
IO57RSB1  
IO53RSB1  
IO49RSB1  
IO45RSB1  
IO46RSB1  
VJTAG  
B7  
F7  
B8  
F8  
B9  
F9  
C1  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
TRST  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
IO62RSB1  
FF/IO60RSB1  
IO58RSB1  
IO54RSB1  
IO48RSB1  
IO43RSB1  
IO42RSB1  
TDI  
VCCIB  
0
GND  
IO23RSB0  
IO31RSB0  
IO30RSB0  
TDO  
3-2  
v1.7  
IGLOO Packaging  
81-Pin CSP  
A1 Ball Pad Corner  
9 8 7 6 5 4 3 2 1  
A
B
C
D
E
F
G
H
J
Note: This is the bottom view of the package.  
Figure 3-2 •  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.actel.com/products/solutions/package/docs.aspx.  
v1.7  
3-3  
Package Pin Assignments  
81-Pin CSP  
81-Pin CSP  
81-Pin CSP  
Pin Number  
Pin Number  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
B1  
AGL030 Function  
Pin Number  
AGL030 Function  
GEB0/IO71RSB1  
GEA0/IO72RSB1  
GEC0/IO73RSB1  
AGL030 Function  
IO63RSB1  
IO61RSB1  
IO59RSB1  
IO56RSB1  
IO52RSB1  
IO45RSB1  
TCK  
IO00RSB0  
IO02RSB0  
IO06RSB0  
IO11RSB0  
IO16RSB0  
IO19RSB0  
IO22RSB0  
IO24RSB0  
IO26RSB0  
IO81RSB1  
IO04RSB0  
IO10RSB0  
IO13RSB0  
IO15RSB0  
IO20RSB0  
IO21RSB0  
IO28RSB0  
IO25RSB0  
IO79RSB1  
IO80RSB1  
IO08RSB0  
IO12RSB0  
IO17RSB0  
IO14RSB0  
IO18RSB0  
IO29RSB0  
IO27RSB0  
IO74RSB1  
IO76RSB1  
IO77RSB1  
VCC  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
F1  
J1  
J2  
J3  
J4  
J5  
J6  
J7  
J8  
J9  
V
CCIB1  
VCC  
VCCIB0  
GDC0/IO32RSB0  
GDA0/IO33RSB0  
GDB0/IO34RSB0  
IO68RSB1  
IO67RSB1  
IO64RSB1  
GND  
TMS  
VPUMP  
B2  
F2  
B3  
F3  
B4  
F4  
B5  
F5  
VCCIB1  
B6  
F6  
IO47RSB1  
IO36RSB0  
IO38RSB0  
IO40RSB0  
IO65RSB1  
IO66RSB1  
IO57RSB1  
IO53RSB1  
IO49RSB1  
IO44RSB1  
IO46RSB1  
VJTAG  
B7  
F7  
B8  
F8  
B9  
F9  
C1  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
TRST  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
IO62RSB1  
FF/IO60RSB1  
IO58RSB1  
IO54RSB1  
IO48RSB1  
IO43RSB1  
IO42RSB1  
TDI  
VCCIB0  
GND  
IO23RSB0  
IO31RSB0  
IO30RSB0  
TDO  
3-4  
v1.7  
IGLOO Packaging  
121-Pin CSP  
11 10 9 8 7 6 5 4 3 2 1  
A
B
C
D
E
F
G
H
J
K
L
Note: This is the bottom view of the package.  
Figure 3-3 •  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.actel.com/products/solutions/package/docs.aspx.  
v1.7  
3-5  
Package Pin Assignments  
121-Pin CSP  
121-Pin CSP  
121-Pin CSP  
Pin Number  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A11  
B1  
AGL060 Function  
GNDQ  
Pin Number  
AGL060 Function  
GCA2/IO41RSB0  
IO30RSB0  
Pin Number  
AGL060 Function  
GEC2/IO66RSB1  
IO54RSB1  
D9  
D10  
D11  
E1  
H6  
H7  
H8  
H9  
H10  
H11  
J1  
IO01RSB0  
GAA1/IO03RSB0  
GAC1/IO07RSB0  
IO15RSB0  
IO33RSB0  
GDC2/IO53RSB1  
VJTAG  
IO87RSB1  
E2  
GFC0/IO85RSB1  
IO92RSB1  
TRST  
IO13RSB0  
E3  
IO44RSB0  
IO17RSB0  
E4  
IO94RSB1  
GEC1/IO74RSB1  
GEC0/IO73RSB1  
GEB1/IO72RSB1  
GEA0/IO69RSB1  
FF/GEB2/IO67RSB1  
IO62RSB1  
GBB1/IO22RSB0  
GBA1/IO24RSB0  
GNDQ  
E5  
VCC  
J2  
E6  
VCCIB0  
J3  
E7  
GND  
J4  
VMV0  
E8  
GCC0/IO36RSB0  
IO34RSB0  
J5  
GAA2/IO95RSB1  
IO00RSB0  
E9  
J6  
B2  
E10  
E11  
F1  
GCB1/IO37RSB0  
GCC1/IO35RSB0  
VCOMPLF  
J7  
GDA2/IO51RSB1  
GDB2/IO52RSB1  
TDI  
B3  
GAA0/IO02RSB0  
GAC0/IO06RSB0  
IO08RSB0  
J8  
B4  
J9  
B5  
F2  
GFB0/IO83RSB1  
GFA0/IO82RSB1  
GFC1/IO86RSB1  
VCCIB1  
J10  
J11  
K1  
K2  
K3  
K4  
K5  
K6  
K7  
K8  
K9  
K10  
K11  
L1  
TDO  
B6  
IO12RSB0  
F3  
GDC1/IO45RSB0  
GEB0/IO71RSB1  
GEA1/IO70RSB1  
GEA2/IO68RSB1  
IO64RSB1  
B7  
IO16RSB0  
F4  
B8  
GBC1/IO20RSB0  
GBB0/IO21RSB0  
GBB2/IO27RSB0  
GBA2/IO25RSB0  
IO89RSB1  
F5  
B9  
F6  
VCC  
B10  
B11  
C1  
F7  
VCCIB0  
F8  
GCB2/IO42RSB0  
GCC2/IO43RSB0  
GCB0/IO38RSB0  
GCA1/IO39RSB0  
VCCPLF  
IO60RSB1  
F9  
IO59RSB1  
C2  
GAC2/IO91RSB1  
GAB1/IO05RSB0  
GAB0/IO04RSB0  
IO09RSB0  
F10  
F11  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
G10  
G11  
H1  
H2  
H3  
H4  
H5  
IO56RSB1  
C3  
TCK  
C4  
TMS  
C5  
GFB2/IO79RSB1  
GFA1/IO81RSB1  
GFB1/IO84RSB1  
GND  
VPUMP  
C6  
IO14RSB0  
GDB1/IO47RSB0  
VMV1  
C7  
GBA0/IO23RSB0  
GBC0/IO19RSB0  
IO26RSB0  
C8  
L2  
GNDQ  
C9  
VCCIB1  
L3  
IO65RSB1  
C10  
C11  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
IO28RSB0  
VCC  
L4  
IO63RSB1  
GBC2/IO29RSB0  
IO88RSB1  
GDC0/IO46RSB0  
GDA1/IO49RSB0  
GDB0/IO48RSB0  
GCA0/IO40RSB0  
IO75RSB1  
L5  
IO61RSB1  
L6  
IO58RSB1  
IO90RSB1  
L7  
IO57RSB1  
GAB2/IO93RSB1  
IO10RSB0  
L8  
IO55RSB1  
L9  
GNDQ  
IO11RSB0  
IO76RSB1  
L10  
L11  
GDA0/IO50RSB0  
VMV1  
IO18RSB0  
GFC2/IO78RSB1  
GFA2/IO80RSB1  
IO77RSB1  
IO32RSB0  
IO31RSB0  
3-6  
v1.7  
IGLOO Packaging  
196-Pin CSP  
A1 Ball Pad Corner  
14 13 12 11 10  
9 8 7 6 5 4 3 2 1  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
Note: This is the bottom view of the package.  
Figure 3-4 •  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.actel.com/products/solutions/package/docs.aspx.  
v1.7  
3-7  
Package Pin Assignments  
196-Pin CSP  
196-Pin CSP  
AGL125 Function  
196-Pin CSP  
AGL125 Function  
Pin Number  
A1  
AGL125 Function  
GND  
Pin Number  
C9  
Pin Number  
F3  
IO23RSB0  
IO29RSB0  
VCCIB0  
IO113RSB1  
IO112RSB1  
IO111RSB1  
NC  
A2  
GAA0/IO00RSB0  
GAC0/IO04RSB0  
GAC1/IO05RSB0  
IO09RSB0  
C10  
C11  
C12  
C13  
C14  
D1  
F4  
A3  
F5  
A4  
IO42RSB0  
GNDQ  
F6  
A5  
F7  
VCC  
A6  
IO15RSB0  
IO44RSB0  
IO127RSB1  
IO129RSB1  
GAA2/IO132RSB1  
IO126RSB1  
IO06RSB0  
IO13RSB0  
IO19RSB0  
IO21RSB0  
IO26RSB0  
IO31RSB0  
IO30RSB0  
VMV0  
F8  
VCC  
A7  
IO18RSB0  
F9  
NC  
A8  
IO22RSB0  
D2  
F10  
F11  
F12  
F13  
F14  
G1  
IO07RSB0  
IO25RSB0  
IO10RSB0  
IO33RSB0  
IO47RSB0  
GFB1/IO121RSB1  
GFA0/IO119RSB1  
GFA2/IO117RSB1  
VCOMPLF  
A9  
IO27RSB0  
D3  
A10  
A11  
A12  
A13  
A14  
B1  
GBC0/IO35RSB0  
GBB0/IO37RSB0  
GBB1/IO38RSB0  
GBA1/IO40RSB0  
GND  
D4  
D5  
D6  
D7  
D8  
G2  
VCCIB1  
D9  
G3  
B2  
VMV0  
D10  
D11  
D12  
D13  
D14  
E1  
G4  
B3  
GAA1/IO01RSB0  
GAB1/IO03RSB0  
GND  
G5  
GFC0/IO122RSB1  
VCC  
B4  
G6  
B5  
IO46RSB0  
GBC2/IO45RSB0  
IO125RSB1  
GND  
G7  
GND  
B6  
IO16RSB0  
G8  
GND  
B7  
IO20RSB0  
G9  
VCC  
B8  
IO24RSB0  
E2  
G10  
G11  
G12  
G13  
G14  
H1  
GCC0/IO52RSB0  
GCB1/IO53RSB0  
GCA0/IO56RSB0  
IO48RSB0  
GCC2/IO59RSB0  
GFB0/IO120RSB1  
GFA1/IO118RSB1  
VCCPLF  
B9  
IO28RSB0  
E3  
IO131RSB1  
VCCIB1  
B10  
B11  
B12  
B13  
B14  
C1  
GND  
E4  
GBC1/IO36RSB0  
GBA0/IO39RSB0  
GBA2/IO41RSB0  
GBB2/IO43RSB0  
GAC2/IO128RSB1  
GAB2/IO130RSB1  
GNDQ  
E5  
NC  
E6  
IO08RSB0  
IO17RSB0  
IO12RSB0  
IO11RSB0  
NC  
E7  
E8  
H2  
E9  
H3  
C2  
E10  
E11  
E12  
E13  
E14  
F1  
H4  
GFB2/IO116RSB1  
GFC1/IO123RSB1  
VCC  
C3  
VCCIB0  
H5  
C4  
VCCIB0  
IO32RSB0  
GND  
H6  
C5  
GAB0/IO02RSB0  
IO14RSB0  
H7  
GND  
C6  
IO34RSB0  
IO124RSB1  
IO114RSB1  
H8  
GND  
C7  
VCCIB0  
H9  
VCC  
C8  
NC  
F2  
H10  
GCC1/IO51RSB0  
3-8  
v1.7  
IGLOO Packaging  
196-Pin CSP  
AGL125 Function  
196-Pin CSP  
AGL125 Function  
196-Pin CSP  
AGL125 Function  
Pin Number  
H11  
H12  
H13  
H14  
J1  
Pin Number  
L5  
Pin Number  
N13  
N14  
P1  
GCB0/IO54RSB0  
GCA1/IO55RSB0  
IO49RSB0  
GCA2/IO57RSB0  
GFC2/IO115RSB1  
IO110RSB1  
IO94RSB1  
IO93RSB1  
IO89RSB1  
NC  
IO91RSB1  
IO90RSB1  
IO83RSB1  
IO81RSB1  
IO71RSB1  
IO70RSB1  
VPUMP  
GNDQ  
TDO  
L6  
L7  
GND  
L8  
P2  
GEA2/IO103RSB1  
FF/GEB2/IO102RSB1  
IO98RSB1  
IO97RSB1  
IO85RSB1  
IO84RSB1  
IO79RSB1  
IO77RSB1  
IO75RSB1  
GDC2/IO69RSB1  
GDA2/IO67RSB1  
TMS  
L9  
P3  
J2  
L10  
L11  
L12  
L13  
L14  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
M13  
M14  
N1  
P4  
J3  
P5  
J4  
VJTAG  
P6  
J5  
GDA0/IO66RSB0  
GDB0/IO64RSB0  
GEB0/IO106RSB1  
GEA1/IO105RSB1  
GNDQ  
P7  
J6  
P8  
J7  
VCC  
P9  
J8  
VCC  
P10  
P11  
P12  
P13  
P14  
J9  
NC  
J10  
J11  
J12  
J13  
J14  
K1  
IO60RSB0  
GCB2/IO58RSB0  
IO50RSB0  
GDC1/IO61RSB0  
GDC0/IO62RSB0  
IO99RSB1  
GND  
VCCIB1  
IO92RSB1  
IO88RSB1  
NC  
GND  
VCCIB1  
IO76RSB1  
GDB2/IO68RSB1  
VCCIB1  
K2  
K3  
IO95RSB1  
VCCIB1  
K4  
VMV1  
K5  
NC  
TRST  
K6  
IO86RSB1  
IO80RSB1  
IO74RSB1  
IO72RSB1  
NC  
VCCIB0  
K7  
GEA0/IO104RSB1  
VMV1  
K8  
N2  
K9  
N3  
GEC2/IO101RSB1  
IO100RSB1  
GND  
K10  
K11  
K12  
K13  
K14  
L1  
N4  
VCCIB0  
N5  
GDA1/IO65RSB0  
GND  
N6  
IO87RSB1  
IO82RSB1  
IO78RSB1  
IO73RSB1  
GND  
N7  
GDB1/IO63RSB0  
GEB1/IO107RSB1  
GEC1/IO109RSB1  
GEC0/IO108RSB1  
IO96RSB1  
N8  
N9  
L2  
N10  
N11  
N12  
L3  
TCK  
L4  
TDI  
v1.7  
3-9  
Package Pin Assignments  
196-Pin CSP  
196-Pin CSP  
196-Pin CSP  
Pin Number  
A1  
AGL250 Function  
GND  
Pin Number  
AGL250 Function  
IO30RSB0  
IO33RSB0  
VCCIB0  
Pin Number  
AGL250 Function  
IO111PDB3  
IO111NDB3  
IO113NPB3  
IO06RSB0  
C9  
C10  
C11  
C12  
C13  
C14  
D1  
F3  
F4  
A2  
GAA0/IO00RSB0  
GAC0/IO04RSB0  
GAC1/IO05RSB0  
IO10RSB0  
A3  
F5  
A4  
IO41NPB1  
GNDQ  
F6  
A5  
F7  
VCC  
A6  
IO13RSB0  
IO42NDB1  
IO116VDB3  
IO117VDB3  
GAA2/IO118UDB3  
IO113PPB3  
IO08RSB0  
IO14RSB0  
IO15RSB0  
IO18RSB0  
IO25RSB0  
IO32RSB0  
IO44PPB1  
VMV1  
F8  
VCC  
A7  
IO17RSB0  
F9  
IO28RSB0  
A8  
IO19RSB0  
D2  
F10  
F11  
F12  
F13  
F14  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
G10  
G11  
G12  
G13  
G14  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
H10  
IO54PDB1  
IO54NDB1  
IO47NDB1  
IO47PDB1  
IO45NDB1  
GFB1/IO109PDB3  
GFA0/IO108NDB3  
GFA2/IO107PPB3  
VCOMPLF  
A9  
IO23RSB0  
D3  
A10  
A11  
A12  
A13  
A14  
B1  
GBC0/IO35RSB0  
GBB0/IO37RSB0  
GBB1/IO38RSB0  
GBA1/IO40RSB0  
GND  
D4  
D5  
D6  
D7  
D8  
VCCIB3  
D9  
B2  
VMV0  
D10  
D11  
D12  
D13  
D14  
E1  
B3  
GAA1/IO01RSB0  
GAB1/IO03RSB0  
GND  
GFC0/IO110NDB3  
VCC  
B4  
B5  
IO43NDB1  
GBC2/IO43PDB1  
IO112PDB3  
GND  
GND  
B6  
IO12RSB0  
GND  
B7  
IO16RSB0  
VCC  
B8  
IO22RSB0  
E2  
GCC0/IO48NDB1  
GCB1/IO49PDB1  
GCA0/IO50NDB1  
IO53NDB1  
GCC2/IO53PDB1  
GFB0/IO109NDB3  
GFA1/IO108PDB3  
VCCPLF  
B9  
IO24RSB0  
E3  
IO118VDB3  
VCCIB3  
B10  
B11  
B12  
B13  
B14  
C1  
GND  
E4  
GBC1/IO36RSB0  
GBA0/IO39RSB0  
GBA2/IO41PPB1  
GBB2/IO42PDB1  
GAC2/IO116UDB3  
GAB2/IO117UDB3  
GNDQ  
E5  
IO114USB3  
IO07RSB0  
IO09RSB0  
IO21RSB0  
IO31RSB0  
IO34RSB0  
VCCIB1  
E6  
E7  
E8  
E9  
C2  
E10  
E11  
E12  
E13  
E14  
F1  
GFB2/IO106PPB3  
GFC1/IO110PDB3  
VCC  
C3  
C4  
VCCIB0  
IO44NPB1  
GND  
C5  
GAB0/IO02RSB0  
IO11RSB0  
GND  
C6  
IO45PDB1  
IO112NDB3  
IO107NPB3  
GND  
C7  
VCCIB0  
VCC  
C8  
IO20RSB0  
F2  
GCC1/IO48PDB1  
3-10  
v1.7  
IGLOO Packaging  
196-Pin CSP  
196-Pin CSP  
Pin Number  
196-Pin CSP  
AGL250 Function  
Pin Number  
AGL250 Function  
GCB0/IO49NDB1  
GCA1/IO50PDB1  
IO51NDB1  
AGL250 Function  
IO89RSB2  
IO92RSB2  
IO75RSB2  
IO66RSB2  
IO65RSB2  
IO71RSB2  
VPUMP  
Pin Number  
N13  
N14  
P1  
H11  
H12  
H13  
H14  
J1  
L5  
L6  
GNDQ  
TDO  
L7  
GND  
GCA2/IO51PDB1  
GFC2/IO105PDB3  
IO104PPB3  
IO106NPB3  
IO103PDB3  
IO103NDB3  
IO80RSB2  
L8  
P2  
GEA2/IO97RSB2  
GEB2/IO96RSB2  
IO90RSB2  
IO85RSB2  
IO83RSB2  
IO79RSB2  
IO76RSB2  
IO72RSB2  
IO68RSB2  
GDC2/IO63RSB2  
GDA2/IO61RSB2  
TMS  
L9  
P3  
J2  
L10  
L11  
L12  
L13  
L14  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
M13  
M14  
N1  
P4  
J3  
P5  
J4  
VJTAG  
P6  
J5  
GDA0/IO60VPB1  
GDB0/IO59VDB1  
GEB0/IO99NDB3  
GEA1/IO98PPB3  
GNDQ  
P7  
J6  
P8  
J7  
VCC  
P9  
J8  
VCC  
P10  
P11  
P12  
P13  
P14  
J9  
IO64RSB2  
J10  
J11  
J12  
J13  
J14  
K1  
K2  
K3  
K4  
K5  
K6  
K7  
K8  
K9  
K10  
K11  
K12  
K13  
K14  
L1  
IO56PDB1  
VCCIB2  
GCB2/IO52PDB1  
IO52NDB1  
IO88RSB2  
IO87RSB2  
IO82RSB2  
VCCIB2  
GND  
GDC1/IO58UDB1  
GDC0/IO58VDB1  
IO105NDB3  
GND  
IO67RSB2  
GDB2/IO62RSB2  
VCCIB2  
IO104NPB3  
VCCIB3  
VMV2  
IO101PPB3  
IO91RSB2  
TRST  
VCCIB1  
IO81RSB2  
GEA0/IO98NPB3  
VMV3  
IO73RSB2  
N2  
IO77RSB2  
N3  
GEC2/IO95RSB2  
IO94RSB2  
GND  
IO56NDB1  
N4  
VCCIB1  
N5  
GDA1/IO60UPB1  
GND  
N6  
IO86RSB2  
IO78RSB2  
IO74RSB2  
IO69RSB2  
GND  
N7  
GDB1/IO59UDB1  
GEB1/IO99PDB3  
GEC1/IO100PDB3  
GEC0/IO100NDB3  
IO101NPB3  
N8  
N9  
L2  
N10  
N11  
N12  
L3  
TCK  
L4  
TDI  
v1.7  
3-11  
Package Pin Assignments  
196-pin CSP  
196-pin CSP  
196-pin CSP  
Pin Number  
Pin Number  
A1  
AGL400 Function  
GND  
Pin Number  
AGL400 Function  
IO31RSB0  
AGL400 Function  
IO144NPB3  
IO148PDB3  
IO148NDB3  
IO150NPB3  
IO07RSB0  
C8  
C9  
F2  
F3  
A2  
GAA0/IO00RSB0  
GAC0/IO04RSB0  
GAC1/IO05RSB0  
IO14RSB0  
IO44RSB0  
A3  
C10  
C11  
C12  
C13  
C14  
D1  
IO49RSB0  
F4  
A4  
V
CCIB0  
F5  
A5  
IO60NPB1  
GNDQ  
F6  
A6  
IO18RSB0  
F7  
VCC  
A7  
IO26RSB0  
IO61NDB1  
IO153VDB3  
IO154VDB3  
GAA2/IO155UDB3  
IO150PPB3  
IO11RSB0  
IO20RSB0  
IO23RSB0  
IO28RSB0  
IO41RSB0  
IO47RSB0  
IO63PPB1  
VMV1  
F8  
VCC  
A8  
IO29RSB0  
F9  
IO43RSB0  
A9  
IO36RSB0  
D2  
F10  
F11  
F12  
F13  
F14  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
G10  
G11  
G12  
G13  
G14  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
IO73PDB1  
IO73NDB1  
IO66NDB1  
IO66PDB1  
IO64NDB1  
GFB1/IO146PDB3  
GFA0/IO145NDB3  
GFA2/IO144PPB3  
VCOMPLF  
A10  
A11  
A12  
A13  
A14  
B1  
GBC0/IO54RSB0  
GBB0/IO56RSB0  
GBB1/IO57RSB0  
GBA1/IO59RSB0  
GND  
D3  
D4  
D5  
D6  
D7  
VCCIB3  
D8  
B2  
VMV0  
D9  
B2  
VMV0  
D10  
D11  
D12  
D13  
D14  
E1  
B3  
GAA1/IO01RSB0  
GAB1/IO03RSB0  
GND  
GFC0/IO147NDB3  
VCC  
B4  
B5  
IO62NDB1  
GBC2/IO62PDB1  
IO149PDB3  
GND  
GND  
B6  
IO17RSB0  
GND  
B7  
IO25RSB0  
VCC  
B8  
IO34RSB0  
E2  
GCC0/IO67NDB1  
GCB1/IO68PDB1  
GCA0/IO69NDB1  
IO72NDB1  
GCC2/IO72PDB1  
GFB0/IO146NDB3  
GFA1/IO145PDB3  
VCCPLF  
B9  
IO39RSB0  
E3  
IO155VDB3  
VCCIB3  
B10  
B11  
B12  
B13  
B14  
C1  
GND  
E4  
GBC1/IO55RSB0  
GBA0/IO58RSB0  
GBA2/IO60PPB1  
GBB2/IO61PDB1  
GAC2/IO153UDB3  
GAB2/IO154UDB3  
GNDQ  
E5  
IO151USB3  
IO09RSB0  
IO12RSB0  
IO32RSB0  
IO46RSB0  
IO51RSB0  
VCCIB1  
E6  
E7  
E8  
E9  
C2  
E10  
E11  
E12  
E13  
E14  
F1  
GFB2/IO143PPB3  
GFC1/IO147PDB3  
VCC  
C3  
C4  
VCCIB0  
IO63NPB1  
GND  
C5  
GAB0/IO02RSB0  
IO15RSB0  
GND  
C6  
IO64PDB1  
IO149NDB3  
GND  
C7  
VCCIB0  
VCC  
3-12  
v1.7  
IGLOO Packaging  
196-pin CSP  
196-pin CSP  
Pin Number  
196-pin CSP  
AGL400 Function  
Pin Number  
AGL400 Function  
GCC1/IO67PDB1  
GCB0/IO68NDB1  
GCA1/IO69PDB1  
IO70NDB1  
AGL400 Function  
IO138NPB3  
IO122RSB2  
IO128RSB2  
IO101RSB2  
IO88RSB2  
IO86RSB2  
IO94RSB2  
VPUMP  
Pin Number  
N11  
N12  
N13  
N14  
P1  
H10  
H11  
H12  
H13  
H14  
J1  
L4  
L5  
TCK  
TDI  
L6  
GNDQ  
L7  
TDO  
GCA2/IO70PDB1  
GFC2/IO142PDB3  
IO141PPB3  
L8  
GND  
L9  
P2  
GEA2/IO134RSB2  
FF/GEB2/IO133RSB2  
IO123RSB2  
IO116RSB2  
IO114RSB2  
IO107RSB2  
IO103RSB2  
IO95RSB2  
IO91RSB2  
GDC2/IO82RSB2  
GDA2/IO80RSB2  
TMS  
J2  
L10  
L11  
L12  
L13  
L14  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
M12  
M13  
M14  
N1  
P3  
J3  
IO143NPB3  
IO140PDB3  
IO140NDB3  
IO109RSB2  
P4  
J4  
VJTAG  
P5  
J5  
GDA0/IO79VPB1  
GDB0/IO78VDB1  
GEB0/IO136NDB3  
GEA1/IO135PPB3  
GNDQ  
P6  
J6  
P7  
J7  
VCC  
P8  
J8  
VCC  
P9  
J9  
IO84RSB2  
P10  
P11  
P12  
P13  
P14  
J10  
J11  
J12  
J13  
J14  
K1  
K2  
K3  
K4  
K5  
K6  
K7  
K8  
K9  
K10  
K11  
K12  
K13  
K14  
L1  
IO75PDB1  
VCCIB2  
GCB2/IO71PDB1  
IO71NDB1  
IO120RSB2  
IO119RSB2  
IO112RSB2  
VCCIB2  
GDC1/IO77UDB1  
GDC0/IO77VDB1  
IO142NDB3  
GND  
GND  
IO89RSB2  
GDB2/IO81RSB2  
VCCIB2  
IO141NPB3  
VCCIB3  
VMV2  
IO138PPB3  
VMV2  
IO125RSB2  
TRST  
IO110RSB2  
VCCIB1  
IO98RSB2  
GEA0/IO135NPB3  
VMV3  
IO104RSB2  
N2  
IO75NDB1  
N3  
GEC2/IO132RSB2  
IO130RSB2  
GND  
VCCIB1  
N4  
GDA1/IO79UPB1  
GND  
N5  
N6  
IO117RSB2  
IO106RSB2  
IO100RSB2  
IO92RSB2  
GND  
GDB1/IO78UDB1  
GEB1/IO136PDB3  
GEC1/IO137PDB3  
GEC0/IO137NDB3  
N7  
N8  
L2  
N9  
L3  
N10  
v1.7  
3-13  
Package Pin Assignments  
281-Pin CSP  
19 18 17 16 1514 13 12 11 10 9 8 7 6 5 4 3 2 1  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Note: This is the bottom view of the package.  
Figure 3-5 •  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.actel.com/products/solutions/package/docs.aspx.  
3-14  
v1.7  
IGLOO Packaging  
281-Pin CSP  
281-Pin CSP  
281-Pin CSP  
Pin Number AGL600 Function  
Pin Number  
AGL600 Function  
GND  
Pin Number  
AGL600 Function  
VCCIB1  
A1  
A2  
B18  
B19  
C1  
E13  
E14  
E15  
E16  
E18  
E19  
F1  
IO46RSB0  
GBB1/IO57RSB0  
IO62NPB1  
IO63PPB1  
GAB0/IO02RSB0  
GAC1/IO05RSB0  
IO07RSB0  
IO61NDB1  
GAB2/IO173PPB3  
IO174NPB3  
IO12RSB0  
A3  
A4  
C2  
A5  
IO10RSB0  
C6  
IO64PPB1  
A6  
IO14RSB0  
C14  
C18  
C19  
D1  
IO50RSB0  
IO65NPB1  
IO168NPB3  
GND  
A7  
IO18RSB0  
IO60NPB1  
A8  
IO21RSB0  
GBB2/IO61PDB1  
IO170PPB3  
IO172NPB3  
GAA0/IO00RSB0  
GAA1/IO01RSB0  
IO09RSB0  
F2  
A9  
IO22RSB0  
F3  
IO169PPB3  
IO170NPB3  
IO173NPB3  
IO63NPB1  
IO65PPB1  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
B1  
VCCIB0  
D2  
F4  
IO33RSB0  
D4  
F5  
IO40RSB0  
D5  
F15  
F16  
F17  
F18  
F19  
G1  
IO37RSB0  
D6  
IO48RSB0  
D7  
IO16RSB0  
IO64NPB1  
GND  
IO51RSB0  
D8  
IO19RSB0  
IO53RSB0  
D9  
IO26RSB0  
IO68PPB1  
GBC1/IO55RSB0  
GBA0/IO58RSB0  
GND  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D18  
D19  
E1  
GND  
IO167NPB3  
IO165NDB3  
IO168PPB3  
IO167PPB3  
GAC2/IO172PPB3  
VCCIB0  
IO34RSB0  
G2  
IO45RSB0  
G4  
GAA2/IO174PPB3  
VCCIB0  
IO49RSB0  
G5  
B2  
IO47RSB0  
G7  
B3  
GAB1/IO03RSB0  
GAC0/IO04RSB0  
IO06RSB0  
GBB0/IO56RSB0  
GBA2/IO60PPB1  
GBC2/IO62PPB1  
IO66NPB1  
G8  
B4  
G9  
IO28RSB0  
B5  
G10  
G11  
G12  
G13  
G15  
G16  
G18  
G19  
H1  
IO32RSB0  
B6  
GND  
IO43RSB0  
B7  
IO15RSB0  
IO169NPB3  
IO171PPB3  
IO171NPB3  
IO08RSB0  
VCCIB0  
B8  
IO20RSB0  
E2  
IO66PPB1  
B9  
IO23RSB0  
E4  
IO67NDB1  
IO67PDB1  
GCC0/IO69NPB1  
GCB1/IO70PPB1  
GFB0/IO163NPB3  
IO165PDB3  
GFC1/IO164PPB3  
GFB1/IO163PPB3  
VCCIB3  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
IO24RSB0  
E5  
IO36RSB0  
E6  
IO11RSB0  
IO35RSB0  
E7  
IO13RSB0  
IO44RSB0  
E8  
IO17RSB0  
GND  
E9  
IO25RSB0  
H2  
IO52RSB0  
E10  
E11  
E12  
IO30RSB0  
H4  
GBC0/IO54RSB0  
GBA1/IO59RSB0  
IO41RSB0  
H5  
IO42RSB0  
H7  
v1.7  
3-15  
Package Pin Assignments  
281-Pin CSP  
281-Pin CSP  
281-Pin CSP  
Pin Number  
H8  
AGL600 Function  
VCC  
Pin Number  
AGL600 Function  
IO73NPB1  
GND  
Pin Number  
AGL600 Function  
IO150PPB3  
IO148NPB3  
GEA2/IO143RSB2  
VCCIB2  
K15  
K16  
K18  
K19  
L1  
N4  
N5  
H9  
VCCIB0  
H10  
H11  
H12  
H13  
H15  
H16  
H18  
H19  
J1  
VCC  
IO74NPB1  
N7  
VCCIB0  
VCCIB1  
N8  
VCC  
GFB2/IO160PDB3  
IO160NDB3  
GFC2/IO159PPB3  
IO153PPB3  
IO153NPB3  
VCCIB3  
N9  
IO117RSB2  
IO115RSB2  
IO114RSB2  
VCCIB2  
VCCIB1  
L2  
N10  
N11  
N12  
N13  
N15  
N16  
N18  
N19  
P1  
IO68NPB1  
GCB0/IO70NPB1  
GCA1/IO71PPB1  
GCA2/IO72PPB1  
VCOMPLF  
L4  
L5  
L7  
VPUMP  
L8  
IO82PPB1  
L9  
GND  
IO85PPB1  
J2  
GFA0/IO162NDB3  
VCCPLF  
L10  
L11  
L12  
L13  
L15  
L16  
L18  
L19  
M1  
M2  
M4  
M5  
M7  
M8  
M9  
M10  
M11  
M12  
M13  
M15  
M16  
M18  
M19  
N1  
GND  
IO82NPB1  
IO81PPB1  
J4  
GND  
J5  
GFC0/IO164NPB3  
GFA2/IO161PDB3  
VCCIB3  
VCCIB1  
IO151PDB3  
GND  
J7  
IO76PPB1  
IO76NPB1  
IO77PPB1  
IO78NPB1  
IO77NPB1  
IO158PDB3  
IO158NDB3  
IO154NPB3  
IO152PPB3  
VCCIB3  
P2  
J8  
P3  
IO151NDB3  
IO149PPB3  
GEA0/IO144NPB3  
IO83NDB1  
IO83PDB1  
GDC1/IO86PPB1  
GND  
J9  
GND  
P4  
J10  
J11  
J12  
J13  
J15  
J16  
J18  
J19  
K1  
GND  
P5  
GND  
P15  
P16  
P17  
P18  
P19  
R1  
VCCIB1  
GCC1/IO69PPB1  
GCA0/IO71NPB1  
GCB2/IO73PPB1  
IO72NPB1  
IO75PSB1  
VCCIB3  
IO85NPB1  
IO150NPB3  
IO149NPB3  
GEC1/IO146PPB3  
GEB1/IO145PPB3  
IO138RSB2  
IO127RSB2  
IO123RSB2  
IO118RSB2  
IO111RSB2  
IO106RSB2  
IO103RSB2  
IO97RSB2  
VCC  
R2  
VCCIB2  
R4  
K2  
GFA1/IO162PDB3  
GND  
VCC  
R5  
K4  
VCCIB2  
R6  
K5  
IO159NPB3  
IO161NDB3  
VCC  
VCC  
R7  
K7  
VCCIB1  
R8  
K8  
IO79NPB1  
IO81NPB1  
IO79PPB1  
IO78PPB1  
IO154PPB3  
IO152NPB3  
R9  
K9  
GND  
R10  
R11  
R12  
R13  
R14  
K10  
K11  
K12  
K13  
GND  
GND  
VCC  
GCC2/IO74PPB1  
N2  
IO95RSB2  
3-16  
v1.7  
IGLOO Packaging  
281-Pin CSP  
281-Pin CSP  
Pin Number  
Pin Number  
AGL600 Function  
IO94RSB2  
AGL600 Function  
IO112RSB2  
IO110RSB2  
IO108RSB2  
IO102RSB2  
GND  
R15  
R16  
R18  
R19  
T1  
V10  
V11  
V12  
V13  
V14  
V15  
V16  
V17  
V18  
V19  
W1  
GDA1/IO88PPB1  
GDB0/IO87NPB1  
GDC0/IO86NPB1  
IO148PPB3  
GEC0/IO146NPB3  
GEB0/IO145NPB3  
IO132RSB2  
IO136RSB2  
IO130RSB2  
IO126RSB2  
IO120RSB2  
GND  
T2  
IO93RSB2  
GDA2/IO89RSB2  
TDI  
T4  
T5  
T6  
VCCIB2  
T7  
TDO  
T8  
GND  
T9  
W2  
FF/GEB2/IO142RSB2  
IO139RSB2  
IO137RSB2  
IO134RSB2  
IO133RSB2  
IO128RSB2  
IO124RSB2  
IO119RSB2  
VCCIB2  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T18  
T19  
U1  
W3  
IO113RSB2  
IO104RSB2  
IO101RSB2  
IO98RSB2  
W4  
W5  
W6  
W7  
GDC2/IO91RSB2  
TMS  
W8  
W9  
VJTAG  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
W17  
W18  
W19  
GDB1/IO87PPB1  
IO147PDB3  
GEA1/IO144PPB3  
IO131RSB2  
IO99RSB2  
IO109RSB2  
IO107RSB2  
IO105RSB2  
IO100RSB2  
IO96RSB2  
IO92RSB2  
GDB2/IO90RSB2  
TCK  
U2  
U6  
U14  
U18  
U19  
V1  
TRST  
GDA0/IO88NPB1  
IO147NDB3  
VCCIB3  
V2  
GND  
V3  
GEC2/IO141RSB2  
IO140RSB2  
IO135RSB2  
GND  
V4  
V5  
V6  
V7  
IO125RSB2  
IO122RSB2  
IO116RSB2  
V8  
V9  
v1.7  
3-17  
Package Pin Assignments  
281-Pin CSP  
Pin Number AGL1000 Function  
281-Pin CSP  
281-Pin CSP  
Pin Number AGL1000 Function  
Pin Number AGL1000 Function  
A1  
A2  
GND  
GAB0/IO02RSB0  
GAC1/IO05RSB0  
IO13RSB0  
B18  
B19  
C1  
VCCIB1  
IO79NDB1  
GAB2/IO224PPB3  
IO225NPB3  
IO18RSB0  
E13  
E14  
E15  
E16  
E18  
E19  
F1  
IO53RSB0  
GBB1/IO75RSB0  
IO80NPB1  
IO85PPB1  
A3  
A4  
C2  
A5  
IO11RSB0  
C6  
IO83PPB1  
A6  
IO16RSB0  
C14  
C18  
C19  
D1  
IO63RSB0  
IO84NPB1  
IO214NPB3  
GND  
A7  
IO20RSB0  
IO78NPB1  
A8  
IO24RSB0  
GBB2/IO79PDB1  
IO219PPB3  
IO223NPB3  
GAA0/IO00RSB0  
GAA1/IO01RSB0  
IO15RSB0  
F2  
A9  
IO29RSB0  
F3  
IO217PPB3  
IO219NPB3  
IO224NPB3  
IO85NPB1  
IO84PPB1  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
B1  
VCCIB0  
D2  
F4  
IO39RSB0  
D4  
F5  
IO45RSB0  
D5  
F15  
F16  
F17  
F18  
F19  
G1  
IO48RSB0  
D6  
IO58RSB0  
D7  
IO19RSB0  
IO83NPB1  
GND  
IO61RSB0  
D8  
IO27RSB0  
IO62RSB0  
D9  
IO32RSB0  
IO90PPB1  
GBC1/IO73RSB0  
GBA0/IO76RSB0  
GND  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D18  
D19  
E1  
GND  
IO212NPB3  
IO211NDB3  
IO214PPB3  
IO212PPB3  
GAC2/IO223PPB3  
VCCIB0  
IO38RSB0  
G2  
IO44RSB0  
G4  
GAA2/IO225PPB3  
VCCIB0  
IO47RSB0  
G5  
B2  
IO60RSB0  
G7  
B3  
GAB1/IO03RSB0  
GAC0/IO04RSB0  
IO12RSB0  
GBB0/IO74RSB0  
GBA2/IO78PPB1  
GBC2/IO80PPB1  
IO88NPB1  
G8  
B4  
G9  
IO30RSB0  
B5  
G10  
G11  
G12  
G13  
G15  
G16  
G18  
G19  
H1  
IO37RSB0  
B6  
GND  
IO43RSB0  
B7  
IO21RSB0  
IO217NPB3  
IO221PPB3  
IO221NPB3  
IO10RSB0  
VCCIB0  
B8  
IO26RSB0  
E2  
IO88PPB1  
B9  
IO34RSB0  
E4  
IO89NDB1  
IO89PDB1  
GCC0/IO91NPB1  
GCB1/IO92PPB1  
GFB0/IO208NPB3  
IO211PDB3  
GFC1/IO209PPB3  
GFB1/IO208PPB3  
VCCIB3  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
IO35RSB0  
E5  
IO36RSB0  
E6  
IO14RSB0  
IO46RSB0  
E7  
IO25RSB0  
IO52RSB0  
E8  
IO28RSB0  
GND  
E9  
IO31RSB0  
H2  
IO59RSB0  
E10  
E11  
E12  
IO33RSB0  
H4  
GBC0/IO72RSB0  
GBA1/IO77RSB0  
IO42RSB0  
H5  
IO49RSB0  
H7  
3-18  
v1.7  
IGLOO Packaging  
281-Pin CSP  
281-Pin CSP  
281-Pin CSP  
Pin Number AGL1000 Function  
Pin Number AGL1000 Function  
Pin Number AGL1000 Function  
H8  
H9  
VCC  
VCCIB0  
K15  
K16  
K18  
K19  
L1  
IO95NPB1  
GND  
N4  
N5  
IO196PPB3  
IO197NPB3  
H10  
H11  
H12  
H13  
H15  
H16  
H18  
H19  
J1  
VCC  
IO96NPB1  
N7  
GEA2/IO187RSB2  
VCCIB0  
V
CCIB1  
N8  
VCCIB2  
VCC  
GFB2/IO205PDB3  
IO205NDB3  
GFC2/IO204PPB3  
IO203PPB3  
IO203NPB3  
VCCIB3  
N9  
IO155RSB2  
IO154RSB2  
IO150RSB2  
VCCIB2  
VCCIB1  
L2  
N10  
N11  
N12  
N13  
N15  
N16  
N18  
N19  
P1  
IO90NPB1  
GCB0/IO92NPB1  
GCA1/IO93PPB1  
GCA2/IO94PPB1  
VCOMPLF  
L4  
L5  
L7  
VPUMP  
L8  
IO107PPB1  
IO105PPB1  
IO107NPB1  
IO100PPB1  
IO195PDB3  
GND  
L9  
GND  
J2  
GFA0/IO207NDB3  
VCCPLF  
L10  
L11  
L12  
L13  
L15  
L16  
L18  
L19  
M1  
M2  
M4  
M5  
M7  
M8  
M9  
M10  
M11  
M12  
M13  
M15  
M16  
M18  
M19  
N1  
GND  
J4  
GND  
J5  
GFC0/IO209NPB3  
GFA2/IO206PDB3  
VCCIB3  
VCCIB1  
J7  
IO103PPB1  
IO103NPB1  
IO97PPB1  
IO98NPB1  
IO97NPB1  
IO202PDB3  
IO202NDB3  
IO201NPB3  
IO198PPB3  
VCCIB3  
P2  
J8  
P3  
IO195NDB3  
IO194PPB3  
GEA0/IO188NPB3  
IO108NDB1  
IO108PDB1  
GDC1/IO111PPB1  
GND  
J9  
GND  
P4  
J10  
J11  
J12  
J13  
J15  
J16  
J18  
J19  
K1  
GND  
P5  
GND  
P15  
P16  
P17  
P18  
P19  
R1  
VCCIB1  
GCC1/IO91PPB1  
GCA0/IO93NPB1  
GCB2/IO95PPB1  
IO94NPB1  
IO102PSB1  
VCCIB3  
IO105NPB1  
IO196NPB3  
IO194NPB3  
GEC1/IO190PPB3  
GEB1/IO189PPB3  
IO184RSB2  
IO173RSB2  
IO168RSB2  
IO160RSB2  
IO151RSB2  
IO141RSB2  
IO136RSB2  
IO127RSB2  
IO124RSB2  
VCC  
R2  
VCCIB2  
R4  
K2  
GFA1/IO207PDB3  
GND  
VCC  
R5  
K4  
VCCIB2  
R6  
K5  
IO204NPB3  
IO206NDB3  
VCC  
VCC  
R7  
K7  
VCCIB1  
R8  
K8  
IO104NPB1  
IO100NPB1  
IO104PPB1  
IO98PPB1  
IO201PPB3  
IO198NPB3  
R9  
K9  
GND  
R10  
R11  
R12  
R13  
R14  
K10  
K11  
K12  
K13  
GND  
GND  
VCC  
GCC2/IO96PPB1  
N2  
v1.7  
3-19  
Package Pin Assignments  
281-Pin CSP  
Pin Number AGL1000 Function  
281-Pin CSP  
Pin Number AGL1000 Function  
R15  
R16  
R18  
R19  
T1  
IO122RSB2  
GDA1/IO113PPB1  
GDB0/IO112NPB1  
GDC0/IO111NPB1  
IO197PPB3  
GEC0/IO190NPB3  
GEB0/IO189NPB3  
IO181RSB2  
IO172RSB2  
IO171RSB2  
IO156RSB2  
IO159RSB2  
GND  
V10  
V11  
V12  
V13  
V14  
V15  
V16  
V17  
V18  
V19  
W1  
IO145RSB2  
IO144RSB2  
IO134RSB2  
IO133RSB2  
GND  
T2  
IO119RSB2  
GDA2/IO114RSB2  
TDI  
T4  
T5  
T6  
VCCIB2  
T7  
TDO  
T8  
GND  
T9  
W2  
FF/GEB2/IO186RSB2  
IO183RSB2  
IO176RSB2  
IO170RSB2  
IO162RSB2  
IO157RSB2  
IO152RSB2  
IO149RSB2  
VCCIB2  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T18  
T19  
U1  
W3  
IO139RSB2  
IO138RSB2  
IO129RSB2  
IO123RSB2  
GDC2/IO116RSB2  
TMS  
W4  
W5  
W6  
W7  
W8  
W9  
VJTAG  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
W17  
W18  
W19  
GDB1/IO112PPB1  
IO193PDB3  
GEA1/IO188PPB3  
IO167RSB2  
IO128RSB2  
TRST  
IO140RSB2  
IO135RSB2  
IO130RSB2  
IO125RSB2  
IO120RSB2  
IO118RSB2  
GDB2/IO115RSB2  
TCK  
U2  
U6  
U14  
U18  
U19  
V1  
GDA0/IO113NPB1  
IO193NDB3  
VCCIB3  
V2  
GND  
V3  
GEC2/IO185RSB2  
IO182RSB2  
IO175RSB2  
GND  
V4  
V5  
V6  
V7  
IO161RSB2  
IO143RSB2  
IO146RSB2  
V8  
V9  
3-20  
v1.7  
IGLOO Packaging  
48-Pin QFN  
Pin 1  
48  
1
Notes:  
1. This is the bottom view of the package.  
2. The die attach paddle center of the package is tied to ground (GND).  
Figure 3-6 •  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.actel.com/products/solutions/package/docs.aspx.  
v1.7  
3-21  
Package Pin Assignments  
48-Pin QFP  
48-Pin QFP  
Pin Number AGL030 Function  
Pin Number AGL030 Function  
1
IO82RSB1  
GEC0/IO73RSB1  
GEA0/IO72RSB1  
GEB0/IO71RSB1  
GND  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
IO24RSB0  
IO22RSB0  
IO20RSB0  
IO18RSB0  
IO16RSB0  
IO14RSB0  
IO10RSB0  
IO08RSB0  
IO06RSB0  
IO04RSB0  
IO02RSB0  
IO00RSB0  
2
3
4
5
6
VCCIB1  
7
IO68RSB1  
IO67RSB1  
IO66RSB1  
IO65RSB1  
IO64RSB1  
IO62RSB1  
IO61RSB1  
FF/IO60RSB1  
IO57RSB1  
IO55RSB1  
IO53RSB1  
VCC  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
VCCIB1  
IO46RSB1  
IO42RSB1  
TCK  
TDI  
TMS  
VPUMP  
TDO  
TRST  
VJTAG  
IO38RSB0  
GDB0/IO34RSB0  
GDA0/IO33RSB0  
GDC0/IO32RSB0  
VCCIB0  
GND  
VCC  
IO25RSB0  
3-22  
v1.7  
IGLOO Packaging  
68-Pin QFN  
68  
1
Notes:  
1. This is the bottom view of the package.  
2. The die attach paddle center of the package is tied to ground (GND).  
Figure 3-7 •  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.actel.com/products/solutions/package/docs.aspx.  
v1.7  
3-23  
Package Pin Assignments  
68-Pin QFN  
68-Pin QFN  
Pin Number  
AGL015 Function  
Pin Number  
AGL015 Function  
TRST  
1
IO82RSB1  
IO80RSB1  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
2
VJTAG  
3
IO78RSB1  
IO40RSB0  
IO37RSB0  
GDB0/IO34RSB0  
GDA0/IO33RSB0  
GDC0/IO32RSB0  
VCCIB0  
4
IO76RSB1  
5
GEC0/IO73RSB1  
GEA0/IO72RSB1  
GEB0/IO71RSB1  
VCC  
6
7
8
9
GND  
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
V
CCIB1  
VCC  
IO68RSB1  
IO67RSB1  
IO66RSB1  
IO65RSB1  
IO64RSB1  
IO63RSB1  
IO62RSB1  
FF/IO60RSB1  
IO58RSB1  
IO56RSB1  
IO54RSB1  
IO52RSB1  
IO51RSB1  
VCC  
IO31RSB0  
IO29RSB0  
IO28RSB0  
IO27RSB0  
IO25RSB0  
IO24RSB0  
IO22RSB0  
IO21RSB0  
IO19RSB0  
IO17RSB0  
IO15RSB0  
IO14RSB0  
VCCIB0  
GND  
GND  
VCC  
VCCIB1  
IO12RSB0  
IO10RSB0  
IO08RSB0  
IO06RSB0  
IO04RSB0  
IO02RSB0  
IO00RSB0  
IO50RSB1  
IO48RSB1  
IO46RSB1  
IO44RSB1  
IO42RSB1  
TCK  
TDI  
TMS  
VPUMP  
TDO  
3-24  
v1.7  
IGLOO Packaging  
68-Pin QFN  
68-Pin QFN  
Pin Number  
AGL030 Function  
IO82RSB1  
Pin Number  
AGL030 Function  
TRST  
1
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
2
IO80RSB1  
VJTAG  
3
IO78RSB1  
IO40RSB0  
IO37RSB0  
GDB0/IO34RSB0  
GDA0/IO33RSB0  
GDC0/IO32RSB0  
VCCIB0  
4
IO76RSB1  
5
GEC0/IO73RSB1  
GEA0/IO72RSB1  
GEB0/IO71RSB1  
VCC  
6
7
8
9
GND  
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
VCCIB1  
VCC  
IO68RSB1  
IO67RSB1  
IO66RSB1  
IO65RSB1  
IO64RSB1  
IO63RSB1  
IO62RSB1  
FF/IO60RSB1  
IO58RSB1  
IO56RSB1  
IO54RSB1  
IO52RSB1  
IO51RSB1  
VCC  
IO31RSB0  
IO29RSB0  
IO28RSB0  
IO27RSB0  
IO25RSB0  
IO24RSB0  
IO22RSB0  
IO21RSB0  
IO19RSB0  
IO17RSB0  
IO15RSB0  
IO14RSB0  
VCCIB0  
GND  
GND  
VCC  
VCCIB1  
IO12RSB0  
IO10RSB0  
IO08RSB0  
IO06RSB0  
IO04RSB0  
IO02RSB0  
IO00RSB0  
IO50RSB1  
IO48RSB1  
IO46RSB1  
IO44RSB1  
IO42RSB1  
TCK  
TDI  
TMS  
VPUMP  
TDO  
v1.7  
3-25  
Package Pin Assignments  
132-Pin QFN  
A37  
B34  
C31  
A48  
B44  
C40  
Pin A1Mark  
D1  
D4  
A36  
B33  
A1  
B1  
C1  
C30  
C21  
B23  
A25  
C10  
B11  
A12  
D3  
D2  
Optional  
Corner Pad (4x)  
C20  
B22  
A24  
C11  
B12  
A13  
Notes:  
1. This is the bottom view of the package.  
2. The die attach paddle center of the package is tied to ground (GND).  
Figure 3-8 •  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.actel.com/products/solutions/package/docs.aspx.  
3-26  
v1.7  
IGLOO Packaging  
132-Pin QFN  
132-Pin QFN  
132-Pin QFN  
AGL030 Function  
Pin Number  
AGL030 Function  
IO80RSB1  
IO77RSB1  
NC  
Pin Number  
AGL030 Function  
IO22RSB0  
IO19RSB0  
NC  
Pin Number  
B25  
B26  
B27  
B28  
B29  
B30  
B31  
B32  
B33  
B34  
B35  
B36  
B37  
B38  
B39  
B40  
B41  
B42  
B43  
B44  
C1  
A1  
A2  
A37  
A38  
A39  
A40  
A41  
A42  
A43  
A44  
A45  
A46  
A47  
A48  
B1  
GND  
NC  
A3  
IO37RSB0  
GND  
A4  
IO76RSB1  
GEC0/IO73RSB1  
NC  
IO18RSB0  
IO16RSB0  
IO14RSB0  
VCC  
A5  
GDA0/IO33RSB0  
NC  
A6  
A7  
GEB0/IO71RSB1  
IO69RSB1  
NC  
GND  
A8  
IO11RSB0  
IO08RSB0  
IO06RSB0  
IO05RSB0  
IO02RSB0  
IO81RSB1  
IO78RSB1  
GND  
IO29RSB0  
IO26RSB0  
IO23RSB0  
IO20RSB0  
GND  
A9  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
A27  
A28  
A29  
A30  
A31  
A32  
A33  
A34  
A35  
A36  
VCC  
IO67RSB1  
IO64RSB1  
IO59RSB1  
IO56RSB1  
NC  
IO17RSB0  
IO15RSB0  
GND  
B2  
B3  
IO55RSB1  
IO53RSB1  
VCC  
B4  
IO75RSB1  
NC  
IO12RSB0  
IO09RSB0  
GND  
B5  
B6  
GND  
IO50RSB1  
IO48RSB1  
IO45RSB1  
IO44RSB1  
IO43RSB1  
TDI  
B7  
IO70RSB1  
NC  
IO04RSB0  
IO01RSB0  
IO82RSB1  
IO79RSB1  
NC  
B8  
B9  
GND  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
B24  
IO66RSB1  
IO63RSB1  
FF/IO60RSB1  
IO57RSB1  
GND  
C2  
C3  
C4  
IO74RSB1  
GEA0/IO72RSB1  
NC  
TRST  
C5  
IO40RSB0  
NC  
C6  
IO54RSB1  
IO52RSB1  
GND  
C7  
NC  
IO39RSB0  
IO38RSB0  
IO36RSB0  
IO35RSB0  
GDC0/IO32RSB0  
NC  
C8  
VCCIB1  
C9  
IO65RSB1  
IO62RSB1  
IO61RSB1  
IO58RSB1  
NC  
IO49RSB1  
IO46RSB1  
GND  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
IO42RSB1  
TMS  
VCC  
NC  
IO30RSB0  
IO27RSB0  
TDO  
IO51RSB1  
VCCIB1  
IO41RSB0  
v1.7  
3-27  
Package Pin Assignments  
132-Pin QFN  
Pin Number  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
C24  
C25  
C26  
C27  
C28  
C29  
C30  
C31  
C32  
C33  
C34  
C35  
C36  
C37  
C38  
C39  
C40  
D1  
AGL030 Function  
IO47RSB1  
NC  
TCK  
NC  
VPUMP  
VJTAG  
NC  
NC  
NC  
GDB0/IO34RSB0  
NC  
VCCIB0  
IO28RSB0  
IO25RSB0  
IO24RSB0  
IO21RSB0  
NC  
NC  
VCCIB0  
IO13RSB0  
IO10RSB0  
IO07RSB0  
IO03RSB0  
IO00RSB0  
GND  
D2  
GND  
D3  
GND  
D4  
GND  
3-28  
v1.7  
IGLOO Packaging  
132-Pin QFN  
132-Pin QFN  
132-Pin QFN  
AGL125 Function  
Pin Number  
AGL125 Function  
GAB2/IO69RSB1  
IO130RSB1  
VCCIB1  
Pin Number  
AGL125 Function  
GBB1/IO38RSB0  
GBC0/IO35RSB0  
VCCIB0  
Pin Number  
B25  
B26  
B27  
B28  
B29  
B30  
B31  
B32  
B33  
B34  
B35  
B36  
B37  
B38  
B39  
B40  
B41  
B42  
B43  
B44  
C1  
A1  
A2  
A37  
A38  
A39  
A40  
A41  
A42  
A43  
A44  
A45  
A46  
A47  
A48  
B1  
GND  
NC  
A3  
GCB2/IO58RSB0  
GND  
A4  
GFC1/IO126RSB1  
GFB0/IO123RSB1  
VCCPLF  
IO28RSB0  
IO22RSB0  
IO18RSB0  
IO14RSB0  
IO11RSB0  
IO07RSB0  
VCC  
A5  
GCB0/IO54RSB0  
GCC1/IO51RSB0  
GND  
A6  
A7  
GFA1/IO121RSB1  
GFC2/IO118RSB1  
IO115RSB1  
VCC  
A8  
GBB2/IO43RSB0  
VMV0  
A9  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
A27  
A28  
A29  
A30  
A31  
A32  
A33  
A34  
A35  
A36  
GBA0/IO39RSB0  
GBC1/IO36RSB0  
GND  
GEB1/IO110RSB1  
GEA0/IO107RSB1  
GEC2/IO104RSB1  
IO100RSB1  
VCC  
GAC1/IO05RSB0  
GAB0/IO02RSB0  
IO68RSB1  
GAC2/IO131RSB1  
GND  
IO26RSB0  
B2  
IO21RSB0  
B3  
GND  
IO99RSB1  
B4  
GFC0/IO125RSB1  
VCOMPLF  
IO13RSB0  
IO96RSB1  
B5  
IO08RSB0  
IO94RSB1  
B6  
GND  
GND  
IO91RSB1  
B7  
GFB2/IO119RSB1  
IO116RSB1  
GND  
GAC0/IO04RSB0  
GNDQ  
IO85RSB1  
B8  
IO79RSB1  
B9  
GAA2/IO67RSB1  
IO132RSB1  
VCC  
VCC  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
B24  
GEB0/IO109RSB1  
VMV1  
C2  
GDB2/IO71RSB1  
TDI  
C3  
FF/GEB2/IO105RSB1  
IO101RSB1  
GND  
C4  
GFB1/IO124RSB1  
GFA0/IO122RSB1  
GFA2/IO120RSB1  
IO117RSB1  
VCCIB1  
TRST  
C5  
GDC1/IO61RSB0  
VCC  
C6  
IO98RSB1  
IO95RSB1  
GND  
C7  
IO60RSB0  
C8  
GCC2/IO59RSB0  
GCA2/IO57RSB0  
GCA0/IO56RSB0  
GCB1/IO53RSB0  
IO49RSB0  
C9  
GEA1/IO108RSB1  
GNDQ  
IO87RSB1  
IO81RSB1  
GND  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
GEA2/IO106RSB1  
IO103RSB1  
VCCIB1  
GNDQ  
VCC  
TMS  
IO97RSB1  
IO44RSB0  
TDO  
IO93RSB1  
GBA2/IO41RSB0  
GDC0/IO62RSB0  
IO89RSB1  
v1.7  
3-29  
Package Pin Assignments  
132-Pin QFN  
Pin Number  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
C24  
C25  
C26  
C27  
C28  
C29  
C30  
C31  
C32  
C33  
C34  
C35  
C36  
C37  
C38  
C39  
C40  
D1  
AGL125 Function  
IO83RSB1  
V
CCIB1  
TCK  
VMV1  
VPUMP  
VJTAG  
VCCIB0  
NC  
NC  
GCA1/IO55RSB0  
GCC0/IO52RSB0  
VCCIB0  
IO42RSB0  
GNDQ  
GBA1/IO40RSB0  
GBB0/IO37RSB0  
VCC  
IO24RSB0  
IO19RSB0  
IO16RSB0  
IO10RSB0  
VCCIB0  
GAB1/IO03RSB0  
VMV0  
GND  
D2  
GND  
D3  
GND  
D4  
GND  
3-30  
v1.7  
IGLOO Packaging  
100-Pin VQFP  
100  
1
Note: This is the top view of the package.  
Figure 3-9 •  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.actel.com/products/solutions/package/docs.aspx.  
v1.7  
3-31  
Package Pin Assignments  
100-Pin VQFP  
100-Pin VQFP  
100-Pin VQFP  
Pin Number  
Pin Number  
AGL030 Function  
GND  
Pin Number  
AGL030 Function  
VCC  
AGL030 Function  
IO27RSB0  
IO26RSB0  
IO25RSB0  
IO24RSB0  
IO23RSB0  
IO22RSB0  
IO21RSB0  
IO20RSB0  
IO19RSB0  
IO18RSB0  
IO17RSB0  
IO16RSB0  
IO15RSB0  
IO14RSB0  
VCCIB0  
1
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
2
IO82RSB1  
IO81RSB1  
IO80RSB1  
IO79RSB1  
IO78RSB1  
IO77RSB1  
IO76RSB1  
GND  
GND  
3
VCCIB1  
4
IO49RSB1  
IO47RSB1  
IO46RSB1  
IO45RSB1  
IO44RSB1  
IO43RSB1  
IO42RSB1  
TCK  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
IO75RSB1  
IO74RSB1  
GEC0/IO73RSB1  
GEA0/IO72RSB1  
GEB0/IO71RSB1  
IO70RSB1  
IO69RSB1  
VCC  
TDI  
TMS  
NC  
GND  
VPUMP  
GND  
NC  
VCC  
VCCIB1  
TDO  
IO12RSB0  
IO10RSB0  
IO08RSB0  
IO07RSB0  
IO06RSB0  
IO05RSB0  
IO04RSB0  
IO03RSB0  
IO02RSB0  
IO01RSB0  
IO00RSB0  
IO68RSB1  
IO67RSB1  
IO66RSB1  
IO65RSB1  
IO64RSB1  
IO63RSB1  
IO62RSB1  
IO61RSB1  
FF/IO60RSB1  
IO59RSB1  
IO58RSB1  
IO57RSB1  
IO56RSB1  
IO55RSB1  
IO54RSB1  
IO53RSB1  
IO52RSB1  
IO51RSB1  
TRST  
VJTAG  
IO41RSB0  
IO40RSB0  
IO39RSB0  
IO38RSB0  
IO37RSB0  
IO36RSB0  
GDB0/IO34RSB0  
GDA0/IO33RSB0  
GDC0/IO32RSB0  
VCCIB0  
GND  
VCC  
IO31RSB0  
IO30RSB0  
IO29RSB0  
IO28RSB0  
3-32  
v1.7  
IGLOO Packaging  
100-Pin VQFP  
100-Pin VQFP  
100-Pin VQFP  
Pin Number AGL060 Function  
Pin Number  
AGL060 Function  
GND  
Pin Number  
AGL060 Function  
VCC  
1
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
GBA2/IO25RSB0  
VMV0  
2
GAA2/IO51RSB1  
IO52RSB1  
GND  
3
VCCIB1  
GNDQ  
4
GAB2/IO53RSB1  
IO95RSB1  
IO60RSB1  
IO59RSB1  
IO58RSB1  
IO57RSB1  
GDC2/IO56RSB1  
GDB2/IO55RSB1  
GDA2/IO54RSB1  
TCK  
GBA1/IO24RSB0  
GBA0/IO23RSB0  
GBB1/IO22RSB0  
GBB0/IO21RSB0  
GBC1/IO20RSB0  
GBC0/IO19RSB0  
IO18RSB0  
5
6
GAC2/IO94RSB1  
IO93RSB1  
7
8
IO92RSB1  
9
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
GFB1/IO87RSB1  
GFB0/IO86RSB1  
VCOMPLF  
IO17RSB0  
TDI  
IO15RSB0  
GFA0/IO85RSB1  
VCCPLF  
TMS  
IO13RSB0  
VMV1  
IO11RSB0  
GFA1/IO84RSB1  
GFA2/IO83RSB1  
VCC  
GND  
VCCIB0  
VPUMP  
GND  
NC  
VCC  
VCCIB1  
TDO  
IO10RSB0  
GEC1/IO77RSB1  
GEB1/IO75RSB1  
GEB0/IO74RSB1  
GEA1/IO73RSB1  
GEA0/IO72RSB1  
VMV1  
TRST  
IO09RSB0  
VJTAG  
IO08RSB0  
GDA1/IO49RSB0  
GDC0/IO46RSB0  
GDC1/IO45RSB0  
GCC2/IO43RSB0  
GCB2/IO42RSB0  
GCA0/IO40RSB0  
GCA1/IO39RSB0  
GCC0/IO36RSB0  
GCC1/IO35RSB0  
VCCIB0  
GAC1/IO07RSB0  
GAC0/IO06RSB0  
GAB1/IO05RSB0  
GAB0/IO04RSB0  
GAA1/IO03RSB0  
GAA0/IO02RSB0  
IO01RSB0  
GNDQ  
GEA2/IO71RSB1  
FF/GEB2/IO70RSB1  
GEC2/IO69RSB1  
IO68RSB1  
IO00RSB0  
IO67RSB1  
IO66RSB1  
GND  
IO65RSB1  
VCC  
IO64RSB1  
IO31RSB0  
GBC2/IO29RSB0  
GBB2/IO27RSB0  
IO26RSB0  
IO63RSB1  
IO62RSB1  
IO61RSB1  
v1.7  
3-33  
Package Pin Assignments  
100-Pin VQFP  
100-Pin VQFP  
100-Pin VQFP  
Pin Number  
AGL125 Function  
GND  
Pin Number  
AGL125 Function  
VCC  
Pin Number  
AGL125 Function  
GBA2/IO41RSB0  
VMV0  
1
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
2
GAA2/IO67RSB1  
IO68RSB1  
GND  
3
VCCIB1  
GNDQ  
4
GAB2/IO69RSB1  
IO132RSB1  
IO87RSB1  
IO84RSB1  
IO81RSB1  
IO75RSB1  
GDC2/IO72RSB1  
GDB2/IO71RSB1  
GDA2/IO70RSB1  
TCK  
GBA1/IO40RSB0  
GBA0/IO39RSB0  
GBB1/IO38RSB0  
GBB0/IO37RSB0  
GBC1/IO36RSB0  
GBC0/IO35RSB0  
IO32RSB0  
5
6
GAC2/IO131RSB1  
IO130RSB1  
7
8
IO129RSB1  
9
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
GFB1/IO124RSB1  
GFB0/IO123RSB1  
VCOMPLF  
IO28RSB0  
TDI  
IO25RSB0  
GFA0/IO122RSB1  
VCCPLF  
TMS  
IO22RSB0  
VMV1  
IO19RSB0  
GFA1/IO121RSB1  
GFA2/IO120RSB1  
VCC  
GND  
VCCIB0  
VPUMP  
GND  
NC  
VCC  
VCCIB1  
TDO  
IO15RSB0  
GEC0/IO111RSB1  
GEB1/IO110RSB1  
GEB0/IO109RSB1  
GEA1/IO108RSB1  
GEA0/IO107RSB1  
VMV1  
TRST  
IO13RSB0  
VJTAG  
IO11RSB0  
GDA1/IO65RSB0  
GDC0/IO62RSB0  
GDC1/IO61RSB0  
GCC2/IO59RSB0  
GCB2/IO58RSB0  
GCA0/IO56RSB0  
GCA1/IO55RSB0  
GCC0/IO52RSB0  
GCC1/IO51RSB0  
VCCIB0  
IO09RSB0  
IO07RSB0  
GAC1/IO05RSB0  
GAC0/IO04RSB0  
GAB1/IO03RSB0  
GAB0/IO02RSB0  
GAA1/IO01RSB0  
GAA0/IO00RSB0  
GNDQ  
GEA2/IO106RSB1  
FF/GEB2/IO105RSB1  
GEC2/IO104RSB1  
IO102RSB1  
IO100RSB1  
IO99RSB1  
GND  
IO97RSB1  
VCC  
IO96RSB1  
IO47RSB0  
GBC2/IO45RSB0  
GBB2/IO43RSB0  
IO42RSB0  
IO95RSB1  
IO94RSB1  
IO93RSB1  
3-34  
v1.7  
IGLOO Packaging  
100-Pin VQFP  
100-Pin VQFP  
100-Pin VQFP  
Pin Number AGL250 Function  
Pin Number  
AGL250 Function  
GND  
Pin Number  
AGL250 Function  
VCC  
1
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
GBA2/IO41PDB1  
VMV1  
2
GAA2/IO118UDB3  
IO118VDB3  
GAB2/IO117UDB3  
IO117VDB3  
GAC2/IO116UDB3  
IO116VDB3  
IO112PSB3  
GND  
3
VCCIB2  
GNDQ  
4
IO77RSB2  
IO74RSB2  
IO71RSB2  
GDC2/IO63RSB2  
GDB2/IO62RSB2  
GDA2/IO61RSB2  
GNDQ  
GBA1/IO40RSB0  
GBA0/IO39RSB0  
GBB1/IO38RSB0  
GBB0/IO37RSB0  
GBC1/IO36RSB0  
GBC0/IO35RSB0  
IO29RSB0  
5
6
7
8
9
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
GFB1/IO109PDB3  
GFB0/IO109NDB3  
VCOMPLF  
TCK  
IO27RSB0  
TDI  
IO25RSB0  
GFA0/IO108NPB3  
VCCPLF  
TMS  
IO23RSB0  
VMV2  
IO21RSB0  
GFA1/IO108PPB3  
GFA2/IO107PSB3  
VCC  
GND  
VCCIB0  
VPUMP  
GND  
NC  
VCC  
VCCIB3  
TDO  
IO15RSB0  
GFC2/IO105PSB3  
GEC1/IO100PDB3  
GEC0/IO100NDB3  
GEA1/IO98PDB3  
GEA0/IO98NDB3  
VMV3  
TRST  
IO13RSB0  
VJTAG  
IO11RSB0  
GDA1/IO60USB1  
GDC0/IO58VDB1  
GDC1/IO58UDB1  
IO52NDB1  
GCB2/IO52PDB1  
GCA1/IO50PDB1  
GCA0/IO50NDB1  
GCC0/IO48NDB1  
GCC1/IO48PDB1  
VCCIB1  
GAC1/IO05RSB0  
GAC0/IO04RSB0  
GAB1/IO03RSB0  
GAB0/IO02RSB0  
GAA1/IO01RSB0  
GAA0/IO00RSB0  
GNDQ  
GNDQ  
GEA2/IO97RSB2  
FF/GEB2/IO96RSB2  
GEC2/IO95RSB2  
IO93RSB2  
VMV0  
IO92RSB2  
IO91RSB2  
GND  
IO90RSB2  
VCC  
IO88RSB2  
IO43NDB1  
GBC2/IO43PDB1  
GBB2/IO42PSB1  
IO41NDB1  
IO86RSB2  
IO85RSB2  
IO84RSB2  
v1.7  
3-35  
Package Pin Assignments  
144-Pin FBGA  
A1 Ball Pad Corner  
2
12 11 10  
9
8
7
6
5
4
3
1
A
B
C
D
E
F
G
H
J
K
L
M
Note: This is the bottom view of the package.  
Figure 3-10 •  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.actel.com/products/solutions/package/docs.aspx.  
3-36  
v1.7  
IGLOO Packaging  
144-Pin FBGA  
144-Pin FBGA  
144-Pin FBGA  
Pin Number AGL125 Function  
Pin Number  
AGL125 Function  
GNDQ  
Pin Number  
AGL125 Function  
IO128RSB1  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A11  
A12  
B1  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
D11  
D12  
E1  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
G10  
G11  
G12  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
H10  
H11  
H12  
J1  
GFA1/IO121RSB1  
GND  
VMV0  
IO129RSB1  
GAB0/IO02RSB0  
GAB1/IO03RSB0  
IO11RSB0  
IO130RSB1  
VCCPLF  
GAA2/IO67RSB1  
GAC0/IO04RSB0  
GAC1/IO05RSB0  
GBC0/IO35RSB0  
GBC1/IO36RSB0  
GBB2/IO43RSB0  
IO28RSB0  
GFA0/IO122RSB1  
GND  
GND  
GND  
IO18RSB0  
GND  
VCC  
GDC1/IO61RSB0  
IO48RSB0  
IO25RSB0  
GBA0/IO39RSB0  
GBA1/IO40RSB0  
GNDQ  
GCC2/IO59RSB0  
IO47RSB0  
IO44RSB0  
GCB1/IO53RSB0  
VCC  
GCB2/IO58RSB0  
VCC  
GAB2/IO69RSB1  
GND  
B2  
E2  
GFC0/IO125RSB1  
GFC1/IO126RSB1  
VCCIB1  
GFB2/IO119RSB1  
GFC2/IO118RSB1  
GEC1/IO112RSB1  
VCC  
B3  
GAA0/IO00RSB0  
GAA1/IO01RSB0  
IO08RSB0  
E3  
B4  
E4  
B5  
E5  
IO68RSB1  
B6  
IO14RSB0  
E6  
VCCIB0  
IO50RSB0  
B7  
IO19RSB0  
E7  
VCCIB0  
IO60RSB0  
B8  
IO22RSB0  
E8  
GCC1/IO51RSB0  
VCCIB0  
GDB2/IO71RSB1  
GDC0/IO62RSB0  
VCCIB0  
B9  
GBB0/IO37RSB0  
GBB1/IO38RSB0  
GND  
E9  
B10  
B11  
B12  
C1  
E10  
E11  
E12  
F1  
VCC  
GCA0/IO56RSB0  
IO46RSB0  
IO49RSB0  
VMV0  
VCC  
IO132RSB1  
GFA2/IO120RSB1  
GAC2/IO131RSB1  
VCC  
GFB0/IO123RSB1  
VCOMPLF  
GEB1/IO110RSB1  
IO115RSB1  
VCCIB1  
C2  
F2  
J2  
C3  
F3  
GFB1/IO124RSB1  
IO127RSB1  
GND  
J3  
C4  
F4  
J4  
GEC0/IO111RSB1  
IO116RSB1  
IO117RSB1  
VCC  
C5  
IO10RSB0  
F5  
J5  
C6  
IO12RSB0  
F6  
GND  
J6  
C7  
IO21RSB0  
F7  
GND  
J7  
C8  
IO24RSB0  
F8  
GCC0/IO52RSB0  
GCB0/IO54RSB0  
GND  
J8  
TCK  
C9  
IO27RSB0  
F9  
J9  
GDA2/IO70RSB1  
TDO  
C10  
C11  
C12  
GBA2/IO41RSB0  
IO42RSB0  
F10  
F11  
F12  
J10  
J11  
J12  
GCA1/IO55RSB0  
GCA2/IO57RSB0  
GDA1/IO65RSB0  
GDB1/IO63RSB0  
GBC2/IO45RSB0  
v1.7  
3-37  
Package Pin Assignments  
144-Pin FBGA  
Pin Number  
K1  
AGL125 Function  
GEB0/IO109RSB1  
GEA1/IO108RSB1  
GEA0/IO107RSB1  
GEA2/IO106RSB1  
IO100RSB1  
IO98RSB1  
GND  
K2  
K3  
K4  
K5  
K6  
K7  
K8  
IO73RSB1  
GDC2/IO72RSB1  
GND  
K9  
K10  
K11  
K12  
L1  
GDA0/IO66RSB0  
GDB0/IO64RSB0  
GND  
L2  
VMV1  
L3  
FF/GEB2/IO105RSB1  
IO102RSB1  
VCCIB1  
L4  
L5  
L6  
IO95RSB1  
IO85RSB1  
IO74RSB1  
TMS  
L7  
L8  
L9  
L10  
L11  
L12  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
VJTAG  
VMV1  
TRST  
GNDQ  
GEC2/IO104RSB1  
IO103RSB1  
IO101RSB1  
IO97RSB1  
IO94RSB1  
IO86RSB1  
IO75RSB1  
TDI  
VCCIB1  
VPUMP  
GNDQ  
3-38  
v1.7  
IGLOO Packaging  
144-Pin FBGA  
144-Pin FBGA  
144-Pin FBGA  
Pin Number AGL250 Function  
Pin Number  
AGL250 Function  
GNDQ  
Pin Number  
AGL250 Function  
IO112NDB3  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A11  
A12  
B1  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
D11  
D12  
E1  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
G10  
G11  
G12  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
H10  
H11  
H12  
J1  
GFA1/IO108PPB3  
GND  
VMV0  
IO112PDB3  
GAB0/IO02RSB0  
GAB1/IO03RSB0  
IO16RSB0  
IO116VDB3  
VCCPLF  
GAA2/IO118UPB3  
GAC0/IO04RSB0  
GAC1/IO05RSB0  
GBC0/IO35RSB0  
GBC1/IO36RSB0  
GBB2/IO42PDB1  
IO42NDB1  
GFA0/IO108NPB3  
GND  
GND  
GND  
IO29RSB0  
GND  
VCC  
GDC1/IO58UPB1  
IO53NDB1  
GCC2/IO53PDB1  
IO52NDB1  
GCB2/IO52PDB1  
VCC  
IO33RSB0  
GBA0/IO39RSB0  
GBA1/IO40RSB0  
GNDQ  
IO43NPB1  
GCB1/IO49PPB1  
VCC  
GAB2/IO117UDB3  
GND  
B2  
E2  
GFC0/IO110NDB3  
GFC1/IO110PDB3  
VCCIB3  
GFB2/IO106PDB3  
GFC2/IO105PSB3  
GEC1/IO100PDB3  
VCC  
B3  
GAA0/IO00RSB0  
GAA1/IO01RSB0  
IO14RSB0  
E3  
B4  
E4  
B5  
E5  
IO118VPB3  
B6  
IO19RSB0  
E6  
VCCIB0  
IO79RSB2  
B7  
IO22RSB0  
E7  
V
CCIB0  
IO65RSB2  
B8  
IO30RSB0  
E8  
GCC1/IO48PDB1  
VCCIB1  
GDB2/IO62RSB2  
GDC0/IO58VPB1  
VCCIB1  
B9  
GBB0/IO37RSB0  
GBB1/IO38RSB0  
GND  
E9  
B10  
B11  
B12  
C1  
E10  
E11  
E12  
F1  
VCC  
GCA0/IO50NDB1  
IO51NDB1  
GFB0/IO109NPB3  
VCOMPLF  
IO54PSB1  
VMV1  
VCC  
IO117VDB3  
GFA2/IO107PPB3  
GAC2/IO116UDB3  
VCC  
GEB1/IO99PDB3  
IO106NDB3  
VCCIB3  
C2  
F2  
J2  
C3  
F3  
GFB1/IO109PPB3  
IO107NPB3  
GND  
J3  
C4  
F4  
J4  
GEC0/IO100NDB3  
IO88RSB2  
C5  
IO12RSB0  
F5  
J5  
C6  
IO17RSB0  
F6  
GND  
J6  
IO81RSB2  
C7  
IO24RSB0  
F7  
GND  
J7  
VCC  
C8  
IO31RSB0  
F8  
GCC0/IO48NDB1  
GCB0/IO49NPB1  
GND  
J8  
TCK  
C9  
IO34RSB0  
F9  
J9  
GDA2/IO61RSB2  
TDO  
C10  
C11  
C12  
GBA2/IO41PDB1  
IO41NDB1  
GBC2/IO43PPB1  
F10  
F11  
F12  
J10  
J11  
J12  
GCA1/IO50PDB1  
GCA2/IO51PDB1  
GDA1/IO60UDB1  
GDB1/IO59UDB1  
v1.7  
3-39  
Package Pin Assignments  
144-Pin FBGA  
Pin Number  
K1  
AGL250 Function  
GEB0/IO99NDB3  
GEA1/IO98PDB3  
GEA0/IO98NDB3  
GEA2/IO97RSB2  
IO90RSB2  
IO84RSB2  
GND  
K2  
K3  
K4  
K5  
K6  
K7  
K8  
IO66RSB2  
GDC2/IO63RSB2  
GND  
K9  
K10  
K11  
K12  
L1  
GDA0/IO60VDB1  
GDB0/IO59VDB1  
GND  
L2  
VMV3  
L3  
FF/GEB2/IO96RSB2  
IO91RSB2  
VCCIB2  
L4  
L5  
L6  
IO82RSB2  
IO80RSB2  
IO72RSB2  
TMS  
L7  
L8  
L9  
L10  
L11  
L12  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
VJTAG  
VMV2  
TRST  
GNDQ  
GEC2/IO95RSB2  
IO92RSB2  
IO89RSB2  
IO87RSB2  
IO85RSB2  
IO78RSB2  
IO76RSB2  
TDI  
VCCIB2  
VPUMP  
GNDQ  
3-40  
v1.7  
IGLOO Packaging  
144-pin FBGA  
144-pin FBGA  
144-pin FBGA  
Pin Number AGL400 Function  
Pin Number  
AGL400 Function  
GNDQ  
Pin Number  
AGL400 Function  
IO149NDB3  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A11  
A12  
B1  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
D11  
D12  
E1  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
G10  
G11  
G12  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
H10  
H11  
H12  
J1  
GFA1/IO145PPB3  
GND  
VMV0  
IO149PDB3  
GAB0/IO02RSB0  
GAB1/IO03RSB0  
IO16RSB0  
IO153VDB3  
VCCPLF  
GAA2/IO155UPB3  
GAC0/IO04RSB0  
GAC1/IO05RSB0  
GBC0/IO54RSB0  
GBC1/IO55RSB0  
GBB2/IO61PDB1  
IO61NDB1  
GFA0/IO145NPB3  
GND  
GND  
GND  
IO30RSB0  
GND  
VCC  
GDC1/IO77UPB1  
IO72NDB1  
GCC2/IO72PDB1  
IO71NDB1  
GCB2/IO71PDB1  
VCC  
IO34RSB0  
GBA0/IO58RSB0  
GBA1/IO59RSB0  
GNDQ  
IO62NPB1  
GCB1/IO68PPB1  
VCC  
GAB2/IO154UDB3  
GND  
B2  
E2  
GFC0/IO147NDB3  
GFC1/IO147PDB3  
VCCIB3  
GFB2/IO143PDB3  
GFC2/IO142PSB3  
GEC1/IO137PDB3  
VCC  
B3  
GAA0/IO00RSB0  
GAA1/IO01RSB0  
IO14RSB0  
E3  
B4  
E4  
B5  
E5  
IO155VPB3  
B6  
IO19RSB0  
E6  
VCCIB0  
IO75PDB1  
IO75NDB1  
GDB2/IO81RSB2  
GDC0/IO77VPB1  
VCCIB1  
B7  
IO23RSB0  
E7  
VCCIB0  
B8  
IO31RSB0  
E8  
GCC1/IO67PDB1  
VCCIB1  
B9  
GBB0/IO56RSB0  
GBB1/IO57RSB0  
GND  
E9  
B10  
B11  
B12  
C1  
E10  
E11  
E12  
F1  
VCC  
GCA0/IO69NDB1  
IO70NDB1  
GFB0/IO146NPB3  
VCOMPLF  
IO73PSB1  
VMV1  
VCC  
IO154VDB3  
GFA2/IO144PPB3  
GAC2/IO153UDB3  
VCC  
GEB1/IO136PDB3  
IO143NDB3  
VCCIB3  
C2  
F2  
J2  
C3  
F3  
GFB1/IO146PPB3  
IO144NPB3  
GND  
J3  
C4  
F4  
J4  
GEC0/IO137NDB3  
IO125RSB2  
IO116RSB2  
VCC  
C5  
IO12RSB0  
F5  
J5  
C6  
IO17RSB0  
F6  
GND  
J6  
C7  
IO25RSB0  
F7  
GND  
J7  
C8  
IO32RSB0  
F8  
GCC0/IO67NDB1  
GCB0/IO68NPB1  
GND  
J8  
TCK  
C9  
IO53RSB0  
F9  
J9  
GDA2/IO80RSB2  
TDO  
C10  
C11  
C12  
GBA2/IO60PDB1  
IO60NDB1  
GBC2/IO62PPB1  
F10  
F11  
F12  
J10  
J11  
J12  
GCA1/IO69PDB1  
GCA2/IO70PDB1  
GDA1/IO79UDB1  
GDB1/IO78UDB1  
v1.7  
3-41  
Package Pin Assignments  
144-pin FBGA  
Pin Number  
K1  
AGL400 Function  
GEB0/IO136NDB3  
GEA1/IO135PDB3  
GEA0/IO135NDB3  
GEA2/IO134RSB2  
IO127RSB2  
IO121RSB2  
GND  
K2  
K3  
K4  
K5  
K6  
K7  
K8  
IO104RSB2  
GDC2/IO82RSB2  
GND  
K9  
K10  
K11  
K12  
L1  
GDA0/IO79VDB1  
GDB0/IO78VDB1  
GND  
L2  
VMV3  
L3  
FF/GEB2/IO133RSB2  
IO128RSB2  
VCCIB2  
L4  
L5  
L6  
IO119RSB2  
IO114RSB2  
IO110RSB2  
TMS  
L7  
L8  
L9  
L10  
L11  
L12  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
VJTAG  
VMV2  
TRST  
GNDQ  
GEC2/IO132RSB2  
IO129RSB2  
IO126RSB2  
IO124RSB2  
IO122RSB2  
IO117RSB2  
IO115RSB2  
TDI  
VCCIB2  
VPUMP  
GNDQ  
3-42  
v1.7  
IGLOO Packaging  
144-Pin FBGA  
144-Pin FBGA  
144-Pin FBGA  
Pin Number AGL600 Function  
Pin Number  
AGL600 Function  
GNDQ  
Pin Number  
AGL600 Function  
IO169PDB3  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A11  
A12  
B1  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
D11  
D12  
E1  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
G10  
G11  
G12  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
H10  
H11  
H12  
J1  
GFA1/IO162PPB3  
GND  
VMV0  
IO169NDB3  
GAB0/IO02RSB0  
GAB1/IO03RSB0  
IO10RSB0  
IO172NDB3  
VCCPLF  
GAA2/IO174PPB3  
GAC0/IO04RSB0  
GAC1/IO05RSB0  
GBC0/IO54RSB0  
GBC1/IO55RSB0  
GBB2/IO61PDB1  
IO61NDB1  
GFA0/IO162NPB3  
GND  
GND  
GND  
IO34RSB0  
GND  
VCC  
GDC1/IO86PPB1  
IO74NDB1  
GCC2/IO74PDB1  
IO73NDB1  
GCB2/IO73PDB1  
VCC  
IO50RSB0  
GBA0/IO58RSB0  
GBA1/IO59RSB0  
GNDQ  
IO62NPB1  
GCB1/IO70PPB1  
VCC  
GAB2/IO173PDB3  
GND  
B2  
E2  
GFC0/IO164NDB3  
GFC1/IO164PDB3  
VCCIB3  
GFB2/IO160PDB3  
GFC2/IO159PSB3  
GEC1/IO146PDB3  
VCC  
B3  
GAA0/IO00RSB0  
GAA1/IO01RSB0  
IO13RSB0  
E3  
B4  
E4  
B5  
E5  
IO174NPB3  
B6  
IO19RSB0  
E6  
VCCIB0  
IO80PDB1  
IO80NDB1  
GDB2/IO90RSB2  
GDC0/IO86NPB1  
VCCIB1  
B7  
IO31RSB0  
E7  
VCCIB0  
B8  
IO39RSB0  
E8  
GCC1/IO69PDB1  
VCCIB1  
B9  
GBB0/IO56RSB0  
GBB1/IO57RSB0  
GND  
E9  
B10  
B11  
B12  
C1  
E10  
E11  
E12  
F1  
VCC  
GCA0/IO71NDB1  
IO72NDB1  
GFB0/IO163NPB3  
VCOMPLF  
IO84PSB1  
VMV1  
VCC  
IO173NDB3  
GFA2/IO161PPB3  
GAC2/IO172PDB3  
VCC  
GEB1/IO145PDB3  
IO160NDB3  
VCCIB3  
C2  
F2  
J2  
C3  
F3  
GFB1/IO163PPB3  
IO161NPB3  
GND  
J3  
C4  
F4  
J4  
GEC0/IO146NDB3  
IO129RSB2  
IO131RSB2  
VCC  
C5  
IO16RSB0  
F5  
J5  
C6  
IO25RSB0  
F6  
GND  
J6  
C7  
IO28RSB0  
F7  
GND  
J7  
C8  
IO42RSB0  
F8  
GCC0/IO69NDB1  
GCB0/IO70NPB1  
GND  
J8  
TCK  
C9  
IO45RSB0  
F9  
J9  
GDA2/IO89RSB2  
TDO  
C10  
C11  
C12  
GBA2/IO60PDB1  
IO60NDB1  
GBC2/IO62PPB1  
F10  
F11  
F12  
J10  
J11  
J12  
GCA1/IO71PDB1  
GCA2/IO72PDB1  
GDA1/IO88PDB1  
GDB1/IO87PDB1  
v1.7  
3-43  
Package Pin Assignments  
144-Pin FBGA  
Pin Number  
K1  
AGL600 Function  
GEB0/IO145NDB3  
GEA1/IO144PDB3  
GEA0/IO144NDB3  
GEA2/IO143RSB2  
IO119RSB2  
IO111RSB2  
GND  
K2  
K3  
K4  
K5  
K6  
K7  
K8  
IO94RSB2  
GDC2/IO91RSB2  
GND  
K9  
K10  
K11  
K12  
L1  
GDA0/IO88NDB1  
GDB0/IO87NDB1  
GND  
L2  
VMV3  
L3  
FF/GEB2/IO142RSB2  
IO136RSB2  
VCCIB2  
L4  
L5  
L6  
IO115RSB2  
IO103RSB2  
IO97RSB2  
TMS  
L7  
L8  
L9  
L10  
L11  
L12  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
VJTAG  
VMV2  
TRST  
GNDQ  
GEC2/IO141RSB2  
IO138RSB2  
IO123RSB2  
IO126RSB2  
IO134RSB2  
IO108RSB2  
IO99RSB2  
TDI  
VCCIB2  
VPUMP  
GNDQ  
3-44  
v1.7  
IGLOO Packaging  
144-Pin FBGA  
144-Pin FBGA  
144-Pin FBGA  
Pin Number AGL1000 Function  
Pin Number AGL1000 Function  
Pin Number AGL1000 Function  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A11  
A12  
B1  
GNDQ  
VMV0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
D11  
D12  
E1  
IO213PDB3  
IO213NDB3  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
G10  
G11  
G12  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
H10  
H11  
H12  
J1  
GFA1/IO207PPB3  
GND  
GAB0/IO02RSB0  
GAB1/IO03RSB0  
IO10RSB0  
IO223NDB3  
VCCPLF  
GAA2/IO225PPB3  
GAC0/IO04RSB0  
GAC1/IO05RSB0  
GBC0/IO72RSB0  
GBC1/IO73RSB0  
GBB2/IO79PDB1  
IO79NDB1  
GFA0/IO207NPB3  
GND  
GND  
GND  
IO44RSB0  
GND  
VCC  
GDC1/IO111PPB1  
IO96NDB1  
GCC2/IO96PDB1  
IO95NDB1  
GCB2/IO95PDB1  
VCC  
IO69RSB0  
GBA0/IO76RSB0  
GBA1/IO77RSB0  
GNDQ  
IO80NPB1  
GCB1/IO92PPB1  
VCC  
GAB2/IO224PDB3  
GND  
B2  
E2  
GFC0/IO209NDB3  
GFC1/IO209PDB3  
VCCIB3  
GFB2/IO205PDB3  
GFC2/IO204PSB3  
GEC1/IO190PDB3  
VCC  
B3  
GAA0/IO00RSB0  
GAA1/IO01RSB0  
IO13RSB0  
E3  
B4  
E4  
B5  
E5  
IO225NPB3  
B6  
IO26RSB0  
E6  
VCCIB0  
IO105PDB1  
IO105NDB1  
GDB2/IO115RSB2  
GDC0/IO111NPB1  
VCCIB1  
B7  
IO35RSB0  
E7  
VCCIB0  
B8  
IO60RSB0  
E8  
GCC1/IO91PDB1  
VCCIB1  
B9  
GBB0/IO74RSB0  
GBB1/IO75RSB0  
GND  
E9  
B10  
B11  
B12  
C1  
E10  
E11  
E12  
F1  
VCC  
GCA0/IO93NDB1  
IO94NDB1  
GFB0/IO208NPB3  
VCOMPLF  
IO101PSB1  
VCC  
VMV1  
IO224NDB3  
GFA2/IO206PPB3  
GAC2/IO223PDB3  
VCC  
GEB1/IO189PDB3  
IO205NDB3  
VCCIB3  
C2  
F2  
J2  
C3  
F3  
GFB1/IO208PPB3  
IO206NPB3  
GND  
J3  
C4  
F4  
J4  
GEC0/IO190NDB3  
IO160RSB2  
IO157RSB2  
VCC  
C5  
IO16RSB0  
F5  
J5  
C6  
IO29RSB0  
F6  
GND  
J6  
C7  
IO32RSB0  
F7  
GND  
J7  
C8  
IO63RSB0  
F8  
GCC0/IO91NDB1  
GCB0/IO92NPB1  
GND  
J8  
TCK  
C9  
IO66RSB0  
F9  
J9  
GDA2/IO114RSB2  
TDO  
C10  
C11  
C12  
GBA2/IO78PDB1  
IO78NDB1  
GBC2/IO80PPB1  
F10  
F11  
F12  
J10  
J11  
J12  
GCA1/IO93PDB1  
GCA2/IO94PDB1  
GDA1/IO113PDB1  
GDB1/IO112PDB1  
v1.7  
3-45  
Package Pin Assignments  
144-Pin FBGA  
Pin Number AGL1000 Function  
K1  
K2  
GEB0/IO189NDB3  
GEA1/IO188PDB3  
GEA0/IO188NDB3  
GEA2/IO187RSB2  
IO169RSB2  
IO152RSB2  
GND  
K3  
K4  
K5  
K6  
K7  
K8  
IO117RSB2  
GDC2/IO116RSB2  
GND  
K9  
K10  
K11  
K12  
L1  
GDA0/IO113NDB1  
GDB0/IO112NDB1  
GND  
L2  
VMV3  
L3  
FF/GEB2/IO186RSB2  
IO172RSB2  
VCCIB2  
L4  
L5  
L6  
IO153RSB2  
IO144RSB2  
IO140RSB2  
TMS  
L7  
L8  
L9  
L10  
L11  
L12  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
VJTAG  
VMV2  
TRST  
GNDQ  
GEC2/IO185RSB2  
IO173RSB2  
IO168RSB2  
IO161RSB2  
IO156RSB2  
IO145RSB2  
IO141RSB2  
TDI  
VCCIB2  
VPUMP  
GNDQ  
3-46  
v1.7  
IGLOO Packaging  
256-Pin FBGA  
A1 Ball Pad Corner  
1
7
6
4
5
3
2
16 15 14 13 12 11 10 9  
8
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
Note: This is the bottom view of the package.  
Figure 3-11 •  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.actel.com/products/solutions/package/docs.aspx.  
v1.7  
3-47  
Package Pin Assignments  
256-Pin FBGA  
256-Pin FBGA  
256-Pin FBGA  
Pin Number AGL400 Function  
Pin Number AGL400 Function  
Pin Number AGL400 Function  
A1  
A2  
GND  
GAA0/IO00RSB0  
GAA1/IO01RSB0  
GAB0/IO02RSB0  
IO16RSB0  
C5  
C6  
GAC0/IO04RSB0  
GAC1/IO05RSB0  
IO20RSB0  
IO24RSB0  
IO33RSB0  
IO39RSB0  
IO45RSB0  
GBC0/IO54RSB0  
IO48RSB0  
VMV0  
E9  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
F1  
IO31RSB0  
CCIB0  
V
A3  
C7  
VCCIB0  
VMV1  
A4  
C8  
A5  
C9  
GBC2/IO62PDB1  
IO65RSB1  
IO52RSB0  
IO66PDB1  
IO150NDB3  
IO149NPB3  
IO09RSB0  
IO152UDB3  
VCCIB3  
A6  
IO17RSB0  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
D1  
A7  
IO22RSB0  
A8  
IO28RSB0  
A9  
IO34RSB0  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
B1  
IO37RSB0  
F2  
IO41RSB0  
IO61NPB1  
IO63PDB1  
IO151VDB3  
IO151UDB3  
GAC2/IO153UDB3  
IO06RSB0  
GNDQ  
F3  
IO43RSB0  
F4  
GBB1/IO57RSB0  
GBA0/IO58RSB0  
GBA1/IO59RSB0  
GND  
F5  
D2  
F6  
GND  
D3  
F7  
VCC  
D4  
F8  
VCC  
GAB2/IO154UDB3  
GAA2/IO155UDB3  
IO12RSB0  
D5  
F9  
VCC  
B2  
D6  
IO10RSB0  
IO19RSB0  
IO26RSB0  
IO30RSB0  
IO40RSB0  
IO46RSB0  
GNDQ  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
G1  
VCC  
B3  
D7  
GND  
B4  
GAB1/IO03RSB0  
IO13RSB0  
D8  
VCCIB1  
B5  
D9  
IO62NDB1  
IO49RSB0  
IO64PPB1  
IO66NDB1  
IO148NDB3  
IO148PDB3  
IO149PPB3  
GFC1/IO147PPB3  
VCCIB3  
B6  
IO14RSB0  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
E1  
B7  
IO21RSB0  
B8  
IO27RSB0  
B9  
IO32RSB0  
IO47RSB0  
GBB2/IO61PPB1  
IO53RSB0  
IO63NDB1  
IO150PDB3  
IO08RSB0  
IO153VDB3  
IO152VDB3  
VMV0  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
C1  
IO38RSB0  
G2  
IO42RSB0  
G3  
GBC1/IO55RSB0  
GBB0/IO56RSB0  
IO44RSB0  
G4  
G5  
E2  
G6  
VCC  
GBA2/IO60PDB1  
IO60NDB1  
E3  
G7  
GND  
E4  
G8  
GND  
IO154VDB3  
IO155VDB3  
IO11RSB0  
E5  
G9  
GND  
C2  
E6  
VCCIB0  
G10  
G11  
G12  
GND  
C3  
E7  
VCCIB0  
VCC  
C4  
IO07RSB0  
E8  
IO25RSB0  
VCCIB1  
3-48  
v1.7  
IGLOO Packaging  
256-Pin FBGA  
256-Pin FBGA  
256-Pin FBGA  
Pin Number AGL400 Function  
VMV3  
CCIB2  
Pin Number AGL400 Function  
Pin Number AGL400 Function  
G13  
G14  
G15  
G16  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
J1  
GCC1/IO67PPB1  
IO64NPB1  
IO73PDB1  
IO73NDB1  
GFB0/IO146NPB3  
GFA0/IO145NDB3  
GFB1/IO146PPB3  
VCOMPLF  
K1  
K2  
GFC2/IO142PDB3  
IO144NPB3  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
N1  
V
K3  
IO141PPB3  
VCCIB2  
IO108RSB2  
IO101RSB2  
VCCIB2  
K4  
IO120RSB2  
K5  
V
CCIB3  
VCC  
K6  
K7  
GND  
GND  
VCCIB2  
K8  
VMV2  
IO83RSB2  
GFC0/IO147NPB3  
VCC  
K9  
GND  
K10  
K11  
K12  
K13  
K14  
K15  
K16  
L1  
GND  
GDB1/IO78UPB1  
GDC1/IO77UDB1  
IO75NDB1  
GND  
VCC  
GND  
VCCIB1  
IO71NPB1  
IO74RSB1  
IO72NPB1  
IO70NDB1  
IO142NDB3  
IO141NPB3  
IO125RSB2  
IO139RSB3  
VCCIB3  
GND  
GND  
IO140NDB3  
IO138PPB3  
GEC1/IO137PPB3  
IO131RSB2  
GNDQ  
GND  
N2  
VCC  
N3  
GCC0/IO67NPB1  
GCB1/IO68PPB1  
GCA0/IO69NPB1  
NC  
N4  
N5  
L2  
N6  
GEA2/IO134RSB2  
IO117RSB2  
IO111RSB2  
IO99RSB2  
L3  
N7  
GCB0/IO68NPB1  
GFA2/IO144PPB3  
GFA1/IO145PDB3  
VCCPLF  
L4  
N8  
L5  
N9  
J2  
L6  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
P1  
IO94RSB2  
J3  
L7  
VCC  
IO87RSB2  
J4  
IO143NDB3  
GFB2/IO143PDB3  
VCC  
L8  
VCC  
GNDQ  
J5  
L9  
VCC  
IO93RSB2  
J6  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
M1  
M2  
M3  
M4  
VCC  
VJTAG  
J7  
GND  
GND  
GDC0/IO77VDB1  
GDA1/IO79UDB1  
GEB1/IO136PDB3  
GEB0/IO136NDB3  
VMV2  
J8  
GND  
VCCIB1  
J9  
GND  
GDB0/IO78VPB1  
IO76VDB1  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
GND  
P2  
VCC  
IO76UDB1  
P3  
GCB2/IO71PPB1  
GCA1/IO69PPB1  
GCC2/IO72PPB1  
NC  
IO75PDB1  
P4  
IO129RSB2  
IO128RSB2  
IO122RSB2  
IO115RSB2  
IO110RSB2  
IO140PDB3  
IO130RSB2  
P5  
P6  
IO138NPB3  
GEC0/IO137NPB3  
P7  
GCA2/IO70PDB1  
P8  
v1.7  
3-49  
Package Pin Assignments  
256-Pin FBGA  
256-Pin FBGA  
Pin Number AGL400 Function  
Pin Number AGL400 Function  
P9  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
R1  
IO98RSB2  
IO95RSB2  
IO88RSB2  
IO84RSB2  
TCK  
T12  
T13  
T14  
T15  
T16  
GDC2/IO82RSB2  
IO86RSB2  
GDA2/IO80RSB2  
TMS  
GND  
VPUMP  
TRST  
GDA0/IO79VDB1  
GEA1/IO135PDB3  
GEA0/IO135NDB3  
IO127RSB2  
GEC2/IO132RSB2  
IO123RSB2  
IO118RSB2  
IO112RSB2  
IO106RSB2  
IO100RSB2  
IO96RSB2  
IO89RSB2  
IO85RSB2  
GDB2/IO81RSB2  
TDI  
R2  
R3  
R4  
R5  
R6  
R7  
R8  
R9  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
T1  
NC  
TDO  
GND  
T2  
IO126RSB2  
T3  
FF/GEB2/IO133RSB  
2
T4  
T5  
IO124RSB2  
IO116RSB2  
IO113RSB2  
IO107RSB2  
IO105RSB2  
IO102RSB2  
IO97RSB2  
IO92RSB2  
T6  
T7  
T8  
T9  
T10  
T11  
3-50  
v1.7  
IGLOO Packaging  
256-Pin FBGA  
256-Pin FBGA  
Pin Number  
256-Pin FBGA  
Pin Number AGL600 Function  
Pin Number  
AGL600 Function  
GND  
AGL600 Function  
IO20RSB0  
IO24RSB0  
IO33RSB0  
IO39RSB0  
IO44RSB0  
GBC0/IO54RSB0  
IO51RSB0  
VMV0  
A1  
A2  
C7  
C8  
E13  
E14  
E15  
E16  
F1  
GBC2/IO62PDB1  
IO67PPB1  
GAA0/IO00RSB0  
GAA1/IO01RSB0  
GAB0/IO02RSB0  
IO11RSB0  
A3  
C9  
IO64PPB1  
A4  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
D1  
IO66PDB1  
A5  
IO166NDB3  
IO168NPB3  
IO167PPB3  
IO169PDB3  
A6  
IO16RSB0  
F2  
A7  
IO18RSB0  
F3  
A8  
IO28RSB0  
F4  
A9  
IO34RSB0  
IO61NPB1  
IO63PDB1  
IO171NDB3  
IO171PDB3  
GAC2/IO172PDB3  
IO06RSB0  
GNDQ  
F5  
VCCIB3  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
B1  
IO37RSB0  
F6  
GND  
VCC  
IO41RSB0  
F7  
IO43RSB0  
D2  
F8  
VCC  
GBB1/IO57RSB0  
GBA0/IO58RSB0  
GBA1/IO59RSB0  
GND  
D3  
F9  
VCC  
D4  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
G1  
VCC  
D5  
GND  
D6  
IO10RSB0  
IO19RSB0  
IO26RSB0  
IO30RSB0  
IO40RSB0  
IO45RSB0  
GNDQ  
VCCIB1  
GAB2/IO173PDB3  
GAA2/IO174PDB3  
GNDQ  
D7  
IO62NDB1  
IO64NPB1  
IO65PPB1  
IO66NDB1  
IO165NDB3  
IO165PDB3  
IO168PPB3  
GFC1/IO164PPB3  
B2  
D8  
B3  
D9  
B4  
GAB1/IO03RSB0  
IO13RSB0  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
E1  
B5  
B6  
IO14RSB0  
G2  
B7  
IO21RSB0  
IO50RSB0  
GBB2/IO61PPB1  
IO53RSB0  
IO63NDB1  
IO166PDB3  
IO167NPB3  
IO172NDB3  
IO169NDB3  
VMV0  
G3  
B8  
IO27RSB0  
G4  
B9  
IO32RSB0  
G5  
V
CCIB3  
VCC  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
C1  
IO38RSB0  
G6  
IO42RSB0  
G7  
GND  
GND  
GBC1/IO55RSB0  
GBB0/IO56RSB0  
IO52RSB0  
E2  
G8  
E3  
G9  
GND  
E4  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
H1  
GND  
GBA2/IO60PDB1  
IO60NDB1  
E5  
VCC  
E6  
V
V
CCIB0  
CCIB0  
VCCIB1  
IO173NDB3  
IO174NDB3  
VMV3  
E7  
GCC1/IO69PPB1  
IO65NPB1  
IO75PDB1  
IO75NDB1  
GFB0/IO163NPB3  
GFA0/IO162NDB3  
C2  
E8  
IO25RSB0  
IO31RSB0  
VCCIB0  
C3  
E9  
C4  
IO07RSB0  
E10  
E11  
E12  
C5  
GAC0/IO04RSB0  
GAC1/IO05RSB0  
V
CCIB0  
C6  
VMV1  
H2  
v1.7  
3-51  
Package Pin Assignments  
256-Pin FBGA  
256-Pin FBGA  
256-Pin FBGA  
Pin Number  
H3  
AGL600 Function  
GFB1/IO163PPB3  
VCOMPLF  
Pin Number  
AGL600 Function  
GND  
Pin Number  
AGL600 Function  
GDC1/IO86PDB1  
IO84NDB1  
K9  
K10  
K11  
K12  
K13  
K14  
K15  
K16  
L1  
M15  
M16  
N1  
H4  
GND  
H5  
GFC0/IO164NPB3  
VCC  
VCC  
IO150NDB3  
IO147PPB3  
GEC1/IO146PPB3  
IO140RSB2  
GNDQ  
H6  
VCCIB1  
N2  
H7  
GND  
IO73NPB1  
IO80NPB1  
IO74NPB1  
IO72NDB1  
IO159NDB3  
IO156NPB3  
IO151PPB3  
IO158PSB3  
N3  
H8  
GND  
N4  
H9  
GND  
N5  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
J1  
GND  
N6  
GEA2/IO143RSB2  
IO126RSB2  
IO120RSB2  
IO108RSB2  
IO103RSB2  
IO99RSB2  
VCC  
N7  
GCC0/IO69NPB1  
GCB1/IO70PPB1  
GCA0/IO71NPB1  
IO67NPB1  
GCB0/IO70NPB1  
GFA2/IO161PPB3  
GFA1/IO162PDB3  
VCCPLF  
L2  
N8  
L3  
N9  
L4  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
P1  
L5  
VCCIB3  
L6  
GND  
VCC  
GNDQ  
L7  
IO92RSB2  
J2  
L8  
VCC  
VJTAG  
J3  
L9  
VCC  
GDC0/IO86NDB1  
GDA1/IO88PDB1  
GEB1/IO145PDB3  
GEB0/IO145NDB3  
VMV2  
J4  
IO160NDB3  
GFB2/IO160PDB3  
VCC  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
M13  
M14  
VCC  
J5  
GND  
J6  
VCCIB1  
P2  
J7  
GND  
GDB0/IO87NPB1  
IO85NDB1  
IO85PDB1  
IO84PDB1  
IO150PDB3  
IO151NPB3  
IO147NPB3  
GEC0/IO146NPB3  
VMV3  
P3  
J8  
GND  
P4  
IO138RSB2  
IO136RSB2  
IO131RSB2  
IO124RSB2  
IO119RSB2  
IO107RSB2  
IO104RSB2  
IO97RSB2  
J9  
GND  
P5  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
K1  
GND  
P6  
VCC  
P7  
GCB2/IO73PPB1  
GCA1/IO71PPB1  
GCC2/IO74PPB1  
IO80PPB1  
P8  
P9  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
R1  
GCA2/IO72PDB1  
GFC2/IO159PDB3  
IO161NPB3  
IO156PPB3  
IO129RSB2  
V
V
CCIB2  
CCIB2  
VMV1  
TCK  
K2  
IO117RSB2  
IO110RSB2  
VPUMP  
K3  
TRST  
K4  
VCCIB2  
GDA0/IO88NDB1  
GEA1/IO144PDB3  
GEA0/IO144NDB3  
IO139RSB2  
GEC2/IO141RSB2  
K5  
VCCIB3  
VCCIB2  
VMV2  
K6  
VCC  
R2  
K7  
GND  
GND  
IO94RSB2  
R3  
K8  
GDB1/IO87PPB1  
R4  
3-52  
v1.7  
IGLOO Packaging  
256-Pin FBGA  
Pin Number  
AGL600 Function  
IO132RSB2  
IO127RSB2  
IO121RSB2  
IO114RSB2  
IO109RSB2  
IO105RSB2  
IO98RSB2  
IO96RSB2  
GDB2/IO90RSB2  
TDI  
R5  
R6  
R7  
R8  
R9  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
T1  
GNDQ  
TDO  
GND  
T2  
IO137RSB2  
FF/GEB2/IO142RSB2  
IO134RSB2  
IO125RSB2  
IO123RSB2  
IO118RSB2  
IO115RSB2  
IO111RSB2  
IO106RSB2  
IO102RSB2  
GDC2/IO91RSB2  
IO93RSB2  
GDA2/IO89RSB2  
TMS  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
GND  
v1.7  
3-53  
Package Pin Assignments  
256-Pin FBGA  
Pin Number AGL1000 Function  
256-Pin FBGA  
256-Pin FBGA  
Pin Number AGL1000 Function  
Pin Number AGL1000 Function  
A1  
A2  
GND  
GAA0/IO00RSB0  
GAA1/IO01RSB0  
GAB0/IO02RSB0  
IO16RSB0  
C7  
C8  
IO25RSB0  
IO36RSB0  
IO42RSB0  
IO49RSB0  
IO56RSB0  
GBC0/IO72RSB0  
IO62RSB0  
VMV0  
E13  
E14  
E15  
E16  
F1  
GBC2/IO80PDB1  
IO83PPB1  
A3  
C9  
IO86PPB1  
A4  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
D1  
IO87PDB1  
A5  
IO217NDB3  
IO218NDB3  
IO216PDB3  
IO216NDB3  
A6  
IO22RSB0  
F2  
A7  
IO28RSB0  
F3  
A8  
IO35RSB0  
F4  
A9  
IO45RSB0  
IO78NDB1  
IO81NDB1  
IO222NDB3  
IO222PDB3  
GAC2/IO223PDB3  
IO223NDB3  
GNDQ  
F5  
VCCIB3  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
B1  
IO50RSB0  
F6  
GND  
VCC  
IO55RSB0  
F7  
IO61RSB0  
D2  
F8  
VCC  
GBB1/IO75RSB0  
GBA0/IO76RSB0  
GBA1/IO77RSB0  
GND  
D3  
F9  
VCC  
D4  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
G1  
VCC  
D5  
GND  
D6  
IO23RSB0  
IO29RSB0  
IO33RSB0  
IO46RSB0  
IO52RSB0  
IO60RSB0  
GNDQ  
VCCIB1  
GAB2/IO224PDB3  
GAA2/IO225PDB3  
GNDQ  
D7  
IO83NPB1  
IO86NPB1  
IO90PPB1  
IO87NDB1  
IO210PSB3  
IO213NDB3  
IO213PDB3  
GFC1/IO209PPB3  
B2  
D8  
B3  
D9  
B4  
GAB1/IO03RSB0  
IO17RSB0  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
E1  
B5  
B6  
IO21RSB0  
G2  
B7  
IO27RSB0  
IO80NDB1  
GBB2/IO79PDB1  
IO79NDB1  
IO82NSB1  
IO217PDB3  
IO218PDB3  
IO221NDB3  
IO221PDB3  
VMV0  
G3  
B8  
IO34RSB0  
G4  
B9  
IO44RSB0  
G5  
V
CCIB3  
VCC  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
C1  
IO51RSB0  
G6  
IO57RSB0  
G7  
GND  
GND  
GBC1/IO73RSB0  
GBB0/IO74RSB0  
IO71RSB0  
E2  
G8  
E3  
G9  
GND  
E4  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
H1  
GND  
GBA2/IO78PDB1  
IO81PDB1  
E5  
VCC  
E6  
V
V
CCIB0  
CCIB0  
VCCIB1  
IO224NDB3  
IO225NDB3  
VMV3  
E7  
GCC1/IO91PPB1  
IO90NPB1  
IO88PDB1  
IO88NDB1  
GFB0/IO208NPB3  
GFA0/IO207NDB3  
C2  
E8  
IO38RSB0  
IO47RSB0  
VCCIB0  
C3  
E9  
C4  
IO11RSB0  
E10  
E11  
E12  
C5  
GAC0/IO04RSB0  
GAC1/IO05RSB0  
V
CCIB0  
C6  
VMV1  
H2  
3-54  
v1.7  
IGLOO Packaging  
256-Pin FBGA  
256-Pin FBGA  
256-Pin FBGA  
Pin Number AGL1000 Function  
Pin Number AGL1000 Function  
Pin Number AGL1000 Function  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
J1  
GFB1/IO208PPB3  
VCOMPLF  
K9  
K10  
K11  
K12  
K13  
K14  
K15  
K16  
L1  
GND  
M15  
M16  
N1  
GDC1/IO111PDB1  
IO107NDB1  
IO194PSB3  
IO192PPB3  
GEC1/IO190PPB3  
IO192NPB3  
GNDQ  
GND  
GFC0/IO209NPB3  
VCC  
VCC  
VCCIB1  
N2  
GND  
IO95NPB1  
IO100NPB1  
IO102NDB1  
IO102PDB1  
IO202NDB3  
IO202PDB3  
IO196PPB3  
IO193PPB3  
N3  
GND  
N4  
GND  
N5  
GND  
N6  
GEA2/IO187RSB2  
IO161RSB2  
IO155RSB2  
IO141RSB2  
IO129RSB2  
IO124RSB2  
GNDQ  
VCC  
N7  
GCC0/IO91NPB1  
GCB1/IO92PPB1  
GCA0/IO93NPB1  
IO96NPB1  
GCB0/IO92NPB1  
GFA2/IO206PSB3  
GFA1/IO207PDB3  
VCCPLF  
L2  
N8  
L3  
N9  
L4  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
P1  
L5  
VCCIB3  
L6  
GND  
VCC  
L7  
IO110PDB1  
VJTAG  
J2  
L8  
VCC  
J3  
L9  
VCC  
GDC0/IO111NDB1  
GDA1/IO113PDB1  
GEB1/IO189PDB3  
GEB0/IO189NDB3  
VMV2  
J4  
IO205NDB3  
GFB2/IO205PDB3  
VCC  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
M13  
M14  
VCC  
J5  
GND  
J6  
VCCIB1  
P2  
J7  
GND  
GDB0/IO112NPB1  
IO106NDB1  
IO106PDB1  
IO107PDB1  
IO197NSB3  
IO196NPB3  
IO193NPB3  
GEC0/IO190NPB3  
VMV3  
P3  
J8  
GND  
P4  
IO179RSB2  
IO171RSB2  
IO165RSB2  
IO159RSB2  
IO151RSB2  
IO137RSB2  
IO134RSB2  
IO128RSB2  
VMV1  
J9  
GND  
P5  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
K1  
K2  
K3  
K4  
K5  
K6  
K7  
K8  
GND  
P6  
VCC  
P7  
GCB2/IO95PPB1  
GCA1/IO93PPB1  
GCC2/IO96PPB1  
IO100PPB1  
GCA2/IO94PSB1  
GFC2/IO204PDB3  
IO204NDB3  
IO203NDB3  
IO203PDB3  
P8  
P9  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
R1  
V
V
CCIB2  
CCIB2  
TCK  
IO147RSB2  
IO136RSB2  
VPUMP  
TRST  
VCCIB2  
GDA0/IO113NDB1  
GEA1/IO188PDB3  
GEA0/IO188NDB3  
IO184RSB2  
GEC2/IO185RSB2  
VCCIB3  
VCCIB2  
VMV2  
VCC  
R2  
GND  
GND  
IO110NDB1  
GDB1/IO112PPB1  
R3  
R4  
v1.7  
3-55  
Package Pin Assignments  
256-Pin FBGA  
Pin Number AGL1000 Function  
R5  
R6  
IO168RSB2  
IO163RSB2  
IO157RSB2  
IO149RSB2  
IO143RSB2  
IO138RSB2  
IO131RSB2  
IO125RSB2  
GDB2/IO115RSB2  
TDI  
R7  
R8  
R9  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
T1  
GNDQ  
TDO  
GND  
T2  
IO183RSB2  
FF/GEB2/IO186RSB2  
IO172RSB2  
IO170RSB2  
IO164RSB2  
IO158RSB2  
IO153RSB2  
IO142RSB2  
IO135RSB2  
IO130RSB2  
GDC2/IO116RSB2  
IO120RSB2  
GDA2/IO114RSB2  
TMS  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
GND  
3-56  
v1.7  
IGLOO Packaging  
484-Pin FBGA  
A1 Ball Pad Corner  
22 21 20 19 18 17 16 15 14 13 12 11 10 9  
8
7
6 5 4 3 2 1  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA  
AB  
Note: This is the bottom view of the package.  
Figure 3-12 •  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.actel.com/products/solutions/package/docs.aspx.  
v1.7  
3-57  
Package Pin Assignments  
484-Pin FBGA  
484-Pin FBGA  
484-Pin FBGA  
Pin Number  
A1  
AGL400 Function  
GND  
Pin Number  
AGL400 Function  
Pin Number  
AGL400 Function  
AA15  
AA16  
AA17  
AA18  
AA19  
AA20  
AA21  
AA22  
AB1  
NC  
NC  
NC  
NC  
NC  
NC  
B7  
B8  
NC  
NC  
A2  
GND  
A3  
VCCIB0  
NC  
B9  
NC  
A4  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
C1  
NC  
A5  
NC  
NC  
A6  
IO15RSB0  
IO18RSB0  
NC  
NC  
A7  
VCCIB1  
NC  
A8  
GND  
GND  
NC  
A9  
NC  
NC  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
AA1  
AA2  
AA3  
AA4  
AA5  
AA6  
AA7  
AA8  
AA9  
AA10  
AA11  
AA12  
AA13  
AA14  
IO23RSB0  
IO29RSB0  
IO35RSB0  
IO36RSB0  
NC  
AB2  
GND  
NC  
AB3  
VCCIB2  
NC  
NC  
AB4  
NC  
AB5  
NC  
NC  
AB6  
IO121RSB2  
IO119RSB2  
IO114RSB2  
IO109RSB2  
NC  
NC  
NC  
AB7  
VCCIB1  
GND  
VCCIB3  
NC  
IO50RSB0  
IO51RSB0  
NC  
AB8  
AB9  
AB10  
AB11  
AB12  
AB13  
AB14  
AB15  
AB16  
AB17  
AB18  
AB19  
AB20  
AB21  
AB22  
B1  
C2  
NC  
NC  
C3  
NC  
VCCIB0  
GND  
IO104RSB2  
IO103RSB2  
NC  
C4  
NC  
C5  
GND  
NC  
GND  
C6  
GND  
NC  
C7  
NC  
VCCIB3  
NC  
IO91RSB2  
IO90RSB2  
NC  
C8  
VCC  
VCC  
NC  
C9  
NC  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
NC  
NC  
NC  
NC  
VCCIB2  
GND  
NC  
NC  
NC  
NC  
GND  
VCC  
VCC  
NC  
NC  
GND  
NC  
B2  
VCCIB3  
NC  
NC  
B3  
NC  
NC  
B4  
NC  
GND  
NC  
NC  
B5  
NC  
NC  
B6  
NC  
NC  
3-58  
v1.7  
IGLOO Packaging  
484-Pin FBGA  
484-Pin FBGA  
Pin Number  
484-Pin FBGA  
Pin Number AGL400 Function  
Pin Number  
AGL400 Function  
AGL400 Function  
IO38RSB0  
IO42RSB0  
GBC1/IO55RSB0  
GBB0/IO56RSB0  
IO44RSB0  
GBA2/IO60PDB1  
IO60NDB1  
GND  
C21  
C22  
D1  
NC  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
E21  
E22  
F1  
G5  
G6  
IO151UDB3  
GAC2/IO153UDB3  
IO06RSB0  
GNDQ  
V
CCIB1  
NC  
G7  
D2  
NC  
G8  
D3  
NC  
G9  
IO10RSB0  
IO19RSB0  
IO26RSB0  
IO30RSB0  
IO40RSB0  
IO46RSB0  
GNDQ  
D4  
GND  
GAA0/IO00RSB0  
GAA1/IO01RSB0  
GAB0/IO02RSB0  
IO16RSB0  
IO17RSB0  
IO22RSB0  
IO28RSB0  
IO34RSB0  
IO37RSB0  
IO41RSB0  
IO43RSB0  
GBB1/IO57RSB0  
GBA0/IO58RSB0  
GBA1/IO59RSB0  
GND  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
G17  
G18  
G19  
G20  
G21  
G22  
H1  
D5  
D6  
D7  
NC  
D8  
NC  
D9  
NC  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
E1  
F2  
NC  
IO47RSB0  
GBB2/IO61PPB1  
IO53RSB0  
IO63NDB1  
NC  
F3  
NC  
F4  
IO154VDB3  
IO155VDB3  
IO11RSB0  
IO07RSB0  
GAC0/IO04RSB0  
GAC1/IO05RSB0  
IO20RSB0  
IO24RSB0  
IO33RSB0  
IO39RSB0  
IO45RSB0  
GBC0/IO54RSB0  
IO48RSB0  
VMV0  
F5  
F6  
F7  
NC  
F8  
NC  
F9  
NC  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
F21  
F22  
G1  
H2  
NC  
H3  
VCC  
NC  
H4  
IO150PDB3  
IO08RSB0  
IO153VDB3  
IO152VDB3  
VMV0  
NC  
H5  
NC  
H6  
NC  
H7  
E2  
NC  
H8  
E3  
GND  
H9  
VCCIB0  
E4  
GAB2/IO154UDB3  
GAA2/IO155UDB3  
IO12RSB0  
GAB1/IO03RSB0  
IO13RSB0  
IO14RSB0  
IO21RSB0  
IO27RSB0  
IO32RSB0  
IO61NPB1  
IO63PDB1  
NC  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
H17  
H18  
VCCIB0  
E5  
IO25RSB0  
IO31RSB0  
VCCIB0  
E6  
E7  
NC  
E8  
NC  
VCCIB0  
E9  
NC  
VMV1  
E10  
E11  
E12  
G2  
NC  
GBC2/IO62PDB1  
IO65RSB1  
IO52RSB0  
G3  
NC  
G4  
IO151VDB3  
v1.7  
3-59  
Package Pin Assignments  
484-Pin FBGA  
484-Pin FBGA  
484-Pin FBGA  
Pin Number  
H19  
H20  
H21  
H22  
J1  
AGL400 Function  
Pin Number  
AGL400 Function  
Pin Number  
AGL400 Function  
IO66PDB1  
VCC  
K11  
K12  
K13  
K14  
K15  
K16  
K17  
K18  
K19  
K20  
K21  
K22  
L1  
GND  
M3  
M4  
NC  
GND  
GFA2/IO144PPB3  
NC  
GND  
M5  
GFA1/IO145PDB3  
NC  
VCC  
M6  
VCCPLF  
NC  
VCCIB1  
M7  
IO143NDB3  
J2  
NC  
GCC1/IO67PPB1  
M8  
GFB2/IO143PDB3  
J3  
NC  
IO64NPB1  
M9  
VCC  
J4  
IO150NDB3  
IO149NPB3  
IO09RSB0  
IO152UDB3  
VCCIB3  
GND  
IO73PDB1  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
M17  
M18  
M19  
M20  
M21  
M22  
N1  
GND  
J5  
IO73NDB1  
GND  
J6  
NC  
GND  
J7  
NC  
GND  
J8  
NC  
VCC  
J9  
NC  
GCB2/IO71PPB1  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
J17  
J18  
J19  
J20  
J21  
J22  
K1  
VCC  
L2  
NC  
GCA1/IO69PPB1  
VCC  
L3  
NC  
GCC2/IO72PPB1  
VCC  
L4  
GFB0/IO146NPB3  
NC  
GCA2/IO70PDB1  
NC  
VCC  
L5  
GFA0/IO145NDB3  
GND  
L6  
GFB1/IO146PPB3  
VCCIB1  
L7  
VCOMPLF  
NC  
IO62NDB1  
IO49RSB0  
IO64PPB1  
IO66NDB1  
NC  
L8  
GFC0/IO147NPB3  
NC  
L9  
VCC  
NC  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
L17  
L18  
L19  
L20  
L21  
L22  
M1  
M2  
GND  
N2  
NC  
GND  
N3  
NC  
GND  
N4  
GFC2/IO142PDB3  
IO144NPB3  
IO141PPB3  
IO120RSB2  
VCCIB3  
VCC  
NC  
GND  
N5  
NC  
VCC  
N6  
NC  
GCC0/IO67NPB1  
N7  
K2  
NC  
GCB1/IO68PPB1  
N8  
K3  
NC  
GCA0/IO69NPB1  
N9  
K4  
IO148NDB3  
IO148PDB3  
IO149PPB3  
GFC1/IO147PPB3  
VCCIB3  
NC  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
GND  
K5  
GCB0/IO68NPB1  
GND  
K6  
NC  
NC  
NC  
NC  
NC  
GND  
K7  
GND  
K8  
VCC  
K9  
VCC  
VCCIB1  
IO71NPB1  
K10  
GND  
3-60  
v1.7  
IGLOO Packaging  
484-Pin FBGA  
484-Pin FBGA  
484-Pin FBGA  
Pin Number  
AGL400 Function  
IO74RSB1  
IO72NPB1  
IO70NDB1  
NC  
Pin Number  
AGL400 Function  
Pin Number  
U1  
AGL400 Function  
N17  
N18  
N19  
N20  
N21  
N22  
P1  
R9  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
T1  
VCCIB2  
NC  
NC  
V
CCIB2  
U2  
IO108RSB2  
IO101RSB2  
VCCIB2  
U3  
NC  
U4  
GEB1/IO136PDB3  
GEB0/IO136NDB3  
VMV2  
NC  
U5  
NC  
VCCIB2  
U6  
NC  
VMV2  
U7  
IO129RSB2  
IO128RSB2  
IO122RSB2  
IO115RSB2  
IO110RSB2  
IO98RSB2  
IO95RSB2  
IO88RSB2  
IO84RSB2  
TCK  
P2  
NC  
IO83RSB2  
GDB1/IO78UPB1  
GDC1/IO77UDB1  
IO75NDB1  
VCC  
U8  
P3  
NC  
U9  
P4  
IO142NDB3  
IO141NPB3  
IO125RSB2  
IO139RSB3  
VCCIB3  
GND  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
U18  
U19  
U20  
U21  
U22  
V1  
P5  
P6  
P7  
NC  
P8  
NC  
P9  
NC  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
P20  
P21  
P22  
R1  
VCC  
T2  
NC  
VCC  
T3  
NC  
VPUMP  
VCC  
T4  
IO140NDB3  
IO138PPB3  
GEC1/IO137PPB3  
IO131RSB2  
GNDQ  
TRST  
VCC  
T5  
GDA0/IO79VDB1  
NC  
GND  
T6  
VCCIB1  
GDB0/IO78VPB1  
IO76VDB1  
IO76UDB1  
IO75PDB1  
NC  
T7  
NC  
T8  
NC  
T9  
GEA2/IO134RSB2  
IO117RSB2  
IO111RSB2  
IO99RSB2  
IO94RSB2  
IO87RSB2  
GNDQ  
NC  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
T22  
V2  
NC  
V3  
GND  
V4  
GEA1/IO135PDB3  
GEA0/IO135NDB3  
IO127RSB2  
GEC2/IO132RSB2  
IO123RSB2  
IO118RSB2  
IO112RSB2  
IO106RSB2  
IO100RSB2  
IO96RSB2  
IO89RSB2  
NC  
V5  
NC  
V6  
NC  
V7  
R2  
NC  
IO93RSB2  
VJTAG  
V8  
R3  
VCC  
V9  
R4  
IO140PDB3  
IO130RSB2  
IO138NPB3  
GEC0/IO137NPB3  
VMV3  
GDC0/IO77VDB1  
GDA1/IO79UDB1  
NC  
V10  
V11  
V12  
V13  
V14  
R5  
R6  
R7  
NC  
R8  
NC  
v1.7  
3-61  
Package Pin Assignments  
484-Pin FBGA  
484-Pin FBGA  
Pin Number  
V15  
V16  
V17  
V18  
V19  
V20  
V21  
V22  
W1  
AGL400 Function  
Pin Number  
AGL400 Function  
IO85RSB2  
Y7  
NC  
VCC  
VCC  
NC  
GDB2/IO81RSB2  
Y8  
TDI  
Y9  
NC  
TDO  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
Y21  
Y22  
NC  
GND  
NC  
NC  
NC  
NC  
VCC  
VCC  
NC  
NC  
W2  
NC  
W3  
NC  
NC  
W4  
GND  
GND  
NC  
W5  
IO126RSB2  
FF/GEB2/IO133RSB2  
IO124RSB2  
IO116RSB2  
IO113RSB2  
IO107RSB2  
IO105RSB2  
IO102RSB2  
IO97RSB2  
IO92RSB2  
GDC2/IO82RSB2  
IO86RSB2  
GDA2/IO80RSB2  
TMS  
W6  
NC  
W7  
NC  
W8  
VCCIB1  
W9  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
W17  
W18  
W19  
W20  
W21  
W22  
Y1  
GND  
NC  
NC  
NC  
VCCIB3  
NC  
Y2  
Y3  
NC  
Y4  
NC  
Y5  
GND  
Y6  
NC  
3-62  
v1.7  
IGLOO Packaging  
484-Pin FBGA  
484-Pin FBGA  
484-Pin FBGA  
Pin Number AGL600 Function  
Pin Number  
AGL600 Function  
GND  
Pin Number  
AGL600 Function  
A1  
A2  
AA15  
AA16  
AA17  
AA18  
AA19  
AA20  
AA21  
AA22  
AB1  
NC  
IO101RSB2  
NC  
B7  
B8  
IO12RSB0  
NC  
GND  
A3  
VCCIB0  
NC  
B9  
NC  
A4  
NC  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
C1  
IO17RSB0  
NC  
A5  
NC  
NC  
A6  
IO09RSB0  
IO15RSB0  
NC  
NC  
NC  
A7  
VCCIB1  
IO36RSB0  
NC  
A8  
GND  
GND  
A9  
NC  
NC  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
AA1  
AA2  
AA3  
AA4  
AA5  
AA6  
AA7  
AA8  
AA9  
AA10  
AA11  
AA12  
AA13  
AA14  
IO22RSB0  
IO23RSB0  
IO29RSB0  
IO35RSB0  
NC  
AB2  
GND  
IO47RSB0  
IO49RSB0  
NC  
AB3  
VCCIB2  
NC  
AB4  
AB5  
NC  
NC  
AB6  
IO130RSB2  
IO128RSB2  
IO122RSB2  
IO116RSB2  
NC  
NC  
NC  
AB7  
VCCIB1  
GND  
VCCIB3  
NC  
IO46RSB0  
IO48RSB0  
NC  
AB8  
AB9  
AB10  
AB11  
AB12  
AB13  
AB14  
AB15  
AB16  
AB17  
AB18  
AB19  
AB20  
AB21  
AB22  
B1  
C2  
NC  
NC  
C3  
NC  
VCCIB0  
GND  
IO113RSB2  
IO112RSB2  
NC  
C4  
NC  
C5  
GND  
NC  
GND  
C6  
GND  
NC  
C7  
NC  
VCCIB3  
NC  
IO100RSB2  
IO95RSB2  
NC  
C8  
VCC  
C9  
VCC  
NC  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
NC  
NC  
NC  
NC  
IO135RSB2  
IO133RSB2  
NC  
VCCIB2  
GND  
NC  
NC  
GND  
VCC  
NC  
GND  
VCC  
NC  
B2  
VCCIB3  
NC  
NC  
NC  
B3  
NC  
NC  
B4  
NC  
GND  
NC  
NC  
B5  
NC  
NC  
B6  
IO08RSB0  
NC  
v1.7  
3-63  
Package Pin Assignments  
484-Pin FBGA  
484-Pin FBGA  
Pin Number  
484-Pin FBGA  
Pin Number  
C21  
C22  
D1  
AGL600 Function  
AGL600 Function  
IO38RSB0  
IO42RSB0  
GBC1/IO55RSB0  
GBB0/IO56RSB0  
IO52RSB0  
GBA2/IO60PDB1  
IO60NDB1  
GND  
Pin Number  
AGL600 Function  
IO171PDB3  
GAC2/IO172PDB3  
IO06RSB0  
GNDQ  
NC  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
E21  
E22  
F1  
G5  
G6  
V
CCIB1  
NC  
G7  
D2  
NC  
G8  
D3  
NC  
G9  
IO10RSB0  
IO19RSB0  
IO26RSB0  
IO30RSB0  
IO40RSB0  
IO45RSB0  
GNDQ  
D4  
GND  
GAA0/IO00RSB0  
GAA1/IO01RSB0  
GAB0/IO02RSB0  
IO11RSB0  
IO16RSB0  
IO18RSB0  
IO28RSB0  
IO34RSB0  
IO37RSB0  
IO41RSB0  
IO43RSB0  
GBB1/IO57RSB0  
GBA0/IO58RSB0  
GBA1/IO59RSB0  
GND  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
G17  
G18  
G19  
G20  
G21  
G22  
H1  
D5  
D6  
D7  
NC  
D8  
NC  
D9  
NC  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
E1  
F2  
NC  
IO50RSB0  
GBB2/IO61PPB1  
IO53RSB0  
IO63NDB1  
NC  
F3  
NC  
F4  
IO173NDB3  
IO174NDB3  
VMV3  
F5  
F6  
F7  
IO07RSB0  
GAC0/IO04RSB0  
GAC1/IO05RSB0  
IO20RSB0  
IO24RSB0  
IO33RSB0  
IO39RSB0  
IO44RSB0  
GBC0/IO54RSB0  
IO51RSB0  
VMV0  
NC  
F8  
NC  
F9  
NC  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
F21  
F22  
G1  
H2  
NC  
H3  
VCC  
NC  
H4  
IO166PDB3  
IO167NPB3  
IO172NDB3  
IO169NDB3  
VMV0  
NC  
H5  
NC  
H6  
NC  
H7  
E2  
NC  
H8  
E3  
GND  
H9  
VCCIB0  
E4  
GAB2/IO173PDB3  
GAA2/IO174PDB3  
GNDQ  
IO61NPB1  
IO63PDB1  
NC  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
H17  
H18  
VCCIB0  
E5  
IO25RSB0  
IO31RSB0  
VCCIB0  
E6  
E7  
GAB1/IO03RSB0  
IO13RSB0  
IO14RSB0  
IO21RSB0  
IO27RSB0  
IO32RSB0  
NC  
E8  
NC  
VCCIB0  
E9  
IO170NDB3  
IO170PDB3  
NC  
VMV1  
E10  
E11  
E12  
G2  
GBC2/IO62PDB1  
IO67PPB1  
IO64PPB1  
G3  
G4  
IO171NDB3  
3-64  
v1.7  
IGLOO Packaging  
484-Pin FBGA  
484-Pin FBGA  
484-Pin FBGA  
Pin Number AGL600 Function  
Pin Number  
AGL600 Function  
Pin Number  
AGL600 Function  
GND  
H19  
H20  
H21  
H22  
J1  
IO66PDB1  
VCC  
K11  
K12  
K13  
K14  
K15  
K16  
K17  
K18  
K19  
K20  
K21  
K22  
L1  
M3  
M4  
IO158NPB3  
GFA2/IO161PPB3  
GFA1/IO162PDB3  
VCCPLF  
GND  
NC  
GND  
M5  
NC  
VCC  
M6  
NC  
VCCIB1  
M7  
IO160NDB3  
GFB2/IO160PDB3  
VCC  
J2  
NC  
GCC1/IO69PPB1  
IO65NPB1  
IO75PDB1  
IO75NDB1  
NC  
M8  
J3  
NC  
M9  
J4  
IO166NDB3  
IO168NPB3  
IO167PPB3  
IO169PDB3  
VCCIB3  
GND  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
M17  
M18  
M19  
M20  
M21  
M22  
N1  
GND  
J5  
GND  
J6  
GND  
J7  
IO76NDB1  
IO76PDB1  
NC  
GND  
J8  
VCC  
J9  
GCB2/IO73PPB1  
GCA1/IO71PPB1  
GCC2/IO74PPB1  
IO80PPB1  
GCA2/IO72PDB1  
IO79PPB1  
IO78PPB1  
NC  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
J17  
J18  
J19  
J20  
J21  
J22  
K1  
K2  
K3  
K4  
K5  
K6  
K7  
K8  
K9  
K10  
VCC  
L2  
IO155PDB3  
NC  
VCC  
L3  
VCC  
L4  
GFB0/IO163NPB3  
GFA0/IO162NDB3  
GFB1/IO163PPB3  
VCOMPLF  
VCC  
L5  
GND  
L6  
VCCIB1  
L7  
IO62NDB1  
IO64NPB1  
IO65PPB1  
IO66NDB1  
NC  
L8  
GFC0/IO164NPB3  
VCC  
L9  
IO154NDB3  
IO154PDB3  
NC  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
L17  
L18  
L19  
L20  
L21  
L22  
M1  
M2  
GND  
N2  
GND  
N3  
GND  
N4  
GFC2/IO159PDB3  
IO161NPB3  
IO156PPB3  
IO129RSB2  
VCCIB3  
IO68PDB1  
IO68NDB1  
IO157PDB3  
IO157NDB3  
NC  
GND  
N5  
VCC  
N6  
GCC0/IO69NPB1  
GCB1/IO70PPB1  
GCA0/IO71NPB1  
IO67NPB1  
GCB0/IO70NPB1  
IO77PDB1  
IO77NDB1  
IO78NPB1  
NC  
N7  
N8  
N9  
VCC  
IO165NDB3  
IO165PDB3  
IO168PPB3  
GFC1/IO164PPB3  
VCCIB3  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
GND  
GND  
GND  
GND  
VCC  
VCC  
VCCIB1  
GND  
IO155NDB3  
IO73NPB1  
v1.7  
3-65  
Package Pin Assignments  
484-Pin FBGA  
484-Pin FBGA  
484-Pin FBGA  
Pin Number  
N17  
N18  
N19  
N20  
N21  
N22  
P1  
AGL600 Function  
IO80NPB1  
IO74NPB1  
IO72NDB1  
NC  
Pin Number  
AGL600 Function  
Pin Number  
AGL600 Function  
IO149PDB3  
IO149NDB3  
NC  
R9  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
T1  
VCCIB2  
U1  
U2  
V
CCIB2  
IO117RSB2  
IO110RSB2  
VCCIB2  
U3  
U4  
GEB1/IO145PDB3  
GEB0/IO145NDB3  
VMV2  
IO79NPB1  
NC  
U5  
VCCIB2  
U6  
NC  
VMV2  
U7  
IO138RSB2  
IO136RSB2  
IO131RSB2  
IO124RSB2  
IO119RSB2  
IO107RSB2  
IO104RSB2  
IO97RSB2  
VMV1  
P2  
IO153PDB3  
IO153NDB3  
IO159NDB3  
IO156NPB3  
IO151PPB3  
IO158PPB3  
VCCIB3  
IO94RSB2  
GDB1/IO87PPB1  
GDC1/IO86PDB1  
IO84NDB1  
VCC  
U8  
P3  
U9  
P4  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
U18  
U19  
U20  
U21  
U22  
V1  
P5  
P6  
P7  
IO81NDB1  
IO82PDB1  
IO152PDB3  
IO152NDB3  
NC  
P8  
P9  
GND  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
P20  
P21  
P22  
R1  
VCC  
T2  
TCK  
VCC  
T3  
VPUMP  
VCC  
T4  
IO150NDB3  
IO147PPB3  
GEC1/IO146PPB3  
IO140RSB2  
GNDQ  
TRST  
VCC  
T5  
GDA0/IO88NDB1  
NC  
GND  
T6  
VCCIB1  
T7  
IO83NDB1  
NC  
GDB0/IO87NPB1  
IO85NDB1  
IO85PDB1  
IO84PDB1  
NC  
T8  
T9  
GEA2/IO143RSB2  
IO126RSB2  
IO120RSB2  
IO108RSB2  
IO103RSB2  
IO99RSB2  
GNDQ  
NC  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
T22  
V2  
NC  
V3  
GND  
V4  
GEA1/IO144PDB3  
GEA0/IO144NDB3  
IO139RSB2  
GEC2/IO141RSB2  
IO132RSB2  
IO127RSB2  
IO121RSB2  
IO114RSB2  
IO109RSB2  
IO105RSB2  
IO98RSB2  
IO81PDB1  
NC  
V5  
V6  
NC  
V7  
R2  
NC  
IO92RSB2  
VJTAG  
V8  
R3  
VCC  
V9  
R4  
IO150PDB3  
IO151NPB3  
IO147NPB3  
GEC0/IO146NPB3  
VMV3  
GDC0/IO86NDB1  
GDA1/IO88PDB1  
NC  
V10  
V11  
V12  
V13  
V14  
R5  
R6  
R7  
IO83PDB1  
IO82NDB1  
R8  
3-66  
v1.7  
IGLOO Packaging  
484-Pin FBGA  
484-Pin FBGA  
Pin Number  
AGL600 Function  
IO96RSB2  
GDB2/IO90RSB2  
TDI  
Pin Number  
AGL600 Function  
V15  
V16  
V17  
V18  
V19  
V20  
V21  
V22  
W1  
Y7  
NC  
VCC  
VCC  
NC  
Y8  
Y9  
GNDQ  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
Y21  
Y22  
TDO  
NC  
GND  
NC  
NC  
NC  
NC  
VCC  
VCC  
NC  
NC  
W2  
IO148PDB3  
NC  
W3  
NC  
W4  
GND  
GND  
NC  
W5  
IO137RSB2  
FF/GEB2/IO142RSB2  
IO134RSB2  
IO125RSB2  
IO123RSB2  
IO118RSB2  
IO115RSB2  
IO111RSB2  
IO106RSB2  
IO102RSB2  
GDC2/IO91RSB2  
IO93RSB2  
GDA2/IO89RSB2  
TMS  
W6  
NC  
W7  
NC  
W8  
VCCIB1  
W9  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
W17  
W18  
W19  
W20  
W21  
W22  
Y1  
GND  
NC  
NC  
NC  
VCCIB3  
Y2  
IO148NDB3  
NC  
Y3  
Y4  
NC  
Y5  
GND  
Y6  
NC  
v1.7  
3-67  
Package Pin Assignments  
484-Pin FBGA  
Pin Number AGL1000 Function  
484-Pin FBGA  
484-Pin FBGA  
Pin Number AGL1000 Function  
Pin Number AGL1000 Function  
A1  
A2  
GND  
AA15  
AA16  
AA17  
AA18  
AA19  
AA20  
AA21  
AA22  
AB1  
NC  
IO122RSB2  
IO119RSB2  
IO117RSB2  
NC  
B7  
B8  
IO15RSB0  
IO19RSB0  
IO24RSB0  
IO31RSB0  
IO39RSB0  
IO48RSB0  
IO54RSB0  
IO58RSB0  
IO63RSB0  
IO66RSB0  
IO68RSB0  
IO70RSB0  
NC  
GND  
A3  
VCCIB0  
B9  
A4  
IO07RSB0  
IO09RSB0  
IO13RSB0  
IO18RSB0  
IO20RSB0  
IO26RSB0  
IO32RSB0  
IO40RSB0  
IO41RSB0  
IO53RSB0  
IO59RSB0  
IO64RSB0  
IO65RSB0  
IO67RSB0  
IO69RSB0  
NC  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
C1  
A5  
A6  
NC  
A7  
VCCIB1  
A8  
GND  
A9  
GND  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
AA1  
AA2  
AA3  
AA4  
AA5  
AA6  
AA7  
AA8  
AA9  
AA10  
AA11  
AA12  
AA13  
AA14  
AB2  
GND  
AB3  
VCCIB2  
AB4  
IO180RSB2  
IO176RSB2  
IO173RSB2  
IO167RSB2  
IO162RSB2  
IO156RSB2  
IO150RSB2  
IO145RSB2  
IO144RSB2  
IO132RSB2  
IO127RSB2  
IO126RSB2  
IO123RSB2  
IO121RSB2  
IO118RSB2  
NC  
AB5  
AB6  
NC  
AB7  
VCCIB1  
GND  
AB8  
AB9  
VCCIB3  
IO220PDB3  
NC  
AB10  
AB11  
AB12  
AB13  
AB14  
AB15  
AB16  
AB17  
AB18  
AB19  
AB20  
AB21  
AB22  
B1  
C2  
C3  
VCCIB0  
C4  
NC  
GND  
C5  
GND  
GND  
C6  
IO10RSB0  
IO14RSB0  
VCC  
GND  
C7  
VCCIB3  
C8  
NC  
C9  
VCC  
IO181RSB2  
IO178RSB2  
IO175RSB2  
IO169RSB2  
IO166RSB2  
IO160RSB2  
IO152RSB2  
IO146RSB2  
IO139RSB2  
IO133RSB2  
NC  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
IO30RSB0  
IO37RSB0  
IO43RSB0  
NC  
VCCIB2  
GND  
GND  
VCC  
GND  
VCC  
B2  
VCCIB3  
NC  
B3  
NC  
NC  
B4  
IO06RSB0  
IO08RSB0  
IO12RSB0  
GND  
B5  
NC  
B6  
NC  
3-68  
v1.7  
IGLOO Packaging  
484-Pin FBGA  
484-Pin FBGA  
484-Pin FBGA  
Pin Number AGL1000 Function  
Pin Number AGL1000 Function  
Pin Number AGL1000 Function  
C21  
C22  
D1  
NC  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
E21  
E22  
F1  
IO51RSB0  
IO57RSB0  
GBC1/IO73RSB0  
GBB0/IO74RSB0  
IO71RSB0  
GBA2/IO78PDB1  
IO81PDB1  
GND  
G5  
G6  
IO222PDB3  
GAC2/IO223PDB3  
IO223NDB3  
GNDQ  
V
CCIB1  
IO219PDB3  
IO220NDB3  
NC  
G7  
D2  
G8  
D3  
G9  
IO23RSB0  
IO29RSB0  
IO33RSB0  
IO46RSB0  
IO52RSB0  
IO60RSB0  
GNDQ  
D4  
GND  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
G17  
G18  
G19  
G20  
G21  
G22  
H1  
D5  
GAA0/IO00RSB0  
GAA1/IO01RSB0  
GAB0/IO02RSB0  
IO16RSB0  
IO22RSB0  
IO28RSB0  
IO35RSB0  
IO45RSB0  
IO50RSB0  
IO55RSB0  
IO61RSB0  
GBB1/IO75RSB0  
GBA0/IO76RSB0  
GBA1/IO77RSB0  
GND  
D6  
D7  
NC  
D8  
IO84PDB1  
NC  
D9  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
E1  
F2  
IO215PDB3  
IO215NDB3  
IO224NDB3  
IO225NDB3  
VMV3  
IO80NDB1  
GBB2/IO79PDB1  
IO79NDB1  
IO82NPB1  
IO85PDB1  
IO85NDB1  
NC  
F3  
F4  
F5  
F6  
F7  
IO11RSB0  
GAC0/IO04RSB0  
GAC1/IO05RSB0  
IO25RSB0  
IO36RSB0  
IO42RSB0  
IO49RSB0  
IO56RSB0  
GBC0/IO72RSB0  
IO62RSB0  
VMV0  
F8  
F9  
NC  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
F21  
F22  
G1  
H2  
NC  
H3  
VCC  
NC  
H4  
IO217PDB3  
IO218PDB3  
IO221NDB3  
IO221PDB3  
VMV0  
NC  
H5  
NC  
H6  
IO219NDB3  
NC  
H7  
E2  
H8  
E3  
GND  
H9  
VCCIB0  
E4  
GAB2/IO224PDB3  
GAA2/IO225PDB3  
GNDQ  
IO78NDB1  
IO81NDB1  
IO82PPB1  
NC  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
H17  
H18  
VCCIB0  
E5  
IO38RSB0  
IO47RSB0  
VCCIB0  
E6  
E7  
GAB1/IO03RSB0  
IO17RSB0  
IO21RSB0  
IO27RSB0  
IO34RSB0  
IO44RSB0  
E8  
IO84NDB1  
IO214NDB3  
IO214PDB3  
NC  
VCCIB0  
E9  
VMV1  
E10  
E11  
E12  
G2  
GBC2/IO80PDB1  
IO83PPB1  
IO86PPB1  
G3  
G4  
IO222NDB3  
v1.7  
3-69  
Package Pin Assignments  
484-Pin FBGA  
Pin Number AGL1000 Function  
484-Pin FBGA  
484-Pin FBGA  
Pin Number AGL1000 Function  
Pin Number AGL1000 Function  
H19  
H20  
H21  
H22  
J1  
IO87PDB1  
VCC  
K11  
K12  
K13  
K14  
K15  
K16  
K17  
K18  
K19  
K20  
K21  
K22  
L1  
GND  
GND  
M3  
M4  
IO206NDB3  
GFA2/IO206PDB3  
GFA1/IO207PDB3  
VCCPLF  
NC  
GND  
M5  
NC  
VCC  
M6  
IO212NDB3  
IO212PDB3  
NC  
VCCIB1  
M7  
IO205NDB3  
GFB2/IO205PDB3  
VCC  
J2  
GCC1/IO91PPB1  
IO90NPB1  
IO88PDB1  
IO88NDB1  
IO94NPB1  
IO98NDB1  
IO98PDB1  
NC  
M8  
J3  
M9  
J4  
IO217NDB3  
IO218NDB3  
IO216PDB3  
IO216NDB3  
VCCIB3  
GND  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
M17  
M18  
M19  
M20  
M21  
M22  
N1  
GND  
J5  
GND  
J6  
GND  
J7  
GND  
J8  
VCC  
J9  
GCB2/IO95PPB1  
GCA1/IO93PPB1  
GCC2/IO96PPB1  
IO100PPB1  
GCA2/IO94PPB1  
IO101PPB1  
IO99PPB1  
NC  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
J17  
J18  
J19  
J20  
J21  
J22  
K1  
K2  
K3  
K4  
K5  
K6  
K7  
K8  
K9  
K10  
VCC  
L2  
IO200PDB3  
IO210NPB3  
GFB0/IO208NPB3  
GFA0/IO207NDB3  
GFB1/IO208PPB3  
VCOMPLF  
VCC  
L3  
VCC  
L4  
VCC  
L5  
GND  
L6  
VCCIB1  
L7  
IO83NPB1  
IO86NPB1  
IO90PPB1  
IO87NDB1  
NC  
L8  
GFC0/IO209NPB3  
VCC  
L9  
IO201NDB3  
IO201PDB3  
NC  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
L17  
L18  
L19  
L20  
L21  
L22  
M1  
M2  
GND  
N2  
GND  
N3  
GND  
N4  
GFC2/IO204PDB3  
IO204NDB3  
IO203NDB3  
IO203PDB3  
VCCIB3  
IO89PDB1  
IO89NDB1  
IO211PDB3  
IO211NDB3  
NC  
GND  
N5  
VCC  
N6  
GCC0/IO91NPB1  
GCB1/IO92PPB1  
GCA0/IO93NPB1  
IO96NPB1  
GCB0/IO92NPB1  
IO97PDB1  
IO97NDB1  
IO99NPB1  
NC  
N7  
N8  
N9  
VCC  
IO210PPB3  
IO213NDB3  
IO213PDB3  
GFC1/IO209PPB3  
VCCIB3  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
GND  
GND  
GND  
GND  
VCC  
VCC  
VCCIB1  
GND  
IO200NDB3  
IO95NPB1  
3-70  
v1.7  
IGLOO Packaging  
484-Pin FBGA  
484-Pin FBGA  
484-Pin FBGA  
Pin Number AGL1000 Function  
Pin Number AGL1000 Function  
Pin Number AGL1000 Function  
N17  
N18  
N19  
N20  
N21  
N22  
P1  
IO100NPB1  
IO102NDB1  
IO102PDB1  
NC  
R9  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
T1  
VCCIB2  
CCIB2  
U1  
U2  
IO195PDB3  
IO195NDB3  
IO194NPB3  
GEB1/IO189PDB3  
GEB0/IO189NDB3  
VMV2  
V
IO147RSB2  
IO136RSB2  
VCCIB2  
U3  
U4  
IO101NPB1  
IO103PDB1  
NC  
U5  
VCCIB2  
U6  
VMV2  
U7  
IO179RSB2  
IO171RSB2  
IO165RSB2  
IO159RSB2  
IO151RSB2  
IO137RSB2  
IO134RSB2  
IO128RSB2  
VMV1  
P2  
IO199PDB3  
IO199NDB3  
IO202NDB3  
IO202PDB3  
IO196PPB3  
IO193PPB3  
VCCIB3  
IO110NDB1  
GDB1/IO112PPB1  
GDC1/IO111PDB1  
IO107NDB1  
VCC  
U8  
P3  
U9  
P4  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
U18  
U19  
U20  
U21  
U22  
V1  
P5  
P6  
P7  
IO104NDB1  
IO105PDB1  
IO198PDB3  
IO198NDB3  
NC  
P8  
P9  
GND  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
P20  
P21  
P22  
R1  
VCC  
T2  
TCK  
VCC  
T3  
VPUMP  
VCC  
T4  
IO194PPB3  
IO192PPB3  
GEC1/IO190PPB3  
IO192NPB3  
GNDQ  
TRST  
VCC  
T5  
GDA0/IO113NDB1  
NC  
GND  
T6  
VCCIB1  
T7  
IO108NDB1  
IO109PDB1  
NC  
GDB0/IO112NPB1  
IO106NDB1  
IO106PDB1  
IO107PDB1  
NC  
T8  
T9  
GEA2/IO187RSB2  
IO161RSB2  
IO155RSB2  
IO141RSB2  
IO129RSB2  
IO124RSB2  
GNDQ  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
T22  
V2  
NC  
V3  
GND  
V4  
GEA1/IO188PDB3  
GEA0/IO188NDB3  
IO184RSB2  
GEC2/IO185RSB2  
IO168RSB2  
IO163RSB2  
IO157RSB2  
IO149RSB2  
IO143RSB2  
IO138RSB2  
IO131RSB2  
IO104PDB1  
IO103NDB1  
NC  
V5  
V6  
V7  
R2  
IO197PPB3  
VCC  
IO110PDB1  
VJTAG  
V8  
R3  
V9  
R4  
IO197NPB3  
IO196NPB3  
IO193NPB3  
GEC0/IO190NPB3  
VMV3  
GDC0/IO111NDB1  
GDA1/IO113PDB1  
NC  
V10  
V11  
V12  
V13  
V14  
R5  
R6  
R7  
IO108PDB1  
IO105NDB1  
R8  
v1.7  
3-71  
Package Pin Assignments  
484-Pin FBGA  
Pin Number AGL1000 Function  
484-Pin FBGA  
Pin Number AGL1000 Function  
V15  
V16  
V17  
V18  
V19  
V20  
V21  
V22  
W1  
IO125RSB2  
GDB2/IO115RSB2  
TDI  
Y7  
IO174RSB2  
VCC  
Y8  
Y9  
VCC  
GNDQ  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
Y21  
Y22  
IO154RSB2  
IO148RSB2  
IO140RSB2  
NC  
TDO  
GND  
NC  
IO109NDB1  
NC  
VCC  
VCC  
W2  
IO191PDB3  
NC  
NC  
W3  
NC  
W4  
GND  
GND  
W5  
IO183RSB2  
FF/GEB2/IO186RSB2  
IO172RSB2  
IO170RSB2  
IO164RSB2  
IO158RSB2  
IO153RSB2  
IO142RSB2  
IO135RSB2  
IO130RSB2  
GDC2/IO116RSB2  
IO120RSB2  
GDA2/IO114RSB2  
TMS  
NC  
W6  
NC  
W7  
NC  
W8  
VCCIB1  
W9  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
W17  
W18  
W19  
W20  
W21  
W22  
Y1  
GND  
NC  
NC  
NC  
VCCIB3  
Y2  
IO191NDB3  
NC  
Y3  
Y4  
IO182RSB2  
GND  
Y5  
Y6  
IO177RSB2  
3-72  
v1.7  
IGLOO Packaging  
Part Number and Revision Date  
Part Number 51700095-003-7  
Revised December 2008  
List of Changes  
The following table lists critical changes that were made in the current version of the chapter.  
Previous Version  
Changes in Current Version (v1.7)  
The "48-Pin QFP" pin table is new.  
Page  
v1.6  
(October 2008)  
3-22  
3-25  
3-64  
The "68-Pin QFN" pin table is new.  
The AGL600 Function for pin K15 in the "484-Pin FBGA" table was changed to  
VCCIB1.  
v1.5  
(June 2008)  
The "196-pin CSP" table for the AGL400 device is new.  
The "144-Pin FBGA" table for the AGL400 device is new.  
The "256-Pin FBGA" table for the AGL400 device is new.  
The "484-Pin FBGA" table for the AGL400 device is new.  
3-12  
3-44  
3-55  
3-64  
3-23  
v1.4  
Pin numbers were added to the "68-Pin QFN" package diagram. Note 2 was  
added below the diagram.  
(June 2008)  
The "132-Pin QFN" package diagram was updated to include D1 to D4. In  
addition, note 1 was changed from top view to bottom view, and note 2 is  
new.  
3-26  
3-23  
v1.3  
(February 2008)  
The "68-Pin QFN" package drawing was updated to include numbers on pins 1  
and 68.  
The "281-Pin CSP" package and pin table was added for AGL1000.  
The "196-Pin CSP" package and pin table was added for AGL250.  
3-18  
3-10  
v1.2  
(February 2008)  
v1.1  
(January 2008)  
The "68-Pin QFN" section is new.  
3-23  
3-7  
v1.0  
The "196-Pin CSP" package and pin table was added for AGL125.  
(January 2008)  
Advance v0.7  
(November 2007)  
This document was previously in datasheet Advance v0.7. As a result of  
moving to the handbook format, Actel has restarted the version numbers. The  
new version number is v1.0.  
N/A  
Advance v0.6  
(November 2007)  
The "121-Pin CSP" and "281-Pin CSP" packages are new.  
4-5, 4-7  
4-4  
The "81-Pin CSP" table for the AGL030 device was updated to change the G6  
pin function to IO44RSB1 and the JG pin function to IO45RSB1.  
The "121-Pin CSP" table for the AGL060 device is new.  
The "256-Pin FBGA" table for the AGL1000 device is new.  
The "281-Pin CSP" table for the AGL 600 device is new.  
The "100-Pin VQFP" table for the AGL060 device is new.  
The "144-Pin FBGA" table for the AGL250 device is new.  
The "144-Pin FBGA" table for the AGL1000 device is new.  
The "484-Pin FBGA" table for the AGL600 device is new.  
The "484-Pin FBGA" table for the AGL1000 device is new.  
The "81-Pin µCSP" table for the AGL030 device is new.  
The "81-Pin CSP" table for the AGL030 device is new.  
4-6  
4-34  
4-8  
4-18  
4-24  
4-28  
4-38  
4-43  
4-3  
Advance v0.5  
(September 2007)  
4-1  
v1.7  
3-73  
Package Pin Assignments  
Datasheet Categories  
Categories  
In order to provide the latest information to designers, some datasheets are published before data  
has been fully characterized. Datasheets are designated as "Product Brief," "Advance,"  
"Preliminary," and "Production." The definitions of these categories are as follows:  
Product Brief  
The product brief is a summarized version of a datasheet (advance or production) and contains  
general product information. This document gives an overview of specific device and family  
information.  
Advance  
This version contains initial estimated information based on simulation, other products, devices, or  
speed grades. This information can be used as estimates, but not for production. This label only  
applies to the DC and Switching Characteristics chapter of the datasheet and will only be used  
when the data has not been fully characterized.  
Preliminary  
The datasheet contains information based on simulation and/or initial characterization. The  
information is believed to be correct, but changes are possible.  
Unmarked (production)  
This version contains information that is considered to be final.  
Export Administration Regulations (EAR)  
The products described in this document are subject to the Export Administration Regulations  
(EAR). They could require an approved export license prior to export from the United States. An  
export includes release of product or disclosure of technology to a foreign national inside or  
outside the United States.  
Actel Safety Critical, Life Support, and High-Reliability  
Applications Policy  
The Actel products described in this advance status document may not have completed Actel’s  
qualification process. Actel may amend or enhance products during the product introduction and  
qualification process, resulting in changes in device functionality or performance. It is the  
responsibility of each customer to ensure the fitness of any Actel product (but especially a new  
product) for a particular purpose, including appropriateness for safety-critical, life-support, and  
other high-reliability applications. Consult Actel’s Terms and Conditions for specific liability  
exclusions relating to life-support applications. A reliability report covering all of Actel’s products is  
available on the Actel website at http://www.actel.com/documents/ORT_Report.pdf. Actel also  
offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your  
local Actel sales office for additional reliability information.  
3-74  
v1.7  
IGLOO Packaging  
v1.7  
3-75  
Actel and the Actel logo are registered trademarks of Actel Corporation.  
All other trademarks are the property of their owners.  
www.actel.com  
Actel is the leader in low-power and mixed-signal FPGAs and offers the most comprehensive portfolio of  
system and power management solutions. Power Matters. Learn more at www.actel.com.  
Actel Corporation  
Actel Europe Ltd.  
Actel Japan  
Actel Hong Kong  
2061 Stierlin Court  
Mountain View, CA  
94043-4655 USA  
River Court,Meadows Business Park EXOS Ebisu Buillding 4F  
Room 2107, China Resources Building  
26 Harbour Road  
Wanchai, Hong Kong  
Station Approach, Blackwater  
Camberley Surrey GU17 9AB  
United Kingdom  
1-24-14 Ebisu Shibuya-ku  
Tokyo 150 Japan  
Phone 650.318.4200  
Fax 650.318.4600  
Phone +81.03.3445.7671  
Fax +81.03.3445.7668  
Phone +852 2185 6460  
Fax +852 2185 6488  
Phone +44 (0) 1276 609 300  
Fax +44 (0) 1276 607 540  
http://jp.actel.com  
www.actel.com.cn  
51700095-005-12/12.08  

相关型号:

M1AGL1000V5-VQ144ES

IGLOO Low-Power Flash FPGAs with Flash Freeze Technology
ACTEL

M1AGL1000V5-VQ144I

IGLOO Low-Power Flash FPGAs with Flash Freeze Technology
ACTEL

M1AGL1000V5-VQ144PP

IGLOO Low-Power Flash FPGAs with Flash Freeze Technology
ACTEL

M1AGL1000V5-VQG144

IGLOO Low-Power Flash FPGAs with Flash Freeze Technology
ACTEL

M1AGL1000V5-VQG144ES

IGLOO Low-Power Flash FPGAs with Flash Freeze Technology
ACTEL

M1AGL1000V5-VQG144I

IGLOO Low-Power Flash FPGAs with Flash Freeze Technology
ACTEL

M1AGL1000V5-VQG144PP

IGLOO Low-Power Flash FPGAs with Flash Freeze Technology
ACTEL

M1AGL250

IGLOO Low Power Flash FPGAs with Flash*Freeze Technology
MICROSEMI
MICROSEMI

M1AGL2505-CS196YI

Field Programmable Gate Array
MICROSEMI
MICROSEMI
MICROSEMI