ACT2804QJ-T0435 [ACTIVE-SEMI]

5V/3.4A Dual Cell Backup Battery Power Manager;
ACT2804QJ-T0435
型号: ACT2804QJ-T0435
厂家: ACTIVE-SEMI, INC    ACTIVE-SEMI, INC
描述:

5V/3.4A Dual Cell Backup Battery Power Manager

电池
文件: 总20页 (文件大小:1977K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ACT2804  
Rev 2, Feb-04-2016  
5V/3.4A Dual Cell Backup Battery Power Manager  
Battery Over-charge and Over-discharge  
FEATURES  
Protections  
Dedicated Single-chip Integrated Battery Power  
Charge/Discharge Thermal Regulation  
TQFN5x5-40 Package  
Manager  
Dual Cell Battery Charger with Cell Balancing  
Management  
APPLICATIONS  
Auto Detection support USB BC1.2, Chinese  
YD/T 1591-2009, Apple 2.4A, and Samsung  
Devices  
Backup Battery Pack  
Power Bank  
Mobile Power  
Passed Apple MFi Test  
Standalone Battery Charger with USB Output  
4.5V-5.5V Input Voltage with 3.4A Input Current  
Limit  
GENERAL DESCRIPTION  
2.4A+1.0A Dual Outputs with CC Regulation  
ACT2804 is a space-saving and dedicated single-  
chip solution for dual-cell battery charge and  
discharge. It takes 5V USB input source to charge a  
dual cell battery with boost configuration in three  
phases: preconditioning, constant current, and  
constant voltage. Charge is terminated when the  
current reaches 10% of the fast charge rate. The  
battery charger is thermally regulated at 110˚C with  
charge current foldback.  
5.07V+/-1% Output with Prioritized Power Path  
from Input to Output  
4.2V/4.35V +/- 0.5% Battery Charge Voltage  
Accuracy of Each Cell  
Output Plug-in Detection Wakeup and No Load  
Detection Sleep Mode  
Optimized Power Path and Battery Charge  
Control  
If input 5V is not present, ACT2804 discharge a  
dual cell battery with buck configuration to provide  
5.07V+/-1% to output ports. There is a power path  
from input to output. The cycle-by-cycle peak  
current mode control, constant current regulation,  
short circuit protection and over voltage protection  
maximize safe operation.  
<10uA Low Battery Drainage Current  
I2C Port for Optimal System Performance and  
Status Reporting  
Configurable Charge, Discharge and HZ modes  
>92% Charge and Discharge Efficiency at 3.4A  
Output for Full Battery Range  
ACT2804 provides 4 LED drive pins for battery  
capacity level and charge status indication to  
indicate 25%, 50%, 75%, and 75% above battery  
level with battery impedance compensation. The  
LED indication patterns are programmable .  
4 Modes of LED Operation  
Preconditioning for Deeply Depleted Battery  
Weak Input Sources Accommodation  
Safety:  
Input Over-voltage Protection  
Nearly Zero Power Short Circuit Protection  
Output Over-voltage Protection  
ACT2804 is available in a thermally enhanced  
5mmx5mm QFN55-40 package with exposed pad.  
Buck Output CC/CV  
1uF  
6.0  
22uF  
LED4 LED3 LED2 LED1 VREG  
22uF  
BAT  
BATS  
BATP  
VIN  
VIN  
5.0  
4.5V-5.5V  
22uF  
25mΩ  
CSN2  
CSP  
VBAT = 6.0V  
25mΩ  
510Ω  
VOUT2  
5.07V/2.4A  
4.0  
3.0  
CSN1  
ACT2804  
25mΩ  
VOUT1  
BATC  
CBD  
VOUT  
SW  
4.7uH  
5.07V/1A  
PGND  
VBAT = 8.2V  
1A Output  
2.4A Output  
47Ω  
47nF  
HSB  
BATN  
2.0  
22uF  
22uF  
510Ω  
RIMC ICST  
TH  
PB AGND  
1.0  
0
540k  
8k  
10k  
0
500  
1000  
1500  
2000  
2500  
3000  
Output Current (mA)  
Innovative PowerTM  
- 1 -  
www.active-semi.com  
Copyright © 2016 Active-Semi, Inc.  
ACT2804  
Rev 2, Feb-04-2016  
ORDERING INFORMATION  
PART NUMBER  
BATTERY CELL VOLTAGE JUNCTION TEMPERATURE  
PACKAGE  
QFN55-40  
QFN55-40  
PINS  
40  
ACT2804QJ-T  
4.20V  
4.35V  
-40˚C to 150˚C  
-40˚C to 150˚C  
ACT2804QJ-T0435  
40  
PIN CONFIGURATION  
CSN2  
CSN1  
CSP  
LED3  
LED2  
LED1  
VOUT  
VOUT  
VIN  
PB  
AGND  
VREG  
TH  
ACT2804  
VIN  
OVGATE  
OVSENS  
SCL  
ICST  
BATN  
CBD  
PGND  
TOP VIEW  
Innovative PowerTM  
- 2 -  
www.active-semi.com  
Copyright © 2016 Active-Semi, Inc.  
ACT2804  
Rev 2, Feb-04-2016  
PIN DESCRIPTIONS  
PIN  
NAME  
CSN2  
CSN1  
CSP  
DESCRIPTION  
1
Output current sense negative input for channel 2.  
2
Output current sense negative input for channel 1.  
Output current sense positive input.  
Power Output Pin.  
3
4, 5  
VOUT  
6, 7  
VIN  
USB or AC Adapter input.  
8
9
OVGATE Output to drive optional external NMOS protect IC from over voltage.  
OVSENS USB or AC Adapter input sense.  
10  
11  
SCL  
SDA  
I2C clock input.  
I2C data input.  
Power ground. Directly connect this pin to IC thermal PAD and connect 10uF or 22uF high  
quality capacitors from BAT to PGND on the same layer with IC.  
12  
PGND  
13  
HSB  
SW  
High side bias pin. Connect a 47nF ceramic capacitor from HSB to SW.  
Internal switch connected to a terminal of the output inductor.  
14,15  
16,17  
BAT connection. Connect it to battery current sense positive terminal. Bypass BAT pin to  
PGND pin with high quality ceramic capacitors on the same layer with IC.  
BAT  
Battery charge current sense input. Connect to charge sense resistor positive terminal with  
Kevin sense.  
18  
BATS  
19  
20  
BATP  
BATC  
Connect to charge sense resistor negative terminal and battery positive terminal.  
Battery central point connection. Connect to dual battery cell common terminal.  
Cell balancing discharge. Connect to a discharge resistor from this pin to battery common  
terminal.  
21  
22  
CBD  
BATN  
Battery negative terminal.  
Fast charge current setting pin. Connect a resistor from this pin to AGND to set the charging  
current. The current setting ranges from 0.5A-1.8A. The voltage at this pin reflects the charge  
current and discharge current in charge mode and discharge mode, respectively.  
23  
ICST  
24  
25  
TH  
Temperature sensing input. Connect to a battery thermistor terminal.  
+5V Bias output. Connect a 1.0uF to this pin. This pin supplies up to 50mA output current.  
The bias turns on in charge mode and discharge mode. Internal register bit can shut down the  
bias. Bias turns off in HZ mode.  
VREG  
Innovative PowerTM  
- 3 -  
www.active-semi.com  
Copyright © 2016 Active-Semi, Inc.  
ACT2804  
Rev 2, Feb-04-2016  
PIN DESCRIPTIONS  
PIN  
NAME  
DESCRIPTION  
26  
AGND  
Logic ground output. Connect this pin to the exposed PGND pad on same layer with IC.  
Push button input. When this pin is pushed for more than 40ms, LED1-4 indicators are ena-  
bled for 5 seconds.  
27  
PB  
28  
29  
30  
31  
LED1  
LED2  
LED3  
LED4  
Battery level indicator.  
Battery level indicator.  
Battery level indicator.  
Battery level indicator.  
32  
33  
34  
35  
LEDLS1 LED1 threshold level shift. Connect a resistor from the pin to AGND to shift LED1 threshold.  
LEDLS2 LED2 threshold level shift. Connect a resistor from the pin to AGND to shift LED2 threshold.  
LEDLS3 LED3 threshold level shift. Connect a resistor from the pin to AGND to shift LED3 threshold.  
LEDLS4 LED4 threshold level shift. Connect a resistor from the pin to AGND to shift LED4 threshold.  
LED indication mode input. The 5 modes of LED indication patterns are set by a voltage at  
this pin. Connect a resistor at the pin to set the voltage and an LED indication pattern.  
36  
37  
38  
PT  
RIMC  
HYST  
RIMC Battery impedance compensation input.  
The hysteresis window setting input. Connect a resistor at the pin to set the hysteresis win-  
dows for LED1, 2, 3, 4.  
39  
40  
DM  
DP  
Output port auto detection input. Connected to portable device D-.  
Output port auto detection input. Connected to portable device D+.  
Exposed pad. Must be soldered to ground plane layer(s) on the PCB for best electrical and  
thermal conductivity.  
41  
PGND  
Innovative PowerTM  
- 4 -  
www.active-semi.com  
Copyright © 2016 Active-Semi, Inc.  
ACT2804  
Rev 2, Feb-04-2016  
ABSOLUTE MAXIMUM RATINGS  
PARAMETER  
VALUE  
UNIT  
LEDLS1, LEDLS2, LEDLS3, LEDLS4, RIMC, HYST and PT to GND  
-0.3 to +6  
-0.3 to +6  
-0.3 to +6  
-0.3 to +16  
-0.3 to +12  
-0.3 to +6  
-0.3 to +0.3  
-0.3 to +0.3  
-0.3 to +6  
-0.3 to +6  
-0.3 to +0.3  
-6 to +0.3  
-6 to +0.3  
-0.3 to +12  
-0.3 to +6  
40  
V
LED1, LED2, LED3 and LED4 to GND  
PB, DM, DP, TH, SCL, SDA and ICST to GND  
OVSENS to GND  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
OVGATE to GND  
VIN, VOUT and VREG to GND  
CSP to CSN2, CSP to CSN1, CSP to VOUT  
BAT to BATS, BATS to BATP  
BATC to BATN  
BAT to BATC  
BATN to GND  
CBD to BAT  
BATN to CBD  
SW to PGND  
HSB to SW  
Junction to Ambient Thermal Resistance (θJA)  
/W  
Operating Junction Temperature (TJ)  
Operating Temperature Range (TA)  
Store Temperature  
-40 to 150  
-40 to 85  
-55 to 150  
300  
Lead Temperature (Soldering, 10 sec)  
Do not exceed these limits to prevent damage to the device. Exposure to absolute maximum rating conditions for long  
periods may affect device reliability.  
Innovative PowerTM  
- 5 -  
www.active-semi.com  
Copyright © 2016 Active-Semi, Inc.  
ACT2804  
Rev 2, Feb-04-2016  
ELECTRICAL CHARACTERISTICS  
(VIN = 5V, TA = 25°C, unless otherwise specified.)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Input Current Limit, Over Voltage Protection, Output Under Voltage Protection  
Input Voltage Range  
4.5  
5.5  
5.5  
5.9  
V
Input Over Voltage Protection  
VIN rising, VIN_OVP  
5.7  
290  
4.2  
200  
3.4  
3.65  
200  
3
V
mV  
V
Input Over Voltage Hysteresis  
VIN falling, VIN_OVP_HYST  
VIN rising, VIN_UVLO  
Input Under Voltage Lock-Out  
Input Under Voltage Lock-Out Hysteresis  
Input Current Limit Setting Range  
Output Under voltage protection (UVP)  
VIN falling, VIN_UVLO_HYST  
mV  
A
-10%  
+10%  
VOUT falling, VOUT_UVP  
V
Output Under Voltage Protection Hysteresis VOUT rising, VOUT_UVP_HYST  
Q1 wait time in hiccup mode  
mV  
s
Boost Mode/Charge Mode  
Switching Frequency  
-15%  
400  
2.8  
15  
+15% KHz  
Precondition Voltage Threshold of Each Cell VBAT1,2 rising  
V
%
V
Preconditioning current  
Boost Charger UVLO  
Percentage of fast charge current  
VOUT rising, BST_UVLO  
4.2  
VBAT_EOC (ACT2804QJ-T)  
-0.5%  
-0.5%  
4.2  
+0.5%  
+0.5%  
V
Battery End-Of-Charge Voltage  
VBAT_EOC (ACT2804QJ-T0435)  
4.35  
10  
V
End of Charge Detection Current  
Buck mode/Discharge  
Percentage of fast charge current  
%
Buck Under Voltage Lock-Out  
VABT falling, VBAT1, 2  
REG3[1:0]=00  
2.9  
V
V
V
V
V
A
A
5.07  
5.12  
5.17  
5.22  
1.25  
2.65  
REG3[1:0]=01  
VOUT Output Regulation Voltage  
REG3[1:0]=10  
REG3[1:0]=11  
RCS1=25mΩ, ICC1  
RCS2=25mΩ, ICC2  
1.05  
2.45  
1.40  
2.85  
VOUT1 and VOUT2 Current Limit  
Innovative PowerTM  
- 6 -  
www.active-semi.com  
Copyright © 2016 Active-Semi, Inc.  
ACT2804  
Rev 2, Feb-04-2016  
ELECTRICAL CHARACTERISTICS  
(VIN = 5V, TA = 25°C, unless otherwise specified.)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
Buck Converter Under Voltage Protection  
Threshold  
VOUT falling goes into hiccup  
VOUT rising, BCK_OVP  
3.65  
5.7  
V
V
Buck Converter Over Voltage Protection  
Threshold  
Buck Convert Hiccup Time  
3.4  
10  
s
Buck Converter Light-Load Cut-off Current  
5
15  
mA  
Buck Converter Light-Load Cut-off Deglitch  
Time  
12.5  
s
High Side Switch Peak Current Limit  
Over Temperature Protection  
All condition  
OTP  
4.5  
A
160  
20  
Over Temperature Protection Hysteresis  
OTP_HYST  
Battery Protection  
Battery Over Charge Current  
Battery Over Voltage  
2.6  
3
A
Percentage of EOC Voltage  
101.5 102.5 103.5  
1.6  
%
Battery Under Voltage and Short Circuit  
Protection  
V
Preconditioning timer  
If timer expires, goes to latch-off  
Charge mode  
1
hr  
uA  
uA  
V
140  
100  
2.5  
2.5  
1
TH Pull-up Current  
Discharge mode  
Charge mode  
TH High Threshold  
TH Low Threshold  
Discharge mode  
Charge mode  
V
V
Discharge mode  
0.57  
V
System Management  
VREG Output Current  
50  
0.95  
0.75  
1.2  
mA  
V
PB Rising Threshold  
PB rising, discharge mode  
PB falling, discharge mode  
Pull up to internal supply  
0.5s on and 0.5s off  
PB Falling Threshold  
V
MΩ  
Hz  
s
PB internal pull up resistance  
Fault Condition Alarm Frequency  
Fault Condition Alarm Timer  
1.0  
10  
Innovative PowerTM  
- 7 -  
www.active-semi.com  
Copyright © 2016 Active-Semi, Inc.  
ACT2804  
Rev 2, Feb-04-2016  
ELECTRICAL CHARACTERISTICS  
(VIN = 5V, TA = 25°C, unless otherwise specified.)  
PARAMETER  
LED Indication  
TEST CONDITIONS  
MIN TYP MAX UNIT  
LED1-4 Indication Level Setting  
LED Sink Current  
5.5  
8.8  
V
mA  
s
3
LED1-4 Scan Interval  
For each LED pattern before lighting LEDs  
0.5  
Innovative PowerTM  
- 8 -  
www.active-semi.com  
Copyright © 2016 Active-Semi, Inc.  
ACT2804  
Rev 2, Feb-04-2016  
ELECTRICAL CHARACTERISTICS  
(VIN = 5V, TA = 25°C, unless otherwise specified.)  
PARAMETER  
SCL, SDA Input Low  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
VCC= 5V  
VCC= 5V  
SDA=5V  
IOL = 5mA  
0.4  
SCL, SDA Input High  
1.25  
V
SDA Leakage Current  
SDA Output Low  
1
µA  
V
0.35  
1000  
SCL Clock Frequency, fSCL  
SCL Low Period, tLOW  
0
kHz  
µs  
µs  
ns  
ns  
ns  
ns  
pF  
ns  
ns  
0.5  
0.26  
50  
SCL High Period, tHIGH  
SDA Data Setup Time, tSU  
SDA Data Hold Time, tHD  
Start Setup Time, tST  
See Note: 1  
0
For Start Condition  
For Stop Condition  
260  
260  
Stop Setup Time, tSP  
Capacitance on SCL or SDA Pin  
SDA Fall Time SDA, Tof  
Rise Time of both SDA and SCL, tr  
10  
Device requirement  
See Note: 3  
120  
120  
Fall Time of both SDA and SCL, tf  
See Note: 3  
120  
50  
ns  
ns  
Pulse Width of spikes must be sup-  
pressed on SCL and SDA  
0
Notes: 1. Comply to I2C timings for 1MHIZ operation - Fast Mode Plus”  
2. No internal timeout for I2C operations  
3. This is a I2C system specification only. Rise and Fall time of SCL & SDA not controlled by the device.  
4. Device Address is 7’h5A - Read Address is 8’hB4 and write is 8’hB5  
tSCL  
SCL  
tST  
tHD  
tSU  
tSP  
SDA  
Start  
Stop  
condition  
condition  
Innovative PowerTM  
- 9 -  
www.active-semi.com  
Copyright © 2016 Active-Semi, Inc.  
ACT2804  
Rev 2, Feb-04-2016  
FUNCTIONAL DESCRIPTION  
ACT2804 is a complete battery charging and  
discharging power management solution for  
applications of dull-cell lithium-based backup  
battery pack or power bank.  
charges at the current set by the external resistor  
connected at the ICST pin. During a normal charge  
cycle fast charge continues in CC mode until VBAT  
reaches the charge termination voltage, at which  
point the ACT2804 charges in top off state.  
With the advanced bidirectional architecture, a  
synchronous boost/buck converter is connected  
from VOUT to switching node (SW). The converter  
could be configured as either boost to charge  
battery or buck to discharge battery.  
Top Off  
Device transitions from Fast Charge (CC) to Top  
Off (CV), and moves to EOC (End of Charge) state  
when charging current is less than IEOC  
.
Modes of Operation  
End of Charge  
ACT2804 has 3 operation modes: charge mode,  
discharge mode, and high-impedance (HZ) mode.  
In Top Off mode, when charges current decreases  
to 10% of set fast charge current, the boost  
converter goes into end of charge mode and keep  
monitoring the battery voltage.  
High Impedance (HZ) Mode  
HZ mode is the default mode. In HZ mode, all the  
switches are turned off , only PB circuit alive and  
the IC draws less than 10uA current from VBAT.  
Recharge  
In EOC, device would re-charge batteries when  
both battery voltage levels drops 5% below VEOC  
.
Discharge Mode  
In discharge mode, Buck converter operates in CV/  
CC regulation. VOUT1 current limit is set at 1.25A  
and VOUT2 current limit is set at 2.65A.  
Battery Removal  
If the battery is removed, boost converter regulates  
at the programmed regulation voltage.  
Charge Mode  
Cell Balance  
ACT2804 is configured in charge mode (boost  
mode) when VIN is valid. In this mode, a battery is  
charged with trickle, preconditioning, fast charge,  
top-off and end of charge (EOC). The typical  
charge management is shown in Figure 1.  
Cell Balance is activated in both Fast Charge and  
Top Off modes. Each battery is connected with a  
parallel bleeding switch.  
Push Button  
PB is always watched in HZ mode and discharge  
mode. If the push but on PB is pressed for >40mS  
in HZ mode, the LED (s) will turn on for 5 seconds.  
In the mean time, discharge mode is enabled.  
Precondition Charge  
When operating in precondition state, the cell is  
charged at a reduced current at 15% of the  
programmed maximum fast charge constant  
current. Once VBAT reaches the precondition  
threshold voltage the state machine jumps to the  
fast charge state.  
Fast Charge  
If battery voltage is above preconditioning  
threshold, boost converter charges battery with  
constant current. In fast charge state, the ACT2804  
VEOC  
RECHARGE  
FAST CHARGEB CURRENT  
Current  
A: PRECONDITION STATE  
Voltage  
B: FAST-CHARGE STATE  
C: TOP-OFF STATE  
VPRECHARGE  
D: END-OF-CHARGE STATE  
END-OF-CHARGE CURRENT  
PRECONDITION CHARGE CURRENT  
STATE  
A
B
C
D
B
Figure 1. Typical Li+ Charge Profile and ACT2804 Charge States  
Innovative PowerTM  
- 10 -  
www.active-semi.com  
Copyright © 2016 Active-Semi, Inc.  
ACT2804  
Rev 2, Feb-04-2016  
APPLICATIONS INFORMATION  
LEDLS3, LEDLS4 to APNG respectively, as shows  
in Figure3.  
Fast Charge Current Control  
The block diagram in Figure 2 shows how battery  
current is sensed for charge current control.  
Io  
Iin  
Output  
Cout1  
Input  
RHYST  
RIMC  
RLS2 RLS3  
VIN  
VOUT  
RLS1  
RLS4  
Cin  
L
ACT2804  
SW  
ICST  
RCS  
25m  
BAT  
RICST  
CBD  
Battery1  
Battery2  
RCBD  
47  
ACT2804  
Figure 2: Battery current monitoring  
A small percentage of charge current is sensed and  
sinked into a resistor connected at pin ICST. In  
charge mode, this would allow user to set fast  
charge current based on the following equation.  
Figure 3: LED threshold setting  
The following equation shows how the external  
resistor shifts the LED thresholds. The range of  
LED1LED4 indicator threshold shift from 5.5V  
8.8V.  
1000  
Ic(A)   
(1)  
5*RCS (m)*RICST (k)  
108k  
RLSx (k)  
VLEDX (V ) 5.5V   
(3)  
For example, IC=1A with RCS=25mΩ and  
RICST=8kΩ.  
Recommended RICST is shown in following table:  
RLSx  
VLEDx  
(V)  
RLSx  
VLEDx  
(V)  
RICST  
(kΩ)  
(kΩ)  
IC (A)  
Units  
RCS=25m  
10  
RCS=50mΩ  
5
72  
7
40  
43.2  
47  
8.2  
8
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
k  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
90  
6.7  
6.5  
6.4  
6.3  
6.1  
5.9  
8.89  
8
4.44  
4
108  
120  
135  
180  
270  
7.798  
7.7  
7.27  
6.67  
6.15  
5.71  
5.33  
3.64  
3.33  
3.08  
2.86  
2.67  
49.1  
57  
7.395  
7.3  
60  
67.5  
7.1  
During discharge mode, inputs of battery current  
sense amp are flipped to sense discharge current,  
and voltage level at pin ICST can be used (by the  
system) to monitor the magnitude of discharge  
current based on the following equation.  
VLED Example is given by the below table:  
LED Hysteresis Window Setting  
The adjustable LED voltage thresholds are set for  
HZ mode. In charge mode, the measured battery  
voltage is higher than in HZ mode, while in  
discharge mode, the measured battery voltage is  
lower. To have relatively better fuel gaugefor  
battery, a programmable hysteresis window will  
help. When the battery voltage goes up (in charge  
mode), the thresholds become higher, when the  
battery voltage goes down, lower thresholds are  
applied.  
IDISCHARGE RICST  
VICST  
(2)  
20k  
For example: VICST=0.4V with I_DISCHARGE=1A,  
and RICST=8kΩ.  
LED Threshold Setting  
LED1, LED2, LED3 and LED4 thresholds are  
ACT2804 provide HYST pin to set hysteresis  
window for each indication level as shows in Figure  
adjustable with external resistors RLS1, RLS2, RLS3  
,
and RLS4 connected from LEDLS1, LEDLS2,  
Innovative PowerTM  
- 11 -  
www.active-semi.com  
Copyright © 2016 Active-Semi, Inc.  
ACT2804  
Rev 2, Feb-04-2016  
APPLICATIONS INFORMATION  
HYST pin is regulated at 1V. Its input current will  
determine hysteresis adjustment equally to all level.  
Connect HYST to APGN via a resistor to set  
hysteresis window.  
TH voltage. The ACT2804 compares the voltage at  
the TH pin with the internal VTHH and VTHL  
thresholds to determine if charging or discharging is  
allowed. When VTH<VTHL or VTH >VTHH, it will be  
triggered latch off fault, there is 3 ways to wake up  
ACT2804 when VTH returns to the normal range.  
Beside the hysteresis window, to avoid comparison  
oscillation, fixed 100mV of hysteresis is added to  
each LEVEL comparator.  
1. Push PB when latch off bit is not set  
2. I2C to clear faults in standby  
3. Plug Vin to power up  
Hysteresis window is given by below equation:  
54K  
ICHG=140uA  
ACT2804  
HYST(V )   
4
   
VTCL=1V  
RHYST  
K  
+
CHG_HOT  
VHYST 4:3 0.5* HYST  
VHYST 2:1 0.6* HYST  
   
5
+
CHG_COLD  
VTCH=2.5V  
Li+ Battery  
Pack  
Rb  
TH  
IDIS=100uA  
VTDL=0.57V  
Then RHYST Example is given by the below table:  
+
DIS_HOT  
LED1  
LED2  
LED3  
VHYST  
LED4  
VHYST  
RHYST (kΩ)  
VHYST  
VHYST  
Ra  
+
Floating  
270  
135  
90  
0mV  
0mV  
0mV  
0mV  
NTC  
DIS_COLD  
VTDH=2.5V  
120mV  
240mV  
360mV  
480mV  
600mV  
720mV  
120mV  
240mV  
360mV  
480mV  
600mV  
720mV  
100mV  
200mV  
300mV  
400mV  
500mV  
600mV  
100mV  
200mV  
300mV  
400mV  
500mV  
600mV  
Figure 4: Thermistor setting  
67.5  
54  
VTCL ICHG Rchot  
V TCHICHG Rcold  
(7)  
(8)  
45  
Battery Impedance Compensation  
To avoid the number of LEDs changes between  
charge and discharge modes. Internal impedance  
compensation circuit is built in. An external resistor  
is used to set the impedance from 100mΩ to  
800mΩ. RIMC is corresponding to battery  
impedance. The LED1-4 thresholds shifted up and  
down based on the product of charge/discharge  
current and set impedance. RIMC value is given by  
below equation.  
Ra RNTCh  
Ra RNTCh  
Rchot Rb   
Rcold Rb   
(9)  
Ra RNTCc  
Ra RNTCc  
(10)  
RNTCc : NTC Resistor at cold temperature (Tcold)  
RNTCh : NTC Resistor at hot temperature (Thot)  
From (7) (8) (9) and (10) calculate Ra and Rb in  
charge mode, as the same method, the resistors in  
discharge mode can be calculated.  
RCS (m)  
RBAT (m)  
RIMC (k) 2160k  
(6)  
For example, use NXRT15XH103 NTC resistor, the  
In case not using compensation, float RIMC then  
there is no compensation affects to trig-points.  
temperature in charge mode is 0to 45,we  
RIMC example is given by the below table:  
know RNTCC=27.219k and 4.917k at 0to 45,  
respectively. We can calculate Ra=33kΩ and  
Rb=2.87kΩ based on the above formulas. As the  
same method we can calculate the value when the  
RBAT (mΩ)  
RCS = 25 mΩ  
RCS = 50 mΩ  
100  
200 300 400 500 600 700  
540k 270k 180k 135k 108k 90k 77k  
1280k 540k 360k 270k 216k 180k 154k  
temperature is -20to 60.  
BATTERY TEMPERATURE MONITERING  
LED Indication  
The ACT2804 monitors the battery pack  
temperature by measuring TH voltage at the TH pin  
as shows in Figure 4. The TH pin is connected to  
the thermistor resistor net which includes a negative  
-temperature coefficient thermistor. An internal  
current source provides a bias current to generate  
ACT2804 is designed 5 levels of PT pin voltage into  
5 application patterns. A resistor is connected from  
PT pin to ground and the voltage at PT pin  
programs the LED indication patterns.  
Innovative PowerTM  
- 12 -  
www.active-semi.com  
Copyright © 2016 Active-Semi, Inc.  
ACT2804  
Rev 2, Feb-04-2016  
APPLICATIONS INFORMATION  
LED1-4 Refreshing Cycle  
Every time when VIN is plugged in or a PB is  
pushed, LED1, 2, 3, 4 turns on sequentially at 0.5s  
interval, like a LED scanning, and then goes into  
corresponding mode defined by PT pin.  
LED4 LED3 LED2 LED1 VREG  
BAT  
BATS  
BATP  
LED1-4 Fault Alarm Signal  
ACT2804  
At fault conditions, actions are taken. In the  
meantime, all the 4 LEDs turn on/off with 0.5s on  
and 0.5s off for 10 seconds to send alarm signal  
out. The fault conditions include battery OVP, UVP,  
OTP.  
BATC  
PB  
CBD  
GND  
BATN  
LEDS4 LEDS3 LEDS2 LEDS1 PT  
PCB Board Layout Guidance  
RS4 RS3  
RS2 RS1  
RPT  
When laying out the printed circuit board, the  
following checklist should be used to ensure proper  
operation of the IC.  
Figure 5: LED Indication  
1. Arrange the power components to reduce the  
AC loop area.  
In discharge mode, when battery voltage goes  
below LED1 threshold, LED1 starts flashing until  
Buck (discharge mode) turns off due to either light  
load or Buck UVLO. The flash frequencies for all  
the LEDs are 0.5Hz with 1s on and 1s off.  
2. Place the decoupling ceramic capacitor as  
close to BAT pin as possible. Use different  
capacitance combination to get better EMI  
performance.  
In HZ mode, when PB is pressed for 40ms, Buck  
turns on. If VBAT<LED1, LED1 starts flashing until  
Buck turns off.  
3. Place the decoupling ceramic capacitors close  
to VIN pin, VOUT pin, and BAT pin.  
Conventional indication patterns could behave to  
have two application. Setting RPT=4kΩ to have  
Always On”, setting RPT=12kΩ to have “5s  
Indication”. The behaviors for both setting are same  
in charge mode.  
4. Use copper plane for power GND for best heat  
dissipation and noise immunity.  
5. Use Kevin sense from sense resistors to CSP  
and CSN1, CSN2 pins, and the sense resistor  
from BATS and BATP pins.  
See below table for more information.  
6. SW pad is a noisy node switching. It should be  
isolated away from the rest of circuit for good  
EMI and low noise operation.  
INDICATION PATTERN  
RPT  
#
7. Thermal pad is connected to GND layer through  
vias. PGND and AGND should be single-point  
connected.  
Conventional  
Always On In Discharge  
1a  
4kΩ  
Conventional  
5s Indication in Discharge  
1b  
2
12kΩ  
24kΩ  
40kΩ  
56kΩ  
8. RC snubber and external Schottky diode across  
SW to PGND can be added as needed for  
Breathing  
5s Indication in Discharge  
reducing  
SW  
spike and  
better  
EMI  
performance.  
Bottom Charging  
5s Indication in Discharge  
3
Circulating  
5s Indication in Discharge  
4
Below shows 4 LED indication patterns.  
Bottom  
Charging  
Conventional  
Circulating  
Breathing  
<25%  
25%SOC<50%  
50%SOC<75%  
75%SOC<100%  
EOC  
Flash  
Circulating on  
Off  
Always on  
Breathing on/off  
Innovative PowerTM  
- 13 -  
www.active-semi.com  
Copyright © 2016 Active-Semi, Inc.  
ACT2804  
Rev 2, Feb-04-2016  
APPLICATIONS SCHEMATIC  
R23  
R22  
R12 R11 R10 R9 R8 R7 R6  
C15  
R3  
+
Output  
USB 2  
LED4  
D-  
D+  
-
C16  
R3A  
LED3  
LED3  
LED2  
LED2  
LED1  
LED1  
CSN2  
CSN1  
CSP  
R2A  
R2  
VOUT  
VOUT  
PB  
S1  
+
D-  
D+  
-
GND  
C17  
Output  
USB 1  
ACT2804  
R21  
VREG  
VIN  
VIN  
C13  
C2  
TH  
ICST  
BATN  
Q1  
R17  
OVGATE  
OVSENS  
SCL  
R5  
PGND  
R18  
RNTC  
CBD  
R20  
Optional  
+
D-  
D+  
-
R1  
R15  
R16  
MCU  
Input  
USB  
R14  
C14  
C1  
R4  
C8  
C7  
R19  
D1  
BAT1  
BAT2  
R4A  
L1  
C9 C10  
C11  
R13  
C12  
C3 C4 C5 C6  
Optional  
Figure 6. ACT2804 typical application circuit  
(Input current limit 3.4A, fast charge current limit 1.0A, discharge output constant current 2.4A+1A)  
Charge: Cold: 0°C, Hot: 45°C. Discharge: Cold: -20°C, Hot: 60°C.  
Innovative PowerTM  
- 14 -  
www.active-semi.com  
Copyright © 2016 Active-Semi, Inc.  
ACT2804  
Rev 2, Feb-04-2016  
Table 5: BOM List  
ITEM  
REFERENCE  
C1  
DESCRIPTION  
QTY MANUFACTURER  
1
2
3
4
5
6
7
Ceramic capacitor, 4.7uF/10V, X7R, 0805  
1
7
2
1
1
1
1
1
2
1
1
4
1
6
1
1
1
1
1
1
Murata/TDK  
Murata/TDK  
Murata/TDK  
Murata/TDK  
Murata/TDK  
Murata/TDK  
Murata/TDK  
Murata/TDK  
Murata/TDK  
Panjit  
C2,C3,C4,C5,C8, C9,C11 Ceramic capacitor, 22uF/16V, X7R, 1206  
C6,C10  
C7  
Ceramic capacitor, 0.1uF/16V, X7R, 0603  
Ceramic capacitor, 47nF/10V, X7R, 0603  
Ceramic capacitor, 2.2nF/16V, X7R, 0603  
Ceramic capacitor, 1uF/10V, X7R, 0603  
Ceramic capacitor, 100nF/16V, X7R, 0603  
Ceramic capacitor, 2.2uF/10V, X7R, 0603  
Ceramic capacitor, 3.3uF/10V, X7R, 0603  
MBR1020VL, 20V, 1A Schottky, optional  
Core SWPA8040S4R7NT 4.7uH 5.9A  
C12  
C13  
C14  
C15  
9
C16,C17  
D1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
L1  
Sunlord  
LED1,LED2, LED3,LED4 LED, 0603, Blue  
LED Manu  
Murata/TDK  
SART  
Chip Resistor, 2.7Ω, 1/8W, 1%, 0805  
R1  
Chip Resistor, 50mΩ, 1/2W, 1%, 1206  
Chip Resistor, 8kΩ, 1/10W, 1%, 0603  
Chip Resistor, 83kΩ, 1/10W, 1%, 0603  
Chip Resistor, 63.5kΩ, 1/10W, 1%, 0603  
Chip Resistor, 51.4kΩ, 1/10W, 1%, 0603  
Chip Resistor, 41.5kΩ, 1/10W, 1%, 0603  
Chip Resistor, 12kΩ, 1/10W, 5%, 0603  
R2,R2A,R3,R3A,R4,R4A  
R5  
R6  
Murata/TDK  
Murata/TDK  
Murata/TDK  
Murata/TDK  
Murata/TDK  
Murata/TDK  
R7  
R8  
R9  
R10  
Chip Resistor, 540kΩ, 1/10W, 1%, 0603  
Chip Resistor, 0.47Ω, 1/8W, 5%, 0805  
Chip Resistor, 510Ω, 1/10W, 1%, 0603  
Chip Resistor, 47Ω, 1/4W, 5%, 1206  
21  
22  
23  
24  
R11,R12  
R13  
2
1
2
1
Murata/TDK  
Murata/TDK  
Murata/TDK  
Murata/TDK  
R14,R16  
R15  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
R17  
R18  
Chip Resistor, 3k, 1/10W, 1%, 0603  
Chip Resistor, 32k, 1/10W, 1%, 0603  
Chip Resistor, 10Ω, 1/10W, 1%, 0603  
1
1
1
1
1
2
1
1
1
2
1
1
Murata/TDK  
Murata/TDK  
Murata/TDK  
Murata/TDK  
Murata/TDK  
Murata/TDK  
Murata  
R19  
Chip Resistor, 200Ω, 1/10W, 5%, 0603, optional  
R20  
Chip Resistor, 100Ω, 1/10W, 5%, 0603  
Chip Resistor, 715kΩ, 1/10W, 5%, 0603  
103AT NTC Thermistor, NXRT15XH103V  
8205A, Rdson < 25mΩ at VGS = 4.5 V, optional  
Push Button Switch  
R21  
R22, R23  
RNTC  
Q1  
TY  
PB  
Nikkai Omron  
USB  
10.2*14.6*7mm, 4P  
Micro-USB  
U1  
MICRO USB 5P/F SMTB  
IC, ACT2804, QFN 55-40  
Active-Semi  
Innovative PowerTM  
- 15 -  
www.active-semi.com  
Copyright © 2016 Active-Semi, Inc.  
ACT2804  
Rev 2, Feb-04-2016  
TYPICAL PERFORMANCE CHARACTERISTICS CONTD  
(Schematic as show in Figure 6, Ta = 25°C, unless otherwise specified)  
Charge Current vs. Output Current  
Battery Charge V/I Profile  
3500  
1200  
1000  
800  
VIN = 5.0V  
VIN = 5.0V  
ICHRG = 1.0A  
3000  
2500  
Input Current  
2000  
600  
Output Current  
1500  
400  
Charge Current  
1000  
200  
0
500  
0
0
5
10  
15  
20  
25  
30  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
Test Point  
Vbat (V)  
Charge Efficiency  
Discharge Efficiency  
96.0  
95.0  
94.0  
93.0  
92.0  
100.0  
95.0  
90.0  
85.0  
80.0  
75.0  
VIN = 5.0V  
ICHRG = 1A  
VBAT = 6.0V  
VBAT = 7.5V  
VBAT = 8.4V  
91.0  
90.0  
0
500 1000 1500 2000 2500 3000 3500 4000  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
Output Current (mA)  
Vbat (V)  
Battery Leakage vs. Junction Temperature  
(HZ Mode)  
Battery Charge Current vs. Junction  
Temperature  
25.0  
20.0  
15.0  
10.0  
1400  
VIN = 5.0V  
VBAT = 7.5V  
1200  
1000  
800  
VBAT = 7.0V  
600  
VBAT = 8.2V  
400  
5.0  
0
200  
0
-20  
0
20  
40  
60  
80  
100  
120  
140  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
Temperature (°C)  
Innovative PowerTM  
- 16 -  
www.active-semi.com  
Copyright © 2016 Active-Semi, Inc.  
ACT2804  
Rev 2, Feb-04-2016  
TYPICAL PERFORMANCE CHARACTERISTICS CONTD  
(Schematic as show in Figure 6, Ta = 25°C, unless otherwise specified)  
Buck Output1 Constant Current Limit  
vs. Temperature  
Buck Output2 Constant Current Limit  
vs. Temperature  
2750  
2700  
2650  
2600  
2550  
1300  
VBAT = 8.4V  
CV= 4.0V  
Rcs=25mΩ(1%)  
VBAT = 8.4V  
CV= 4.0V  
Rcs=25mΩ(1%)  
1250  
1200  
1150  
1100  
2500  
2450  
1050  
1000  
-30  
0
30  
60  
90  
120  
150  
-30  
0
30  
60  
90  
120  
150  
Temperature (°C)  
Temperature (°C)  
Buck Output1 Voltage vs. Output Current  
Buck Output2 Voltage vs. Output Current  
5.25  
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
5.25  
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
VBAT =8.4V  
VBAT =8.4V  
VBAT=6.0V  
VBAT=6.0V  
0
200  
400  
600  
800  
1000  
1200  
1400  
0
500  
1000  
1500  
2000  
2500  
3000  
Buck Output1 Current (mA)  
Buck Output2 Current (mA)  
Buck Output1 Constant Current Limit vs. VBAT  
Buck Output2 Constant Current Limit vs. VBAT  
1240  
1230  
1210  
1200  
2720  
2700  
2680  
2660  
2640  
1190  
1180  
2620  
2600  
5.8  
6.2  
6.6  
7.0  
7.4  
7.8  
8.2  
8.6  
5.8  
6.2  
6.6  
7.0  
7.4  
7.8  
8.2  
8.6  
Vbat (V)  
Vbat (V)  
Innovative PowerTM  
- 17 -  
www.active-semi.com  
Copyright © 2016 Active-Semi, Inc.  
ACT2804  
Rev 2, Feb-04-2016  
TYPICAL PERFORMANCE CHARACTERISTICS CONTD  
(Schematic as show in Figure 6, Ta = 25°C, unless otherwise specified)  
Battery Leakage vs. Battery Voltage  
(HZ Mode)  
Buck Standby Current vs. Battery Voltage  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
1.0  
0
5.8  
6.2  
6.6  
7.0  
7.4  
7.8  
8.2  
8.6  
0
2.0  
4.0  
6.0  
8.0  
10.0  
12.0  
14.0  
Battery Voltage (V)  
Battery Voltage(V)  
Buck Output1 CC/CV  
Buck Output2 CC/CV  
6.0  
6.0  
5.0  
4.0  
3.0  
2.0  
5.0  
4.0  
3.0  
2.0  
VBAT = 6.0V  
VBAT = 6.0V  
VBAT = 8.2V  
VBAT = 8.2V  
1.0  
0
1.0  
0
0
200  
400  
600  
800  
1000  
1200  
0
500  
1000  
1500  
2000  
2500  
3000  
Output1 Current (mA)  
Output2 Current (mA)  
Buck Load Transient  
(Iout2:1A-2.4A-1A, Iout1: 0A)  
Buck Load Transient  
(Iout2: 80mA-1A-80mA, Iout1: 0A)  
VBAT = 8.2V  
VOUT = 5.0V  
VBAT = 8.2V  
VOUT = 5.0V  
CH1  
CH1  
CH2  
CH2  
CH1: VOUT, 200mV/div  
CH2: IOUT, 1A/div  
TIME: 1ms/div  
CH1: VOUT, 200mV/div  
CH2: IOUT, 500mA/div  
TIME: 1ms/div  
Innovative PowerTM  
- 18 -  
www.active-semi.com  
Copyright © 2016 Active-Semi, Inc.  
ACT2804  
Rev 2, Feb-04-2016  
TYPICAL PERFORMANCE CHARACTERISTICS CONTD  
(Schematic as show in Figure 6, Ta = 25°C, unless otherwise specified)  
Buck Load Transient  
(Iout2:1A-2.4A-1A, Iout1: 1A)  
Buck Load Transient  
(Iout2: 80mA-1A-80mA, Iout1: 1A)  
VBAT = 8.2V  
VOUT = 5.0V  
VBAT = 8.2V  
VOUT = 5.0V  
CH1  
CH2  
CH1  
CH2  
CH1: VOUT, 200mV/div  
CH2: IOUT, 500mA/div  
TIME: 1ms/div  
CH1: VOUT, 200mV/div  
CH2: IOUT, 1A/div  
TIME: 1ms/div  
Innovative PowerTM  
- 19 -  
www.active-semi.com  
Copyright © 2016 Active-Semi, Inc.  
ACT2804  
Rev 2, Feb-04-2016  
PACKAGE OUTLINE  
QFN55-40 PACKAGE OUTLINE AND DIMENSIONS  
Top View  
PIN #1 DOT BY  
MARKING  
DIMENSION IN  
MILLIMETERS  
DIMENSION IN  
INCHES  
D
SYMBOL  
D/2  
MIN  
0.700  
0.000  
MAX  
0.800  
0.050  
MIN  
0.028  
0.000  
MAX  
0.031  
0.002  
A
A1  
A3  
b
E/2  
0.203 REF  
0.008 REF  
0.150  
4.924  
4.924  
3.300  
3.300  
0.250  
5.076  
5.076  
3.500  
3.500  
0.006  
0.194  
0.194  
0.130  
0.130  
0.010  
0.200  
0.200  
0.138  
0.138  
E
D
E
D1  
E1  
e
0.400 TYP  
0.016 TYP  
L
0.324  
0.476  
0.013  
0.019  
Bottom View  
k
0.200 MIN  
0.008 MIN  
L
b
D1  
e
E1  
k
A3  
A
A1  
Active-Semi, Inc. reserves the right to modify the circuitry or specifications without notice. Users should evaluate each  
product to make sure that it is suitable for their applications. Active-Semi products are not intended or authorized for use  
as critical components in life-support devices or systems. Active-Semi, Inc. does not assume any liability arising out of  
the use of any product or circuit described in this datasheet, nor does it convey any patent license.  
Active-Semi and its logo are trademarks of Active-Semi, Inc. For more information on this and other products, contact  
sales@active-semi.com or visit http://www.active-semi.com.  
is a registered trademark of Active-Semi.  
Innovative PowerTM  
- 20 -  
www.active-semi.com  
Copyright © 2016 Active-Semi, Inc.  

相关型号:

ACT2804_16

5V/3.4A Dual Cell Backup Battery Power Manager
ACTIVE-SEMI

ACT2804_17

5V/3.4A Dual Cell Battery Power Manager
ACTIVE-SEMI

ACT2813

5V/2.4A Power Bank Solution
ACTIVE-SEMI

ACT2813C

5V/2.4A Power Bank Solution
ACTIVE-SEMI

ACT2813CQY-T

5V/2.4A Power Bank Solution
ACTIVE-SEMI

ACT2813CQY-T0435

5V/2.4A Power Bank Solution
ACTIVE-SEMI

ACT2813QY-T

5V/2.4A Power Bank Solution
ACTIVE-SEMI

ACT2813QY-T0435

5V/2.4A Power Bank Solution
ACTIVE-SEMI

ACT2813_15

5V/2.4A Power Bank Solution
ACTIVE-SEMI

ACT2823

Dual Cell Li-Ion Battery Charger and Power Bank Manager
ACTIVE-SEMI

ACT2823QJ-T1000

Dual Cell Li-Ion Battery Charger and Power Bank Manager
ACTIVE-SEMI

ACT2823QJ-T1435

Dual Cell Li-Ion Battery Charger and Power Bank Manager
ACTIVE-SEMI