RTSX72SU-1CC256B [ACTEL]

RTSX-SU RadTolerant FPGAs (UMC); RTSX -SU RadTolerant的FPGA ( UMC )
RTSX72SU-1CC256B
型号: RTSX72SU-1CC256B
厂家: Actel Corporation    Actel Corporation
描述:

RTSX-SU RadTolerant FPGAs (UMC)
RTSX -SU RadTolerant的FPGA ( UMC )

文件: 总83页 (文件大小:735K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
v2.2  
RTSX-SU RadTolerant FPGAs (UMC)  
u
e
Designed for Space  
Features  
SEU-Hardened Registers Eliminate the Need to  
Implement Triple-Module Redundancy (TMR)  
Very Low Power Consumption (Up to 68 mW at  
Standby)  
Immune to Single-Event Upsets (SEU) to LETth  
3.3V and 5V Mixed Voltage  
Configurable I/O Support for 3.3V/5V PCI, LVTTL,  
TTL, and CMOS  
> 40 MeV-cm2/mg,  
SEU Rate < 10–10 Upset/Bit-Day in Worst-Case  
Geosynchronous Orbit  
5V Input Tolerance and 5V Drive Strength  
Slow Slew Rate Option  
Configurable Weak Resistor Pull-Up/Down for  
Tristated Outputs at Power-Up  
Up to 100 krad (Si) Total Ionizing Dose (TID)  
Parametric Performance Supported with Lot-  
Specific Test Data  
Hot-Swap  
Support  
Compliant  
with  
Cold-Sparing  
Single-Event Latch-Up (SEL) Immunity  
TM1019.5 Test Data Available  
QML Certified Devices  
Secure Programming Technology Prevents Reverse  
Engineering and Design Theft  
100% Circuit Resource Utilization with 100% Pin  
Locking  
Unique In-System Diagnostic and Verification  
Capability with Silicon Explorer II  
Low-Cost Prototyping Option  
Deterministic, User-Controllable Timing  
JTAG Boundary Scan Testing in Compliance with  
IEEE Standard 1149.1 – Dedicated JTAG Reset  
(TRST) Pin  
High Performance  
230 MHz System Performance  
310 MHz Internal Performance  
9.5 ns Input Clock to Output Pad  
Specifications  
0.25 µm Metal-to-Metal Antifuse Process (UMC)  
48,000 to 108,000 Available System Gates  
Up to 2,012 SEU-Hardened Flip-Flops  
Up to 360 User-Programmable I/O Pins  
Table 1 RTSX-SU Product Profile  
Device  
RTSX32SU  
RTSX72SU  
Capacity  
Typical Gates  
System Gates  
32,000  
48,000  
72,000  
108,000  
Logic Modules  
2,880  
1,800  
1,080  
6,036  
4,024  
2,012  
Combinatorial Cells  
SEU-Hardened Register Cells (Dedicated Flip-Flops)  
Maximum Flip-Flops  
Maximum User I/Os  
Clocks  
1,980  
227  
3
4,024  
360  
3
Quadrant Clocks  
Speed Grades  
0
4
Std., –1  
Std., –1  
Package (by pin count)  
CQFP  
CCGA  
CCLG  
84, 208, 256  
256  
208, 256  
624  
March 2006  
i
© 2006 Actel Corporation  
See the Actel website for the latest version of the datasheet  
RTSX-SU RadTolerant FPGAs (UMC)  
Ordering Information  
RTSX72SU  
1
CQ  
256  
B
Application (Temperature Range)  
B = MIL-STD-883 Class B  
E = E-Flow (Actel Space Level Flow)  
= Military Temperature  
M
Package Lead Count  
Package Type  
=
CQ Ceramic Quad Flat Pack  
=
CG Ceramic Column Grid Aray  
=
CC Ceramic Chip Carrier Land Grid  
Speed Grade  
Blank = Standard Speed  
1 = Approximately 15% Faster than Standard  
Part Number  
RTSX32SU 32,000 RadTolerant Typical Gates  
=
RTSX72SU 72,000 RadTolerant Typical Gates  
=
Ceramic Device Resources  
User I/Os (including clock buffers)  
CQFP  
CQFP  
CQFP  
CCLG  
CCGA  
Device  
84-Pin  
208-Pin  
256-Pin  
256-Pin  
624-Pin  
RTSX32SU  
RTSX72SU  
62  
173  
170  
227  
212  
202  
360  
Note: The 256-Pin CCLG available in Mil-Temp only.  
Temperature Grade and Application Offering  
Package  
CQ84  
RTSX32SU  
RTSX72SU  
B, E  
B, E  
B, E  
M
CQ208  
CQ256  
CC256  
CG624  
B, E  
B, E  
B, E  
Note: M = Military Temperature  
B = MIL-STD-883 Class B  
E = E-Flow  
ii  
v2.2  
RTSX-SU RadTolerant FPGAs (UMC)  
Speed Grade and Temperature/Application Matrix  
Std.  
-1  
M
B
E
QML Certification  
Actel has achieved full QML certification, demonstrating that quality management procedures, processes, and controls  
are in place and comply with MIL-PRF-38535 (the performance specification used by the U.S. Department of Defense  
for monolithic integrated circuits).  
Actel MIL-STD-883 Class B Product Flow  
883–Class B  
Step  
1.  
Screen  
883 Method  
2010, Test Condition B  
Requirement  
Internal Visual  
100%  
2.  
Temperature Cycling  
Constant Acceleration  
1010, Test Condition C  
100%  
3.  
2001, Test Condition B or D,  
Y1, Orientation Only  
100%  
4.  
5.  
Particle Impact Noise Detection  
2020, Condition A  
1014  
100%  
Seal  
a. Fine  
b. Gross  
100%  
100%  
6.  
7.  
Visual Inspection  
2009  
100%  
100%  
Pre-Burn-In  
Electrical Parameters  
In accordance with applicable Actel  
device specification  
8.  
9.  
Dynamic Burn-In  
1015, Condition D,  
160 hours at 125°C or 80 hours at 150°C  
100%  
100%  
All Lots  
Interim (Post-Burn-In)  
Electrical Parameters  
In accordance with applicable Actel  
device specification  
10.  
11.  
Percent Defective Allowable  
Final Electrical Test  
5%  
In accordance with applicable Actel  
device specification, which includes a, b, and c:  
a. Static Tests  
100%  
100%  
(1)25°C  
(Subgroup 1, Table I)  
(2)–55°C and +125°C  
(Subgroups 2, 3, Table I)  
5005  
5005  
b. Functional Tests  
(1)25°C  
(Subgroup 7, Table I)  
(2)–55°C and +125°C  
(Subgroups 8A and 8B, Table I)  
5005  
5005  
c. Switching Tests at 25°C  
(Subgroup 9, Table I)  
100%  
100%  
5005  
2009  
12.  
External Visual  
v2.2  
iii  
RTSX-SU RadTolerant FPGAs (UMC)  
1
Actel Extended Flow  
Step  
Screen  
Method  
Requirement  
Sample  
100%  
1. Destructive In-Line Bond Pull3  
2011, Condition D  
2010, Condition A  
2. Internal Visual  
3. Serialization  
100%  
4. Temperature Cycling  
5. Constant Acceleration  
6. Particle Impact Noise Detection  
7. Radiographic  
1010, Condition C  
100%  
2001, Condition B or D, Y1 Orientation Only  
2020, Condition A  
100%  
100%  
2012 (one view only)  
100%  
8. Pre-Burn-In Test  
In accordance with applicable Actel device specification  
100%  
9. Dynamic Burn-In  
1015, Condition D, 240 hours at 125°C or 120 hours at  
150°C minimum  
100%  
10. Interim (Post-Burn-In) Electrical Parameters  
11. Static Burn-In  
In accordance with applicable Actel device specification  
100%  
100%  
1015, Condition C, 72 hours at 150°C or 144 hours at  
125°C minimum  
12. Interim (Post-Burn-In) Electrical Parameters  
In accordance with applicable Actel device specification  
5%, 3% Functional Parameters at 25°C  
100%  
13. Percent Defective Allowable (PDA)  
Calculation  
All Lots  
14. Final Electrical Test  
In accordance with Actel applicable device specification  
which includes a, b, and c:  
100%  
100%  
a. Static Tests  
(1)25°C  
5005  
5005  
(Subgroup 1, Table1)  
(2)–55°C and +125°C  
(Subgroups 2, 3, Table 1)  
b. Functional Tests  
(1)25°C  
(Subgroup 7, Table 15)  
(2)–55°C and +125°C  
(Subgroups 8A and B, Table 1)  
c. Switching Tests at 25°C  
(Subgroup 9, Table 1)  
100%  
5005  
5005  
100%  
100%  
5005  
1014  
15. Seal  
a. Fine  
b. Gross  
16. External Visual  
2009  
100%  
Notes:  
1. Actel offers Extended Flow for users requiring additional screening beyond MIL-STD-833, Class B requirement. Actel offers this  
Extended Flow incorporating the majority of the screening procedures as outlined in Method 5004 of MIL-STD-883, Class S. The  
exceptions to Method 5004 are shown in notes 2 and 4 below.  
2. MIL-STD-883, Method 5004, requires a 100 percent radiation latch-up testing to Method 1020. Actel will NOT perform any  
radiation testing, and this requirement must be waived in its entirety.  
3. Method 5004 requires a 100 percent, nondestructive bond-pull to Method 2003. Actel substitutes a destructive bond-pull to  
Method 2011 Condition D on a sample basis only.  
4. Wafer lot acceptance complies to commercial standards only (requirement per Method 5007 is not performed).  
iv  
v2.2  
RTSX-SU RadTolerant FPGAs (UMC)  
Table of Contents  
General Description  
Device Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1  
Programmable Interconnect Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1  
I/O Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1  
Logic Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2  
Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3  
Global Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5  
Design Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5  
Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5  
Low-Cost Prototyping Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5  
In-System Diagnostic and Debug Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6  
Radiation Survivability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6  
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6  
Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7  
Detailed Specifications  
General Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1  
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2  
Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4  
Timing Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6  
I/O Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7  
Module Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22  
Routing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-27  
Global Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-29  
Other Architectural Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-35  
Package Pin Assignments  
84-Pin CQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1  
208-Pin CQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3  
256-Pin CQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7  
256-Pin CCLG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12  
624-Pin CCGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-21  
Datasheet Information  
List of Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1  
Datasheet Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2  
Export Administration Regulations (EAR) or International Traffic in Arms  
Regulations (ITAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2  
v2.1  
v
RTSX-SU RadTolerant FPGAs (UMC)  
General Description  
RTSX-SU RadTolerant FPGAs are enhanced versions of  
Actel’s SX-A family of devices, specifically designed for  
enhanced radiation performance.  
These antifuse interconnects reside between the top two  
layers of metal and thereby enable the sea-of-modules  
architecture in an FPGA.  
Featuring SEU-hardened D-type flip-flops that offer the  
benefits of Triple Module Redundancy (TMR) without the  
associated overhead, the RTSX-SU family is a unique  
product offering for space applications. Manufactured  
using 0.25 µm technology at the United Microelectronics  
Corporation (UMC) facility in Taiwan, RTSX-SU offers  
levels of radiation survivability far in excess of typical  
CMOS devices.  
The extremely small size of these interconnect elements  
gives the RTSX-SU family abundant routing resources and  
provides excellent protection against design theft. Reverse  
engineering is virtually impossible because it is extremely  
difficult to distinguish between programmed and  
unprogrammed antifuses. Additionally, since RTSX-SU is a  
nonvolatile, single-chip solution, there is no configuration  
bitstream to intercept.  
The RTSX-SU interconnect (i.e., the antifuses and metal  
tracks) also has lower capacitance and resistance than  
that of any other device of similar capacity, leading to  
the fastest signal propagation in the industry for the  
radiation tolerance offered.  
Device Architecture  
Actel's RTSX-SU architecture, derived from the highly  
successful SX-A sea-of-modules architecture, has been  
designed to improve upset and total-dose performance  
in radiation environments.  
I/O Structure  
The RTSX-SU family features a flexible I/O structure that  
supports 3.3V LVTTL, 5V TTL, 5V CMOS, and 3.3V and 5V  
PCI. All I/O standards are hot-swap compliant, cold-  
sparing capable, and 5V tolerant (except for 3.3V PCI).  
With three layers of metal interconnect in the RTSX32SU  
and four metal layers in RTSX72SU, the RTSX-SU family  
provides efficient use of silicon by locating the routing  
interconnect resources between the top two metal  
layers. This completely eliminates the channels of routing  
and interconnect resources between logic modules as  
In addition, each I/O on an RTSX-SU device can be  
configured as an input, an output, a tristate output, or a  
bidirectional pin. Mixed I/O standards are allowed and  
can be set on a pin-by-pin basis. High or low slew rate  
can be set on individual output buffers (except for PCI,  
which defaults to high slew), as well as the power-up  
configuration (either pull-up or pull-down).  
found in traditional FPGAs. In  
a
sea-of-modules  
architecture, the entire floor of the FPGA is covered with  
a grid of logic modules with virtually no chip area lost to  
interconnect elements or routing.  
The RTSX-SU architecture adds several enhancements  
over the SX-A architecture to improve its performance in  
radiation environments, such as SEU-hardened flip-flops,  
wider clock lines, and stronger clock drivers.  
Even without the inclusion of dedicated I/O registers,  
these I/Os, in combination with array registers, can  
achieve clock-to-output-pad timing as fast as 9.5 ns. In  
most FPGAs, I/O cells that have embedded latches and  
flip-flops require instantiation in HDL code; this is a  
design complication not encountered in RTSX-SU FPGAs.  
Fast pin-to-pin timing ensures that the device will have  
little trouble interfacing with any other device in the  
system, which in turn, enables parallel design of system  
components and reduces overall design time.  
Programmable Interconnect  
Elements  
Interconnection between logic modules is achieved using  
Actel’s patented metal-to-metal programmable antifuse  
interconnect elements. The antifuses are normally open  
circuit and form  
a
permanent, low-impedance  
connection when programmed.  
The metal-to-metal antifuse is made up of a combination  
of amorphous silicon and dielectric material with barrier  
metals and has a programmed (“on” state) resistance of  
25 Ω with capacitance of 1.0 fF for low signal impedance  
(Figure 1-1 on page 1-2).  
v2.2  
1-1  
RTSX-SU RadTolerant FPGAs (UMC)  
Routing Tracks  
Amorphous Silicon/  
Dielectric Antifuse  
Tungsten Plug Via  
Metal 4  
Metal 3  
Tungsten Plug Via  
Metal 2  
Metal 1  
Tungsten Plug Contact  
Silicon Substrate  
Figure 1-1 RTSX-SU Family Interconnect Elements  
While each SEU-hardened R-cell appears as a single D-type  
flip-flop to the user, each is implemented employing triple  
redundancy to achieve a LET threshold of greater than 40  
MeV-cm2/mg. Each TMR R-cell consists of three master-  
slave latch pairs, each with asynchronous, self-correcting  
feedback paths. The output of each latch on the master or  
slave side is voted with the outputs of the other two  
latches on that side. If one of the three latches is struck by  
an ion and starts to change state, the voting with the  
other two latches prevents the change from feeding back  
and permanently latching. Care was taken in the layout to  
ensure that a single ion strike could not affect more than  
one latch (see the "R-Cell" section on page 2-23 for more  
details).  
Logic Modules  
Actel’s RTSX-SU family provides two types of logic  
modules to the designer (Figure 1-2 on page 1-3): the  
register cell (R-cell) and the combinatorial cell (C-cell).  
The C-cell implements a range of combinatorial functions  
with up to five inputs. Inclusion of the DB input and its  
associated inverter function dramatically increases the  
number of combinatorial functions that can be  
implemented in a single module from 800 options (as in  
previous architectures) to more than 4,000 in the RTSX-SU  
architecture. An example of the improved flexibility  
enabled by the inversion capability is the ability to  
integrate a three-input exclusive-OR function into a single  
C-cell. This facilitates the construction of nine-bit parity-  
tree functions. At the same time, the C-cell structure is  
extremely synthesis-friendly, simplifying the overall design  
and reducing synthesis time.  
Actel has arranged all C-cell and R-cell logic modules into  
horizontal banks called Clusters. There are two types of  
clusters: Type 1 contains two C-cells and one R-cell, while  
Type 2 contains one C-cell and two R-cells.  
The R-cell contains a flip-flop featuring asynchronous  
clear, asynchronous preset, and clock enable (using the  
S0 and S1 lines) control signals. The R-cell registers  
feature programmable clock polarity, selectable on a  
register-by-register basis. This provides additional  
flexibility during mapping of synthesized functions into  
the RTSX-SU FPGA. The clock source for the R-cell can be  
chosen from the hardwired clock, the routed clocks, or  
the internal logic.  
To increase design efficiency and device performance,  
Actel has further organized these modules into  
SuperClusters. SuperCluster 1 is a two-wide grouping of  
Type 1 clusters. SuperCluster 2 is a two-wide group  
containing one Type 1 cluster and one Type 2 cluster.  
RTSX-SU devices feature more SuperCluster 1 modules  
than SuperCluster 2 modules because designers typically  
require significantly more combinatorial logic than flip-  
flops (Figure 1-2 on page 1-3).  
1-2  
v2.2  
RTSX-SU RadTolerant FPGAs (UMC)  
Routing  
R-cells and C-cells within Clusters and SuperClusters can  
be connected through the use of two innovative local  
routing resources called FastConnect and DirectConnect,  
which enable extremely fast and predictable  
interconnection of modules within Clusters and  
SuperClusters. This routing architecture also dramatically  
reduces the number of antifuses required to complete a  
circuit, ensuring the highest possible performance  
(Figure 1-3 and Figure 1-4 on page 1-4).  
FastConnect enables horizontal routing between any  
two logic modules within a given SuperCluster and  
vertical routing with the SuperCluster immediately  
below it. Only one programmable connection is used in a  
FastConnect path, delivering a maximum interconnect  
propagation delay of 0.4 ns.  
In addition to DirectConnect and FastConnect, the  
architecture makes use of two globally-oriented routing  
resources known as segmented routing and high-drive  
routing. Actel’s segmented routing structure provides a  
variety of track lengths for extremely fast routing  
between SuperClusters. The exact combination of track  
lengths and antifuses within each path is chosen by the  
100-percent-automatic place-and-route software to  
minimize signal propagation delays.  
DirectConnect is a horizontal routing resource that  
provides connections from a C-cell to its neighboring R-cell  
in a given SuperCluster. DirectConnect uses a hardwired  
signal path requiring no programmable interconnection to  
achieve its fast signal propagation time of less than 0.1 ns.  
C-Cell  
R-Cell  
Routed  
Data Input  
D0  
D1  
S1  
S0  
PRE  
CLR  
Y
D2  
D3  
Direct  
Connect  
Input  
D
Q
Y
Sb  
Sa  
HCLK  
CLKA,  
CLKB,  
DB  
Internal Logic  
CKS  
CKP  
A0 B0  
A1 B1  
Cluster 1  
Cluster 1  
Cluster 2  
Cluster 1  
Type 1 SuperCluster  
Figure 1-2 R-Cell, C-Cell and Cluster Organization  
Type 2 SuperCluster  
v2.2  
1-3  
RTSX-SU RadTolerant FPGAs (UMC)  
DirectConnect  
• No antifuses for  
smallest routing delay  
FastConnect  
• One antifuse  
Routing Segments  
• Typically 2 antifuses  
• Max. 5 antifuses  
Type 1 SuperClusters  
Figure 1-3 DirectConnect and FastConnect for SuperCluster 1’s  
DirectConnect  
• No antifuses for  
smallest routing delay  
FastConnect  
• One antifuse  
Routing Segments  
• Typically 2 antifuses  
• Max. 5 antifuses  
Type 2 SuperClusters  
Figure 1-4 DirectConnect and FastConnect for SuperCluster 2’s  
1-4  
v2.2  
RTSX-SU RadTolerant FPGAs (UMC)  
Actel's Designer software is a place-and-route tool and  
provides a comprehensive suite of backend support tools  
for FPGA development. The Designer software includes  
Global Resources  
Actel’s high-drive routing structure provides three clock  
networks: hardwired clocks (HCLK), routed clocks (CLKA,  
CLKB), and quadrant clocks (QCLKA, QCLKB, QCLKC,  
QCLKD) (Table 1-1).  
timing-driven place-and-route, and  
a
world-class  
integrated static timing analyzer and constraints editor.  
With the Designer software, a user can select and lock  
package pins while only minimally impacting the results  
of place-and-route. Additionally, the back-annotation  
flow is compatible with all the major simulators and the  
simulation results can be cross-probed with Silicon  
Explorer II, Actel’s integrated verification and logic  
analysis tool. Another tool included in the Designer  
software is the SmartGen core generator, which easily  
creates popular and commonly used logic functions for  
implementation into your schematic or HDL design.  
Actel's Designer software is compatible with the most  
popular FPGA design entry and verification tools from  
companies such as Mentor Graphics, Synplicity,  
Synopsys®, and Cadence Design Systems. The Designer  
software is available for both the Windows and UNIX  
operating systems.  
Table 1-1 RTSX-SU Global Resources  
RTSX32SU  
RTSX72SU  
Routed Clocks (CLKA, CLKB)  
Hardwired Clocks (HCLK)  
2
1
0
2
1
4
Quadrant Clocks (QCLKA,  
QCLKB, QCLKC, QCLKD)  
The first clock, called HCLK, is hardwired from the HCLK  
buffer to the clock select MUX in each R-cell. HCLK  
cannot be connected to combinational logic. This  
provides a fast propagation path for the clock signal,  
enabling  
the  
9.5 ns  
clock-to-out  
(pad-to-pad)  
performance of the RTSX-SU devices.  
The second type of clock, routed clocks (CLKA, CLKB), are  
global clocks that can be sourced from either external  
pins or internal logic signals within the device. CLKA and  
CLKB may be connected to sequential cells (R-cells) or to  
combinational logic (C-cells).  
Programming  
Programming support is provided through Actel's Silicon  
Sculptor II, a single-site programmer driven via a PC-  
based GUI. Factory programming is available as well.  
The last type of clock, quadrant clocks, are only found in  
the RTSX72SU. Similar to the routed clocks, the four  
quadrant clocks (QCLKA, QCLKB, QCLKC, QCLKD) can be  
sourced from external pins or from internal logic signals  
within the device. Each of these clocks can individually  
drive up to a quarter of the chip, or they can be grouped  
together to drive multiple quadrants.  
Low-Cost Prototyping Solution  
Since the enhanced radiation characteristics of radiation-  
tolerant devices are not required during the prototyping  
phase of the design, Actel has developed a prototyping  
solution for RTSX-SU that utilizes commercial SX-A  
devices. The prototyping solution consists of two parts:  
Design Environment  
A well-documented design flow that allows the  
customer to target an RTSX-SU design to the  
equivalent commercial SX-A device  
The RTSX-SU RadTolerant family of FPGAs is fully  
supported by both Actel's Libero® Integrated Design  
Environment (IDE) and Designer FPGA Development  
software. Actel Libero IDE is a design management  
environment, seamlessly integrating design tools while  
guiding the user through the design flow, managing all  
design and log files, and passing necessary design data  
among tools. Additionally, Libero IDE allows users to  
integrate both schematic and HDL synthesis into a single  
Either footprint-compatible packages or prototyping  
sockets to adapt commercial SX-A packages to the  
RTSX-SU package footprints  
This methodology provides the user with a cost-effective  
solution while maintaining the short time-to-market  
associated with Actel FPGAs. Please see the application  
note Prototyping for the RTSX-S Enhanced Aerospace  
FPGA for more details  
flow and verify the entire design in  
a
single  
environment. Libero IDE includes Synplify® for Actel  
from Synplicity®, ViewDraw for Actel from Mentor  
Graphics, ModelSim™ HDL Simulator from Mentor  
Graphics®, WaveFormer Lite™ from SynaptiCAD™, and  
Designer software from Actel. Refer to the Libero IDE  
flow (located on Actel’s website) diagram for more  
information.  
v2.2  
1-5  
RTSX-SU RadTolerant FPGAs (UMC)  
In-System Diagnostic and Debug Capabilities  
The RTSX-SU family of FPGAs includes internal probe  
circuitry, allowing the designer to dynamically observe  
and analyze any signal inside the FPGA without  
disturbing normal device operation. Two individual  
signals can be brought out to two multipurpose pins  
(PRA and PRB) on the device. The probe circuitry is  
accessed and controlled via Silicon Explorer II, Actel's  
integrated verification and logic analysis tool, which  
attaches to the serial port of a PC and communicates  
with the FPGA via the JTAG port. See Figure 1-5.  
RTSX-SU FPGA  
TDI*  
TCK*  
TMS*  
Silicon Explorer II  
Serial Connection  
TDO*  
PRA*  
PRB*  
Note: *Refer to the "Pin Descriptions" section on page 2-7 for more information.  
Figure 1-5 Probe Setup  
Radiation Survivability  
The RTSX-SU RadTolerant devices have varying total-dose  
radiation survivability. The ability of these devices to  
survive radiation effects is both device and lot  
dependent.  
All radiation performance information is provided for  
informational purposes only and is not guaranteed. Total  
dose effects are lot-dependent, and Actel does not  
guarantee that future devices will continue to exhibit  
similar radiation characteristics. In addition, actual  
performance can vary widely due to a variety of factors,  
including but not limited to, characteristics of the orbit,  
radiation environment, proximity to the satellite  
exterior, the amount of inherent shielding from other  
sources within the satellite, and actual bare die  
variations. For these reasons, it is the sole responsibility  
of the user to determine whether the device will meet  
the requirements of the specific design.  
Total-dose results are summarized in two ways. The first  
summary is indicated by the maximum total-dose level  
achieved before the device fails to meet an individual  
performance specification but remains functional. For  
Actel FPGAs, the parameter that first exceeds the  
specification is ICC (standby supply current). The second  
summary is indicated by the maximum total dose  
achieved prior to the functional failure of the device.  
Actel provides total-dose radiation test data on each lot.  
Reports are available on Actel’s website or from Actel’s  
local sales representatives. Listings of available lots and  
devices can also be provided.  
Summary  
The RTSX-SU family of RadTolerant FPGAs extends Actel’s  
highly successful offering of FPGAs for radiation  
environments with the industry’s first FPGA designed  
specifically for enhanced radiation performance.  
For a radiation performance summary, see Radiation  
Data. This summary also shows single-event upset (SEU)  
and single-event latch-up (SEL) testing that has been  
performed on Actel FPGAs.  
1-6  
v2.2  
RTSX-SU RadTolerant FPGAs (UMC)  
Related Documents  
Application Notes  
Simultaneous Switching Noise and Signal Integrity  
http://www.actel.com/documents/SSN_AN.pdf  
Implementation of Security in Actel Antifuse FPGAs  
http://www.actel.com/documents/Antifuse_Security_AN.pdf  
Using A54SX72A and RT54SX72S Quadrant Clocks  
http://www.actel.com/documents/QCLK_AN.pdf  
Actel eX, SX-A and RTSX-S I/Os  
http://www.actel.com/documents/AntifuseIO_AN.pdf  
IEEE Standard 1149.1 (JTAG) in the SX/RTSX/SX-A/eX/RT54SX-S Families  
http://www.actel.com/documents/SX_SXAJTAG_AN.pdf  
Prototyping for the RT54SX-S Enhanced Aerospace FPGA  
http://www.actel.com/documents/RTSXS_Proto_AN.pdf  
Actel CQFP to FBFA Adapter Socket Instructions  
http://www.actel.com/documents/CQ352-FPGA_Adapter_AN.pdf  
Actel SX-A and RT54SX-S Devices in Hot-Swap and Cold-Sparing Applications  
http://www.actel.com/documents/HotSwapColdSparing_AN.pdf  
User’s Guides and Manuals  
Antifuse Macro Library Guide  
http://www.actel.com/documents/libguide_ug.pdf  
SmartGen Core Reference Guide  
http://www.actel.com/documents/gen_refguide_ug.pdf  
Libero IDE User's Guide  
http://www.actel.com/documents/libero_ug.pdf  
Silicon Sculptor II User’s Guide  
http://www.actel.com/documents/SiliSculptII_Sculpt3_ug.pdf  
Silicon Explorer User’s Guide  
http://www.actel.com/documents/Silexpl_ug.pdf  
White Papers  
Design Security in Nonvolatile Flash and Antifuse FPGAs  
http://www.actel.com/documents/DesignSecurity_WP.pdf  
Understanding Actel Antifuse Device Security  
http://www.actel.com/documents/AntifuseSecurityWP.pdf  
v2.2  
1-7  
RTSX-SU RadTolerant FPGAs (UMC)  
Detailed Specifications  
General Conditions  
Table 2-1 Supply Voltages  
VCCA  
VCCI  
3.3V  
5V  
Maximum Input Tolerance  
Maximum Output Drive  
2.5V  
5V*  
5V  
3.3V  
5V  
2.5V  
Note: *3.3V PCI is not 5V tolerant  
Table 2-2 Characteristics for All I/O Configurations  
I/O Standard  
TTL, LVTTL  
3.3V PCI  
Hot Swappable  
Slew Rate Control  
Yes. Affects falling edge outputs only  
No. High slew rate only  
Power-Up Resistor Pull  
Pull-up or Pull-down  
Pull-up or Pull-down  
Pull-up or Pull-down  
Yes  
No  
5V PCI  
Yes  
No. High slew rate only  
Table 2-3 Time at which I/Os Become Active by Ramp Rate  
(At room temperature and nominal operating conditions)  
Ramp Rate  
Units  
0.25V/μs 0.025V/μs  
5V/ms  
ms  
2.5V/ms  
ms  
0.5V/ms  
ms  
0.25V/ms  
ms  
0.1V/ms 0.025V/ms  
μs  
10  
10  
μs  
ms  
12.1  
12.1  
ms  
47.2  
47.2  
RTSX32SU  
RTSX72SU  
100  
100  
0.46  
0.41  
0.74  
2.8  
5.2  
0.67  
2.6  
5.0  
Power-Up and Power-Cycling  
The RTSX-SU family does not require any specific power-up or power-cycling sequence.  
v2.2  
2-1  
RTSX-SU RadTolerant FPGAs (UMC)  
Operating Conditions  
Absolute Maximum Conditions  
Stresses beyond those listed in Table 2-4 may cause permanent damage to the device. Exposure to absolute maximum rated  
conditions may affect device reliability. Devices should not be operated outside the recommendations in Table 2-5.  
Table 2-4 Absolute Maximum Conditions  
Symbol  
VCCI  
VCCA  
VI  
Parameter  
Limits  
–0.3 to +6.0  
Units  
DC Supply Voltage  
DC Supply Voltage  
Input Voltage  
V
V
V
V
–0.3 to +3.0  
–0.5 to + 6.0  
–0.5 to +VCCI + 0.5  
VI  
Input Voltage for Bidirectional I/Os when using  
3.3V PCI  
TSTG  
Storage Temperature  
–65 to +150  
°C  
Table 2-5 Recommended Operating Conditions  
Parameter  
Military  
–55 to +125  
2.25 to 2.75  
3.0 to 3.6  
Units  
Temperature Range (case temperature)  
2.5V Power Supply Tolerance  
3.3V Power Supply Tolerance  
5V Power Supply Tolerance  
°C  
V
V
4.5 to 5.5  
V
Power Dissipation  
A critical element of system reliability is the ability of  
electronic devices to safely dissipate the heat generated  
during operation. The thermal characteristics of a circuit  
depend on the device and package used, the operating  
temperature, the operating current, and the system's  
ability to dissipate heat.  
Estimating Power Dissipation  
The total power dissipation for the RTSX-SU family is the  
sum of the DC power dissipation and the AC power  
dissipation:  
PTotal = PDC + PAC  
EQ 2-1  
A complete power evaluation should be performed early  
in the design process to help identify potential heat-  
related problems in the system and to prevent the system  
from exceeding the device’s maximum allowed junction  
temperature.  
DC Power Dissipation  
The power due to standby current is typically a small  
component of the overall power. The DC power  
dissipation is defined as:  
The actual power dissipated by most applications is  
significantly lower than the power the package can  
PDC = (ICC)*VCCA + (ICC)*VCCI  
dissipate. However,  
a thermal analysis should be  
EQ 2-2  
performed for all projects. To perform  
evaluation, follow these steps:  
a power  
1. Estimate the power consumption of the application.  
2. Calculate the maximum power allowed for the device  
and package.  
3. Compare the estimated power and maximum power  
values.  
2-2  
v2.2  
RTSX-SU RadTolerant FPGAs (UMC)  
AC Power Dissipation  
The power dissipation of the RTSX-SU family is usually dominated by the dynamic power dissipation. Dynamic power  
dissipation is a function of frequency, equivalent capacitance, and power supply voltage. The AC power dissipation is  
defined as follows:  
PAC  
=
PC-Cells + PR-Cells + PCLKA + PCLKB + PHCLK + POutput Buffer + PInput Buffer  
EQ 2-3  
or:  
PAC  
=
VCCA2 * [(m * CEQCM * fm)C-Cells + (m * CEQSM * fm)R-Cells + (n * CEQI * fn)Input Buffer + (p * (CEQO + CL) * fp)Output Buffer  
(0.5 * (q1 * CEQCR * fq1) + (r1 * fq1))CLKA + (0.5 * (q2 * CEQCR * fq2)+ (r2 * fq2))CLKB + (0.5 * (s1 * CEQHV * fs1) +  
+
(CEQHF * fs1))HCLK  
]
EQ 2-4  
Table 2-6 Fixed Power Parameters  
Where:  
Parameter  
CEQCM  
CEQSM  
CEQI  
RTSX32SU  
3.00  
3.00  
1.40  
7.40  
3.50  
4.30  
300  
RTSX72SU  
3.00  
3.00  
1.30  
7.40  
3.50  
4.30  
690  
Units  
pF  
CEQCM = Equivalent capacitance of combinatorial modules  
(C-Cells) in pF  
pF  
CEQSM = Equivalent capacitance of sequential modules (R-Cells)  
in pF  
pF  
CEQO  
CEQCR  
CEQHV  
CEQHF  
r1  
pF  
CEQI = Equivalent capacitance of input buffers in pF  
CEQO = Equivalent capacitance of output buffers in pF  
pF  
pF  
CEQCR = Equivalent capacitance of CLKA/B in pF  
pF  
CEQHV = Variable capacitance of HCLK in pF  
CEQHF = Fixed capacitance of HCLK in pF  
CL = Output lead capacitance in pF  
100  
245  
pF  
r2  
100  
245  
pF  
ICC  
25  
25  
mA  
fm = Average logic module switching rate in MHz  
fn = Average input buffer switching rate in MHz  
fp = Average output buffer switching rate in MHz  
fq1 = Average CLKA rate in MHz  
Guidelines for Estimating Power  
The following guidelines are meant to represent worst-  
case scenarios; they can be generally used to predict the  
upper limits of power dissipation:  
Logic Modules (m) = 20% of modules  
Inputs Switching (n) = # inputs/4  
Outputs Switching (p) = # output/4  
CLKA Loads (q1) = 20% of R-cells  
CLKB Loads (q2) = 20% of R-cells  
Load Capacitance (CL) = 35 pF  
fq2 = Average CLKB rate in MHz  
f
s1 = Average HCLK rate in MHz  
m = Number of logic modules switching at fm  
n = Number of input buffers switching at fn  
p = Number of output buffers switching at fp  
q1 = Number of clock loads on CLKA  
q2 = Number of clock loads on CLKB  
r1 = Fixed capacitance due to CLKA  
r2 = Fixed capacitance due to CLKB  
s1 = Number of clock loads on HCLK  
x = Number of I/Os at logic low  
Average Logic Module Switching Rate (fm) = f/10  
Average Input Switching Rate (fn) =f/5  
Average Output Switching Rate (fp) = f/10  
Average CLKA Rate (fq1) = f/2  
Average CLKB Rate (fq2) = f/2  
Average HCLK Rate (fs1) = f  
HCLK loads (s1) = 20% of R-cells  
To assist customers in estimating the power dissipations  
of their designs, Actel has published the eX, SX-A and  
RT54SX-S Power Calculator worksheet.  
y = Number of I/Os at logic high  
v2.2  
2-3  
RTSX-SU RadTolerant FPGAs (UMC)  
Thermal Characteristics  
Introduction  
The temperature variable in Actel’s Designer software  
refers to the junction temperature, not the ambient,  
case, or board temperatures. This is an important  
distinction because dynamic and static power  
consumption cause the chip junction to be higher than  
the ambient, case, or board temperatures. EQ 2-5, EQ 2-  
6, and EQ 2-7 give the relationship between thermal  
resistance, temperature gradient and power.  
Where:  
θ
θ
θ
= Junction-to-air thermal resistance of the package.  
ja  
jc  
jb  
θ numbers are located in Table 2-7.  
ja  
= Junction-to-case thermal resistance of the  
package. θ numbers are located in Table 2-7.  
jc  
= Junction-to-board thermal resistance of the  
package. θjb for a 624-pin CCGA is located in the  
notes for Table 2-7.  
Tj Ta  
θja = ----------------  
P
EQ 2-5  
Tj = Junction Temperature  
Ta = Ambient Temperature  
Tb = Board Temperature  
Tc = Case Temperature  
Tj Tc  
θjc = ---------------  
P
EQ 2-6  
Tj Tb  
θjb = ----------------  
P
EQ 2-7  
P
= Power  
Package Thermal Characteristics  
The device thermal characteristics θjc and θja are given in Table 2-7. The thermal characteristics for θja are shown with  
two different air flow rates. Note that the absolute maximum junction temperature is 150°C.  
Table 2-7 Package Thermal Characteristics  
θja  
Package Type  
Pin Count  
84  
θjc  
Still Air  
40  
θ
ja 1.0m/s  
33.0  
θ
ja 2.5m/s  
30.0  
18.0  
15.0  
15.7  
14.2  
9.1  
Units  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Ceramic Quad Flat Pack (CQFP)  
Ceramic Quad Flat Pack (CQFP)  
Ceramic Quad Flat Pack (CQFP)  
Ceramic Quad Flat Pack (CQFP) with heatsink  
Ceramic Quad Flat Pack (CQFP) with heatsink  
Ceramic Chip Carrier Land Grid (CCLG)  
Ceramic Column Grid Array (CCGA)  
Notes:  
2.0 1  
2.0 1  
2.0 1  
0.5 1  
0.5 1  
1.1 1  
6.5 2  
208  
22  
19.8  
256  
20  
16.5  
208  
21.0  
19.0  
12.1  
8.9  
17.3  
256  
15.7  
256  
10.0  
624  
8.5  
8.0  
1. θjc for CQFP and CCLG packages refers to the thermal resistance between the junction and the bottom of the package.  
2. θjc for the CCGA 624 refers to the thermal resistance between the junction and the top surface of the package. Thermal resistance  
from junction to board (θjb) for CG624 package is 3.4 °C/W.  
Maximum Allowed Power Dissipation  
Shown below are example calculations to estimate the maximum allowed power dissipation for a given device based  
on two different thermal environments while maintaining the device junction temperature at or below worst-case  
military operating conditions (125°C).  
Example 1:  
This example assumes that there is still air in the environment. The heat flow is shown by the arrows in Figure 2-1 on  
page 2-5. The maximum ambient air temperature is assumed to be 50°C. The device package used is the 624-pin CCGA.  
Max Junction Temp Max. Ambient Temp  
125°C 50°C  
8.9°C/W  
Max. Allowed Power = --------------------------------------------------------------------------------------------------------------------- = ----------------------------------- = 8.43W  
θ
ja  
2-4  
v2.2  
RTSX-SU RadTolerant FPGAs (UMC)  
Air  
Solder Columns  
PCB  
Figure 2-1 Hear Flow when Air is Present  
Example 2:  
This example assumes that the primary heat conduction path will be through the bottom of the package (neglecting  
the heat conducted through the package pins) to the board for a package mounted with thermal paste. The heat flow  
is shown by the arrows in Figure 2-2. The maximum board temperature is assumed to be 70°C. The device package  
used is the 352-pin CQFP. The thermal resistance (θcb) of the thermal paste is assumed to be 0.58 °C/W.  
T T  
T T  
j
b
j
b
125°C 70°C  
Max. Allowed Power = ----------------- = ----------------------- = ------------------------------------------------------- = 21.32W  
θ
θ
+ θ 2.0°C/W + 0.58°C/W  
jb  
jc  
cb  
Thermal Adhesive  
PCB  
Figure 2-2 Heat Flow in a Vacuum  
Timing Derating  
RTSX-SU devices are manufactured in a CMOS process; therefore, device performance is dependent on temperature,  
voltage, and process variations. Minimum timing parameters reflect maximum operating voltage, minimum operating  
temperature, and best-case processing. Maximum timing parameters reflect minimum operating voltage, maximum  
operating temperature, and worst-case processing. The derating factors shown in Table 2-8 should be applied to all  
timing data contained within this datasheet.  
Table 2-8 Temperature and Voltage Derating Factors  
(Normalized to Worst-Case Military Conditions, TJ = 125°C, VCCA = 2.25V)  
Junction Temperature (Tj)  
VCCA  
2.25  
2.50  
2.75  
–55°C  
0.71  
–40°C  
0.72  
0°C  
0.78  
0.73  
0.69  
25°C  
0.80  
0.75  
0.70  
70°C  
0.90  
0.84  
0.79  
85°C  
0.94  
0.87  
0.82  
125°C  
1.00  
0.67  
0.67  
0.93  
0.62  
0.63  
0.88  
Note: The user can set the junction temperature in Actel’s Designer software to be any integer value in the range of –55°C to 175°C, and  
the core voltage to be any value between 2.25V and 2.75V.  
v2.2  
2-5  
RTSX-SU RadTolerant FPGAs (UMC)  
Timing Model  
Input Delays  
Internal Delays  
Predicted  
Routing  
Delays  
Output Delays  
Combinatorial  
Cell  
t
t
= 0.8 ns  
= 1.0 ns  
I/O Module  
I/O Module  
RD1  
RD2  
t
= 0.7 ns  
INYH  
t
= 3.8 ns  
DHL  
t
= 1.2 ns  
PD  
t
t
t
= 0.8 ns  
RD1  
= 1.5 ns  
RD4  
= 2.9 ns  
RD8  
I/O Module  
t
t
t
t
= 3.8 ns  
Register  
Cell  
DHL  
D
Q
t
t
RD1  
= 0.8 ns  
= 0.0 ns  
= 0.8 ns  
SUD  
HD  
t
= 2.5 ns  
ENZL  
Routed  
Clock  
t
= 5.3 ns  
RCKH  
t
= 1.0 ns  
(100% Load)  
RCO  
I/O Module  
= 3.8 ns  
DHL  
Register  
Cell  
I/O Module  
t
= 0.7 ns  
INYH  
D
Q
t
t
t
RD1  
= 0.8 ns  
= 0.0 ns  
= 0.8 ns  
SUD  
= 2.5 ns  
ENZL  
HD  
Hardwired  
Clock  
t
t
RCO  
= 3.9 ns  
= 1.0 ns  
HCKH  
Figure 2-3 RTSX-SU Timing Model  
Values shown for RTSX32SU, –1, 0 krad (Si), 5V TTL worst-case military conditions  
Hardwired Clock  
Routed Clock  
External Setup  
External Setup  
= (tINYH + tRD2 + tSUD) – tHCKH  
= 0.7 + 1.0 + 0.8 – 3.9 = –1.4 ns  
Clock-to-Out (Pad-to-Pad)  
= tHCKH + tRCO + tRD1 + tDHL  
= 3.9 + 1.0 + 0.8 + 3.8 = 9.5 ns  
= (tINYH + tRD2 + tSUD) – tRCKH  
= 0.7 + 1.0 + 0.8– 5.3= –2.8 ns  
Clock-to-Out (Pad-to-Pad)  
= tRCKH + tRCO + tRD1 + tDHL  
= 5.3+ 1.0 + 0.8 + 3.8 = 10.9 ns  
2-6  
v2.2  
RTSX-SU RadTolerant FPGAs (UMC)  
I/O Specifications  
offer a built-in programmable pull-up or pull-down  
resistor, active during power-up only.  
Pin Descriptions  
Supply Pins  
HCLK  
Dedicated (Hardwired) Array Clock  
GND  
Ground  
This pin is the clock input for sequential modules. Input  
levels are compatible with standard TTL, LVTTL, 3.3V PCI or  
5V PCI specifications. This input is buffered prior to  
clocking the R-cells. It offers clock speeds independent of  
the number of R-cells being driven. When not used, this  
pin must not be left floating. It must be set to Low or High  
on the board. When used, this pin should be held Low or  
High during power-up to avoid unwanted static power.  
Low supply voltage.  
V
Supply Voltage  
CCI  
Supply voltage for I/Os. See Table 2-1 on page 2-1.  
V
Supply Voltage  
CCA  
Supply voltage for Array. See Table 2-1 on page 2-1.  
Global Pins  
CLKA/B  
JTAG/Probe Pins  
1
Routed Clock A and B  
PRA/PRB , I/O  
Probe A/B  
These pins are clock inputs for clock distribution  
networks. Input levels are compatible with standard TTL,  
LVTTL, 3.3V PCI, or 5V PCI specifications. The clock input  
is buffered prior to clocking the R-cells. When not used,  
this pin must be set Low or High on the board. When  
used, this pin should be held Low or High during power-  
up to avoid unwanted static power.  
The probe pin is used to output data from any user-  
defined design node within the device. This independent  
diagnostic pin can be used in conjunction with the other  
probe pin to allow real-time diagnostic output of any  
signal path within the device. The probe pin can be used  
as a user-defined I/O when verification has been  
completed. The pin’s probe capabilities can be  
permanently disabled to protect programmed design  
confidentiality.  
For RTSX72SU, these pins can be configured as user I/Os.  
When used, this pin offers a built-in programmable pull-  
up or pull-down resistor active during power-up only.  
1
TCK , I/O  
Test Clock  
QCLKA/B/C/D  
Quadrant Clock A, B, C, and D / I/O  
Test clock input for diagnostic probe and device  
programming. In flexible mode, TCK becomes active  
when the TMS pin is set Low (Table 2-32 on page 2-35).  
This pin functions as an I/O when the boundary scan  
state machine reaches the “logic reset” state.  
These four pins are the quadrant clock inputs and are  
only found on the RTSX72SU. They are clock inputs for  
clock distribution networks. Input levels are compatible  
with standard TTL, LVTTL, 3.3V PCI or 5V PCI  
specifications. Each of these clock inputs can drive up to  
a quarter of the chip, or they can be grouped together to  
drive multiple quadrants. The clock input is buffered  
prior to clocking the core cells.  
1
TDI , I/O  
Test Data Input  
Serial input for boundary scan testing and diagnostic  
probe. In flexible mode, TDI is active when the TMS pin is  
set Low (Table 2-32 on page 2-35). This pin functions as  
an I/O when the boundary scan state machine reaches  
the “logic reset” state.  
These pins can be configured as user I/Os. When not  
used, these pins must not be left floating. They must be  
set Low or High on the board. When used, these pins  
1. Actel recommends that you use a series termination resistor on every probe connector (TDI, TCK, TDO, PRA, and PRB). The  
series termination is used to prevent data transmission corruption (i.e., due to reflection from the FPGA to the probe  
connector) during probing and reading back the checksum. With an internal set-up we have seen 70-ohm termination resistor  
improved the signal transmission. Since the series termination depends on the setup, Actel recommends users to calculate the  
termination resistor for their own setup. Below is a guideline on how to calculate the resistor value.  
The resistor value should be chosen so that the sum of it and the probe signal’s driver impedance equals the effective trace  
impedance.  
Z0 = Rs + Zd  
Z0 = trace impedance (Silicon Explorer’s breakout cable’s resistance + PCB trace impedance), Rs= series termination, Zd= probe  
signal’s driver impedance.  
The termination resistor should be placed as close as possible to the driver.  
Among the probe signals, TDI, TCK, and TMS are driven by Silicon Explorer. A54SX16 is used in Silicon Explorer and hence the  
driver impedances needs to be calculated from the SX08/SX16/SX32 IBIS Model IBIS Model (Mixed Voltage Operation). PRA,  
PRB, and TDO are driven by the FPGA and driver impedance can also be calculated from the IBIS Model.  
Silicon Explorer’s breakout cable’s resistance is usually close to 1 ohm.  
v2.2  
2-7  
RTSX-SU RadTolerant FPGAs (UMC)  
2
TDO , I/O  
Test Data Output  
Special Functions  
Serial output for boundary scan testing. In flexible mode,  
TDO is active when the TMS pin is set Low (Table 2-32 on  
page 2-35). This pin functions as an I/O when the  
boundary scan state machine reaches the "logic reset"  
state. When Silicon Explorer II is being used, TDO will act  
as an output when the "checksum" command is run. It  
will return to user I/O when "checksum" is complete.  
NC  
No Connection  
This pin is not connected to circuitry within the device.  
These pins can be driven to any voltage or can be left  
floating with no effect on the operation of the device.  
User I/O  
2
TMS  
Test Mode Select  
The RTSX-SU family features a flexible I/O structure that  
supports 3.3V LVTTL, 5V TTL, 5V CMOS, and 3.3V and 5V  
PCI. All I/O standards are hot-swap compliant, cold-  
sparing capable, and 5V tolerant (except for 3.3V PCI).  
The TMS pin controls the use of the IEEE 1149.1  
boundary scan pins (TCK, TDI, TDO, TRST). In flexible  
mode when the TMS pin is set Low, the TCK, TDI, and  
TDO pins are boundary scan pins (Table 2-32 on page 2-  
35). Once the boundary scan pins are in test mode, they  
will remain in that mode until the internal boundary  
scan state machine reaches the “logic reset” state. At this  
point, the boundary scan pins will be released and will  
function as regular I/O pins. The “logic reset” state is  
reached five TCK cycles after the TMS pin is set High. In  
dedicated test mode, TMS functions as specified in the  
IEEE 1149.1 specifications.  
Each I/O module has an available power-up resistor of  
approximately 50 kΩ that can configure the I/O to a  
known state during power-up. Just slightly before VCCA  
reaches 2.5V, the resistors are disabled so the I/Os will  
behave normally. For more information about the  
power-up resistors, please see Actel’s application note  
SX-A and RTSX-S Devices in Hot-Swap and Cold Sparing  
Applications.  
RTSX-SU inputs should be driven by high-speed push-pull  
devices with a low-resistance pull-up device. If the input  
voltage is greater than VCCI and a fast push-pull device is  
NOT used, the high-resistance pull-up of the driver and  
the internal circuitry of the RTSX-SU I/O may create a  
voltage divider (when a user I/O is configured as an  
input, the associated output buffer is tristated). This  
voltage divider could pull the input voltage below  
specification for some devices connected to the driver. A  
logic ‘1’ may not be correctly presented in this case. For  
example, if an open drain driver is used with a pull-up  
resistor to 5V to provide the logic ‘1’ input, and VCCI is set  
to 3.3V on the RTSX-SU device, the input signal may be  
pulled down by the RTSX-SU input.  
TRST  
Boundary Scan Reset Pin  
The TRST pin functions as an active-low input to  
asynchronously initialize or rest the boundary scan  
circuit. The TRST pin is equipped with an internal pull-up  
resistor. For flight applications, the TRST pin should be  
hardwired to GND.  
User I/O  
I/O  
Input/Output  
The I/O pin functions as an input, output, tristate, or  
bidirectional buffer. Input and output levels are  
compatible with standard TTL, LVTTL, 3.3V/5V PCI, or 5V  
CMOS specifications. Unused I/O pins are automatically  
tristated by the Designer software. See the "User I/O"  
section on page 2-8 for more details.  
2. Actel recommends that you use a series termination resistor on every probe connector (TDI, TCK, TDO, PRA, and PRB). The  
series termination is used to prevent data transmission corruption (i.e., due to reflection from the FPGA to the probe  
connector) during probing and reading back the checksum. With an internal set-up we have seen 70-ohm termination resistor  
improved the signal transmission. Since the series termination depends on the setup, Actel recommends users to calculate the  
termination resistor for their own setup. Below is a guideline on how to calculate the resistor value.  
The resistor value should be chosen so that the sum of it and the probe signal’s driver impedance equals the effective trace  
impedance.  
Z0 = Rs + Zd  
Z0 = trace impedance (Silicon Explorer’s breakout cable’s resistance + PCB trace impedance), Rs= series termination, Zd= probe  
signal’s driver impedance.  
The termination resistor should be placed as close as possible to the driver.  
Among the probe signals, TDI, TCK, and TMS are driven by Silicon Explorer. A54SX16 is used in Silicon Explorer and hence the  
driver impedances needs to be calculated from the SX08/SX16/SX32 IBIS Model (Mixed Voltage Operation). PRA, PRB, and  
TDO are driven by the FPGA and driver impedance can also be calculated from the IBIS Model.  
Silicon Explorer’s breakout cable’s resistance is usually close to 1 ohm.  
2-8  
v2.2  
RTSX-SU RadTolerant FPGAs (UMC)  
and I/O properties editor. See the PinEditor online help  
for more information.  
Hot Swapping  
RTSX-SU I/Os can be configured to be hot swappable in  
compliance with the Compact PCI Specification.  
However, a 3.3V PCI device is not hot swappable. During  
power-up/down, all I/Os are tristated. VCCA and VCCI do  
not have to be stable during power-up/down. After the  
RTSX-SU device is plugged into an electrically active  
system, the device will not degrade the reliability of or  
cause damage to the host system. The device’s output  
pins are driven to a high impedance state until normal  
chip operating conditions are reached. Table 2-3 on  
page 2-1 summarizes the VCCA voltage at which the I/Os  
behave according to the user’s design for an RTSX-SU  
device at room temperature for various ramp-up rates.  
The data reported assumes a linear ramp-up profile to  
2.5V. Refer to Actel’s application note, SX-A and RTSX-S  
Devices in Hot-Swap and Cold-Sparing Applications for  
more information on hot swapping.  
Unused I/Os  
All unused user I/Os are automatically tristated by Actel’s  
Designer software. Although termination is not  
required, it is recommended that the user tie off all  
unused I/Os to GND externally. If the I/O clamp diode is  
disabled, then unused I/Os are 5V tolerant, otherwise  
unused I/Os are tolerant to VCCI  
.
I/O Macros  
There are nine I/O macros available to the user for  
RTSX-SU:  
CLKBUF/CLKBUFI: Clock Buffer, noninverting and  
inverting  
CLKBIBUF/CLKBIBUFI: Bidirectional Clock Buffer,  
noninverting and inverting  
QCLKBUF/QCLKBUFI:  
Quad  
Clock  
Buffer,  
Customizing the I/O  
noninverting and inverting  
QCLKBIBUF/QCLKBIBUFI: Quad Bidirectional Clock  
Buffer, noninverting and inverting  
Each user I/O on an RTSX-SU device can be configured as  
an input, an output, a tristate output, or a bidirectional  
pin. Mixed I/O standards are allowed and can be set on a  
pin-by-pin basis. High or low slew rates can be set on  
individual output buffers (except for PCI which defaults  
to high slew), as well as the power-up configuration  
(either pull-up or pull-down).  
HCLKBUF: Hardwired Clock Buffer  
INBUF: Input Buffer  
OUTBUF: Output Buffer  
TRIBUF: Tristate Buffer  
The user selects the desired I/O by setting the I/O  
properties in PinEditor, Actel’s graphical pin-placement  
BIBUF: Bidirectional Buffer  
Table 2-9 User I/O Features  
Function  
Description  
Input Buffer Threshold Selections  
5V: CMOS, PCI, TTL  
3.3V: PCI, LVTTL  
Flexible Output Driver  
5V: CMOS, PCI, TTL  
3.3V: PCI, LVTTL  
Selectable on an individual I/O basis  
Output Buffer  
“Hot-Swap” Capability  
I/Os on an unpowered device does not sink the current (Power supplies are at 0V)  
Can be used for “cold sparing”  
Individually selectable slew rate, high or low slew (The default is high slew rate). The slew  
rate selection only affects the falling edge of an output. There is no change on the rising  
edge of the output or any inputs  
Power-Up  
Individually selectable pull-ups and pull-downs during power-up (default is to power-up  
in tristate mode)  
Enables deterministic power-up of a device  
VCCA and VCCI can be powered in any order  
v2.2  
2-9  
RTSX-SU RadTolerant FPGAs (UMC)  
I/O Module Timing Characteristics  
E
D
PAD To AC test loads (shown below)  
TRIBUFF  
VCC  
VCC  
VCC  
D
GND  
V
50% 50%  
VOH  
E
GND  
10%  
E
GND  
90%  
50% 50%  
VCC  
50% 50%  
VOH  
V
MEAS  
MEAS  
Pad  
V
Pad  
VPad  
GND  
V
MEAS  
V
MEAS  
VOL  
OL  
tDLH  
tDHL  
tENZL  
tENLZ  
tENZH  
tEN HZ  
Figure 2-4 Output Timing Model and Waveforms  
V
CCI  
0V  
50%  
Pad  
V
V
MEAS  
MEAS  
V
CC  
Y
PAD  
INBUF  
Y
GND  
50%  
tINYH  
t
INYL  
Figure 2-5 Input Timing Model and Waveforms  
Load 2  
(Used to measure enable delays)  
Load 3  
(Used to measure disable delays)  
Load 1  
(Used to measure  
propagation delay)  
VCC  
GND  
VCC  
GND  
To the output  
under test  
35 pF  
R to VCC for tPZL  
R to GND for tPZH  
R = 1 kΩ  
R to VCC for tPLZ  
R to GND for tPHZ  
R = 1 kΩ  
To the output  
under test  
To the output  
under test  
35 pF  
5 pF  
Figure 2-6 AC Test Loads  
2-10  
v2.2  
RTSX-SU RadTolerant FPGAs (UMC)  
5V TTL and 3.3V LVTTL  
Table 2-10 5V TTL and 3.3V LVTTL Electrical Specifications  
Military  
Symbol  
Parameter  
Min.  
Max.  
Units  
VOH  
VCCI = Min.  
VI = VIH or VIL  
(IOH = –1mA)  
(IOH = –8mA)  
(IOL= 1mA)  
0.9 VCCI  
V
VCCI = Min.  
2.4  
V
V
V
VI = VIH or VIL  
VOL  
VCCI = Min.  
VI = VIH or VIL  
0.1 VCCI  
0.4  
VCCI = Min.  
(IOL= 12mA)  
VI = VIH or VIL  
1
VIL  
Input Low Voltage  
Input High Voltage  
0.8  
V
V
2
VIH  
2.0  
IIL / IIH  
IOZ  
Input Leakage Current, VIN = VCCI or GND  
(VCCI 5.25V)  
(VCCI 5.5V)  
–20  
–70  
20  
70  
µA  
µA  
Tristate Output Leakage Current, VOUT = VCCI or GND  
(VCCI 5.25V)  
(VCCI 5.5V)  
–20  
–70  
20  
70  
µA  
µA  
3
tR, tF  
Input Transition Time  
10  
20  
20  
ns  
pF  
pF  
V
CIN  
Input Pin Capacitance4  
CCLK  
CLK Pin Capacitance4  
VMEAS  
IV Curve5  
Notes:  
Trip point for Input buffers and Measuring point for Output buffers  
Can be derived from the IBIS model on the web.  
1.5  
1. For AC signals, the input signal may undershoot during transitions to –1.2 V for no longer than 11 ns. Current during the transition  
must not exceed 95 mA.  
2. For AC signals, the input signal may overshoot during transitions to VCCI + 1.2 V for no longer than 11 ns. Current during the  
transition must not exceed 95 mA.  
3. If tR or tF exceeds the limit of 10 ns, Actel can guarantee reliability but not functionality.  
4. Absolute maximum pin capacitance, which includes package and I/O input capacitance.  
5. The IBIS model can be found at www.actel.com/techdocs/models/ibis.html.  
v2.2  
2-11  
RTSX-SU RadTolerant FPGAs (UMC)  
Timing Characteristics  
Table 2-11 RTSX32SU 5V TTL and 3.3V LVTTL I/O Module  
Worst-Case Military Conditions VCCA = 2.25V, TJ = 125°C, Radiation Level = 0 krad (Si)  
‘–1’ Speed  
Min. Max.  
‘Std.’ Speed  
Parameter  
Description  
Min.  
Max.  
Units  
5V TTL Output Module Timing (VCCI = 4.5V)  
tINYH  
tINYL  
Input Data Pad-to-Y High  
0.7  
1.1  
0.9  
1.3  
ns  
ns  
Input Data Pad-to-Y Low  
tDLH  
Data-to-Pad Low to High  
3.1  
3.6  
ns  
tDHL  
Data-to-Pad High to Low  
3.8  
4.4  
ns  
tDHLS  
tENZL  
tDENZLS  
tENZH  
tENLZ  
tENHZ  
Data-to-Pad High to Low – low slew  
Enable-to-Pad, Z to Low  
9.8  
11.5  
3.0  
ns  
2.5  
ns  
Enable-to-Pad, Z to Low – low slew  
Enable-to-Pad, Z to High  
9.0  
10.6  
3.6  
ns  
3.1  
ns  
Enable-to-Pad, Low to Z  
4.4  
5.3  
ns  
Enable-to-Pad, High to Z  
3.8  
4.4  
ns  
2
dTLH  
Delta Delay vs. Load Low to High  
Delta Delay vs. Load High to Low  
Delta Delay vs. Load High to Low – low slew  
0.036  
0.029  
0.049  
0.046  
0.038  
0.064  
ns/pF  
ns/pF  
ns/pF  
2
dTHL  
2
dTHLS  
3.3V LVTTL Output Module Timing (VCCI = 3.0V)  
tINYH  
tINYL  
Input Data Pad-to-Y High  
0.8  
1.1  
0.9  
1.3  
ns  
ns  
Input Data Pad-to-Y Low  
tDLH  
Data-to-Pad Low to High  
4.1  
4.8  
ns  
tDHL  
Data-to-Pad High to Low  
3.7  
4.4  
ns  
tDHLS  
tENZL  
tDENZLS  
tENZH  
tENLZ  
tENHZ  
Data-to-Pad High to Low – low slew  
Enable-to-Pad, Z to L  
13.2  
2.9  
15.6  
3.4  
ns  
ns  
Enable-to-Pad, Z to Low – low slew  
Enable-to-Pad, Z to H  
12.7  
4.1  
14.9  
4.8  
ns  
ns  
Enable-to-Pad, L to Z  
3.7  
4.4  
ns  
Enable-to-Pad, H to Z  
3.7  
4.4  
ns  
2
dTLH  
Delta Delay vs. Load Low to High  
Delta Delay vs. Load High to Low  
Delta Delay vs. Load High to Low – low slew  
0.064  
0.031  
0.069  
0.081  
0.040  
0.088  
ns/pF  
ns/pF  
ns/pF  
2
dTHL  
2
dTHLS  
Notes:  
1. Output delays based on 35 pF loading.  
2. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the VCCI value into the following equation:  
Slew Rate [V/ns] = (0.1*VCCI - 0.9*VCCI)/ (Cload * dTLH|dTHL|dTHLS  
where Cload is the load capacitance driven by the I/O in pF;  
)
d
TLH|dTHL|dTHLS is the worst case delta value from the datasheet in ns/pF.  
2-12  
v2.2  
RTSX-SU RadTolerant FPGAs (UMC)  
Table 2-12 RTSX72SU 5V TTL and 3.3V LVTTL I/O Module  
Worst-Case Military Conditions VCCA = 2.25V, TJ = 125°C, Radiation Level = 0 krad (Si)  
‘–1’ Speed ‘Std.’ Speed  
Min. Max.  
Parameter  
Description  
Min.  
Max.  
Units  
5V TTL Output Module Timing (VCCI = 4.5V)  
tINYH  
tINYL  
Input Data Pad-to-Y High  
0.7  
1.1  
0.9  
1.3  
ns  
ns  
Input Data Pad-to-Y Low  
tDLH  
Data-to-Pad Low to High  
3.2  
3.7  
ns  
tDHL  
Data-to-Pad High to Low  
4.0  
4.7  
ns  
tDHLS  
tENZL  
tDENZLS  
tENZH  
tENLZ  
tENHZ  
Data-to-Pad High to Low – low slew  
Enable-to-Pad, Z to Low  
10.3  
2.5  
12.1  
3.0  
ns  
ns  
Enable-to-Pad, Z to Low – low slew  
Enable-to-Pad, Z to High  
9.0  
10.6  
3.7  
ns  
3.2  
ns  
Enable-to-Pad, Low to Z  
4.4  
5.3  
ns  
Enable-to-Pad, High to Z  
4.0  
4.7  
ns  
2
dTLH  
Delta Delay vs. Load Low to High  
Delta Delay vs. Load High to Low  
Delta Delay vs. Load High to Low – low slew  
0.036  
0.029  
0.049  
0.046  
0.038  
0.064  
ns/pF  
ns/pF  
ns/pF  
2
dTHL  
2
dTHLS  
3.3V LVTTL Output Module Timing (VCCI = 3.0V)  
tINYH  
tINYL  
Input Data Pad-to-Y High  
1.0  
2.2  
1.2  
2.5  
ns  
ns  
Input Data Pad-to-Y Low  
tDLH  
Data-to-Pad Low to High  
4.0  
4.6  
ns  
tDHL  
Data-to-Pad High to Low  
3.6  
4.2  
ns  
tDHLS  
tENZL  
tDENZLS  
tENZH  
tENLZ  
tENHZ  
Data-to-Pad High to Low – low slew  
Enable-to-Pad, Z to L  
12.7  
2.9  
14.9  
3.4  
ns  
ns  
Enable-to-Pad, Z to Low – low slew  
Enable-to-Pad, Z to H  
12.7  
4.0  
14.9  
4.6  
ns  
ns  
Enable-to-Pad, L to Z  
3.9  
4.4  
ns  
Enable-to-Pad, H to Z  
3.6  
4.2  
ns  
2
dTLH  
Delta Delay vs. Load Low to High  
Delta Delay vs. Load High to Low  
Delta Delay vs. Load High to Low – low slew  
0.064  
0.031  
0.069  
0.081  
0.04  
0.088  
ns/pF  
ns/pF  
ns/pF  
2
dTHL  
2
dTHLS  
Notes:  
1. Output delays based on 35 pF loading.  
2. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the VCCI value into the following equation:  
Slew Rate [V/ns] = (0.1*VCCI - 0.9*VCCI)/ (Cload * dTLH|dTHL|dTHLS  
where Cload is the load capacitance driven by the I/O in pF;  
)
d
TLH|dTHL|dTHLS is the worst case delta value from the datasheet in ns/pF.  
v2.2  
2-13  
RTSX-SU RadTolerant FPGAs (UMC)  
5V CMOS  
Table 2-13 5V CMOS Electrical Specifications  
Military  
Min.  
VCCI - 0.1  
Symbol  
Parameter  
Max.  
Units  
VOH  
VCCI = MIN,  
VI = VCCI or GND  
(IOH = –20μA)  
(IOL 20μA)  
V
VOL  
VCCI = MIN,  
=
0.1  
V
VI = VCCI or GND  
1
VIL  
Input Low Voltage, VOUT = VVOL(max)  
Input High Voltage, VOUT = VVOH(min)  
0.3VCC  
V
V
2
VIH  
0.7VCC  
IIL /IIH  
Input Leakage Current, VIN = VCCI or GND  
(VCCI 5.25V)  
(VCCI 5.5V)  
–20  
–70  
20  
70  
µA  
µA  
IOZ  
Tristate Output Leakage Current, VOUT = VCCI or GND  
(VCCI 5.25V)  
(VCCI 5.5V)  
–20  
–70  
20  
70  
µA  
µA  
tR, tF  
CIN  
Input Transition Time  
Input Pin Capacitance3  
CLK Pin Capacitance3  
10  
20  
20  
ns  
pF  
pF  
V
CCLK  
VMEAS  
Trip point for Input buffers and Measuring point for Output buffers  
2.5  
IV Curve3 Can be derived from the IBIS model on the web.  
Notes:  
1. For AC signals, the input signal may undershoot during transitions –1.2 V for no longer than 11 ns. Current during the transition  
must not exceed 95 mA.  
2. For AC signals, the input signal may overshoot during transitions VCCI + 1.2 V for no longer than 11 ns. Current during the  
transition must not exceed 95 mA.  
3. The IBIS model can be found at www.actel.com/techdocs/models/ibis.html.  
2-14  
v2.2  
RTSX-SU RadTolerant FPGAs (UMC)  
Timing Characteristics  
Table 2-14 RTSX32SU 5V CMOS I/O Module  
Worst-Case Military Conditions VCCA = 2.25V, VCCI = 4.5V, TJ = 125°C, Radiation Level = 0 krad (Si)  
‘–1’ Speed ‘Std.’ Speed  
Min. Max. Min. Max.  
Parameter  
Description  
Units  
5V CMOS Output Module Timing  
tINYH  
tINYL  
Input Data Pad-to-Y High  
0.7  
1.1  
0.9  
1.3  
ns  
ns  
Input Data Pad-to-Y Low  
tDLH  
Data-to-Pad Low to High  
3.4  
4.0  
ns  
tDHL  
Data-to-Pad High to Low  
3.6  
4.2  
ns  
tDHLS  
tENZL  
tDENZLS  
tENZH  
tENLZ  
tENHZ  
Data-to-Pad High to Low – low slew  
Enable-to-Pad, Z to Low  
8.7  
10.3  
2.8  
ns  
2.3  
ns  
Enable-to-Pad, Z to Low – low slew  
Enable-to-Pad, Z to High  
8.8  
10.4  
4.2  
ns  
3.6  
ns  
Enable-to-Pad, Low to Z  
4.5  
5.3  
ns  
Enable-to-Pad, High to Z  
3.4  
4.0  
ns  
2
dTLH  
Delta Delay vs. Load Low to High  
Delta Delay vs. Load High to Low  
Delta Delay vs. Load High to Low – low slew  
0.036  
0.029  
0.049  
0.046  
0.038  
0.064  
ns/pF  
ns/pF  
ns/pF  
2
dTHL  
2
dTHLS  
Notes:  
1. Output delays based on 35 pF loading.  
2. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the VCCI value into the following equation:  
Slew Rate [V/ns] = (0.1*VCCI - 0.9*VCCI)/ (Cload * dTLH|dTHL|dTHLS  
where Cload is the load capacitance driven by the I/O in pF;  
)
dTLH|dTHL|dTHLS is the worst case delta value from the datasheet in ns/pF.  
Table 2-15 RTSX72SU 5V CMOS I/O Module  
Worst-Case Military Conditions VCCA = 2.25V, VCCI = 4.5V, TJ = 125°C, Radiation Level = 0 krad (Si)  
‘–1’ Speed  
Min. Max.  
‘Std.’ Speed  
Min. Max.  
Parameter  
Description  
Units  
5V CMOS Output Module Timing  
tINYH  
tINYL  
Input Data Pad-to-Y High  
0.7  
0.0  
0.9  
0.0  
ns  
ns  
Input Data Pad-to-Y Low  
tDLH  
Data-to-Pad Low to High  
3.6  
4.2  
ns  
tDHL  
Data-to-Pad High to Low  
3.8  
4.5  
ns  
tDHLS  
tENZL  
tDENZLS  
tENZH  
tENLZ  
tENHZ  
Data-to-Pad High to Low – low slew  
Enable-to-Pad, Z to Low  
9.2  
10.8  
2.8  
ns  
2.3  
ns  
Enable-to-Pad, Z to Low – low slew  
Enable-to-Pad, Z to High  
8.8  
10.4  
4.5  
ns  
3.8  
ns  
Enable-to-Pad, Low to Z  
4.5  
5.3  
ns  
Enable-to-Pad, High to Z  
3.6  
4.2  
ns  
2
dTLH  
Delta Delay vs. Load Low to High  
Delta Delay vs. Load High to Low  
Delta Delay vs. Load High to Low – low slew  
0.036  
0.029  
0.049  
0.046  
0.038  
0.064  
ns/pF  
ns/pF  
ns/pF  
2
dTHL  
2
dTHLS  
Notes:  
1. Output delays based on 35 pF loading.  
2. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the VCCI value into the following equation:  
Slew Rate [V/ns] = (0.1*VCCI - 0.9*VCCI)/ (Cload * dTLH|dTHL|dTHLS  
where Cload is the load capacitance driven by the I/O in pF;  
)
d
TLH|dTHL|dTHLS is the worst case delta value from the datasheet in ns/pF.  
v2.2  
2-15  
RTSX-SU RadTolerant FPGAs (UMC)  
5V PCI  
The RTSX-SU family supports 5V PCI and is compliant with the PCI Local Bus Specification Rev. 2.1.  
Table 2-16 5V PCI DC Specifications  
Symbol  
VCCA  
VCCI  
VIH  
Parameter  
Condition  
Min.  
2.25  
4.5  
Max.  
2.75  
Units  
V
Supply Voltage for Array  
Supply Voltage for I/Os  
Input High Voltage1  
Input Low Voltage1  
5.5  
V
2.0  
VCCI + 0.5  
0.8  
V
VIL  
–0.5  
V
IIH  
Input High Leakage Current  
Input Low Leakage Current  
Output High Voltage  
VIN = 2.75  
VIN = 0.5  
70  
µA  
µA  
V
IIL  
–70  
VOH  
VOL  
IOUT = –2 mA  
IOUT = 3 mA, 6 mA  
2.4  
5
Output Low Voltage2  
0.55  
10  
V
CIN  
Input Pin Capacitance3  
pF  
pF  
V
CCLK  
VMEAS  
Notes:  
CLK Pin Capacitance  
12  
Trip Point for Input Buffers and Measuring Point for Output Buffers  
1.5  
1. Input leakage currents include hi-Z output leakage for all bidirectional buffers with tristate outputs.  
2. Signals without pull-up resistors must have 3 mA low output current. Signals requiring pull-up must have 6 mA; the latter include,  
FRAME#, IRDY#, TRDY#, DEVSEL#, STOP#, SERR#, PERR#, LOCK#, and, when used AD[63::32], C/BE[7::4]#, PAR64, REQ64#, and  
ACK64#.  
3. Absolute maximum pin capacitance for a PCI input is 10 pF (except for CLK) with an exception granted to motherboard-only devices,  
which could be up to 16 pF in order to accommodate PGA packaging. This mean that components for expansion boards need to use  
alternatives to ceramic PGA packaging (i.e., PBGA,PQFP, SGA, etc.).  
200.0  
I
Max. Specification  
OL  
I
OL  
150.0  
100.0  
50.0  
I
Min. Specification  
OL  
0.0  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
I
5
5.5  
6
–50.0  
–100.0  
–150.0  
–200.0  
I
Min. Specification  
OH  
Max. Specification  
OH  
I
OH  
Voltage Out (V)  
Figure 2-7 5V PCI V/I Curve for RTSX-SU  
Equation A  
Equation B  
IOH = 11.9 * (VOUT – 5.25) * (VOUT + 2.45)  
IOL = 78.5 * VOUT * (4.4 – VOUT  
for 0V < VOUT < 0.71V  
)
for VCCI > VOUT > 3.1V  
2-16  
v2.2  
RTSX-SU RadTolerant FPGAs (UMC)  
Table 2-17 5V PCI AC Specifications  
Symbol  
Parameter  
Condition  
0 < VOUT < 1.4 1  
1.4 < VOUT < 2.4 1, 2  
Min.  
–44  
Max.  
Units  
mA  
IOH(AC)  
Switching Current High  
(–44 + (VOUT – 1.4)/0.024)  
mA  
1, 3  
3.1 < VOUT < VCCI  
"Equation A" on  
page 2-16  
(Test Point)  
V
OUT = 3.1 3  
–142  
mA  
mA  
mA  
IOL(AC)  
VOUT = 2.2 1  
95  
Switching Current Low  
2.2 > VOUT > 0.55 1  
0.71 > VOUT > 0 1, 3  
(VOUT/0.023)  
"Equation B" on  
page 2-16  
(Test Point)  
VOUT = 0.71  
206  
mA  
mA  
ICL  
Low Clamp Current  
Output Rise Slew Rate  
Output Fall Slew Rate  
–5 < VIN –1  
–25 + (VIN + 1)/0.015  
slewR  
slewF  
Notes:  
0.4V to 2.4V load4  
2.4V to 0.4V load4  
1
1
5
5
V/ns  
V/ns  
1. Refer to the V/I curves in Figure 2-7 on page 2-16. Switching current characteristics for REQ# and GNT# are permitted to be one  
half of that specified here; i.e., half size output drivers may be used on these signals. This specification does not apply to CLK and  
RST#, which are system outputs. The “Switching Current High” specification is not relevant to SERR#, INTA#, INTB#, INTC#, and  
INTD#, which are open drain outputs.  
2. Note that this segment of the minimum current curve is drawn from the AC drive point directly to the DC drive point rather than  
toward the voltage rail (as is done in the pull-down curve). This difference is intended to allow for an optional N-channel pull-up.  
3. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (A  
and B) are provided with the respective curves in Figure 2-7 on page 2-16. The equation defined maximum should be met by the  
design. In order to facilitate component testing, a maximum current test point is defined for each side of the output driver.  
4. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any  
point within the transition range. The specified load is optional; i.e., the designer may elect to meet this parameter with an  
unloaded output per revision 2.0 of the PCI Local Bus Specification (Figure 2-8). However, adherence to both the maximum and  
minimum parameters is now required (the maximum is no longer simply a guideline). Since adherence to the maximum slew rate  
was not required prior to revision 2.1 of the specification, there may be components in the market that have faster edge rates;  
therefore, motherboard designers must bear in mind that rise and fall times faster than this specification could occur and should  
ensure that signal integrity modeling accounts for this. Rise slew rate does not apply to open drain outputs.  
pin  
output  
buffer  
50 pF  
Figure 2-8 5V PCI Output Loading  
v2.2  
2-17  
RTSX-SU RadTolerant FPGAs (UMC)  
Timing Characteristics  
Table 2-18 RTSX32SU 5V PCI I/O Module  
Worst-Case Military Conditions VCCA = 2.25V, VCCI = 4.5V, TJ= 125°C, Radiation Level = 0 krad (Si)  
‘–1’ Speed ‘Std.’ Speed  
Min. Max. Min. Max.  
Parameter  
Description  
Units  
5V PCI Output Module Timing  
tINYH  
tINYL  
tDLH  
Input Data Pad-to-Y High  
Input Data Pad-to-Y Low  
0.7  
1.1  
0.9  
1.3  
ns  
ns  
Data-to-Pad Low to High  
Data-to-Pad High to Low  
Enable-to-Pad, Z to Low  
3.4  
4.0  
ns  
tDHL  
4.1  
4.8  
ns  
tENZL  
tENZH  
tENLZ  
tENHZ  
2.8  
3.3  
ns  
Enable-to-Pad, Z to High  
Enable-to-Pad, Low to Z  
3.4  
4.0  
ns  
4.9  
5.8  
ns  
Enable-to-Pad, High to Z  
Delta Delay vs. Load Low to High  
Delta Delay vs. Load High to Low  
4.1  
4.8  
ns  
2
dTLH  
0.036  
0.029  
0.046  
0.038  
ns/pF  
ns/pF  
2
dTHL  
Notes:  
1. Output delays based on 35 pF loading.  
2. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the VCCI value into the following equation:  
Slew Rate [V/ns] = (0.1*VCCI - 0.9*VCCI)/ (Cload * dTLH|dTHL|dTHLS  
where Cload is the load capacitance driven by the I/O in pF;  
)
dTLH|dTHL|dTHLS is the worst case delta value from the datasheet in ns/pF.  
Table 2-19 RTSX72SU 5V PCI I/O Module  
Worst-Case Military Conditions VCCA = 2.25V, VCCI = 4.5V, TJ= 125°C, Radiation Level = 0 krad (Si)  
‘–1’ Speed  
Min. Max.  
‘Std.’ Speed  
Min. Max.  
Parameter  
Description  
Units  
5V PCI Output Module Timing  
tINYH  
tINYL  
tDLH  
Input Data Pad-to-Y High  
Input Data Pad-to-Y Low  
0.7  
1.1  
0.9  
1.3  
ns  
ns  
Data-to-Pad Low to High  
Data-to-Pad High to Low  
Enable-to-Pad, Z to Low  
3.5  
4.1  
ns  
tDHL  
4.3  
5.1  
ns  
tENZL  
tENZH  
tENLZ  
tENHZ  
2.8  
3.3  
ns  
Enable-to-Pad, Z to High  
Enable-to-Pad, Low to Z  
3.5  
4.1  
ns  
4.9  
5.8  
ns  
Enable-to-Pad, High to Z  
Delta Delay vs. Load Low to High  
Delta Delay vs. Load High to Low  
4.3  
5.1  
ns  
2
dTLH  
0.036  
0.029  
0.046  
0.038  
ns/pF  
ns/pF  
2
dTHL  
Notes:  
1. Output delays based on 35 pF loading.  
2. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the VCCI value into the following equation:  
Slew Rate [V/ns] = (0.1*VCCI - 0.9*VCCI)/ (Cload * dTLH|dTHL|dTHLS  
where Cload is the load capacitance driven by the I/O in pF;  
)
dTLH|dTHL|dTHLS is the worst case delta value from the datasheet in ns/pF.  
2-18  
v2.2  
RTSX-SU RadTolerant FPGAs (UMC)  
3.3V PCI  
The RTSX-SU family supports 3.3V PCI and is compliant with the PCI Local Bus Specification Rev. 2.1.  
Table 2-20 3.3 V PCI DC Specifications  
Symbol  
VCCA  
VCCI  
VIH  
Parameter  
Supply Voltage for Array  
Condition  
Min.  
2.25  
Max.  
2.75  
Units  
V
Supply Voltage for I/Os  
3.0  
3.6  
V
Input High Voltage  
0.5VCCI  
–0.5  
VCCI + 0.5  
0.3VCCI  
V
VIL  
Input Low Voltage  
V
IIPU  
Input Pull-up Voltage1  
0.7VCCI  
V
IIL/IIH  
VOH  
Input Leakage Current2  
0 < VIN < VCCI  
20  
μA  
V
Output High Voltage  
IOUT = –500 µA  
IOUT = 1500 µA  
0.9VCCI  
VOL  
Output Low Voltage  
Input Pin Capacitance3  
0.1VCCI  
10  
V
CIN  
pF  
pF  
V
CCLK  
VMEAS  
CLK Pin Capacitance  
5
12  
Trip point for Input buffers  
Output buffer measuring point - rising edge  
Output buffer measuring point - falling edge  
0.4 * VCCI  
0.285 * VCCI  
0.615 * VCCI  
Notes:  
1. This specification should be guaranteed by design. It is the minimum voltage to which pull-up resistors are calculated to pull a  
floated network. Applications sensitive to static power utilization should assure that the input buffer is conducting minimum current  
at this input VIN.  
2. Input leakage currents include hi-Z output leakage for all bidirectional buffers with tristate outputs.  
3. Absolute maximum pin capacitance for a PCI input is 10 pF (except for CLK) with an exception granted to motherboard-only  
devices, which could be up to 16 pF, in order to accommodate PGA packaging. This means that components for expansion boards  
would need to use alternatives to ceramic PGA packaging.  
150.0  
I
Max. Specification  
OL  
I
OL  
100.0  
50.0  
I
Min. Specification  
OL  
0.0  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
–50.0  
–100.0  
–150.0  
I
Min. Specification  
OH  
I
Max. Specification  
I
OH  
OH  
Voltage Out (V)  
Figure 2-9 3.3V PCI V/I Curve for the RTSX-SU Family  
Equation C  
Equation D  
IOH = (98.0/VCCI) * (VOUT – VCCI) * (VOUT + 0.4VCCI  
)
IOL = (256/VCCI) * VOUT * (VCCI – VOUT  
)
for VCCI > VOUT > 0.7 VCCI  
for 0V < VOUT < 0.18 VCCI  
v2.2  
2-19  
RTSX-SU RadTolerant FPGAs (UMC)  
Table 2-21 3.3V PCI AC Specifications  
Symbol  
Parameter  
Condition  
Min.  
–12VCCI  
Max.  
Units  
mA  
1
IOH(AC)  
Switching Current High  
0 < VOUT 0.3VCCI  
1
0.3VCCI VOUT < 0.9VCCI  
(–17.1 + (VCCI – VOUT))  
mA  
1, 2  
0.7VCCI < VOUT < VCCI  
"Equation C" on  
page 2-19  
2
(Test Point)  
V
OUT = 0.7VCC  
–32VCCI  
mA  
mA  
mA  
1
IOL(AC)  
Switching Current Low  
VCCI > VOUT 0.6VCCI  
16VCCI  
1
0.6VCCI > VOUT > 0.1VCCI  
0.18VCCI > VOUT > 0 1, 2  
(26.7VOUT)  
"Equation D" on  
page 2-19  
2
(Test Point)  
VOUT = 0.18VCC  
38VCCI  
mA  
mA  
ICL  
Low Clamp Current  
High Clamp Current  
Output Rise Slew Rate  
Output Fall Slew Rate  
–3 < VIN –1  
–25 + (VIN + 1)/0.015  
ICH  
VCCI + 4 > VIN VCCI + 1  
0.2VCCI to 0.6VCCI load 3  
0.6VCCI to 0.2VCCI load 3  
25 + (VIN – VCCI – 1)/0.015  
mA  
slewR  
slewF  
Notes:  
1
1
4
4
V/ns  
V/ns  
1. Refer to the V/I curves in Figure 2-9 on page 2-19. Switching current characteristics for REQ# and GNT# are permitted to be one  
half of that specified here; i.e., half-size output drivers may be used on these signals. This specification does not apply to CLK and  
RST#, which are system outputs. The “Switching Current High” specification is not relevant to SERR#, INTA#, INTB#, INTC#, and  
INTD#, which are open drain outputs.  
2. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (C  
and D) are provided with the respective curves in Figure 2-9 on page 2-19. The equation defined maximum should be met by the  
design. In order to facilitate component testing, a maximum current test point is defined for each side of the output driver.  
3. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any  
point within the transition range. The specified load is optional (Figure 2-10); i.e., the designer may elect to meet this parameter  
with an unloaded output per the latest revision of the PCI Local Bus Specification. However, adherence to both maximum and  
minimum parameters is required (the maximum is no longer simply a guideline). Rise slew rate does not apply to open drain  
outputs.  
Pin  
1/2 in. max.  
Pin  
1/2 in. max.  
Output  
Buffer  
Output  
Buffer  
10 pF  
VCC  
1 k/25 Ω  
1 k/25 Ω  
10 pF  
Figure 2-10 3.3V PCI Output Loading  
2-20  
v2.2  
RTSX-SU RadTolerant FPGAs (UMC)  
Timing Characteristics  
Table 2-22 RTSX32SU 3.3V PCI I/O Module  
Worst-Case Military Conditions VCCA = 2.25V, VCCI = 3.0V, TJ = 125°C, Radiation Level = 0 krad (Si)  
‘–1’ Speed ‘Std.’ Speed  
Min. Max. Min. Max.  
Parameter  
Description  
Units  
3.3V PCI Output Module Timing  
tINYH  
tINYL  
tDLH  
Input Data Pad-to-Y High  
Input Data Pad-to-Y Low  
Data-to-Pad Low to High  
Data-to-Pad High to Low  
Enable-to-Pad, Z to Low  
Enable-to-Pad, Z to High  
Enable-to-Pad, Low to Z  
Enable-to-Pad, High to Z  
Delta Delay vs. Load Low to High  
Delta Delay vs. Load High to Low  
0.8  
0.9  
0.9  
1.1  
ns  
ns  
3.0  
3.5  
ns  
tDHL  
3.0  
3.5  
ns  
tENZL  
tENZH  
tENLZ  
tENHZ  
2.1  
2.5  
ns  
3.0  
3.5  
ns  
2.7  
3.9  
ns  
3.0  
3.5  
ns  
2
dTLH  
0.067  
0.031  
0.085  
0.040  
ns/pF  
ns/pF  
2
dTHL  
Notes:  
1. Output delays based on 35 pF loading.  
2. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the VCCI value into the following equation:  
Slew Rate [V/ns] = (0.1*VCCI - 0.9*VCCI)/ (Cload * dTLH|dTHL|dTHLS  
where Cload is the load capacitance driven by the I/O in pF;  
)
dTLH|dTHL|dTHLS is the worst case delta value from the datasheet in ns/pF.  
Table 2-23 RTSX72SU 3.3V PCI I/O Module  
Worst-Case Military Conditions VCCA = 2.25V, VCCI = 3.0V, TJ = 125°C, Radiation Level = 0 krad (Si)  
‘–1’ Speed  
Min. Max.  
‘Std.’ Speed  
Min. Max.  
Parameter  
Description  
Units  
3.3V PCI Output Module Timing  
tINYH  
tINYL  
tDLH  
Input Data Pad-to-Y High  
Input Data Pad-to-Y Low  
Data-to-Pad Low to High  
Data-to-Pad High to Low  
Enable-to-Pad, Z to Low  
Enable-to-Pad, Z to High  
Enable-to-Pad, Low to Z  
Enable-to-Pad, High to Z  
Delta Delay vs. Load Low to High  
Delta Delay vs. Load High to Low  
0.7  
0.9  
0.8  
1.1  
ns  
ns  
2.8  
3.3  
ns  
tDHL  
2.8  
3.3  
ns  
tENZL  
tENZH  
tENLZ  
tENHZ  
2.1  
2.5  
ns  
2.8  
3.3  
ns  
2.7  
3.9  
ns  
2.8  
3.3  
ns  
2
dTLH  
0.067  
0.031  
0.085  
0.040  
ns/pF  
ns/pF  
2
dTHL  
Notes:  
1. Output delays based on 35 pF loading.  
2. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the VCCI value into the following equation:  
Slew Rate [V/ns] = (0.1*VCCI - 0.9*VCCI)/ (Cload * dTLH|dTHL|dTHLS  
where Cload is the load capacitance driven by the I/O in pF;  
)
dTLH|dTHL|dTHLS is the worst case delta value from the datasheet in ns/pF.  
v2.2  
2-21  
RTSX-SU RadTolerant FPGAs (UMC)  
Module Specifications  
C-Cell  
Inverter (DB input) can be used to drive a  
complement signal of any of the inputs to the C-cell.  
Introduction  
The C-cell is one of the two logic module types in the  
RTSX-SU architecture. It is the combinatorial logic  
resource in the device. The RTSX-SU architecture uses the  
same C-cell configuration as found in the SX and SX-A  
families.  
A hardwired connection (direct connect) to the  
associated R-cell with a signal propagation time of  
less than 0.1 ns.  
This layout of the C-cell enables the implementation of  
over 4,000 functions of up to five bits. For example, two  
C-cells can be used together to implement a four-input  
XOR function in a single cell delay.  
The C-cell features the following (Figure 2-11):  
Eight-input MUX (data: D0-D3, select: A0, A1, B0,  
B1). User signals can be routed to any one of these  
inputs. C-cell inputs (A0, A1, B0, B1) can be tied to  
one of the either the routed or quad clocks (CLKA/B  
or QCLKA/B/C/D).  
The C-cell configuration is handled automatically for the  
user with Actel's extensive macro library (please see  
Actel’s Antifuse Macro Library Guide for a complete  
listing of available RTSX-SU macros).  
D0  
D1  
Y
D2  
D3  
Sa  
Sb  
DB  
A0 B0  
A1 B1  
Figure 2-11 C-Cell  
VCC  
GND  
S, A or B  
50% 50%  
VCC  
S
A
B
Y
50%  
50%  
Y
GND  
tPD  
tPD  
VCC  
50%  
Y
GND  
tPD  
50%  
tPD  
Figure 2-12 C-Cell Timing Model and Waveforms  
2-22  
v2.2  
RTSX-SU RadTolerant FPGAs (UMC)  
Timing Characteristics  
Table 2-24 C-Cell  
Worst-Case Military Conditions VCCA = 2.25V, VCCI = 3.0V, TJ= 125°C, Radiation Level = 0 krad (Si)  
‘–1’ Speed ‘Std.’ Speed  
Min. Max. Min. Max.  
Parameter  
Description  
Units  
C-cell Propagation Delays  
tPD  
Internal Array Module  
1.2  
1.4  
ns  
Note: For dual-module macros, use tPD + tRD1 + tPDn, tRCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD, whichever is appropriate.  
R-Cell  
Clock can be driven by any of the following (CKP  
input selects clock polarity):  
Introduction  
The R-cell, the sequential logic resource of RTSX-SU  
devices, is the second logic module type in the RTSX-SU  
family architecture. The RTSX-SU R-cell is an SEU-  
enhanced version of the SX and SX-A R-cell (Figure 2-13).  
The high-performance, hardwired, fast clock  
(HCLK)  
One of the two routed clocks (CLKA/B)  
The main features of the R-cell include the following:  
One of the four quad clocks (QCLKA/B/C/D) in  
the case of the RTSX72SU  
Direct connection to the adjacent C-cell through  
the hardwired connection DCIN. DCIN is driven by  
the DCOUT of an adjacent C-cell via the Direct-  
Connect routing resource, providing a connection  
with less than 0.1 ns of routing delay.  
User signals  
S0, S1, PSETB, and CLRB can be driven by CLKA/B,  
QCLKA/B/C/D (for the RTSX72SU) or user signals.  
Routed Data Input and S1 can be driven by user  
signals.  
The R-cell can be used as a standalone flip-flop. It  
can be driven by any other C-cell or I/O modules  
through the regular routing structure (using DIN  
as a routable data input). This gives the option of  
using it as a 2:1 MUXed flip-flop as well.  
As with the C-cell, the configuration of the R-cell to  
perform various functions is handled automatically for  
the user through Actel's extensive macro library (please  
see Actel’s Antifuse Macro Library Guide for a complete  
listing of available RTSX-SU macros).  
Independent active-low asynchronous clear (CLRB).  
Independent active-low asynchronous preset  
(PSETB). If both CLRB and PSETB are Low, CLRB has  
higher priority.  
Routed  
Data Input  
S1  
S0  
PSETB  
Direct  
Connect  
Input  
D
Q
Y
HCLK  
CLKA,  
CLKB,  
Internal Logic  
CLRB  
CKS  
CKP  
Figure 2-13 R-Cell  
v2.2  
2-23  
RTSX-SU RadTolerant FPGAs (UMC)  
SEU-Hardened D Flip-Flop  
In order to meet the stringent SEU requirements of a LET  
threshold greater than 40MeV-cm2/gm, the internal  
design of the R-cell was modified without changing the  
functionality of the cell.  
of each of the three latches is voted with the outputs of  
the other two latches. If one of the three latches is struck  
by an ion and starts to change state, the voting with the  
other two latches prevents the change from feeding  
back and permanently latching. Care was taken in the  
layout to ensure that a single ion strike could not affect  
more than one latch. Figure 2-16 shows a simplified  
schematic of the test circuitry that has been added to  
test the functionality of all the components of the flip-  
flop. The inputs to each of the three latches are  
independently controllable so the voting circuitry in the  
asynchronous self-correcting feedback paths can be  
tested exhaustively. This testing is performed on an  
unprogrammed array during wafer sort, final test, and  
post-burn-in test. This test circuitry cannot be used to  
testtheflip-flops oncethedevicehasbeenprogrammed.  
Figure 2-14 is a simplified representation of how the D  
flip-flop in the R-cell is implemented in the SX-A  
architecture. The flip-flop consists of a master and a slave  
latch gated by opposite edges of the clock. Each latch is  
constructed by feeding back the output to the input  
stage. The potential problem in a space environment is  
that either of the latches can change state when hit by a  
particle with enough energy.  
To achieve the SEU requirements, the D flip-flop in the  
RTSX-SU R-cell is enhanced (Figure 2-15). Both the master  
and slave "latches" are each implemented with three  
latches. The asynchronous self-correcting feedback paths  
Q
D
CLK  
CLK  
Figure 2-14 SX-A R-Cell Implementation of a D Flip-Flop  
Q
D
CLK  
CLK  
Voter  
Gate  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
Figure 2-15 RTSX-SU R-Cell Implementation of D Flip-Flop Using Voter Gate Logic  
2-24  
v2.2  
RTSX-SU RadTolerant FPGAs (UMC)  
Q
D
Tst1  
Tst2  
Tst3  
Voter  
Gate  
CLK  
Test  
Circuitry  
Figure 2-16 R-Cell Implementation – Test Circuitry  
PRE  
CLR  
D
Q
CLK  
(Positive edge triggered)  
tHD  
D
tHPWH  
tRPWH  
tSUD  
tHP  
CLK  
tRCO  
tHPWL  
tRPWL  
Q
tPRESET  
tCLR  
tWASYN  
CLR  
PRESET  
Figure 2-17 R-Cell Timing Models and Waveforms  
v2.2  
2-25  
RTSX-SU RadTolerant FPGAs (UMC)  
Timing Characteristics  
Table 2-25 R-Cell  
Worst-Case Military Conditions VCCA = 2.25V, VCCI = 3.0V, TJ = 125°C, Radiation Level = 0 krad (Si)  
‘–1’ Speed ‘Std.’ Speed  
Min. Max. Min. Max.  
Parameter  
Description  
Units  
R-Cell Propagation Delays  
tRCO  
Sequential Clock-to-Q  
1.0  
0.8  
1.1  
0.8  
0.0  
2.8  
0.7  
0.7  
1.2  
1.0  
1.3  
1.0  
0.0  
3.3  
0.8  
0.8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCLR  
Asynchronous Clear-to-Q  
Asynchronous Preset-to-Q  
Flip-Flop Data Input Set-Up  
Flip-Flop Data Input Hold  
Asynchronous Pulse Width  
Asynchronous Recovery Time  
Asynchronous Hold Time  
tPRESET  
tSUD  
tHD  
tWASYN  
tRECASYN  
tHASYN  
2-26  
v2.2  
RTSX-SU RadTolerant FPGAs (UMC)  
Routing Specifications  
Horizontal and Vertical Routing  
Routing Resources  
In addition to DirectConnect and FastConnect, the  
architecture makes use of two globally-oriented routing  
resources known as segmented routing and high-drive  
routing. Actel’s segmented routing structure provides a  
variety of track lengths for extremely fast routing  
between SuperClusters. The exact combination of track  
lengths and antifuses within each path is chosen by the  
100-percent-automatic place-and-route software to  
minimize signal propagation delays.  
The routing structure found in RTSX-SU devices enables  
any logic module to be connected to any other logic  
module in the device while retaining high performance.  
There are multiple paths and routing resources that can  
be used to route one logic module to another, both  
within a SuperCluster and elsewhere on the chip.  
There are three primary types of routing within the  
RTSX-SU architecture: DirectConnect, FastConnect, and  
Vertical and Horizontal Routing.  
Critical Nets and Typical Nets  
DirectConnect  
Propagation delays are expressed only for typical nets,  
which are used for the initial design performance  
evaluation. Critical net delays can then be applied to the  
most time-critical paths. Critical nets are determined by  
net property assignment prior to placement and routing.  
Up to six percent of the nets in a design may be  
designated as critical, while 90 percent of the nets in a  
design are typical.  
DirectConnects provide a high-speed connection between  
an R-cell and its adjacent C-cell (Figure 1-3 and Figure 1-4  
on page 1-4). This connection can be made from the Y  
output of the C-cell to the DirectConnect input of the R-cell  
by configuring of the S0 line of the R-cell. This provides a  
connection that does not require an antifuse and has a  
delay of less than 0.1 ns.  
FastConnect  
Long Tracks  
For high-speed routing of logic signals, FastConnects can  
be used to build a short distance connection using a  
single antifuse (Figure 1-3 and Figure 1-4 on page 1-4).  
FastConnects provide a maximum delay of 0.4 ns. The  
outputs of each logic module connect directly to the  
output tracks within a SuperCluster. Signals on the  
output tracks can then be routed through a single  
antifuse connection to drive the inputs of logic modules  
either within one SuperCluster or in the SuperCluster  
immediately below.  
Some nets in the design use long tracks. Long tracks are  
special routing resources that span multiple rows,  
columns, or modules. Long tracks employ three and  
sometimes five antifuse connections. This increases  
capacitance and resistance results in longer net delays  
for macros connected to long tracks. Typically up to six  
percent of nets in a fully utilized device require long  
tracks. Long tracks can cause a delay from 4.0 ns to  
8.4 ns. This additional delay is represented statistically in  
higher fanout routing delays in the "Timing  
Characteristics" section on page 2-28.  
v2.2  
2-27  
RTSX-SU RadTolerant FPGAs (UMC)  
Timing Characteristics  
Table 2-26 RTSX32SU  
Worst-Case Military Conditions VCCA = 2.25V, VCCI = 3.0V, TJ = 125°C, Radiation Level = 0 krad (Si)  
‘–1’ Speed ‘Std.’ Speed  
Min. Max. Min. Max.  
Parameter Description  
Units  
Predicted Routing Delays  
tDC  
FO=1 Routing Delay, DirectConnect  
0.1  
0.4  
0.8  
1.0  
1.4  
1.5  
2.9  
4.0  
0.1  
0.4  
0.9  
1.2  
1.6  
1.8  
3.4  
4.7  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tFC  
FO=1 Routing Delay, FastConnect  
FO=1 Routing Delay  
tRD1  
tRD2  
tRD3  
tRD4  
tRD8  
tRD12  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
FO=12 Routing Delay  
Note: Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance.  
Table 2-27 RTSX72SU  
Worst-Case Military Conditions VCCA = 2.25V, VCCI = 3.0V, TJ = 125°C, Radiation Level = 0 krad (Si)  
‘–1’ Speed  
Min. Max.  
‘Std.’ Speed  
Min. Max.  
Parameter Description  
Units  
Predicted Routing Delays  
tDC  
FO=1 Routing Delay, DirectConnect  
0.1  
0.4  
0.9  
1.2  
1.8  
1.9  
3.7  
5.1  
0.1  
0.4  
1.0  
1.4  
2.0  
2.3  
4.3  
6.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tFC  
FO=1 Routing Delay, FastConnect  
FO=1 Routing Delay  
tRD1  
tRD2  
tRD3  
tRD4  
tRD8  
tRD12  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
FO=12 Routing Delay  
Note: Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance.  
2-28  
v2.2  
RTSX-SU RadTolerant FPGAs (UMC)  
Global Resources  
One of the most important aspects of any FPGA  
architecture is its global resource or clock structure. The  
RTSX-SU family provides flexible and easy-to-use global  
resources without the limitations normally found in  
other FPGA architectures.  
the device (logically equivalent to the HCLK). CLK has the  
added flexibility in that it can drive the S0 (Enable), S1,  
PSETB, and CLRB inputs of R-cells as well as any of the  
inputs of any C-cell in the device. This allows CLKs to be  
used not only as clocks but also for other global signals  
or high fanout nets. Both CLKs are available everywhere  
on the chip.  
The RTSX-SU architecture contains three types of global  
resources, the HCLK (hardwired clock) and CLK (routed  
clock) and in the RTSX72SU, QCLK (quadrant clock). Each  
RTSX-SU device is provided with one HCLK and two CLKs.  
The RTSX72SU has an additional four QCLKs.  
If CLKA or CLKB pins are not used or sourced from  
signals, then these pins must be set as Low or High on  
the board. They must not be left floating (except in  
RTSX72SU, where these clocks can be configured as  
regular I/Os).  
Hardwired Clock  
The hardwired (HCLK) is a low-skew network that can  
directly drive the clock inputs of all R-cells in the device  
with no antifuse in the path. The HCLK is available  
everywhere on the chip.  
Quadrant Clocks  
The RTSX72SU device provides four quadrant clocks  
(QCLKA, QCLKB, QCLKC, QCLKD) to the user, which can  
be sourced from external pins or from internal logic  
signals within the device. Each of these clocks can  
individually drive up to one full quadrant of the chip, or  
they can be grouped together to drive multiple  
quadrants (Figure 2-18). If QCLKs are not used as  
quadrant clocks, they can behave as regular I/Os. See  
Actel’s application note Using A54SX72A and RT54SX72S  
Quadrant Clocks for more information.  
Upon power-up of the RTSX-SU device, four clock pulses  
must be detected on HCLK before the clock signal will be  
propagated to registers in the device.  
Routed Clocks  
The routed clocks (CLKA and CLKB) are low-skew  
networks that can drive the clock inputs of all R-cells in  
4 QCLKBUFS  
4
Quadrant 2  
5:1  
Quadrant 3  
5:1  
QCLKINT  
(to array)  
QCLKINT  
(to array)  
4
Quadrant 0  
Quadrant 1  
5:1  
5:1  
QCLKINT  
(to array)  
QCLKINT  
(to array)  
Figure 2-18 RTSX-SU QCLK Structure  
v2.2  
2-29  
RTSX-SU RadTolerant FPGAs (UMC)  
Timing Characteristics  
Table 2-28 RTSX32SU at VCCI = 3.0V  
Worst-Case Military Conditions VCCA = 2.25V, VCCI = 3.0V, TJ = 125°C, Radiation Level = 0 krad (Si)  
‘–1’ Speed ‘Std.’ Speed  
Min. Max.  
Parameter  
Description  
Min.  
Max.  
Units  
Dedicated (Hardwired) Array Clock Network  
tHCKH  
tHCKL  
tHPWH  
tHPWL  
tHCKSW  
tHP  
Pad to R-Cell Input Low to High  
Pad to R-Cell Input High to Low  
Minimum Pulse Width High  
Minimum Pulse Width Low  
Maximum Skew  
3.9  
3.9  
4.6  
4.6  
ns  
ns  
2.1  
2.1  
2.5  
2.5  
ns  
ns  
1.6  
1.9  
ns  
Minimum Period  
4.2  
5.0  
ns  
fHMAX  
Maximum Frequency  
238  
200  
MHz  
Routed Array Clock Networks  
tRCKH  
tRCHKL  
tRCKH  
tRCKL  
Pad to R-cell Input High to Low (Light Load))  
4.2  
3.9  
5.0  
4.3  
5.6  
4.9  
4.9  
4.6  
5.9  
5.1  
6.5  
5.7  
ns  
ns  
Pad to R-cell Input Low to High (Light Load))  
Pad to R-cell Input Low to High (50% Load)  
Pad to R-cell Input High to Low (50% Load)  
Pad to R-cell Input Low to High (100% Load)  
Pad to R-cell Input High to Low (100% Load)  
Minimum Pulse Width High  
ns  
ns  
tRCKH  
tRCKL  
ns  
ns  
tRPWH  
tRPWL  
tRCKSW  
tRCKSW  
tRCKSW  
tRP  
2.1  
2.1  
2.5  
2.5  
ns  
Minimum Pulse Width Low  
ns  
Maximum Skew (Light Load)  
2.8  
2.8  
2.8  
3.3  
3.3  
3.3  
ns  
Maximum Skew (50% Load)  
ns  
Maximum Skew (100% Load)  
ns  
Minimum Period  
4.2  
5.0  
ns  
fRMAX  
Maximum Frequency  
238  
200  
MHz  
2-30  
v2.2  
RTSX-SU RadTolerant FPGAs (UMC)  
Table 2-29 RTSX32SU at VCCI = 4.5V  
Worst-Case Military Conditions VCCA = 2.25V, VCCI = 4.5V, TJ = 125°C, Radiation Level = 0 krad (Si)  
‘–1’ Speed ‘Std.’ Speed  
Min. Max.  
Parameter  
Description  
Min.  
Max.  
Units  
Dedicated (Hardwired) Array Clock Network  
tHCKH  
tHCKL  
tHPWH  
tHPWL  
tHCKSW  
tHP  
Pad to R-Cell Input Low to High  
Pad to R-Cell Input High to Low  
Minimum Pulse Width High  
Minimum Pulse Width Low  
Maximum Skew  
3.9  
3.9  
4.6  
4.6  
ns  
ns  
2.1  
2.1  
2.5  
2.5  
ns  
ns  
1.6  
1.9  
ns  
Minimum Period  
4.2  
5.0  
ns  
fHMAX  
Maximum Frequency  
238  
200  
MHz  
Routed Array Clock Networks  
tRCKH  
tRCHKL  
tRCKH  
tRCKL  
Pad to R-cell Input High to Low (Light Load))  
3.9  
3.7  
4.7  
4.1  
5.3  
4.7  
4.6  
4.4  
5.6  
4.9  
6.2  
5.5  
ns  
ns  
Pad to R-cell Input Low to High (Light Load))  
Pad to R-cell Input Low to High (50% Load)  
Pad to R-cell Input High to Low (50% Load)  
Pad to R-cell Input Low to High (100% Load)  
Pad to R-cell Input High to Low (100% Load)  
Minimum Pulse Width High  
ns  
ns  
tRCKH  
tRCKL  
ns  
ns  
tRPWH  
tRPWL  
tRCKSW  
tRCKSW  
tRCKSW  
tRP  
2.1  
2.1  
2.5  
2.5  
ns  
Minimum Pulse Width Low  
ns  
Maximum Skew (Light Load)  
2.8  
2.8  
2.8  
3.3  
3.3  
3.3  
ns  
Maximum Skew (50% Load)  
ns  
Maximum Skew (100% Load)  
ns  
Minimum Period  
4.2  
5.0  
ns  
fRMAX  
Maximum Frequency  
238  
200  
MHz  
v2.2  
2-31  
RTSX-SU RadTolerant FPGAs (UMC)  
Table 2-30 RTSX72SU at VCCI = 3.0V  
Worst-Case Military Conditions VCCA = 2.25V, VCCI = 3.0V, TJ = 125°C, Radiation Level = 0 krad (Si)  
‘–1’ Speed ‘Std.’ Speed  
Min. Max.  
Parameter  
Description  
Min.  
Max.  
Units  
Dedicated (Hardwired) Array Clock Network  
tHCKH  
tHCKL  
tHPWH  
tHPWL  
tHCKSW  
tHP  
Pad to R-cell Input Low to High  
Pad to R-cell Input High to Low  
Minimum Pulse Width High  
Minimum Pulse Width Low  
Maximum Skew  
3.2  
3.5  
3.8  
4.1  
ns  
ns  
2.7  
2.7  
3.2  
3.2  
ns  
ns  
2.7  
3.1  
ns  
Minimum Period  
5.4  
6.4  
ns  
fHMAX  
Maximum Frequency  
185  
156  
MHz  
Routed Array Clock Networks  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
tRPWH  
tRPWL  
tRCKSW  
tRCKSW  
tRCKSW  
tRP  
Pad to R-cell Input Low to High (Light Load))  
5.7  
6.5  
5.7  
6.5  
5.7  
6.5  
6.7  
7.7  
6.7  
7.7  
6.7  
7.7  
ns  
ns  
Pad to R-cell Input High to Low (Light Load)  
Pad to R-cell Input Low to High (50% Load)  
Pad to R-cell Input High to Low (50% Load)  
Pad to R-cell Input Low to High (100% Load)  
Pad to R-cell Input High to Low (100% Load)  
Minimum Pulse Width High  
ns  
ns  
ns  
ns  
2.7  
2.7  
3.2  
3.2  
ns  
Minimum Pulse Width Low  
ns  
Maximum Skew (Light Load)  
5.1  
4.9  
4.9  
6.0  
5.8  
5.8  
ns  
Maximum Skew (50% Load)  
ns  
Maximum Skew (100% Load)  
ns  
Minimum Period  
5.4  
6.4  
ns  
fRMAX  
Maximum Frequency  
185  
156  
MHz  
Quadrant Array Clock Networks  
tQCKH  
tQCKL  
tQCKH  
tQCKL  
tQCKH  
tQCKL  
tQPWH  
tQPWL  
tQCKSW  
tQCKSW  
tQCKSW  
tQP  
Pad to R-cell Input Low to High (Light Load)  
3.6  
3.6  
3.7  
3.9  
4.0  
4.1  
4.2  
4.2  
4.3  
4.5  
4.7  
4.8  
ns  
ns  
Pad to R-cell Input High to Low (Light Load)  
Pad to R-cell Input Low to High (50% Load)  
Pad to R-cell Input High to Low (50% Load)  
Pad to R-cell Input Low to High (100% Load)  
Pad to R-cell Input High to Low (100% Load)  
Minimum Pulse Width High  
ns  
ns  
ns  
ns  
2.7  
2.7  
3.2  
3.2  
ns  
Minimum Pulse Width Low  
ns  
Maximum Skew (Light Load)  
0.6  
1.0  
1.0  
0.7  
1.1  
1.1  
ns  
Maximum Skew (50% Load)  
ns  
Maximum Skew (100% Load)  
ns  
Minimum Period  
5.4  
6.4  
ns  
fQMAX  
Maximum Frequency  
185  
156  
MHz  
2-32  
v2.2  
RTSX-SU RadTolerant FPGAs (UMC)  
Table 2-31 RTSX72SU at VCCI = 4.5V  
Worst-Case Military Conditions VCCA = 2.25V, VCCI = 4.5V, TJ = 125°C, Radiation Level = 0 krad (Si)  
‘–1’ Speed ‘Std.’ Speed  
Min. Max.  
Parameter  
Description  
Min.  
Max.  
Units  
Dedicated (Hardwired) Array Clock Network  
tHCKH  
tHCKL  
tHPWH  
tHPWL  
tHCKSW  
tHP  
Pad to R-cell Input Low to High  
Pad to R-cell Input High to Low  
Minimum Pulse Width High  
Minimum Pulse Width Low  
Maximum Skew  
4.1  
4.1  
4.8  
4.8  
ns  
ns  
2.8  
2.8  
3.3  
3.3  
ns  
ns  
3.2  
3.7  
ns  
Minimum Period  
5.6  
6.6  
ns  
fHMAX  
Maximum Frequency  
179  
152  
MHz  
Routed Array Clock Networks  
tRCKH Pad to R-cell Input Low to High (Light Load))  
tRCKL  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
6.8  
8.2  
6.8  
8.2  
6.8  
8.2  
8.0  
9.7  
8.0  
9.7  
8.0  
9.7  
ns  
ns  
Pad to R-cell Input High to Low (Light Load)  
Pad to R-cell Input Low to High (50% Load)  
Pad to R-cell Input High to Low (50% Load)  
Pad to R-cell Input Low to High (100% Load)  
Pad to R-cell Input High to Low (100% Load)  
Minimum Pulse Width High  
ns  
ns  
ns  
ns  
tRPWH  
tRPWL  
tRCKSW  
tRCKSW  
tRCKSW  
tQP  
2.8  
2.8  
3.3  
3.3  
ns  
Minimum Pulse Width Low  
ns  
Maximum Skew (Light Load)  
7.0  
6.8  
6.8  
8.2  
8.0  
8.0  
ns  
Maximum Skew (50% Load)  
ns  
Maximum Skew (100% Load)  
ns  
Minimum Period  
5.6  
6.6  
ns  
fQMAX  
Maximum Frequency  
179  
152  
MHz  
Quadrant Array Clock Networks  
tQCKH  
tQCKL  
tQCKH  
tQCKL  
tQCKH  
tQCKL  
tQPWH  
tQPWL  
tQCKSW  
tQCKSW  
tQCKSW  
tQP  
Pad to R-cell Input Low to High (Light Load))  
3.9  
4.2  
4.2  
4.5  
4.5  
5.0  
4.6  
4.9  
4.9  
5.3  
5.3  
5.9  
ns  
ns  
Pad to R-cell Input High to Low (Light Load)  
Pad to R-cell Input Low to High (50% Load)  
Pad to R-cell Input High to Low (50% Load)  
Pad to R-cell Input Low to High (100% Load)  
Pad to R-cell Input High to Low (100% Load)  
Minimum Pulse Width High  
ns  
ns  
ns  
ns  
2.8  
2.8  
3.3  
3.3  
ns  
Minimum Pulse Width Low  
ns  
Maximum Skew (Light Load)  
0.7  
1.3  
1.4  
0.8  
1.5  
1.6  
ns  
Maximum Skew (50% Load)  
ns  
Maximum Skew (100% Load)  
ns  
Minimum Period  
5.6  
6.6  
ns  
fQMAX  
Maximum Frequency  
179  
152  
MHz  
v2.2  
2-33  
RTSX-SU RadTolerant FPGAs (UMC)  
Global Resource Access Macros  
The user can configure which global resource is used in  
the design as well as how each global resource is driven  
through the use of the following macros:  
QCLKINT and QCLKINTI – noninverting and  
inverting inputs used to drive quadrant routed  
clocks (QCLKA/B/C/D) in the RTSX72SU from  
internal logic  
HCLKBUF – used to drive the hardwired clock  
(HCLK) in both devices from an external pin  
QCLKBIBUF and QCLUKBIBUFI – noninverting and  
inverting inputs used to drive quadrant routed  
CLKBUF and CLKBUFI – noninverting and inverting  
inputs used to drive either routed clock (CLKA or  
CLKB) in both devices from external pins  
clocks  
(QCLKA/B/C/D)  
in  
the  
RTSX72SU  
alternatively from either external pins or internal  
logic  
CLKINT and CLKINTI – noninverting and inverting  
inputs used to drive either routed clock (CLKA or  
CLKB) in both devices from internal logic  
Figure 2-19, Figure 2-20, and Figure 2-21 illustrate the  
various global-resource access macros.  
QCLKBUF and QCLKBUFI – noninverting and  
inverting inputs used to drive quadrant routed  
clocks (QCLKA/B/C/D) in the RTSX72SU from  
external pins  
Constant Load  
Clock Network  
HCLKBUF  
Figure 2-19 Hardwired Clock Buffer  
Clock Network  
From Internal Logic  
CLKBUF  
CLKBUFI  
CLKINT  
CLKINTI  
Figure 2-20 Routed Clock Buffers in RTSX32SU  
OE  
From Internal Logic  
Clock Network  
From Internal Logic  
CLKBUF  
CLKBUFI  
CLKINT  
CLKINTI  
CLKBIBUF  
CLKBIBUFI  
QCLKBUF  
QCLKBUFI  
QCLKINT  
QCLKINTI  
QCLKBIBUF  
QCLKBIBUFI  
Figure 2-21 Routed and Quadrant Clock Buffers in RTSX72SU  
2-34  
v2.2  
RTSX-SU RadTolerant FPGAs (UMC)  
Other Architectural Features  
Flexible Mode  
JTAG Interface  
In flexible mode, TDI, TCK, and TDO may be employed as  
either user I/Os or as JTAG input pins. The internal  
resistors on the TMS and TDI pins are not present in  
flexible JTAG mode.  
All RTSX-SU devices are IEEE 1149.1 compliant and offer  
superior diagnostic and testing capabilities by providing  
Boundary Scan Testing (BST) and probing capabilities.  
The BST function is controlled through special JTAG pins  
(TMS, TDI, TCK, TDO, and TRST). The functionality of the  
JTAG pins is defined by two available modes: dedicated  
and flexible (Table 2-32). Note that TRST and TMS cannot  
be employed as user I/Os in either mode.  
To enter the flexible mode, users need to uncheck the  
"Reserve JTAG" box in the "Device Selection Wizard" in  
Designer software. TDI, TCK, and TDO pins may function  
as user I/Os or BST pins in flexible mode. This  
functionality is controlled by the BST TAP controller. The  
TAP controller receives two control inputs: TMS and TCK.  
Upon power-up, the TAP controller enters the Test-Logic-  
Reset state. In this state, TDI, TCK, and TDO function as  
user I/Os. The TDI, TCK, and TDO are transformed from  
user I/Os into BST pins when a rising edge on TCK is  
detected while TMS is at logic Low. To return to the Test-  
Logic-Reset state, in the absences of TRST assertion, TMS  
must be held High for at least five TCK cycles. An  
external, 10 kΩ pull-up resistor tied to VCCI should be  
placed on the TMS pin to pull it High by default.  
Table 2-32 Boundary Scan Pin Functionality  
Dedicated Test Mode  
Flexible Mode  
TCK, TDI, TDO are dedicated  
BST pins  
TCK, TDI, TDO are flexible and  
may be used as user I/Os  
No need for pull-up resistor for Use a pull-up resistor of 10 kΩ  
TMS  
on TMS  
Dedicated Mode  
In dedicated mode, all JTAG pins are reserved for BST;  
users cannot employ them as regular I/Os. An internal  
pull-up resistor (on the order of 17 kΩ to 22 kΩ3) is  
automatically enabled on both TMS and TDI pins, and  
the TMS pin will function as defined in the IEEE 1149.1  
(JTAG) specification.  
Table 2-33 describes the different configurations of the  
BST pins and their functionality in different modes.  
Table 2-33 JTAG Pin Configurations and Functions  
Designer  
"Reserve JTAG"  
Selection  
TAP Controller  
State  
To enter dedicated mode, users need to reserve the JTAG  
pins in Actel’s Designer software during device selection.  
To reserve the JTAG pins, users can check the "Reserve  
JTAG" box in the "Device Selection Wizard" in Actel’s  
Designer software (Figure 2-22).  
Mode  
Dedicated (JTAG)  
Flexible (User I/O)  
Flexible (JTAG)  
Checked  
Unchecked  
Unchecked  
Any  
Test-Logic-Reset  
Other  
TRST Pin  
The TRST pin functions as a dedicated boundary scan  
reset pin. An internal pull-up resistor is permanently  
enabled on the TRST pin. Additionally, the TRST pin must  
be grounded for flight applications. This will prevent  
Single-Event Upsets (SEU) in the TAP controller from  
inadvertently placing the device into JTAG mode.  
Figure 2-22 Device Selection Wizard  
Probing Capabilities  
RTSX-SU devices also provide internal probing capability  
that is accessed with the JTAG pins.  
3. On a given device, the value of the internal pull-up resistor varies within 1 kΩ between the TMS and TDI pins.  
v2.2  
2-35  
RTSX-SU RadTolerant FPGAs (UMC)  
During probing, the Silicon Explorer II Diagnostic  
Hardware is used to control the TDI, TCK, TMS, and TDO  
pins to select the desired nets for debugging. The user  
simply assigns the selected internal nets in the Silicon  
Explorer II software to the PRA/PRB output pins for  
observation. Probing functionality is activated when the  
BST pins are in JTAG mode and the TRST pin is driven  
High. If the TRST pin is held Low, the TAP controller will  
remain in the Test-Logic-Reset state, so no probing can  
be performed. Silicon Explorer II automatically places the  
device into JTAG mode, but the user must drive the TRST  
pin High or allow the internal pull-up resistor to pull  
TRST High.  
Silicon Explorer II Probe Interface  
Actel’s Silicon Explorer II is an integrated hardware and  
software solution that, in conjunction with Actel’s  
Designer software, allows users to examine any of the  
internal nets of the device while it is operating in a  
prototype or a production system. The user can probe  
two nodes at a time without changing the placement or  
routing of the design and without using any additional  
device resources. Highlighted nets in Designer’s  
ChipEditor can be accessed using Silicon Explorer II in  
order to observe their real time values.  
Silicon Explorer II's noninvasive method does not alter  
timing or loading effects, thus shortening the debug  
cycle. In addition, Silicon Explorer II does not require  
relayout or additional MUXes to bring signals out to  
external pins, which is necessary when using  
programmable logic devices from other suppliers. By  
eliminating multiple place-and-route cycles, the integrity  
of the design is maintained throughout the debug  
process.  
Silicon Explorer II connects to the host PC using a  
standard serial port connector. Connections to the circuit  
board are achieved using a nine-pin D-Sub connector  
(Figure 1-5 on page 1-6). Once the design has been  
placed-and-routed and the RTSX-SU device has been  
programmed, Silicon Explorer II can be connected and  
the Silicon Explorer software can be launched.  
Silicon Explorer II comes with an additional optional PC-  
hosted tool that emulates an 18-channel logic analyzer.  
Two channels are used to monitor two internal nodes,  
and 16 channels are available to probe external signals.  
The software included with the tool provides the user  
with an intuitive interface that allows for easy viewing  
and editing of signal waveforms.  
Both members of the RTSX-SU family have two external  
pads: PRA and PRB. These can be used to bring out two  
probe signals from the device. To disallow probing, the  
SFUS security fuse in the silicon signature has to be  
programmed. Table 2-34 shows the possible device  
configuration options and their effects on probing.  
Table 2-34 Device Configuration Options for Probe Capability  
Security Fuse  
Programmed  
JTAG Mode  
Dedicated  
Flexible  
TRST  
Low  
Low  
High  
High  
PRA and PRB1  
User I/O2  
TDI, TCK, and TDO1  
Probing Unavailable  
User I/O2  
No  
No  
No  
No  
Yes  
User I/O2  
Dedicated  
Flexible  
Probe Circuit Outputs  
Probe Circuit Outputs  
Probe Circuit Secured  
Probe Circuit I/O  
Probe Circuit I/O  
Probe Circuit Secured  
Notes:  
1. Avoid using the TDI, TCK, TDO, PRA, and PRB pins as input or bidirectional ports during probing. Since these pins are active during  
probing, input signals will not pass through these pins and may cause contention.  
2. If no user signal is assigned to these pins, they will behave as unused I/Os in this mode. Unused pins are automatically tristated by  
the Designer software.  
2-36  
v2.2  
RTSX-SU RadTolerant FPGAs (UMC)  
Security Fuses  
Programming  
Actel antifuse FPGAs, with FuseLock technology, offer  
the highest level of design security available in a  
programmable logic device. Since antifuse FPGAs are live  
at power-up, there is no bitstream that can be  
intercepted, and no bitstream or programming data is  
ever downloaded to the device, thus making device  
cloning impossible. In addition, special security fuses are  
hidden throughout the fabric of the device and may be  
programmed by the user to thwart attempts to reverse  
engineer the device by attempting to exploit either the  
programming or probing interfaces. Both invasive and  
noninvasive attacks against an RTSX-SU device that  
access or bypass these security fuses will destroy access to  
the rest of the device. Refer to the Understanding Actel  
Antifuse Device Security white paper for more  
information.  
Device programming is supported through the Silicon  
Sculptor II, a single-site, robust and compact device-  
programmer for the PC. Two Silicon Sculptor IIs can be  
daisy-chained and controlled from a single PC host. With  
standalone software for the PC, Silicon Sculptor II is  
designed to allow concurrent programming of multiple  
units from the same PC when daisy-chained.  
Silicon Sculptor II programs devices independently to  
achieve the fastest programming times possible. Each  
fuse is verified by Silicon Sculptor II to ensure correct  
programming. Furthermore, at the end of programming,  
there are integrity tests that are run to ensure that  
programming was completed properly. Not only does it  
test programmed and nonprogrammed fuses, Silicon  
Sculptor II also provides a self-test to extensively test its  
own hardware.  
Look for this symbol to ensure your valuable IP is secure  
(Figure 2-23).  
Programming an RTSX-SU device using Silicon Sculptor II  
is similar to programming any other antifuse device. The  
procedure is as follows:  
1. Load the .AFM file  
2. Select the device to be programmed  
3. Begin programming  
u
e
When the design is ready to go to production, Actel  
offers volume programming services either through  
distribution partners or via our In-House Programming  
Center. For more details on programming the RTSX-SU  
devices, please refer to the Silicon Sculptor II User’s  
Guide.  
Figure 2-23 FuseLock Logo  
To ensure maximum security in RTSX-SU devices, it is  
recommended that the user program the device security  
fuse (SFUS). When programmed, the Silicon Explorer II  
testing probes are disabled to prevent internal probing,  
and the programming interface is also disabled. All JTAG  
public instructions are still accessible by the user. For  
more information, refer to Actel’s Implementation of  
Security in Actel Antifuse FPGAs application note.  
v2.2  
2-37  
RTSX-SU RadTolerant FPGAs (UMC)  
Package Pin Assignments  
84-Pin CQFP  
Pin 1 indicator  
may be in a different  
shape for different  
devices.  
84  
64  
1
63  
21  
22  
43  
42  
Figure 3-1 84-Pin CQFP (Top View)  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.actel.com/products/solutions/package/default.aspx.  
v2.2  
3-1  
RTSX-SU RadTolerant FPGAs (UMC)  
84-Pin CQFP  
84-Pin CQFP  
RTSX32SU Function  
Pin Number  
RTSX32SU Function  
Pin Number  
43  
1
I/O  
I/O  
I/O  
I/O  
2
44  
3
TMS  
I/O  
45  
I/O  
4
46  
VCCA  
VCCI  
GND  
I/O  
5
VCCI  
GND  
I/O  
47  
6
48  
7
49  
8
I/O  
50  
I/O  
9
I/O  
51  
I/O  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
I/O  
52  
I/O  
TRST  
I/O  
53  
I/O  
54  
I/O  
I/O  
55  
I/O  
I/O  
56  
I/O  
VCCA  
GND  
I/O  
57  
VCCA  
GND  
I/O  
58  
59  
VCCA  
I/O  
60  
VCCA  
GND  
I/O  
61  
I/O  
62  
I/O  
63  
I/O  
I/O  
64  
I/O  
I/O  
65  
I/O  
I/O  
66  
I/O  
I/O  
67  
I/O  
GND  
VCCI  
I/O  
68  
VCCI  
GND  
I/O  
69  
70  
I/O  
71  
I/O  
I/O  
72  
CLKA  
CLKB  
PRA, I/O  
I/O  
I/O  
73  
PRB, I/O  
HCLK  
I/O  
74  
75  
76  
I/O  
I/O  
77  
I/O  
VCCA  
GND  
I/O  
78  
GND  
VCCA  
I/O  
79  
80  
TDO, I/O  
I/O  
81  
I/O  
82  
TCK, I/O  
TDI, I/O  
I/O  
I/O  
83  
I/O  
84  
3-2  
v2.2  
RTSX-SU RadTolerant FPGAs (UMC)  
208-Pin CQFP  
1
2
3
4
156  
155  
154  
153  
Pin 1  
Ceramic  
Tie Bar  
208-Pin CQFP  
49  
50  
51  
52  
108  
107  
106  
105  
Figure 3-2 208-Pin CQFP (Top View)  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.actel.com/products/solutions/package/default.aspx.  
v2.2  
3-3  
RTSX-SU RadTolerant FPGAs (UMC)  
208-Pin CQFP  
208-Pin CQFP  
RTSX32SU  
RTSX72SU  
Function  
RTSX32SU  
Function  
RTSX72SU  
Function  
Pin Number  
Function  
GND  
TDI, I/O  
I/O  
Pin Number  
37  
1
GND  
TDI, I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
2
38  
3
39  
4
I/O  
I/O  
40  
5
I/O  
I/O  
41  
6
I/O  
I/O  
42  
7
I/O  
I/O  
43  
8
I/O  
I/O  
44  
9
I/O  
I/O  
45  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
I/O  
I/O  
46  
TMS  
VCCI  
I/O  
TMS  
VCCI  
I/O  
47  
48  
49  
I/O  
I/O  
50  
I/O  
I/O  
51  
I/O  
I/O  
52  
I/O  
I/O  
53  
I/O  
GND  
VCCA  
I/O  
54  
I/O  
55  
I/O  
56  
I/O  
I/O  
57  
I/O  
I/O  
58  
I/O  
I/O  
59  
I/O  
I/O  
60  
NC  
I/O  
61  
GND  
VCCA  
GND  
I/O  
GND  
VCCA  
GND  
I/O  
62  
63  
64  
65  
TRST  
I/O  
TRST  
I/O  
66  
67  
I/O  
I/O  
68  
I/O  
I/O  
69  
I/O  
I/O  
70  
I/O  
I/O  
71  
I/O  
I/O  
72  
Note: Pin 65 is a No Connect (NC) on Commercial A54SX32S-  
Note: Pin 65 is a No Connect (NC) on Commercial A54SX32S-  
PQ208.  
PQ208.  
3-4  
v2.2  
RTSX-SU RadTolerant FPGAs (UMC)  
208-Pin CQFP  
208-Pin CQFP  
RTSX32SU  
Function  
RTSX72SU  
Function  
RTSX32SU  
Function  
RTSX72SU  
Function  
Pin Number  
73  
Pin Number  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
I/O  
I/O  
I/O  
QCLKA, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
74  
75  
I/O  
I/O  
I/O  
76  
PRB, I/O  
GND  
VCCA  
GND  
NC  
PRB, I/O  
GND  
VCCA  
GND  
NC  
I/O  
I/O  
77  
I/O  
I/O  
78  
VCCA  
VCCI  
I/O  
VCCA  
VCCI  
GND  
VCCA  
I/O  
79  
80  
81  
I/O  
I/O  
I/O  
82  
HCLK  
I/O  
HCLK  
VCCI  
QCLKB, I/O  
I/O  
I/O  
83  
I/O  
I/O  
84  
I/O  
I/O  
I/O  
85  
I/O  
I/O  
I/O  
86  
I/O  
I/O  
I/O  
I/O  
87  
I/O  
I/O  
I/O  
I/O  
88  
I/O  
I/O  
I/O  
I/O  
89  
I/O  
I/O  
I/O  
I/O  
90  
I/O  
I/O  
I/O  
I/O  
91  
I/O  
I/O  
I/O  
I/O  
92  
I/O  
I/O  
I/O  
I/O  
93  
I/O  
I/O  
GND  
VCCA  
GND  
NC  
I/O  
GND  
VCCA  
GND  
I/O  
94  
I/O  
I/O  
95  
I/O  
I/O  
96  
I/O  
I/O  
97  
I/O  
I/O  
I/O  
98  
VCCI  
I/O  
VCCI  
I/O  
I/O  
I/O  
99  
I/O  
I/O  
100  
101  
102  
103  
104  
105  
106  
107  
108  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TDO, I/O  
I/O  
TDO, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Note: Pin 65 is a No Connect (NC) on Commercial A54SX32S-  
Note: Pin 65 is a No Connect (NC) on Commercial A54SX32S-  
PQ208.  
PQ208.  
v2.2  
3-5  
RTSX-SU RadTolerant FPGAs (UMC)  
208-Pin CQFP  
208-Pin CQFP  
RTSX32SU  
RTSX72SU  
Function  
RTSX32SU  
Function  
RTSX72SU  
Function  
Pin Number  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
Function  
VCCA  
GND  
I/O  
Pin Number  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
VCCA  
GND  
I/O  
CLKB  
NC  
CLKB, I/O  
NC  
GND  
VCCA  
GND  
PRA, I/O  
I/O  
GND  
VCCA  
GND  
PRA, I/O  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
QCLKC, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
VCCI  
I/O  
I/O  
I/O  
VCCI  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TCK, I/O  
TCK, I/O  
I/O  
I/O  
Note: Pin 65 is a No Connect (NC) on Commercial A54SX32S-  
PQ208.  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
QCLKD, I/O  
I/O  
I/O  
CLKA  
CLKA, I/O  
Note: Pin 65 is a No Connect (NC) on Commercial A54SX32S-  
PQ208.  
3-6  
v2.2  
RTSX-SU RadTolerant FPGAs (UMC)  
256-Pin CQFP  
1
2
3
4
192  
191  
190  
189  
Pin 1  
Ceramic  
Tie Bar  
256-Pin CQFP  
61  
62  
63  
64  
132  
131  
130  
129  
Figure 3-3 256-Pin CQFP (Top View)  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.actel.com/products/solutions/package/default.aspx.  
v2.2  
3-7  
RTSX-SU RadTolerant FPGAs (UMC)  
256-Pin CQFP  
256-Pin CQFP  
RTSX32SU  
RTSX72SU  
Function  
RTSX32SU  
Function  
RTSX72SU  
Function  
Pin Number  
Function  
GND  
TDI, I/O  
I/O  
Pin Number  
38  
1
GND  
TDI, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
2
39  
3
40  
4
I/O  
I/O  
41  
5
I/O  
I/O  
42  
6
I/O  
I/O  
43  
7
I/O  
I/O  
44  
8
I/O  
I/O  
45  
9
I/O  
I/O  
46  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
I/O  
I/O  
47  
TMS  
I/O  
TMS  
I/O  
48  
49  
I/O  
I/O  
50  
I/O  
I/O  
51  
I/O  
I/O  
52  
I/O  
I/O  
53  
I/O  
VCCI  
I/O  
54  
I/O  
55  
I/O  
I/O  
56  
I/O  
I/O  
57  
I/O  
I/O  
58  
I/O  
I/O  
59  
I/O  
I/O  
60  
I/O  
I/O  
61  
I/O  
I/O  
62  
I/O  
I/O  
63  
I/O  
I/O  
64  
VCCI  
GND  
VCCA  
GND  
I/O  
VCCI  
GND  
VCCA  
GND  
I/O  
65  
66  
67  
68  
69  
I/O  
I/O  
70  
TRST  
I/O  
TRST  
I/O  
71  
72  
I/O  
VCCA  
GND  
73  
I/O  
74  
3-8  
v2.2  
RTSX-SU RadTolerant FPGAs (UMC)  
256-Pin CQFP  
256-Pin CQFP  
RTSX32SU  
Function  
RTSX72SU  
Function  
RTSX32SU  
Function  
RTSX72SU  
Function  
Pin Number  
75  
Pin Number  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
76  
77  
I/O  
I/O  
I/O  
I/O  
78  
I/O  
I/O  
I/O  
I/O  
79  
I/O  
I/O  
I/O  
I/O  
80  
I/O  
I/O  
I/O  
I/O  
81  
I/O  
I/O  
I/O  
I/O  
82  
I/O  
I/O  
I/O  
I/O  
83  
I/O  
I/O  
I/O  
VCCI  
I/O  
84  
I/O  
I/O  
I/O  
85  
I/O  
I/O  
I/O  
I/O  
86  
I/O  
I/O  
I/O  
I/O  
87  
I/O  
I/O  
I/O  
I/O  
88  
I/O  
I/O  
I/O  
I/O  
89  
I/O  
QCLKA, I/O  
PRB, I/O  
GND  
VCCI  
GND  
VCCA  
I/O  
TDO, I/O  
I/O  
TDO, I/O  
I/O  
90  
PRB, I/O  
GND  
VCCI  
GND  
VCCA  
I/O  
91  
GND  
I/O  
GND  
I/O  
92  
93  
I/O  
I/O  
94  
I/O  
I/O  
95  
I/O  
I/O  
96  
HCLK  
I/O  
HCLK  
I/O  
I/O  
I/O  
97  
I/O  
I/O  
98  
I/O  
QCLKB, I/O  
I/O  
I/O  
I/O  
99  
I/O  
I/O  
I/O  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
I/O  
VCCA  
VCCI  
GND  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
v2.2  
3-9  
RTSX-SU RadTolerant FPGAs (UMC)  
256-Pin CQFP  
256-Pin CQFP  
RTSX32SU  
Function  
RTSX72SU  
Function  
RTSX32SU  
Function  
RTSX72SU  
Function  
Pin Number  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
Pin Number  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
NC  
GND  
VCCI  
I/O  
GND  
NC  
GND  
VCCI  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
GND  
GND  
I/O  
VCCA  
GND  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
QCLKD, I/O  
CLKA, I/O  
CLKB, I/O  
VCCI  
GND  
I/O  
I/O  
CLKA  
CLKB  
VCCI  
GND  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
3-10  
v2.2  
RTSX-SU RadTolerant FPGAs (UMC)  
256-Pin CQFP  
RTSX32SU  
Function  
RTSX72SU  
Function  
Pin Number  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
256  
NC  
GND  
PRA, I/O  
I/O  
NC  
GND  
PRA, I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
QCLKC, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TCK, I/O  
TCK, I/O  
v2.2  
3-11  
RTSX-SU RadTolerant FPGAs (UMC)  
256-Pin CCLG  
Top View  
A1 Index Corner  
256  
193  
192  
Extenral Wire-Bond Number  
1
64  
129  
65  
128  
Bottom View  
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
Figure 3-4 256-Pin CCLG  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.actel.com/products/solutions/package/default.aspx.  
3-12  
v2.2  
RTSX-SU RadTolerant FPGAs (UMC)  
256-Pin CCLG*  
256-Pin CCLG*  
External Wire-  
Bond Number  
RTSX32SU  
Function  
External Wire-  
Bond Number  
RTSX32SU  
Function  
Pin Number  
A1  
Pin Number  
C3  
1
GND  
TCK, I/O  
I/O  
65  
252  
249  
245  
239  
230  
226  
218  
210  
201  
197  
211  
178  
195  
12  
GND  
I/O  
A2  
256  
255  
251  
243  
238  
232  
228  
227  
221  
216  
209  
203  
200  
2
C4  
A3  
C5  
I/O  
A4  
I/O  
C6  
I/O  
A5  
I/O  
C7  
I/O  
A6  
I/O  
C8  
I/O  
A7  
I/O  
C9  
CLKA  
I/O  
A8  
I/O  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
D1  
A9  
CLKB  
I/O  
I/O  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
B1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
GND  
I/O  
I/O  
13  
D2  
8
I/O  
242  
22  
D3  
10  
I/O  
B2  
GND  
I/O  
D4  
7
I/O  
B3  
254  
253  
248  
241  
234  
33  
D5  
250  
244  
237  
229  
217  
208  
206  
199  
205  
173  
190  
188  
16  
I/O  
B4  
I/O  
D6  
I/O  
B5  
I/O  
D7  
I/O  
B6  
I/O  
D8  
PRA, I/O  
I/O  
B7  
I/O  
D9  
B8  
VCCA  
I/O  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
E1  
I/O  
B9  
222  
220  
212  
207  
202  
198  
32  
I/O  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
C1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
196  
6
E2  
15  
I/O  
I/O  
E3  
9
I/O  
C2  
4
TDI,I/O  
E4  
11  
I/O  
Note: *This table was sorted by the pin number.  
Note: *This table was sorted by the pin number.  
v2.2  
3-13  
RTSX-SU RadTolerant FPGAs (UMC)  
256-Pin CCLG*  
256-Pin CCLG*  
External Wire-  
Bond Number  
RTSX32SU  
Function  
External Wire-  
Bond Number  
RTSX32SU  
Function  
Pin Number  
E5  
Pin Number  
G7  
5
I/O  
I/O  
43  
54  
GND  
GND  
GND  
GND  
VCCI  
I/O  
E6  
240  
233  
231  
223  
219  
213  
167  
183  
189  
187  
186  
17  
G8  
E7  
I/O  
G9  
67  
E8  
I/O  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
H1  
77  
E9  
I/O  
87  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
F1  
I/O  
169  
180  
176  
179  
175  
29  
I/O  
GND  
I/O  
I/O  
I/O  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
H2  
31  
I/O  
I/O  
H3  
160  
35  
VCCA  
TRST  
I/O  
F2  
18  
I/O  
H4  
F3  
20  
I/O  
H5  
37  
F4  
14  
TMS  
I/O  
H6  
108  
86  
VCCI  
GND  
GND  
GND  
GND  
VCCI  
I/O  
F5  
19  
H7  
F6  
28  
I/O  
H8  
96  
F7  
3
VCCI  
VCCI  
VCCI  
VCCI  
I/O  
H9  
107  
118  
128  
165  
170  
168  
166  
174  
30  
F8  
23  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
J1  
F9  
44  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
G1  
55  
157  
97  
I/O  
VCCA  
I/O  
I/O  
177  
185  
184  
181  
24  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
J2  
38  
I/O  
I/O  
J3  
40  
I/O  
G2  
25  
I/O  
J4  
41  
I/O  
G3  
27  
I/O  
J5  
39  
I/O  
G4  
26  
I/O  
J6  
139  
127  
140  
VCCI  
GND  
GND  
G5  
21  
I/O  
J7  
G6  
66  
VCCI  
J8  
Note: *This table was sorted by the pin number.  
Note: *This table was sorted by the pin number.  
3-14  
v2.2  
RTSX-SU RadTolerant FPGAs (UMC)  
256-Pin CCLG*  
256-Pin CCLG*  
External Wire-  
Bond Number  
RTSX32SU  
Function  
External Wire-  
Bond Number  
RTSX32SU  
Function  
Pin Number  
J9  
Pin Number  
L11  
L12  
L13  
L14  
L15  
L16  
M1  
151  
161  
150  
159  
163  
164  
162  
158  
34  
GND  
GND  
VCCI  
I/O  
103  
149  
146  
148  
145  
147  
42  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PRB, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
K1  
I/O  
I/O  
I/O  
I/O  
M2  
53  
I/O  
M3  
61  
K2  
45  
I/O  
M4  
60  
K3  
47  
I/O  
M5  
72  
K4  
50  
VCCA  
I/O  
M6  
81  
K5  
48  
M7  
89  
K6  
171  
172  
182  
192  
204  
191  
153  
155  
156  
152  
154  
36  
VCCI  
GND  
GND  
GND  
GND  
VCCI  
I/O  
M8  
95  
K7  
M9  
101  
105  
114  
111  
141  
142  
137  
144  
49  
K8  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
N1  
K9  
K10  
K11  
K12  
K13  
K14  
K15  
K16  
L1  
I/O  
I/O  
I/O  
I/O  
N2  
57  
I/O  
N3  
63  
L2  
46  
I/O  
N4  
79  
L3  
51  
I/O  
N5  
70  
L4  
58  
I/O  
N6  
76  
L5  
52  
I/O  
N7  
83  
L6  
91  
I/O  
N8  
99  
L7  
194  
214  
235  
246  
VCCI  
VCCI  
VCCI  
VCCI  
N9  
109  
117  
112  
124  
L8  
N10  
N11  
N12  
L9  
L10  
Note: *This table was sorted by the pin number.  
Note: *This table was sorted by the pin number.  
v2.2  
3-15  
RTSX-SU RadTolerant FPGAs (UMC)  
256-Pin CCLG*  
256-Pin CCLG*  
External Wire-  
RTSX32SU  
Function  
External Wire-  
Bond Number  
RTSX32SU  
Function  
Pin Number  
N13  
N14  
N15  
N16  
P1  
Bond Number  
121  
133  
135  
136  
59  
Pin Number  
I/O  
I/O  
R15  
R16  
T1  
225  
193  
236  
69  
GND  
GND  
GND  
I/O  
I/O  
I/O  
T2  
I/O  
T3  
71  
I/O  
P2  
138  
56  
GND  
I/O  
T4  
75  
I/O  
P3  
T5  
80  
I/O  
P4  
74  
I/O  
T6  
84  
I/O  
P5  
64  
I/O  
T7  
88  
I/O  
P6  
82  
I/O  
T8  
93  
I/O  
P7  
90  
I/O  
T9  
224  
102  
110  
116  
122  
125  
129  
247  
VCCA  
I/O  
P8  
94  
I/O  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
P9  
104  
113  
119  
123  
143  
131  
132  
134  
62  
I/O  
I/O  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
R1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
I/O  
TDO,I/O  
GND  
I/O  
Note: *This table was sorted by the pin number.  
I/O  
I/O  
R2  
215  
68  
GND  
I/O  
R3  
R4  
73  
I/O  
R5  
78  
I/O  
R6  
85  
I/O  
R7  
92  
I/O  
R8  
98  
I/O  
R9  
100  
106  
115  
120  
126  
130  
HCLK  
I/O  
R10  
R11  
R12  
R13  
R14  
I/O  
I/O  
I/O  
I/O  
Note: *This table was sorted by the pin number.  
3-16  
v2.2  
RTSX-SU RadTolerant FPGAs (UMC)  
256-Pin CCLG*  
256-Pin CCLG*  
External Wire-  
Bond Number  
RTSX32SU  
Function  
External Wire-  
Bond Number  
RTSX32SU  
Function  
Pin Number  
A1  
A15  
F7  
Pin Number  
H4  
L1  
1
GND  
GND  
VCCI  
TDI,I/O  
I/O  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
TRST  
I/O  
2
3
H5  
J2  
I/O  
C2  
E5  
4
I/O  
5
J5  
I/O  
C1  
D4  
D2  
E3  
6
I/O  
J3  
I/O  
7
I/O  
J4  
I/O  
8
I/O  
M1  
G7  
F9  
I/O  
9
I/O  
GND  
VCCI  
I/O  
D3  
E4  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
I/O  
I/O  
K2  
D1  
A16  
F4  
I/O  
L2  
I/O  
GND  
TMS  
I/O  
K3  
I/O  
K5  
I/O  
E2  
N1  
K4  
I/O  
E1  
I/O  
VCCA  
I/O  
F1  
I/O  
L3  
F2  
I/O  
L5  
I/O  
F5  
I/O  
M2  
G8  
F10  
P3  
I/O  
F3  
I/O  
GND  
VCCI  
I/O  
G5  
B2  
I/O  
GND  
VCCI  
I/O  
F8  
N2  
L4  
I/O  
G1  
G2  
G4  
G3  
F6  
I/O  
I/O  
P1  
I/O  
I/O  
M4  
M3  
R1  
I/O  
I/O  
I/O  
I/O  
I/O  
H1  
J1  
I/O  
N3  
P5  
I/O  
I/O  
I/O  
H2  
B15  
B8  
I/O  
C3  
G6  
G9  
R3  
GND  
VCCI  
GND  
I/O  
GND  
VCCA  
I/O  
K1  
Note: *This table was sorted by the wire-bond number.  
Note: *This table was sorted by the wire-bond number.  
v2.2  
3-17  
RTSX-SU RadTolerant FPGAs (UMC)  
256-Pin CCLG*  
256-Pin CCLG*  
External Wire-  
Bond Number  
RTSX32SU  
Function  
External Wire-  
Bond Number  
RTSX32SU  
Function  
Pin Number  
T2  
Pin Number  
L11  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
I/O  
I/O  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
I/O  
I/O  
N5  
P9  
T3  
I/O  
M10  
R10  
H9  
I/O  
M5  
R4  
I/O  
I/O  
I/O  
GND  
VCCI  
I/O  
P4  
I/O  
H6  
T4  
I/O  
N9  
N6  
I/O  
T11  
M12  
N11  
P10  
M11  
R11  
T12  
N10  
H10  
P11  
R12  
N13  
T13  
P12  
N12  
T14  
R13  
J7  
I/O  
G10  
R5  
GND  
I/O  
I/O  
I/O  
N4  
I/O  
I/O  
T5  
I/O  
I/O  
M6  
P6  
I/O  
I/O  
I/O  
I/O  
N7  
I/O  
I/O  
T6  
I/O  
GND  
I/O  
R6  
I/O  
H7  
GND  
VCCI  
I/O  
I/O  
G11  
T7  
I/O  
I/O  
M7  
P7  
I/O  
I/O  
I/O  
I/O  
L6  
I/O  
I/O  
R7  
I/O  
I/O  
T8  
I/O  
GND  
VCCI  
TDO,I/O  
I/O  
P8  
I/O  
H11  
T15  
R14  
P14  
P15  
N14  
P16  
N15  
N16  
M8  
H8  
PRB, I/O  
GND  
VCCA  
I/O  
F12  
R8  
I/O  
I/O  
N8  
I/O  
I/O  
R9  
HCLK  
I/O  
I/O  
M9  
T10  
I/O  
I/O  
I/O  
Note: *This table was sorted by the wire-bond number.  
Note: *This table was sorted by the wire-bond number.  
3-18  
v2.2  
RTSX-SU RadTolerant FPGAs (UMC)  
256-Pin CCLG*  
256-Pin CCLG*  
External Wire-  
Bond Number  
RTSX32SU  
Function  
External Wire-  
Bond Number  
RTSX32SU  
Function  
Pin Number  
M15  
P2  
Pin Number  
K6  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
I/O  
GND  
VCCI  
GND  
I/O  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
VCCI  
GND  
I/O  
K7  
J6  
D14  
H16  
G16  
G14  
F13  
J8  
I/O  
M13  
M14  
P13  
M16  
L15  
L13  
L16  
L14  
L12  
J11  
I/O  
I/O  
I/O  
VCCA  
I/O  
I/O  
C15  
G15  
G13  
F16  
I/O  
I/O  
VCCA  
GND  
I/O  
I/O  
I/O  
I/O  
K8  
GND  
I/O  
I/O  
E13  
F15  
VCCI  
GND  
I/O  
I/O  
J9  
F14  
I/O  
K15  
K12  
K16  
K13  
K14  
F11  
J16  
E16  
E15  
D16  
E14  
D15  
K11  
K9  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
GND  
GND  
VCCI  
I/O  
I/O  
J12  
I/O  
R16  
L7  
H3  
VCCA  
GND  
I/O  
J10  
C16  
B16  
C13  
B14  
D12  
A14  
C12  
B13  
A13  
K10  
J15  
I/O  
J13  
I/O  
I/O  
J14  
I/O  
I/O  
H12  
H15  
E12  
H14  
G12  
H13  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
Note: *This table was sorted by the wire-bond number.  
Note: *This table was sorted by the wire-bond number.  
v2.2  
3-19  
RTSX-SU RadTolerant FPGAs (UMC)  
256-Pin CCLG*  
256-Pin CCLG*  
External Wire-  
RTSX32SU  
Function  
External Wire-  
Bond Number  
RTSX32SU  
Function  
Pin Number  
D13  
D11  
B12  
D10  
A12  
C11  
C14  
B11  
E11  
L8  
Bond Number  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
Pin Number  
I/O  
I/O  
C7  
E6  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
256  
I/O  
I/O  
I/O  
B6  
I/O  
I/O  
B1  
I/O  
I/O  
A5  
D6  
C6  
L10  
T16  
B5  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
GND  
I/O  
I/O  
VCCI  
GND  
I/O  
R2  
C5  
D5  
A4  
C4  
B4  
I/O  
A11  
D9  
I/O  
I/O  
I/O  
C10  
E10  
B10  
A10  
B9  
I/O  
I/O  
I/O  
I/O  
I/O  
B3  
I/O  
I/O  
A3  
A2  
I/O  
I/O  
TCK, I/O  
E9  
I/O  
Note: *This table was sorted by the wire-bond number.  
T9  
VCCA  
GND  
CLKA  
CLKB  
I/O  
R15  
C9  
A9  
A8  
D8  
PRA, I/O  
I/O  
C8  
E8  
I/O  
A7  
I/O  
E7  
I/O  
B7  
I/O  
L9  
VCCI  
GND  
I/O  
T1  
D7  
A6  
I/O  
Note: *This table was sorted by the wire-bond number.  
3-20  
v2.2  
RTSX-SU RadTolerant FPGAs (UMC)  
624-Pin CCGA  
25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA  
AB  
AC  
AD  
AE  
Figure 3-5 624-Pin CCGA (Bottom View)  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.actel.com/products/solutions/package/default.aspx.  
v2.2  
3-21  
RTSX-SU RadTolerant FPGAs (UMC)  
624-Pin CCGA  
RTSX72SU  
624-Pin CCGA  
RTSX72SU  
624-Pin CCGA  
RTSX72SU  
Pin Number  
Function  
Pin Number  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
B24  
B25  
C1  
Function  
Pin Number  
C22  
C23  
C24  
C25  
D1  
Function  
A2  
NC  
I/O  
I/O  
A3  
NC  
I/O  
GND  
VCCI  
NC  
A4  
NC  
CLKB, I/O  
I/O  
A5  
I/O  
A6  
I/O  
I/O  
GND  
GND  
TDI, I/O  
GND  
I/O  
A7  
I/O  
I/O  
D2  
A8  
I/O  
I/O  
D3  
A9  
I/O  
I/O  
D4  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
B1  
I/O  
I/O  
D5  
I/O  
I/O  
D6  
I/O  
I/O  
GND  
VCCI  
GND  
NC  
D7  
I/O  
GND  
I/O  
D8  
I/O  
D9  
I/O  
I/O  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
D24  
D25  
E1  
I/O  
I/O  
NC  
I/O  
I/O  
C2  
VCCI  
GND  
I/O  
I/O  
I/O  
C3  
I/O  
I/O  
C4  
QCLKD, I/O  
I/O  
I/O  
C5  
I/O  
I/O  
C6  
I/O  
I/O  
GND  
NC  
C7  
I/O  
I/O  
C8  
I/O  
I/O  
NC  
C9  
I/O  
I/O  
NC  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
I/O  
I/O  
NC  
QCLKC, I/O  
I/O  
I/O  
B2  
GND  
GND  
VCCI  
GND  
I/O  
VCCI  
GND  
GND  
GND  
I/O  
B3  
PRA, I/O  
CLKA, I/O  
I/O  
B4  
B5  
B6  
I/O  
B7  
I/O  
I/O  
E2  
I/O  
B8  
VCCI  
GND  
I/O  
I/O  
E3  
I/O  
B9  
I/O  
E4  
I/O  
B10  
B11  
I/O  
E5  
TCK, I/O  
I/O  
I/O  
I/O  
E6  
3-22  
v2.2  
RTSX-SU RadTolerant FPGAs (UMC)  
624-Pin CCGA  
RTSX72SU  
624-Pin CCGA  
RTSX72SU  
624-Pin CCGA  
RTSX72SU  
Pin Number  
Function  
Pin Number  
Function  
Pin Number  
Function  
E7  
I/O  
F17  
I/O  
H2  
I/O  
E8  
I/O  
F18  
I/O  
H3  
I/O  
E9  
I/O  
F19  
I/O  
H4  
I/O  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
E21  
E22  
E23  
E24  
E25  
F1  
I/O  
F20  
I/O  
H5  
I/O  
I/O  
F21  
I/O  
H6  
I/O  
VCCA  
GND  
I/O  
F22  
I/O  
H7  
I/O  
F23  
I/O  
H8  
VCCI  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
VCCI  
I/O  
F24  
I/O  
H9  
I/O  
F25  
I/O  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
H17  
H18  
H19  
H20  
H21  
H22  
H23  
H24  
H25  
J1  
I/O  
G1  
I/O  
I/O  
G2  
I/O  
I/O  
G3  
TMS  
I/O  
I/O  
G4  
I/O  
G5  
I/O  
I/O  
G6  
I/O  
I/O  
G7  
VCCI  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
GND  
VCCI  
I/O  
I/O  
G8  
I/O  
G9  
I/O  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
G17  
G18  
G19  
G20  
G21  
G22  
G23  
G24  
G25  
H1  
I/O  
I/O  
I/O  
F2  
VCCI  
I/O  
I/O  
F3  
I/O  
F4  
I/O  
GND  
I/O  
F5  
I/O  
F6  
NC  
NC  
I/O  
I/O  
F7  
J2  
I/O  
F8  
J3  
I/O  
F9  
NC  
NC  
NC  
NC  
I/O  
J4  
I/O  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
J5  
I/O  
I/O  
J6  
I/O  
I/O  
J7  
NC  
NC  
VCCI  
NC  
NC  
I/O  
J8  
I/O  
I/O  
J9  
NC  
GND  
I/O  
J10  
J11  
I/O  
v2.2  
3-23  
RTSX-SU RadTolerant FPGAs (UMC)  
624-Pin CCGA  
RTSX72SU  
624-Pin CCGA  
RTSX72SU  
624-Pin CCGA  
RTSX72SU  
Pin Number  
Function  
Pin Number  
K22  
K23  
K24  
K25  
L1  
Function  
Pin Number  
Function  
J12  
NC  
I/O  
M7  
NC  
J13  
NC  
I/O  
M8  
NC  
J14  
NC  
I/O  
M9  
NC  
J15  
NC  
I/O  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
M17  
M18  
M19  
M20  
M21  
M22  
M23  
M24  
M25  
N1  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
NC  
J16  
NC  
I/O  
J17  
VCCI  
NC  
L2  
I/O  
J18  
L3  
I/O  
J19  
NC  
L4  
I/O  
J20  
I/O  
L5  
I/O  
J21  
VCCA  
I/O  
L6  
I/O  
J22  
L7  
NC  
J23  
I/O  
L8  
NC  
NC  
J24  
I/O  
L9  
NC  
NC  
J25  
I/O  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
L17  
L18  
L19  
L20  
L21  
L22  
L23  
L24  
L25  
M1  
M2  
M3  
M4  
M5  
M6  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
NC  
I/O  
K1  
I/O  
GND  
I/O  
K2  
GND  
I/O  
K3  
I/O  
K4  
I/O  
GND  
I/O  
K5  
I/O  
K6  
GND  
NC  
I/O  
K7  
N2  
I/O  
K8  
NC  
NC  
N3  
I/O  
K9  
NC  
NC  
N4  
I/O  
K10  
K11  
K12  
K13  
K14  
K15  
K16  
K17  
K18  
K19  
K20  
K21  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
NC  
I/O  
N5  
VCCA  
I/O  
I/O  
N6  
I/O  
N7  
VCCA  
NC  
I/O  
N8  
I/O  
N9  
NC  
I/O  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
I/O  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
GND  
I/O  
I/O  
3-24  
v2.2  
RTSX-SU RadTolerant FPGAs (UMC)  
624-Pin CCGA  
RTSX72SU  
624-Pin CCGA  
RTSX72SU  
624-Pin CCGA  
RTSX72SU  
Pin Number  
N17  
N18  
N19  
N20  
N21  
N22  
N23  
N24  
N25  
P1  
Function  
Pin Number  
Function  
Pin Number  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
T22  
T23  
T24  
T25  
U1  
Function  
GND  
GND  
GND  
GND  
GND  
NC  
NC  
R2  
I/O  
NC  
R3  
I/O  
VCCA  
I/O  
R4  
TRST  
I/O  
R5  
VCCA  
I/O  
R6  
GND  
NC  
R7  
I/O  
R8  
NC  
NC  
VCCI  
I/O  
R9  
NC  
NC  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
R24  
R25  
T1  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
NC  
GND  
I/O  
I/O  
P2  
I/O  
I/O  
P3  
I/O  
I/O  
P4  
I/O  
I/O  
P5  
I/O  
I/O  
P6  
I/O  
I/O  
P7  
NC  
U2  
I/O  
P8  
NC  
NC  
U3  
I/O  
P9  
NC  
NC  
U4  
I/O  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
P20  
P21  
P22  
P23  
P24  
P25  
R1  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
NC  
I/O  
U5  
I/O  
I/O  
U6  
I/O  
I/O  
U7  
I/O  
I/O  
U8  
NC  
I/O  
U9  
VCCI  
NC  
I/O  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
U18  
U19  
U20  
U21  
I/O  
NC  
T2  
I/O  
NC  
NC  
T3  
I/O  
NC  
NC  
T4  
I/O  
NC  
I/O  
T5  
I/O  
NC  
GND  
I/O  
T6  
I/O  
NC  
T7  
I/O  
VCCI  
NC  
I/O  
T8  
NC  
I/O  
T9  
NC  
NC  
I/O  
T10  
T11  
GND  
GND  
I/O  
I/O  
I/O  
v2.2  
3-25  
RTSX-SU RadTolerant FPGAs (UMC)  
624-Pin CCGA  
RTSX72SU  
624-Pin CCGA  
RTSX72SU  
624-Pin CCGA  
RTSX72SU  
Pin Number  
U22  
U23  
U24  
U25  
V1  
Function  
Pin Number  
Function  
VCCI  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
I/O  
Pin Number  
Function  
I/O  
W7  
Y17  
I/O  
I/O  
W8  
Y18  
I/O  
I/O  
W9  
Y19  
I/O  
I/O  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
W17  
W18  
W19  
W20  
W21  
W22  
W23  
W24  
W25  
Y1  
Y20  
I/O  
I/O  
Y21  
I/O  
V2  
I/O  
Y22  
I/O  
V3  
I/O  
Y23  
I/O  
V4  
VCCA  
I/O  
Y24  
GND  
I/O  
V5  
Y25  
V6  
I/O  
AA1  
GND  
GND  
I/O  
V7  
GND  
VCCI  
NC  
AA2  
V8  
AA3  
V9  
VCCI  
I/O  
AA4  
I/O  
V10  
V11  
V12  
V13  
V14  
V15  
V16  
V17  
V18  
V19  
V20  
V21  
V22  
V23  
V24  
V25  
W1  
NC  
AA5  
GND  
I/O  
NC  
I/O  
AA6  
NC  
I/O  
AA7  
I/O  
NC  
I/O  
AA8  
I/O  
NC  
I/O  
AA9  
I/O  
NC  
I/O  
AA10  
AA11  
AA12  
AA13  
AA14  
AA15  
AA16  
AA17  
AA18  
AA19  
AA20  
AA21  
AA22  
AA23  
AA24  
AA25  
AB1  
I/O  
NC  
I/O  
I/O  
NC  
Y2  
I/O  
I/O  
VCCI  
I/O  
Y3  
I/O  
VCCA  
GND  
I/O  
Y4  
I/O  
I/O  
Y5  
I/O  
I/O  
Y6  
I/O  
I/O  
VCCA  
I/O  
Y7  
I/O  
I/O  
Y8  
I/O  
I/O  
I/O  
Y9  
I/O  
I/O  
I/O  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
I/O  
I/O  
I/O  
NC  
GND  
I/O  
GND  
I/O  
W2  
VCCI  
I/O  
W3  
I/O  
W4  
I/O  
NC  
GND  
I/O  
I/O  
W5  
I/O  
GND  
NC  
W6  
I/O  
3-26  
v2.2  
RTSX-SU RadTolerant FPGAs (UMC)  
624-Pin CCGA  
RTSX72SU  
624-Pin CCGA  
RTSX72SU  
624-Pin CCGA  
RTSX72SU  
Pin Number  
Function  
VCCI  
I/O  
Pin Number  
AC12  
AC13  
AC14  
AC15  
AC16  
AC17  
AC18  
AC19  
AC20  
AC21  
AC22  
AC23  
AC24  
AC25  
AD1  
Function  
PRB, I/O  
I/O  
Pin Number  
AD22  
AD23  
AD24  
AD25  
AE1  
Function  
GND  
VCCI  
GND  
NC  
AB2  
AB3  
AB4  
GND  
I/O  
HCLK  
I/O  
AB5  
AB6  
I/O  
I/O  
NC  
AB7  
I/O  
I/O  
AE2  
NC  
AB8  
I/O  
I/O  
AE3  
NC  
AB9  
I/O  
I/O  
AE4  
GND  
I/O  
AB10  
AB11  
AB12  
AB13  
AB14  
AB15  
AB16  
AB17  
AB18  
AB19  
AB20  
AB21  
AB22  
AB23  
AB24  
AB25  
AC1  
I/O  
I/O  
AE5  
I/O  
I/O  
AE6  
I/O  
QCLKA, I/O  
I/O  
I/O  
AE7  
I/O  
GND  
I/O  
AE8  
I/O  
I/O  
AE9  
I/O  
I/O  
NC  
AE10  
AE11  
AE12  
AE13  
AE14  
AE15  
AE16  
AE17  
AE18  
AE19  
AE20  
AE21  
AE22  
AE23  
AE24  
AE25  
I/O  
I/O  
NC  
I/O  
I/O  
AD2  
GND  
VCCI  
GND  
I/O  
I/O  
I/O  
AD3  
I/O  
I/O  
AD4  
QCLKB, I/O  
I/O  
I/O  
AD5  
TDO, I/O  
VCCI  
I/O  
AD6  
I/O  
I/O  
AD7  
I/O  
I/O  
AD8  
I/O  
I/O  
VCCI  
NC  
AD9  
I/O  
I/O  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
AD17  
AD18  
AD19  
AD20  
AD21  
VCCI  
I/O  
I/O  
NC  
I/O  
AC2  
I/O  
I/O  
GND  
NC  
AC3  
GND  
I/O  
I/O  
AC4  
I/O  
NC  
AC5  
I/O  
I/O  
NC  
AC6  
I/O  
GND  
I/O  
AC7  
I/O  
AC8  
I/O  
I/O  
AC9  
I/O  
I/O  
AC10  
AC11  
I/O  
I/O  
I/O  
I/O  
v2.2  
3-27  
RTSX-SU RadTolerant FPGAs (UMC)  
Datasheet Information  
List of Changes  
The following table lists critical changes that were made to the current version of the document.  
Previous version Changes in current version (v2.2)  
Page  
2-11  
2-14  
1-6  
2-11  
2-14  
2-7  
2-8  
i
v2.1  
The notes in Table 2-10 were updated.  
The notes in Table 2-13 were updated.  
v2.0  
Figure 1-5 was updated and a note was added.  
Table 2-10 was updated to include Notes 2 and 3.  
Table 2-13 was updated to include Notes 1 and 2.  
Footnote 1 in the "Pin Descriptions" section was updated.  
Footnote 2 in the "Pin Descriptions" section was updated.  
Table 1 was updated to include the CQ84.  
Advanced v0.3  
The "Ceramic Device Resources" table was updated to include CQ84.  
The "Temperature Grade and Application Offering" table was updated to include CQ84.  
ii  
ii  
Table 2-3 was updated. The 0.25V/ms was changed to 0.25V/μs and 0.025V/ms was changed to  
0.025V/μs.  
2-1  
Table 2-7 was updated to include the CQ84.  
2-4  
2-12  
Table 2-11 was updated to include Note 2.  
Table 2-12 was updated to include Note 2.  
2-13  
Table 2-13 was updated to include IIL and IIH.  
2-35  
Table 2-14 was updated to include Note 2.  
2-15  
Table 2-15 was updated to include Note 2.  
2-15  
Table 2-18 was updated to include Note 2.  
2-18  
Table 2-19 was updated to include Note 2.  
2-18  
Table 2-22 was updated to include Note 2.  
2-21  
Table 2-23 was updated to include Note 2.  
2-21  
The headings in Table 2-32 were updated to say Dedicated Test Mode and Flexible Mode.  
The "84-Pin CQFP" section, which includes the package figure and the pin table, is new.  
2-4  
3-1  
Advanced v0.2  
Advanced v0.1  
In Table 2-13, the IOH = –20μA and IOL  
=
20μA.  
2-14  
Table 2-8 was updated.  
2-5  
Table 2-11 and Table 2-12 were updated.  
Table 2-14 and Table 2-15 were updated.  
Table 2-18 and Table 2-19 were updated.  
Table 2-22 and Table 2-23 were updated.  
Table 2-25 was updated.  
2-12, 2-13  
2-15, 2-15  
2-18, 2-18  
2-21, 2-21  
2-26  
Table 2-26 and Table 2-27 were updated.  
Table 2-28 and Table 2-29 were updated.  
Table 2-30 and Table 2-31 were updated.  
2-28, 2-28  
2-30, 2-31  
2-32, 2-33  
v2.2  
4-1  
RTSX-SU RadTolerant FPGAs (UMC)  
Datasheet Categories  
In order to provide the latest information to designers, some datasheets are published before data has been fully  
characterized. Datasheets are designated as "Product Brief," "Advanced," "Production," and "Datasheet  
Supplement." The definitions of these categories are as follows:  
Product Brief  
The product brief is a summarized version of a datasheet (advanced or production) containing general product  
information. This brief gives an overview of specific device and family information.  
Advanced  
This datasheet version contains initial estimated information based on simulation, other products, devices, or speed  
grades. This information can be used as estimates, but not for production.  
Unmarked (production)  
This datasheet version contains information that is considered to be final.  
Datasheet Supplement  
The datasheet supplement gives specific device information for a derivative family that differs from the general family  
datasheet. The supplement is to be used in conjunction with the datasheet to obtain more detailed information and  
for specifications that do not differ between the two families.  
Export Administration Regulations (EAR) or International Traffic in  
Arms Regulations (ITAR)  
The product described in this datasheet could be subject to either the Export Administration Regulations (EAR) or in  
some cases the International Traffic in Arms Regulations (ITAR). They could require an approved export license prior to  
export from the United States. An export includes release of product or disclosure of technology to a foreign national  
inside or outside the United States.  
4-2  
v2.2  
Actel and the Actel logo are registered trademarks of Actel Corporation.  
All other trademarks are the property of their owners.  
http://www.actel.com  
Actel Corporation  
Actel Europe Ltd.  
Actel Japan  
www.jp.actel.com  
Actel Hong Kong  
www.actel.com.cn  
2061 Stierlin Court  
Mountain View, CA  
94043-4655 USA  
Dunlop House, Riverside Way  
Camberley, Surrey GU15 3YL  
United Kingdom  
EXOS Ebisu Bldg. 4F  
1-24-14 Ebisu Shibuya-ku  
Tokyo 150 Japan  
Suite 2114, Two Pacific Place  
88 Queensway, Admiralty  
Hong Kong  
Phone 650.318.4200  
Fax 650.318.4600  
Phone +44 (0) 1276 401 450  
Fax +44 (0) 1276 401 490  
Phone +81.03.3445.7671  
Fax +81.03.3445.7668  
Phone +852 2185 6460  
Fax +852 2185 6488  
51700053-5/3.06  

相关型号:

RTSX72SU-1CC256E

RTSX-SU RadTolerant FPGAs (UMC)
ACTEL

RTSX72SU-1CC256M

RTSX-SU RadTolerant FPGAs (UMC)
ACTEL

RTSX72SU-1CG256B

RTSX-SU RadTolerant FPGAs (UMC)
ACTEL

RTSX72SU-1CG256E

RTSX-SU RadTolerant FPGAs (UMC)
ACTEL

RTSX72SU-1CG256M

RTSX-SU RadTolerant FPGAs (UMC)
ACTEL

RTSX72SU-1CQ256B

RTSX-SU RadTolerant FPGAs (UMC)
ACTEL

RTSX72SU-1CQ256E

RTSX-SU RadTolerant FPGAs (UMC)
ACTEL

RTSX72SU-1CQ256M

RTSX-SU RadTolerant FPGAs (UMC)
ACTEL

RTSX72SU-CC256B

RTSX-SU RadTolerant FPGAs (UMC)
ACTEL

RTSX72SU-CC256E

RTSX-SU RadTolerant FPGAs (UMC)
ACTEL

RTSX72SU-CC256M

RTSX-SU RadTolerant FPGAs (UMC)
ACTEL

RTSX72SU-CG256B

RTSX-SU RadTolerant FPGAs (UMC)
ACTEL