5962-89670013A [ADI]

Low Voltage Micropower Quad Operational Amplifier; 低电压,微功耗四路运算放大器
5962-89670013A
型号: 5962-89670013A
厂家: ADI    ADI
描述:

Low Voltage Micropower Quad Operational Amplifier
低电压,微功耗四路运算放大器

运算放大器 放大器电路
文件: 总16页 (文件大小:1815K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Voltage Micropower  
Quad Operational Amplifier  
a
OP490  
FEATURES  
PIN CONNECTION  
Single/Dual-Supply Operation  
1.6 V to 36 V  
؎0.8 V to ؎18 V  
14-Lead Hermetic DIP  
(Y Suffix)  
True Single-Supply Operation; Input and Output  
Voltage Ranges Include Ground  
Low Supply Current: 80 A Max  
High Output Drive: 5 mA Min  
Low Offset Voltage: 0.5 mA Max  
High Open-Loop Gain: 700 V/mV Min  
Outstanding PSRR: 5.6 mV/V Min  
Industry Standard Quad Pinouts  
Available in Die Form  
OUT A  
–IN A  
+IN A  
V+  
1
2
3
4
5
6
7
14 OUT D  
13 –IN D  
12 +IN D  
11 V–  
+IN B  
–IN B  
OUT B  
10 +IN C  
9
8
–IN C  
OUT C  
14-Lead Plastic DIP  
(P Suffix)  
OUT A  
–IN A  
+IN A  
V+  
1
2
3
4
5
6
7
14 OUT D  
13 –IN D  
12 +IN D  
11 V–  
GENERAL DESCRIPTION  
The OP490 is a high-performance micropower quad op amp  
that operates from a single supply of 1.6 V to 36 V or from  
dual supplies of ±0.8 V to ±18 V. Input voltage range includes  
the negative rail allowing the OP490 to accommodate input  
signals down to ground in single-supply operation. The  
OP490’s output swing also includes ground when operating  
from a single supply, enabling “zero-in, zero-out” operation.  
+IN B  
–IN B  
OUT B  
10 +IN C  
9
8
–IN C  
OUT C  
The quad OP490 draws less than 20 mA of quiescent supply  
current per amplifier, but each amplifier is able to deliver  
over 5 mA of output current to a load. Input offset voltage is  
under 0.5 mV with offset drift below 5 mV/C over the military  
temperature range. Gain exceeds over 700,000 and CMR is  
better than 100 dB. A PSRR of under 5.6 mV/V minimizes  
offset voltage changes experienced in battery-powered systems.  
16-Lead SOIC  
(S Suffix)  
OUT A  
–IN A  
+IN A  
V+  
1
2
3
4
5
6
7
8
16 OUT D  
15 –IN D  
14 +IN D  
13 V–  
The quad OP490 combines high performance with the space  
and cost savings of quad amplifiers. The minimal voltage and  
current requirements of the OP490 make it ideal for battery-  
and solar-powered applications, such as portable instruments  
and remote sensors.  
+IN B  
–IN B  
OUT B  
NC  
12 +IN C  
11 –IN C  
10 OUT C  
9
NC  
NC = NO CONNECT  
REV. C  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
that may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2002  
OP490–SPECIFICATIONS  
(@ V = ؎1.5 V to ؎15 V, T = 25؇C, unless otherwise noted)  
ELECTRICAL CHARACTERISTICS  
S
A
OP490E  
Typ  
OP490F  
Typ  
OP490G  
Typ Max Unit  
Parameter  
Symbol  
VOS  
Conditions  
Min  
Max  
0.5  
Min  
Max  
0.75  
5
Min  
Input Offset  
Voltage  
0.2  
0.4  
4.2  
0.4  
0.4  
4.2  
0.6  
0.4  
4.2  
1.0  
5
mV  
nA  
nA  
Input Offset  
Current  
IOS  
VCM = 0 V  
VCM = 0 V  
3.0  
Input Bias  
Current  
IB  
15.0  
20  
25  
Large Signal  
Voltage Gain  
AVO  
VS = ±15 V, VO = ±10 V,  
RL = 100 kW  
L = 10 kW  
L = 2 kW  
V+ = 5 V, V– = 0 V,  
1 V < VO < 4 V  
700  
350  
125  
1,200  
600  
250  
500  
250  
100  
1,000  
500  
200  
400  
200  
100  
800  
400  
200  
V/mV  
V/mV  
V/mV  
R
R
R
L = 100 kW  
200  
100  
400  
180  
125  
75  
300  
140  
100  
70  
250  
140  
V/mV  
V/mV  
RL = 10 kW  
Input Voltage  
Range  
IVR  
V+ = 5 V, V– = 0 V  
0/4  
–15/+13.5  
0/4  
–15/+13.5  
0/4  
–15/+13.5  
V
V
VS = ±15 V1  
Output Voltage  
Swing  
VO  
VS = ±15 V, RL = 10 kW  
RL = 2 kW  
±13.5  
±10.5  
±14.2  
±11.5  
±13.5  
±10.5  
±14.2  
±11.5  
±13.5  
±10.5  
±14.2  
±11.5  
V
V
VOH  
VOL  
V+ = 5 V, V– = 0 V,  
RL = 2 kW  
V+ = 5 V, V– = 0 V,  
RL = 10 kW  
4.0  
4.2  
4.0  
4.2  
4.0  
4.2  
V
100  
110  
500  
5.6  
100  
100  
500  
100  
100  
500  
mV  
Common-Mode  
Rejection Ratio  
CMRR  
V+ = 5 V, V– = 0 V,  
0 V < VCM < 4 V  
VS = ±15 V,  
90  
80  
90  
800  
90  
dB  
100  
130  
120  
120  
dB  
–15 V < VCM < +13.5 V  
Power Supply  
Rejection Ratio  
PSRR  
SR  
1.0  
12  
3.2  
12  
10  
3.2  
12  
10  
mV/V  
Slew Rate  
VS = ±15 V  
5
5
5
V/ms  
Supply Current  
(All Amplifiers)  
VS = ±1.5 V, No Load  
VS = ±15 V, No Load  
40  
60  
60  
80  
40  
60  
60  
80  
40  
60  
60  
80  
mA  
mA  
ISY  
Capacitive Load  
Stability  
A
V = 1  
650  
650  
650  
pF  
Input Noise  
Voltage  
en p-p  
fO = 0.1 Hz to 10 Hz,  
VS = ±15 V  
3
3
3
mV p-p  
MW  
Input Resistance  
Differential Mode  
RIN  
VS = ±15 V  
VS = ±15 V  
AV = 1  
30  
20  
30  
20  
30  
20  
Input Resistance  
Common-Mode  
RINCM  
GW  
Gain Bandwidth  
Product  
GBWP  
20  
20  
20  
kHz  
dB  
Channel Separation CS  
fO = 10 Hz, VO = 20 V p-p  
VS = ±15 V2  
120  
150  
120  
150  
120  
150  
NOTES  
1Guaranteed by CMRR test.  
2Guaranteed but not 100% tested.  
Specifications subject to change without notice  
–2–  
REV. C  
OP490  
(@ VS = ؎1.5 V to ؎15 V, –25؇C £ TA £ +85؇C for OP490E/F, –40؇C £ TA £ +125؇C for  
ELECTRICAL CHARACTERISTICS  
OP490G, unless otherwise noted)  
OP490E  
OP490F  
Typ  
OP490G  
Typ Max Unit  
Parameter  
Symbol  
Conditions  
Min  
Typ  
0.32  
2
Max  
0.8  
5
Min  
Max  
Min  
Input Offset  
Voltage  
VOS  
0.6  
4
1.35  
0.8  
4
1.5  
mV  
mV/C  
nA  
Average Input  
Offset Voltage Drift TCVOS  
VS = ±15 V  
Input Offset  
Current  
IOS  
VCM = 0 V  
0.8  
4.4  
3
1.0  
4.4  
5
1.3  
4.4  
7
Input Bias  
Current  
IB  
VCM = 0 V  
15  
20  
25  
nA  
Large Signal  
Voltage Gain  
AVO  
VS = ±15 V, VO = ±10 V,  
R
R
L = 100 kW  
L = 10 kW  
RL = 2 kW  
500  
250  
100  
800  
400  
200  
350  
175  
75  
700  
250  
150  
300  
150  
75  
600  
250  
125  
V/mV  
V/mV  
V/mV  
V+ = 5 V, V– = 0 V,  
1 V < VO < 4 V  
RL = 100 kW  
150  
75  
280  
140  
100  
50  
220  
110  
80  
40  
160  
90  
V/mV  
V/mV  
RL = 10 kW  
Input Voltage  
Range  
IVR  
V+ = 5 V, V– = 0 V  
0.3/5  
–15/+13.5  
0.3/5  
–15/+13.5  
0.3/5  
–15/+13.5  
V
V
VS = ±15 V  
*
Output Voltage  
Swing  
VO  
VS = ±15 V, RL = 10 kW  
RL = 2 kW  
±13  
±10  
±14  
±11  
±13  
±10  
±14  
±11  
±13  
±10  
±14  
±11  
V
V
VOH  
VOL  
V+ = 5 V, V– = 0 V,  
RL = 2 kW  
V+ = 5 V, V– = 0 V,  
RL = 10 kW  
3.9  
4.1  
3.9  
4.1  
3.9  
4.1  
V
100  
110  
500  
5.6  
100  
100  
500  
100  
100  
500  
mV  
Common-Mode  
Rejection Ratio  
CMRR  
V+ = 5 V, V– = 0 V,  
0 V < VCM < 3.5 V  
VS = ±15 V,  
90  
80  
90  
800  
90  
dB  
100  
120  
110  
110  
dB  
–15 V < VCM < +13.5 V  
Power Supply  
Rejection Ratio  
PSRR  
ISY  
1.0  
3.2  
10  
5.6  
17.8 mV/V  
Supply Current  
(All Amplifiers)  
VS = ±1.5 V, No Load  
VS = ±15 V, No Load  
65  
80  
100  
120  
65  
80  
100  
120  
60  
75  
100  
120  
mA  
mA  
NOTE  
*Guaranteed by CMRR test.  
Specifications subject to change without notice  
–3–  
REV. C  
OP490  
(@ V = ؎1.5 V to ؎15 V, T = 25؇C, unless otherwise noted)  
WAFER TEST LIMITS  
Parameter  
S
A
Symbol  
Conditions  
Limits  
Unit  
Input Offset Voltage  
Input Offset Current  
Input Bias Current  
VOS  
IOS  
IB  
0.75  
5
20  
mV max  
nA max  
nA max  
VCM = 0 V  
VCM = 0 V  
Large Signal Voltage Gain  
AVO  
VS = ±15 V, VO = ±10 V,  
RL = 100 kW  
500  
250  
125  
V/mV min  
V/mV min  
V/mV min  
RL = 10 kW  
V+ = 5 V, V– = 0 V  
1 V < VO < 4 V, RL = 100 kW  
V+ = 5 V, V– = 0 V  
VS = ±15 V*  
Input Voltage Range  
Output Voltage Swing  
IVR  
VO  
0/4  
–15/+13.5  
V min  
V min  
VS = ±15 V  
RL = 10 kW  
±13.5  
±10.5  
4.0  
V min  
V min  
V min  
mV max  
RL = 2 kW  
VOH  
VOL  
V+ = 5 V, V– = 0 V, RL = 2 kW  
V+ = 5 V, V– = 0 V, RL = 10 kW  
500  
Common-Mode Rejection Ratio  
CMRR  
V+ = 5 V, V– = 0 V, 0 V < VCM < 4 V  
VS = ±15 V, –15 V < VCM < +13.5 V  
80  
90  
dB min  
dB min  
Power Supply Rejection Ratio  
Supply Current (All Amplifiers)  
PSRR  
ISY  
10  
80  
mV/V max  
mA max  
VS = ±15 V, No Load  
NOTE  
*Guaranteed by CMRR test.  
Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed  
for standard product dice. Consult factory to negotiate specifications based on dice lot qualifications through sample lot assembly and testing.  
V+  
+IN  
OUTPUT  
–IN  
V–  
Figure 1. Simplified Schematic  
–4–  
REV. C  
OP490  
ABSOLUTE MAXIMUM RATINGS*  
Package Type  
*
Unit  
JA  
JC  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±18 V  
Digital Input Voltage . . . . . . . . [(V–) – 20 V] to [(V+) + 20 V]  
Common-Mode Input Voltage [(V–) – 20 V] to [(V+) + 20 V]  
Output Short Circuit Duration . . . . . . . . . . . . . . .Continuous  
Storage Temperature Range  
Y and P Packages . . . . . . . . . . . . . . . . . . . –65C to +150C  
Operating Temperature Range  
14-Pin Hermetic DIP (Y)  
14-Pin Plastic DIP (P)  
16-Pin SOL (S)  
99  
76  
92  
12  
33  
27  
C/W  
C/W  
C/W  
*qJA is specified for worst case mounting conditions, i.e., qJA is specified for  
device in socket for CERDIP and PDIP packages; qJA is specified for device  
soldered to printed circuit board for SOL package  
OP490E, OP490F . . . . . . . . . . . . . . . . . . . –25C to +85C  
OP490G . . . . . . . . . . . . . . . . . . . . . . . . . . . –40C to +85C  
Junction Temperature (TJ) . . . . . . . . . . . . . –65C to +150C  
ORDERING GUIDE  
Temperature  
Range  
Package  
Description  
Package  
Option  
Lead Temperature Range (Soldering, 60 sec) . . . . . . . . 300C  
Model  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those listed in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
OP490EY* –25C to +85C 14-Lead CERDIP  
OP490FY* –25C to +85C 14-Lead CERDIP  
Y-14  
Y-14  
OP490GP –40C to +85C 14-Lead Plastic DIP P-14  
OP490GS  
–40C to +85C 16-Lead SOIC  
S-14  
*Not recommended for new designs. Obsolete April 2002.  
For Military processed devices, please refer to the Standard  
Microcircuit Drawing (SMD) available at  
www.dscc.dla.mil/programs/milspec/default.asp  
SMD Part Number  
ADI Equivalent  
5962-89670013A*  
5962-8967001CA*  
OP490ATCMDA  
OP490AYMDA  
*Not recommended for new designs. Obsolete April 2002.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the OP490 features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. C  
–5–  
OP490Typical Performance Characteristics  
0.4  
90  
80  
70  
60  
50  
40  
30  
V
S
= 15V  
0.3  
0.2  
0.1  
0
V
V
=
=
15V  
S
1.5V  
S
–75  
–50  
–25  
0
25  
50  
75  
125  
–75  
–50  
–25  
0
25  
50  
75  
125  
TEMPERATURE – ؇C  
TEMPERATURE – ؇C  
TPC 1. Input Offset Voltage vs. Temperature  
TPC 4. Total Supply Current vs. Temperature  
1.6  
600  
T
= 25؇C  
= 10k⍀  
A
L
V
S
= 15V  
R
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
500  
400  
300  
200  
100  
0
25؇C  
85؇C  
125؇C  
0
5
10  
15  
20  
25  
30  
–75  
–50  
–25  
0
25  
50  
75  
125  
SINGLE-SUPPLYVOLTAGE V  
TEMPERATURE – ؇C  
TPC 5. Open-Loop Gain vs. Single-Supply Voltage  
TPC 2. Input Offset Current vs. Temperature  
140  
4.8  
V
= 15V  
S
A
L
V
S
= 15V  
T
= 25؇C  
120  
100  
80  
60  
40  
20  
0
4.6  
4.4  
4.2  
4.0  
3.8  
3.6  
R
= 10k⍀  
0
GAIN  
45  
90  
135  
180  
0.1  
1
10  
100  
1k  
10k  
100k  
–75  
–50  
–25  
0
25  
50  
75  
125  
FREQUENCY – Hz  
TEMPERATURE – ؇C  
TPC 6. Open-Loop Gain and Phase Shift vs. Frequency  
TPC 3. Input Bias Current vs. Temperature  
–6–  
REV. C  
OP490  
60  
40  
20  
0
120  
100  
80  
V
=
15V  
S
A
T
A
= 25؇C  
T
= 25؇C  
NEGATIVE SUPPLY  
POSITIVE SUPPLY  
60  
40  
–20  
20  
10  
100  
1k  
10k  
100k  
1
10  
100  
1k  
FREQUENCY – Hz  
LOAD RESISTANCE ⍀  
TPC 7. Closed-Loop Gain vs. Frequency  
TPC 10. Power Supply Rejection vs. Frequency  
6
140  
V+ = 5V, V– = 0V  
= 25؇C  
V
=
15V  
S
A
T
A
T
= 25؇C  
5
4
3
2
1
0
120  
100  
80  
60  
40  
100  
1k  
10k  
100k  
0.1  
1
10  
100  
1k  
LOAD RESISTANCE ⍀  
FREQUENCY – Hz  
TPC 8. Output Voltage Swing vs. Load Resistance  
TPC 11. Common-Mode Rejection vs. Frequency  
16  
1k  
V
T
=
15V  
V
T
=
15  
POSITIVE  
S
A
S
A
= 25؇C  
= 25؇C  
14  
12  
10  
8
NEGATIVE  
100  
6
10  
1
4
2
0
100  
1k  
10k  
100k  
0.1  
1
10  
100  
1k  
FREQUENCY – Hz  
LOAD RESISTANCE ⍀  
TPC 12. Noise Voltage Density vs. Frequency  
TPC 9. Output Voltage Swing vs. Load Resistance  
–7–  
REV. C  
OP490  
0
0
0
0
0
0
0
0
0
100  
V
=
15V  
S
A
V
T
= 15V  
S
A
T
= 25؇C  
= 25؇C  
= 1  
A
V
L
L
R
C
= 10k⍀  
= 500pF  
10  
1
0.1  
0.1  
1
10  
100  
1k  
0
0
0
0
0
0
0
0
0
0
0
FREQUENCY – Hz  
TIME – 1ms/DIV  
TPC 13. Current Noise Density vs. Frequency  
TPC 15. Large-Signal Transient Response  
0
V
= 15V  
S
A
V
L
L
0
0
0
0
0
0
0
0
T
= 25؇C  
= 1  
A
R
C
= 10k⍀  
= 500pF  
0
0
0
0
0
0
0
0
0
0
0
TIME – 100s/DIV  
TPC 14. Small-Signal Transient Response  
–8–  
REV. C  
OP490  
–18V  
APPLICATIONS INFORMATION  
Battery-Powered Applications  
The OP490 can be operated on a minimum supply voltage of  
1.6 V, or with dual supplies of ±0.8 V, and draws only 60 mA of  
supply current. In many battery-powered circuits, the OP490  
can be continuously operated for hundreds of hours before  
requiring battery replacement, reducing equipment downtime,  
and operating costs.  
14  
13  
12  
11  
9
6
8
7
10  
D
C
B
High performance portable equipment and instruments fre-  
quently use lithium cells because of their long shelf-life, light  
weight, and high energy density relative to older primary cells.  
Most lithium cells have a nominal output voltage of 3 V and are  
noted for a flat discharge characteristic. The low supply current  
A
2
3
4
1
5
4
3
2
1
0
GND  
+18V  
Figure 2. Burn-In Circuit  
+15V  
+15V  
1/4  
OP490A  
OP37A  
V2  
1k⍀  
0
250  
500  
750  
1000  
1500  
1750  
HOURS  
100⍀  
10k⍀  
–15V  
Figure 4. Lithium-Sulphur Dioxide Cell Discharge Charac-  
teristic with OP490 and 100 kW Loads  
–15V  
requirement of the OP490, combined with the flat discharge  
characteristic of the lithium cell, indicates that the OP490 can  
be operated over the entire useful life of the cell. Figure 4 shows  
the typical discharge characteristic of a 1 Ah lithium cell power-  
ing an OP490 with each amplifier, in turn, driving full output  
swing into a 100 kW load.  
1/4  
V
IN  
OP490B  
V1  
20V p-p @ 10Hz  
V1  
V2/1000  
Single-Supply Output Voltage Range  
CHANNEL SEPARATION = 20 LOG  
1/4  
In single-supply operation the OP490’s input and output ranges  
include ground. This allows true “zero-in, zero-out” operation.  
The output stage provides an active pull-down to around 0.8 V  
above ground. Below this level, a load resistance of up to 1 MW  
to ground is required to pull the output down to zero.  
OP490C  
In the region from ground to 0.8 V, the OP490 has voltage gain  
equal to the data sheet specification. Output current source  
capability is maintained over the entire voltage range including  
ground.  
1/4  
OP490D  
Input Voltage Protection  
The OP490 uses a PNP input stage with protection resistors in  
series with the inverting and noninverting inputs. The high  
breakdown of the PNP transistors coupled with the protection  
resistors provides a large amount of input protection, allowing  
the inputs to be taken 20 V beyond either supply without dam-  
aging the amplifier.  
Figure 3. Channel Separation Test Circuit  
REV. C  
–9–  
OP490  
Micropower Voltage-Controlled Oscillator  
output of A is a triangle wave with upper and lower levels of  
3.33 V and 1.67 V. The output of B is a square wave with almost  
rail-to-rail swing. With the components shown, frequency of  
operation is given by the equation:  
An OP490 in combination with an inexpensive quad CMOS  
switch comprise the precision VCO of Figure 5. This circuit  
provides triangle and square wave outputs and draws only 75 mA  
from a 5 V supply. A acts as an integrator; S1 switches the  
charging current symmetrically to yield positive and negative  
ramps. The integrator is bounded by B which acts as a Schmitt  
trigger with a precise hysteresis of 1.67 V, set by resistors R5,  
R6, and R7, and associated CMOS switches. The resulting  
fOUT =VCONTROL Volts ¥10 Hz /V  
(
)
but this is easily changed by varying C1. The circuit operates  
well up to a few hundred hertz.  
C1  
75nF  
+5V  
+5V  
R1  
R5  
200k  
2
3
200k⍀  
4
1
6
VCONTROL  
7
SQUARE  
OUT  
1/4  
11  
5
R2  
OP490E  
A
200k⍀  
1/4  
R4  
OP490E  
B
200k⍀  
TRIANGLE  
OUT  
R3  
100k⍀  
+5V  
R8  
200k⍀  
+5V  
IN/OUT  
OUT/IN  
R6  
R7  
VDD  
200k⍀  
200k⍀  
14  
1
2
S1  
S2  
CONT  
CONT  
13  
OUT/IN  
IN/OUT  
CONT  
3
4
12  
11  
IN/OUT  
OUT/IN  
OUT/IN  
S3  
S4  
5
6
7
10  
9
+5V  
CONT  
VSS  
IN/OUT  
8
Figure 5. Micropower Voltage Controlled Oscillator  
–10–  
REV. C  
OP490  
Micropower Single-Supply Quad Voltage-Output 8-Bit DAC  
The circuit of Figure 6 uses the DAC8408 CMOS quad 8-bit  
DAC, and the OP490 to form a single-supply quad voltage-output  
DAC with a supply drain of only 140 mA. The DAC8408 is used  
in voltage switching mode and each DAC has an output resistance  
(ª10 kW) independent of the digital input code. The output  
amplifiers act as buffers to avoid loading the DACs. The 100 kW  
resistors ensure that the OP490 outputs will swing below 0.8 V  
when required.  
+5V  
4
2
1
REFERENCE  
VOLTAGE  
1.5V  
4
I
OUT1A  
V
A
OUT  
DAC A  
1/4  
V
A
2
2
REF  
1/4  
OP490E  
A
R1  
DAC8408  
100k  
11  
I
5
6
OUT2A/2B  
6
5
7
V
B
OUT  
DAC B  
1/4  
V
B
8
REF  
1/4  
I
OUT1B  
OP490E  
B
R2  
DAC8408  
100k⍀  
13  
12  
14  
25  
I
OUT1C  
V
C
OUT  
DAC C  
1/4  
V
C
27  
REF  
1/4  
R3  
OP490E  
C
DAC8408  
100k⍀  
24  
23  
I
OUT2C/2D  
9
8
V
D
OUT  
21  
DAC D  
V
D
21  
10  
REF  
1/4  
1/4  
I
OUT1D  
R4  
OP490E  
D
DAC8408  
100k⍀  
OP490EY  
DAC DATA BUS  
PIN9(LSB) – 16(MSB)  
17  
A/B  
R/W  
DS1  
DS2  
18  
19  
20  
DAC8408ET  
DIGITAL  
CONTROL  
SIGNALS  
DGND  
28  
Figure 6. Micropower Single-Supply Quad Voltage Output 8-Bit DAC  
–11–  
REV. C  
OP490  
R5  
5k  
R2  
R6  
+15V  
4
9k⍀  
5k⍀  
1/4  
R1  
OP490E  
1k⍀  
2
3
9
R3  
R7  
B
50⍀  
50⍀  
1
8
V
IN  
10  
11  
1/4  
OP490E  
C
1/4  
–15V  
OP490E  
6
5
13  
R4  
R8  
B
50⍀  
R
L
50⍀  
7
14  
12  
1/4  
OP490E  
D
Figure 7. High Output Amplifier  
High Output Amplifier  
where n equals the decimal equivalent of the 8-bit digital code  
present at the DAC. If the digital code present at the DAC  
consists of all zeros, the feedback loop will be open causing the  
op amp output to saturate. The 10 MW resistors placed in paral-  
lel with the DAC feedback loop eliminates this problem with a  
very small reduction in gain accuracy. The 2.5 V reference biases  
the amplifiers to the center of the linear region providing maximum  
output swing.  
The amplifier shown in Figure 7 is capable of driving 25 V p-p  
into a 1 kW load. Design of the amplifier is based on a bridge  
configuration. A amplifies the input signal and drives the load  
with the help of B. Amplifier C is a unity-gain inverter which  
drives the load with help from D. Gain of the high output amplifier  
with the component values shown is 10, but can easily be changed  
by varying R1 or R2.  
Single-Supply Micropower Quad Programmable Gain Amplifier  
The combination of quad OP490 and the DAC8408 quad 8-bit  
CMOS DAC, creates a quad programmable-gain amplifier with  
a quiescent supply drain of only 140 mA. The digital code present  
at the DAC, which is easily set by a microprocessor, determines  
the ratio between the fixed DAC feedback resistor and the resis-  
tance of the DAC ladder presents to the op amp feedback loop.  
Gain of each amplifier is:  
VOUT  
VIN  
256  
n
= -  
–12–  
REV. C  
OP490  
+5V  
1
V
DD  
R
A
3
4
FB  
V A  
IN  
V
A
REF  
2
4
C1  
0.1F  
R1  
10M⍀  
I
OUT1A  
2
3
DAC A  
1/4  
1
V
A
OUT  
DAC8408  
1/4  
OP490E  
A
11  
I
5
8
OUT2A/2B  
7
R
B
FB  
V B  
IN  
V
B
REF  
C2  
0.1F  
R2  
DAC B  
1/4  
10M⍀  
I
6
6
5
OUT1B  
DAC8408  
7
V
B
OUT  
1/4  
OP490E  
B
25  
R
C
FB  
V C  
IN  
V
C
27  
25  
REF  
C3  
0.1F  
R3  
10M⍀  
I
9
OUT1C  
DAC C  
1/4  
8
V
C
OUT  
10  
DAC8408  
1/4  
OP490E  
C
I
24  
21  
OUT2C/2D  
22  
R
D
FB  
V D  
IN  
V
D
REF  
C4  
0.1F  
R4  
DAC D  
1/4  
10M⍀  
I
23  
13  
12  
OUT1D  
DAC8408  
14  
V
D
OUT  
1/4  
DAC DATA BUS  
OP490E  
D
PIN9(LSB) – 16(MSB)  
17  
18  
19  
20  
A/B  
R/W  
DS1  
DS2  
OP490EY  
DAC8408ET  
+2.5V  
DIGITAL  
REFERENCE  
VOLTAGE  
CONTROL  
SIGNALS  
DGND  
28  
Figure 8. Single-Supply Micropower Quad Programmable Gain Amplifier  
REV. C  
–13–  
OP490  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
14-Lead Plastic DIP  
(P Suffix)  
14-Lead Hermetic DIP  
(Y Suffix)  
0.005 (0.13) MIN 0.098 (2.49) MAX  
0.795 (20.19)  
0.725 (18.42)  
14  
8
7
0.310 (7.87)  
0.220 (5.59)  
14  
8
7
0.280 (7.11)  
0.240 (6.10)  
PIN 1  
1
1
0.320 (8.13)  
0.290 (7.37)  
0.325 (8.25)  
0.300 (7.62)  
PIN 1  
0.100 (2.54) BSC  
0.785 (19.94) MAX  
0.100 (2.54)  
BSC  
0.060 (1.52)  
0.015 (0.38)  
0.060 (1.52)  
0.015 (0.38)  
0.195 (4.95)  
0.115 (2.93)  
0.210 (5.33)  
0.200 (5.08)  
MAX  
MAX  
0.130  
(3.30)  
MIN  
0.150  
(3.81)  
MIN  
0.160 (4.06)  
0.115 (2.93)  
0.200 (5.08)  
0.125 (3.18)  
0.015 (0.381)  
0.008 (0.204)  
0.015 (0.38)  
SEATING  
SEATING  
0.023 (0.58)  
0.070 (1.78)  
0.030 (0.76)  
0.070 (1.77)  
0.045 (1.15)  
0.022 (0.558)  
0.014 (0.356)  
15  
0
0.008 (0.20)  
PLANE  
PLANE  
0.014 (0.36)  
16-Lead SOIC  
(S Suffix)  
0.4133 (10.50)  
0.3977 (10.00)  
16  
9
0.2992 (7.60)  
0.2914 (7.40)  
0.4193 (10.65)  
0.3937 (10.00)  
1
8
PIN 1  
0.1043 (2.65)  
0.0926 (2.35)  
0.0291 (0.74)  
0.0098 (0.25)  
0.050 (1.27)  
BSC  
؋
 45؇  
8؇  
0؇  
0.0192 (0.49)  
0.0138 (0.35)  
0.0118 (0.30)  
0.0040 (0.10)  
SEATING  
0.0500 (1.27)  
0.0157 (0.40)  
0.0125 (0.32)  
0.0091 (0.23)  
PLANE  
Revision History  
Location  
Page  
Data Sheet changed from REV. B to REV. C.  
Deleted 28-Pin LCC (TC-Suffix) PIN CONNECTION DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Deleted ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Edits to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Edits to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
–14–  
REV. C  
–15–  
–16–  

相关型号:

5962-89670013X

Voltage-Feedback Operational Amplifier
ETC

5962-8967001CA

Low Voltage Micropower Quad Operational Amplifier
ADI

5962-8967001CX

Voltage-Feedback Operational Amplifier
ETC

5962-89671013X

12-Bit Digital-to-Analog Converter
ETC

5962-8967101LA

12-Bit Digital-to-Analog Converter
ETC

5962-8967101LB

12-Bit Digital-to-Analog Converter
ETC

5962-8967101LX

12-Bit Digital-to-Analog Converter
ETC

5962-8967201LA

12-Bit Digital-to-Analog Converter
ETC

5962-8967201LB

12-Bit Digital-to-Analog Converter
ETC

5962-8967201LX

12-Bit Digital-to-Analog Converter
ETC

5962-8967301CA

Operational Amplifier, 1 Func, 25000uV Offset-Max, BIPolar, CDIP14, CERAMIC, DIP-14
WEDC

5962-8967301CX

Voltage-Feedback Operational Amplifier
ETC