5962-9089401MEA [ADI]

Software Programmable Gain Amplifier; 软件可编程增益放大器
5962-9089401MEA
型号: 5962-9089401MEA
厂家: ADI    ADI
描述:

Software Programmable Gain Amplifier
软件可编程增益放大器

仪表放大器 放大器电路
文件: 总14页 (文件大小:447K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Software Programmable  
Gain Amplifier  
a
AD526  
FEATURES  
PIN CONFIGURATION  
Digitally Programmable Binary Gains from 1 to 16  
Two-Chip Cascade Mode Achieves Binary Gain from  
1 to 256  
DIG GND  
NULL  
1
2
3
4
5
6
7
8
16 A1  
15 A0  
Gain Error:  
0.01% Max, Gain = 1, 2, 4 (C Grade)  
0.02% Max, Gain = 8, 16 (C Grade)  
0.5 ppm/؇C Drift Over Temperature  
Fast Settling Time  
10 V Signal Change:  
0.01% in 4.5 s (Gain = 16)  
Gain Change:  
V
14  
CS  
IN  
NULL  
ANALOG GND 2  
ANALOG GND 1  
AD526  
TOP VIEW  
(Not to Scale)  
13  
12  
11  
10  
9
CLK  
A2  
B
–V  
S
+V  
S
V
SENSE  
V
FORCE  
OUT  
OUT  
0.01% in 5.6 s (Gain = 16)  
Low Nonlinearity: ؎0.005% FSR Max (J Grade)  
Excellent DC Accuracy:  
Offset Voltage: 0.5 mV Max (C Grade)  
Offset Voltage Drift: 3 V/؇C (C Grade)  
TTL-Compatible Digital Inputs  
PRODUCT DESCRIPTION  
APPLICATION HIGHLIGHTS  
The AD526 is a single-ended, monolithic software program-  
mable gain amplifier (SPGA) that provides gains of 1, 2, 4, 8  
and 16. It is complete, including amplifier, resistor network  
and TTL-compatible latched inputs, and requires no external  
components.  
1. Dynamic Range Extension for ADC Systems: A single  
AD526 in conjunction with a 12-bit ADC can provide  
96 dB of dynamic range for ADC systems.  
2. Gain Ranging Preamps: The AD526 offers complete digital  
gain control with precise gains in binary steps from 1 to 16.  
Additional gains of 32, 64, 128 and 256 are possible by cas-  
cading two AD526s.  
Low gain error and low nonlinearity make the AD526 ideal for  
precision instrumentation applications requiring programmable  
gain. The small signal bandwidth is 350 kHz at a gain of 16. In  
addition, the AD526 provides excellent dc precision. The FET-  
input stage results in a low bias current of 50 pA. A guaranteed  
maximum input offset voltage of 0.5 mV max (C grade) and low  
gain error (0.01%, G = 1, 2, 4, C grade) are accomplished using  
Analog Devices’ laser trimming technology.  
ORDERING GUIDE  
Temperature Package  
Range  
Package  
Options  
Model  
Descriptions  
To provide flexibility to the system designer, the AD526 can be  
operated in either latched or transparent mode. The force/sense  
configuration preserves accuracy when the output is connected  
to remote or low impedance loads.  
AD526JN  
Commercial  
Industrial  
Industrial  
Industrial  
Military  
16-Lead Plastic DIP N-16  
AD526AD  
AD526BD  
AD526CD  
AD526SD  
AD526SD/883B  
5962-9089401MEA* Military  
16-Lead Cerdip  
16-Lead Cerdip  
16-Lead Cerdip  
16-Lead Cerdip  
16-Lead Cerdip  
16-Lead Cerdip  
D-16  
D-16  
D-16  
D-16  
D-16  
D-16  
The AD526 is offered in one commercial (0°C to +70°C) grade,  
J, and three industrial grades, A, B and C, which are specified  
from –40°C to +85°C. The S grade is specified from –55°C to  
+125°C. The military version is available processed to MIL-  
STD 883B, Rev C. The J grade is supplied in a 16-lead plastic  
DIP, and the other grades are offered in a 16-lead hermetic  
side-brazed ceramic DIP.  
Military  
*Refer to official DESC drawing for tested specifications.  
REV. D  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 1999  
(@ V = ؎15 V, R = 2 kand T = +25؇C unless otherwise noted)  
AD526–SPECIFICATIONS  
S
L
A
AD526J  
Typ  
AD526A  
Typ  
AD526B/S  
Typ  
AD526C  
Typ  
Model  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Units  
GAIN  
Gain Range  
(Digitally Programmable)  
Gain Error  
Gain = 1  
Gain = 2  
Gain = 4  
1, 2, 4, 8, 16  
1, 2, 4, 8, 16  
0.02  
1, 2, 4, 8, 16  
0.01  
1, 2, 4, 8, 16  
0.05  
0.05  
0.10  
0.15  
0.15  
0.01  
0.01  
0.01  
0.02  
0.02  
%
%
%
%
%
0.03  
0.03  
0.07  
0.07  
0.02  
0.02  
0.04  
0.04  
Gain = 8  
Gain = 16  
Gain Error Drift  
Over Temperature  
G = 1  
0.5  
0.5  
0.5  
0.5  
1.0  
2.0  
2.0  
3.0  
5.0  
5.0  
0.5  
0.5  
0.5  
0.5  
1.0  
2.0  
2.0  
3.0  
5.0  
5.0  
0.5  
0.5  
0.5  
0.5  
1.0  
2.0  
2.0  
3.0  
5.0  
5.0  
0.5  
0.5  
0.5  
0.5  
1.0  
2.0  
2.0  
3.0  
5.0  
5.0  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
G = 2  
G = 4  
G = 8  
G = 16  
Gain Error (TMIN to TMAX  
Gain = 1  
Gain = 2  
Gain = 4  
Gain = 8  
Gain = 16  
Nonlinearity  
Gain = 1  
Gain = 2  
Gain = 4  
)
0.06  
0.06  
0.12  
0.17  
0.17  
0.03  
0.04  
0.04  
0.08  
0.08  
0.02  
0.03  
0.03  
0.05  
0.05  
0.015  
0.015  
0.015  
0.03  
%
%
%
%
%
0.03  
0.005  
0.001  
0.001  
0.001  
0.001  
0.005  
0.001  
0.001  
0.001  
0.001  
0.005  
0.001  
0.001  
0.001  
0.001  
0.0035 % FSR  
0.001 % FSR  
0.001 % FSR  
0.001 % FSR  
0.001 % FSR  
Gain = 8  
Gain = 16  
Nonlinearity (TMIN to TMAX  
Gain = 1  
Gain = 2  
Gain = 4  
Gain = 8  
)
0.01  
0.01  
0.01  
0.007 % FSR  
0.001 % FSR  
0.001 % FSR  
0.001 % FSR  
0.001 % FSR  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
Gain = 16  
VOLTAGE OFFSET, ALL GAINS  
Input Offset Voltage  
Input Offset Voltage Drift Over  
Temperature  
Input Offset Voltage  
TMIN to TMAX  
0.4  
5
1.5  
20  
0.25  
3
0.7  
10  
0.25  
3
0.5  
10  
0.25  
3
0.5  
10  
mV  
µV/°C  
mV  
2.0  
1.0  
0.8  
0.8  
Input Offset Voltage vs. Supply  
(VS ± 10%)  
80  
80  
84  
90  
dB  
INPUT BIAS CURRENT  
Over Input Voltage Range ± 10 V  
50  
150  
50  
150  
50  
150  
50  
150  
pA  
ANALOG INPUT  
CHARACTERISTICS  
Voltage Range  
(Linear Operation)  
Capacitance  
؎10  
±12  
5
؎10  
±12  
5
؎10  
±12  
5
؎10  
±12  
5
V
pF  
RATED OUTPUT  
Voltage  
؎10  
±12  
±10  
30  
؎10  
؎5  
15  
±12  
±10  
30  
؎10  
؎5  
15  
±12  
±10  
30  
؎10  
؎5  
15  
±12  
±10  
30  
V
Current (VOUT = ±10 V)  
Short-Circuit Current  
DC Output Resistance  
Load Capacitance  
(For Stable Operation)  
mA  
mA  
15  
0.002  
0.002  
0.002  
0.002  
700  
700  
700  
700  
pF  
–2–  
REV. D  
AD526  
AD526J  
Typ  
AD526A  
Typ  
AD526B/S  
Typ  
AD526C  
Typ Max  
Model  
Min  
Max  
Min  
Max Min  
Max  
Min  
Units  
NOISE, ALL GAINS  
Voltage Noise, RTI  
0.1 Hz to 10 Hz  
Voltage Noise Density, RTI  
f = 10 Hz  
3
3
3
3
µV p-p  
70  
60  
30  
25  
70  
60  
30  
25  
70  
60  
30  
25  
70  
60  
30  
35  
nVHz  
nVHz  
nVHz  
nVHz  
f = 100 Hz  
f = 1 kHz  
f = 10 kHz  
DYNAMIC RESPONSE  
–3 dB Bandwidth (Small Signal)  
G = 1  
G = 2  
G = 4  
G = 8  
4.0  
2.0  
1.5  
0.65  
0.35  
4.0  
2.0  
1.5  
0.65  
0.35  
4.0  
2.0  
1.5  
0.65  
0.35  
4.0  
2.0  
1.5  
0.65  
0.35  
MHz  
MHz  
MHz  
MHz  
MHz  
G = 16  
Signal Settling Time to 0.01%  
(VOUT = ±10 V)  
G = 1  
2.1  
2.5  
2.7  
3.6  
4.1  
4
5
5
7
7
2.1  
2.5  
2.7  
3.6  
4.1  
4
5
5
7
7
2.1  
2.5  
2.7  
3.6  
4.1  
4
5
5
7
7
2.1  
2.5  
2.7  
3.6  
4.1  
4
5
5
7
7
µs  
µs  
µs  
µs  
µs  
G = 2  
G = 4  
G = 8  
G = 16  
Full Power Bandwidth  
G = 1, 2, 4  
G = 8, 16  
Slew Rate  
G = 1, 2, 4  
G = 8, 16  
0.10  
0.35  
0.10  
0.35  
0.10  
0.35  
0.10  
0.35  
MHz  
MHz  
4
18  
6
24  
4
18  
6
24  
4
18  
6
24  
4
18  
6
24  
V/µs  
V/µs  
DIGITAL INPUTS  
(TMIN to TMAX  
)
Input Current (VH = 5 V)  
Logic “1”  
60  
2
100  
140  
6
60  
2
100  
140  
6
60  
2
100  
140  
6
60  
2
100 140  
µA  
V
6
Logic “0”  
0
0.8  
0
0.8  
0
0.8  
0
0.8  
V
TIMING1  
(VL = 0.2 V, VH = 3.7 V)  
A0, A1, A2  
TC  
TS  
TH  
B
50  
30  
30  
50  
30  
30  
50  
30  
30  
50  
30  
30  
ns  
ns  
ns  
TC  
TS  
TH  
50  
40  
10  
50  
40  
10  
50  
40  
10  
50  
40  
30  
ns  
ns  
ns  
TEMPERATURE RANGE  
Specified Performance  
Storage  
0
–65  
+70  
+125  
–40  
–65  
+85  
+150 –65  
–40/–55  
+85/+125 –40  
+85  
+150  
°C  
°C  
+150  
–65  
POWER SUPPLY  
Operating Range  
Positive Supply Current  
Negative Supply Current  
؎4.5  
؎16.5 ؎4.5  
14  
13  
؎16.5 ؎4.5  
14  
13  
؎16.5  
14  
13  
؎4.5  
؎16.5  
14  
13  
V
mA  
mA  
10  
10  
10  
10  
10  
10  
10  
10  
PACKAGE OPTIONS  
Plastic (N-16)  
AD526JN  
Ceramic DIP (D-16)  
AD526AD  
AD526BD AD526SD  
AD526SD/883B  
AD526CD  
NOTES  
1Refer to Figure 25 for definitions. FSR = Full Scale Range = 20 V. RTI = Referred to Input.  
Specifications subject to change without notice.  
Specifications shown in boldface are tested on all production units at final electrical test. All min and max specifications are guaranteed, although only those shown in  
boldface are tested on all production units.  
–3–  
REV. D  
AD526–Typical Performance Characteristics  
20  
15  
10  
5
20  
15  
10  
5
30  
+25؇C  
20  
R
= 2k⍀  
L
@ V = ؎15V  
V
= 0  
S
IN  
10  
0
0
0
0
5
10  
15  
20  
0
5
10  
15  
20  
100  
1k  
LOAD RESISTANCE – ⍀  
10k  
SUPPLY VOLTAGE – ؎V  
SUPPLY VOLTAGE – ؎V  
Figure 3. Input Bias Current vs.  
Supply Voltage  
Figure 1. Output Voltage Swing vs.  
Supply Voltage, G = 16  
Figure 2. Output Voltage Swing vs.  
Load Resistance  
75  
20  
10  
100nA  
10nA  
1nA  
16  
8
V
= ؎15V  
S
50  
4
2
1
100pA  
10pA  
1pA  
25  
0
1
–60  
–20  
20  
60  
100  
140  
–10  
–5  
0
5
10  
10  
100  
1k  
10k 100k  
1M  
10M  
INPUT VOLTAGE – V  
TEMPERATURE – ؇C  
FREQUENCY – Hz  
Figure 6. Gain vs. Frequency  
Figure 4. Input Bias Current vs.  
Temperature  
Figure 5. Input Bias Current vs. Input  
Voltage  
1.0002  
25  
100  
؎15V WITH 1V p-p  
SINE WAVE  
80  
20  
15  
10  
5
GAIN = 8, 16  
1.0001  
1.0000  
+SUPPLY  
60  
GAIN = 1, 2, 4  
40  
–SUPPLY  
0.9999  
0.9998  
20  
10  
0
1k  
–60  
–20  
20  
60  
100  
140  
1
10  
100  
1k  
10k 100k  
1M  
10k  
100k  
1M  
10M  
TEMPERATURE – ؇C  
FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 9. Normalized Gain vs.  
Temperature, Gain = 1  
Figure 7. Large Signal Frequency  
Response  
Figure 8. PSRR vs. Frequency  
–4–  
REV. D  
AD526  
0.006  
0.004  
1000  
100  
10  
0.002  
0.000  
–0.002  
–0.004  
–60  
–20  
20  
60  
100  
140  
1k  
100  
FREQUENCY – Hz  
10  
10k  
100k  
TEMPERATURE – ؇C  
Figure 11. Nonlinearity vs.  
Temperature, Gain = 1  
Figure 10. Noise Spectral Density  
Figure 12. Wideband Output Noise,  
G = 16 (Amplified by 10)  
Figure 14. Small Signal Pulse  
Response, G = 1  
Figure 13. Large Signal Pulse  
Response and Settling Time,*  
G = 1  
Figure 15. Large Signal Pulse  
Response and Settling Time,*  
G = 2  
Figure 16. Small Signal Pulse  
Response, G = 2  
Figure 17. Large Signal Pulse  
Response and Settling Time,*  
G = 4  
Figure 18. Small Signal Pulse  
Response, G = 4  
*For Settling Time Traces, 0.01% = 1/2 Vertical Division  
–5–  
REV. D  
AD526  
Figure 19. Large Signal Pulse  
Response and Settling Time,* G = 8  
Figure 20. Small Signal Pulse  
Response, G = 8  
Figure 21. Large Signal Pulse  
Response and Settling Time,* G = 16  
–60  
10  
5
–70  
–80  
–90  
0
–5  
–100  
–10  
10  
10  
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 22. Small Signal Pulse  
Response, Gain = 16  
Figure 23. Total Harmonic Distortion  
vs. Frequency Gain = 16  
Figure 24. Phase Distortion vs.  
Frequency, Gain = 16  
100  
G = 2, 8  
G = 4, 16  
G = 1  
10  
1
10k  
100k  
1M  
10M  
FREQUENCY – Hz  
Figure 25. Output Impedance vs.  
Frequency  
Figure 26. Gain Change Settling  
Time,** Gain Change: 1 to 2  
Figure 27. Gain Change Settling  
Time,** Gain Change 1 to 4  
*For Settling Time Traces, 0.01% = 1/2 Vertical Division  
**Scope Traces are: Top: Output Transition; Middle: Output Settling; Bottom: Digital Input.  
REV. D  
–6–  
AD526  
Figure 28. Gain Change Settling  
Time,* Gain Change 1 to 8  
Figure 29. Gain Change Settling  
Time,* Gain Change 1 to 16  
+15V –15V  
+15V –15V  
10F  
10F  
+
+
10F  
10F  
TEKTRONIX  
7000 SERIES  
SCOPE  
+
+
7A13  
PREAMP  
5MHz BW  
AD526  
G = 16  
OP37  
900⍀  
G = 10  
V
= 160 
؋
 e  
p-p  
100⍀  
o
10F  
+
+5V  
SHIELD  
NOTE: COAX CABLE 1 FT. OR LESS  
Figure 30. Wideband Noise Test Circuit  
+15V –15V  
10F 10F  
+
+
DATA  
DYNAMICS  
5109  
+15V –15V  
(OR EQUIVALENT  
FLAT-TOP PULSE  
GENERATOR)  
10F  
10F  
+
5k⍀  
+
AD526  
TEKTRONIX  
1pF  
7000 SERIES  
SCOPE  
V
ERROR  
2k⍀  
POT.  
+
7A13  
PREAMP  
5MHz BW  
V
؋
 5  
ERROR  
AD711  
5k⍀  
AD3554  
1pF  
5pF  
+
R
G
5k⍀  
IN  
5.6k⍀  
IN6263  
1
2
5.6k⍀  
2.8k⍀  
1.4k⍀  
715⍀  
348⍀  
R
2
2
10F  
10F  
IN  
T
=
TMEAS – T  
4
SET  
X
+
+
IN6263  
8
16  
5k⍀  
1.25k⍀  
G
T
X
AD3554  
50⍀  
–15V +15V  
+
1
2
1.2s  
1.2s  
1.2s  
1.4s  
1.8s  
4
10F  
+
10F  
+
8
16  
–15V +15V  
Figure 31. Settling Time Test Circuit  
*Scope Traces are:  
Top: Output Transition  
Middle: Output Settling  
Bottom: Digital Input  
–7–  
REV. D  
AD526  
THEORY OF OPERATION  
TRANSPARENT MODE OF OPERATION  
The AD526 is a complete software programmable gain amplifier  
(SPGA) implemented monolithically with a drift-trimmed  
BiFET amplifier, a laser wafer trimmed resistor network, JFET  
analog switches and TTL compatible gain code latches.  
In the transparent mode of operation, the AD526 will respond  
directly to level changes at the gain code inputs (A0, A1, A2) if  
B is tied high and both CS and CLK are allowed to float low.  
After the gain codes are changed, the AD526’s output voltage  
typically requires 5.5 µs to settle to within 0.01% of the final  
value. Figures 26 to 29 show the performance of the AD526 for  
positive gain code changes.  
A particular gain is selected by applying the appropriate gain  
code (see Table I) to the control logic. The control logic turns  
on the JFET switch that connects the correct tap on the gain  
network to the inverting input of the amplifier; all unselected  
JFET gain switches are off (open). The “on” resistance of the  
gain switches causes negligible gain error since only the  
amplifier’s input bias current, which is less than 150 pA, actu-  
ally flows through these switches.  
A2  
A1  
A0  
+V  
S
0.1F  
+5V  
The AD526 is capable of storing the gain code, (latched mode),  
B, A0, A1, A2, under the direction of control inputs CLK and  
CS. Alternatively, the AD526 can respond directly to gain code  
changes if the control inputs are tied low (transparent mode).  
OUT  
FORCE  
9
16  
15  
14  
13  
12  
11  
B
10  
A1 A0  
CS CLK A2  
LOGIC AND LATCHES  
For gains of 8 and 16, a fraction of the frequency compensation  
capacitance (C1 in Figure 32) is automatically switched out of  
the circuit. This increases the amplifier’s bandwidth and im-  
proves its signal settling time and slew rate.  
16  
8
4
2
1
V
OUT  
GAIN NETWORK  
+
AD526  
1
2
3
4
5
6
7
8
OUT  
SENSE  
AMPLIFIER  
+V  
S
0.1F  
V
C1  
C2  
IN  
–V  
S
V
IN  
OUT  
FORCE  
Figure 33. Transparent Mode  
LATCHED MODE OF OPERATION  
N1  
N2  
The latched mode of operation is shown in Figure 34. When  
either CS or CLK go to a Logic “1,” the gain code (A0, A1, A2,  
B) signals are latched into the registers and held until both CS  
and CLK return to “0.” Unused CS or CLK inputs should be tied  
to ground . The CS and CLK inputs are functionally and electri-  
cally equivalent.  
–V  
OUT  
S
SENSE  
A0  
A1  
A2  
B
C
O
N
T
R
O
L
14k⍀  
L
G = 8  
A
T
3.4k⍀  
RESISTOR  
NETWORK  
C
H
E
S
TIMING SIGNAL  
G = 2  
A2  
A1  
L
O
G
I
1k⍀  
CLK  
CS  
A0  
G = 16  
+V  
S
C
1.7k⍀  
0.1F  
+5V  
G = 4  
DIGITAL  
GND  
OUT  
FORCE  
9
1k⍀  
1.7k⍀  
16  
15  
14  
13  
12  
11  
B
10  
ANALOG  
GND2  
ANALOG  
GND1  
A1 A0  
CS CLK A2  
LOGIC AND LATCHES  
Figure 32. Simplified Schematic of the AD526  
16  
8
4
2
1
V
OUT  
GAIN NETWORK  
+
AD526  
1
2
3
4
5
6
7
8
OUT  
SENSE  
0.1F  
V
IN  
–V  
S
Figure 34. Latched Mode  
REV. D  
–8–  
AD526  
TIMING AND CONTROL  
Table I. Logic Input Truth Table  
DIGITAL FEEDTHROUGH  
With either CS or CLK or both held high, the AD526 gain state  
will remain constant regardless of the transitions at the A0, A1,  
A2 or B inputs. However, high speed logic transitions will un-  
avoidably feed through to the analog circuitry within the AD526  
causing spikes to occur at the signal output.  
Gain Code  
Control  
Condition  
Gain  
A2 A1 A0 B CLK (CS = 0)  
Condition  
X
0
0
0
0
1
X
X
0
0
0
0
1
X
0
0
1
1
X
X
X
0
0
1
X
0
1
0
1
X
X
X
0
1
0
X
1
1
1
1
1
0
0
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
1
1
Previous State Latched  
This feedthrough effect can be completely eliminated by operat-  
ing the AD526 in the transparent mode and latching the gain  
code in an external bank of latches (Figure 36).  
1
2
4
8
16  
1
Transparent  
Transparent  
Transparent  
Transparent  
Transparent  
Transparent  
Latched  
To operate the AD526 using serial inputs, the configuration  
shown in Figure 36 can be used with the 74LS174 replaced by a  
serial-in/parallel-out latch, such as the 54LS594.  
1
A1  
A0  
A2  
B
+5V  
1
Latched  
2
4
Latched  
Latched  
1F  
TIMING  
SIGNAL  
74LS174  
1
X
1
X
8
Latched  
16  
Latched  
+V  
S
NOTE: X = Don’t Care.  
0.1F  
The specifications on page 3, in combination with Figure 35,  
give the timing requirements for loading new gain codes.  
OUT  
FORCE  
9
16  
15  
14  
13  
12  
11  
B
10  
A1 A0  
CS CLK A2  
LOGIC AND LATCHES  
GAIN CODE  
VALID DATA  
INPUTS  
16  
8
4
2
1
T
C
V
OUT  
GAIN NETWORK  
CLK OR CS  
+
T
T
H
S
AD526  
T
T
T
= MINIMUM CLOCK CYCLE NOTE: THRESHOLD LEVEL FOR  
C
S
H
1
2
3
4
5
6
7
8
OUT  
SENSE  
GAIN CODE, CS, AND CLK IS 1.4V.  
= DATA SETUP TIME  
= DATA HOLD TIME  
0.1F  
V
IN  
Figure 35. AD526 Timing  
–V  
S
Figure 36. Using an External Latch to Minimize Digital  
Feedthrough  
–9–  
REV. D  
AD526  
GROUNDING AND BYPASSING  
Utilizing the force and sense outputs of the AD526, as shown in  
Figure 38, avoids signal drops along etch runs to low impedance  
loads.  
Proper signal and grounding techniques must be applied in  
board layout so that specified performance levels of precision  
data acquisition components, such as the AD526, are not  
degraded.  
Table II. Logic Table for Figure 38  
VOUT/VIN  
A2  
A1  
A0  
As is shown in Figure 37, logic and signal grounds should be  
separate. By connecting the signal source ground locally to the  
AD526 analog ground Pins 5 and 6, gain accuracy of the  
AD526 is maintained. This ground connection should not be  
corrupted by currents associated with other elements within the  
system.  
1
2
4
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
8
16  
32  
64  
128  
+15V  
–15V  
0.1F  
0.1F  
AD574  
12-BIT  
V
IN  
A/D  
0.1F 0.1F  
–V  
CONVERTER  
ANALOG ANALOG +V  
GROUND 1 GROUND 2  
S
S
V
OUT  
FORCE  
AMP  
AD526  
V
OUT  
SENSE  
GAIN  
NETWORK  
DIGITAL  
GROUND  
1F  
LATCHES AND LOGIC  
+5V  
Figure 37. Grounding and Bypassing  
CLK  
A2  
A1  
A0  
+V  
+V  
S
S
0.1F  
0.1F  
+5V  
+5V  
OUT  
FORCE  
OUT  
FORCE  
9
16  
15  
14  
13  
12  
11  
B
10  
9
16  
15  
14  
13  
12  
11  
B
10  
A1 A0  
CS CLK A2  
A1 A0  
CS CLK A2  
LOGIC AND LATCHES  
LOGIC AND LATCHES  
16  
8
4
2
1
16  
8
4
2
1
V
OUT  
GAIN NETWORK  
GAIN NETWORK  
+
+
AD526  
AD526  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
OUT  
SENSE  
OUT  
SENSE  
0.1F  
V
IN  
0.1F  
–V  
S
–V  
S
Figure 38. Cascaded Operation  
REV. D  
–10–  
AD526  
OFFSET NULLING  
CASCADED OPERATION  
Input voltage offset nulling of the AD526 is best accomplished  
at a gain of 16, since the referred-to-input (RTI) offset is ampli-  
fied the most at this gain and therefore is most easily trimmed.  
The resulting trimmed value of RTI voltage offset typically  
varies less than 3 µV across all gain ranges.  
A cascade of two AD526s can be used to achieve binarily  
weighted gains from 1 to 256. If gains from 1 to 128 are needed,  
no additional components are required. This is accomplished by  
using the B pin as shown in Figure 38. When the B pin is low,  
the AD526 is held in a unity gain stage independent of the other  
gain code values.  
Note that the low input current of the AD526 minimizes RTI  
voltage offsets due to source resistance.  
OFFSET NULLING WITH A D/A CONVERTER  
Figure 41 shows the AD526 with offset nulling accomplished  
with an 8-bit D/A converter (AD7524) circuit instead of the  
potentiometer shown in Figure 39. The calibration procedure is  
the same as before except that instead of adjusting the potenti-  
ometer, the D/A converter corrects for the offset error. This  
calibration circuit has a number of benefits in addition to elimi-  
nating the trimpot. The most significant benefit is that calibra-  
tion can be under the control of a microprocessor and therefore  
can be implemented as part of an autocalibration scheme. Sec-  
ondly, dip switches or RAM can be used to hold the 8-bit word  
after its value has been determined. In Figure 42 the offset null  
sensitivity, at a gain of 16, is 80 µV per LSB of adjustment,  
which guarantees dc accuracy to the 16-bit performance level.  
+V  
S
0.1F  
OUT  
FORCE  
9
16  
15  
14  
13  
12  
11  
B
10  
A1 A0  
CS CLK A2  
LOGIC AND LATCHES  
16  
8
4
2
1
V
OUT  
GAIN NETWORK  
+
AD526  
1
2
3
4
5
6
7
8
OUT  
SENSE  
V
IN  
+V  
S
0.1F  
20k⍀  
0.1F  
–V  
S
Figure 39. Offset Voltage Null Circuit  
OUTPUT CURRENT BOOSTER  
OUT  
FORCE  
9
16  
15  
14  
13  
12  
11  
B
10  
A1  
A0  
CS CLK A2  
LOGIC AND LATCHES  
The AD526 is rated for a full ±10 V output voltage swing into  
2 k. In some applications, the need exists to drive more cur-  
rent into heavier loads. As shown in Figure 40, a high current  
booster may be connected “inside the loop” of the SPGA to  
provide the required current boost without significantly degrad-  
ing overall performance. Nonlinearities, offset and gain inaccu-  
racies of the buffer are minimized by the loop gain of the  
AD526 output amplifier.  
16  
8
4
2
1
V
OUT  
GAIN NETWORK  
+
AD526  
1
2
3
4
5
6
7
8
OUT  
SENSE  
V
IN  
+V  
S
0.1F  
AD581 OR  
AD587  
3.3M⍀  
7.5M⍀  
–V  
S
+10V  
+V  
S
V
REF  
ALL BYPASS CAPACITORS ARE 0.1F  
0.1F  
+V  
S
1k⍀  
0.01F  
MSB  
10F  
LSB  
CS  
OUT 1  
OUT 2  
OUT  
FORCE  
9
AD7524  
0.01F  
16  
15  
14  
13  
12  
11  
B
10  
AD548  
+
WR  
A1 A0  
CS CLK A2  
0.01F  
LOGIC AND LATCHES  
16  
8
4
2
1
HOS-100  
–V  
GND  
S
GAIN NETWORK  
Figure 41. Offset Nulling Using a DAC  
0.01F  
+
AD526  
1
2
3
4
5
6
7
8
OUT  
SENSE  
0.1F  
V
IN  
R
L
–V  
S
Figure 40. Current Output Boosting  
–11–  
REV. D  
AD526  
FLOATING-POINT CONVERSION  
the input falls within, relative to full scale. Once the AD526 has  
settled to the appropriate level, then the second sample/hold  
amplifier can be put into hold which holds the amplified signal  
while the AD7572 perform its conversion routine. The acquisi-  
tion time for the AD585 is 3 µs, and the conversion time for the  
AD7572 is 5 µs for a total of 8 µs, or 125 kHz. This performance  
relies on the fast settling characteristics of the AD526 after the  
flash autoranging (comparator) circuit quantizes the input sig-  
nal. A 16-bit register holds the 3-bit output from the flash autor-  
anger and the 12-bit output of the AD7572.  
High resolution converters are used in systems to obtain high  
accuracy, improve system resolution or increase dynamic range.  
There are a number of high resolution converters available with  
throughput rates of 66.6 kHz that can be purchased as a single  
component solution; however in order to achieve higher through-  
put rates, alternative conversion techniques must be employed.  
A floating point A/D converter can improve both throughput  
rate and dynamic range of a system.  
In a floating point A/D converter (Figure 42), the output data is  
presented as a 16-bit word, the lower 12 bits from the A/D  
converter form the mantissa and the upper 4 bits from the digi-  
tal signal used to set the gain form the exponent. The AD526  
programmable gain amplifier in conjunction with the compara-  
tor circuit scales the input signal to a range between half scale  
and full scale for the maximum usable resolution.  
The A/D converter in Figure 42 has a dynamic range of 96 dB.  
The dynamic range of a converter is the ratio of the full-scale  
input range to the LSB value. With a floating-point A/D con-  
verter the smallest value LSB corresponds to the LSB of the  
monolithic converter divided by the maximum gain of the PGA.  
The floating point A/D converter has a full-scale range of 5 V, a  
maximum gain of 16 V/V from the AD526 and a 12-bit A/D  
converter; this produces:  
LSB = ([FSR/2N]/Gain) = ([5 V/4096]/16) = 76 µV. The  
dynamic range in dBs is based on the log of the ratio of the  
full-scale input range to the LSB; dynamic range = 20 log  
(5 V/76 µV) = 96 dB.  
The A/D converter diagrammed in Figure 42 consists of a pair  
of AD585 sample/hold amplifiers, a flash converter, a five-range  
programmable gain amplifier (the AD526) and a fast 12-bit A/D  
converter (the AD7572). The floating-point A/D converter  
achieves its high throughput rate of 125 kHz by overlapping the  
acquisition time of the first sample/hold amplifier and the set-  
tling time of the AD526 with the conversion time of the A/D  
converter. The first sample/hold amplifier holds the signal for  
the flash autoranger, which determines which binary quantum  
–15V +15V  
+
10F  
10F  
+5V  
+5V  
–15V +15V  
+
5
6
+
1/6  
+5V  
10F  
10F  
+
BUSY  
30pF  
D12  
D11  
D10  
D9  
50k⍀  
MSB  
+5V  
74-  
123  
1/2  
CLOCK  
125MHz  
V
IN  
74–  
LS174  
1
3
1/6  
1/6  
1s  
–15V +15V  
S/H  
AD585  
2
4
68pF  
2.5MHz  
68pF  
D8  
+
AD7572  
10F  
10F  
–15V +15V  
D7  
+
+
10F  
10F  
10k⍀  
+
F
AD526S  
D6  
D5  
D4  
D3  
D2  
D1  
47F  
V
IN  
+5V  
B
74–  
LS174  
S/H  
AD585  
LSB  
V
A0 A1 A2  
IN  
10k⍀  
–15V +15V  
+5V  
+
A0  
A1  
A2  
10F  
+
10F  
E1  
E2  
E3  
10k⍀  
74ALS86  
1
74–  
LS174  
+5V  
3
12  
13  
REF  
11  
2
1/4  
1/4  
1/4  
10k⍀  
5k⍀  
10k⍀  
10k⍀  
10k⍀  
4
5
AD588  
6
8
NOTE: ALL BYPASS CAPACITORS ARE 0.1F  
1/4  
1/4  
2.5k⍀  
1
2
3
9
10  
1.25k⍀  
1.25k⍀  
1F  
11  
10  
1/6  
LM339A  
Figure 42. Floating-Point A/D Converter  
–12–  
REV. D  
AD526  
HIGH ACCURACY A/D CONVERTERS  
hunting during the calibration process, the reference offset and  
gain codes should be different from the endpoint codes. A cali-  
bration cycle consists of selecting whether gain or offset is to be  
calibrated then selecting the appropriate multiplexer channel to  
apply the reference voltage to the signal channel. Once the op-  
eration has been initiated, the counter, a 74ALS869, drives the  
D/A converter in a linear fashion providing a small correction  
voltage to either the gain or offset trim point of the AD574. The  
output of the A/D converter is then compared to the value pre-  
set in the 74ALS528 to determine a match. Once a match is  
detected, the 74ALS528 produces a low going pulse which stops  
the counter. The code at the D/A converter is latched until the  
next calibration cycle. Calibration cycles are under the control  
of the microprocessor in this application and should be imple-  
mented only during periods of converter inactivity.  
Very high accuracy and high resolution floating-point A/D con-  
verters can be achieved by the incorporation of offset and gain  
calibration routines. There are two techniques commonly used  
for calibration, a hardware circuit as shown in Figure 43 and/or  
a software routine. In this application the microprocessor is  
functioning as the autoranging circuit, requiring software over-  
head; therefore, a hardware calibration technique was applied  
which reduces the software burden. The software is used to set  
the gain of the AD526. In operation the signal is converted, and  
if the MSB of the AD574 is not equal to a Logical 1, the gain is  
increased by binary steps, up to the maximum gain. This maxi-  
mizes the full-scale range of the conversion process and insures  
a wide dynamic range.  
The calibration technique uses two point correction, offset and  
gain. The hardware is simplified by the use of programmable  
magnitude comparators, the 74ALS528s, which can be “burned”  
for a particular code. In order to prevent under or over range  
+5V  
+
+15V  
–15V  
10F  
200pF  
10F  
+
–15V +15V  
MSB  
NOISE  
REDUCTION  
1F  
AD585  
7404  
2
1
+15V  
DATA  
BUS  
AD574  
+5V  
F
S
A3  
A4  
R8  
–15V +15V  
10k⍀  
AD588  
R4  
A1  
AD7501  
AD526  
V
V
V
V
IN1  
IN2  
IN3  
IN4  
R1  
V
REF  
OP27  
1k⍀  
–5V  
R2  
R5  
WR  
LSB  
+V  
+15V  
S
50k⍀  
0.1F  
0.1F  
R6  
R3  
A2  
SYS  
GND  
–15V  
–V  
S
DE-  
CODED  
ADD  
+5V  
DECODED  
ADDRESS  
DECODED  
ADDRESS  
–15V  
WR  
WR  
ADDRESS BUS  
12  
12  
+5V  
CALIBRATION  
PRESET  
VALUE  
R5  
20k⍀  
+5V  
PIN 15  
AD588  
+5V  
MSB  
2
R6  
5k⍀  
PIN 28  
AD574  
V
REF  
20k⍀  
74ALS  
2
528  
A2  
R7  
1
GAIN  
R2  
10k⍀  
RFB A  
R11  
5k⍀  
P = Q  
AD7628  
AD712  
MSB  
1
2
2
3
C1  
7400  
INPUT  
BUFFER  
7475  
1/2  
OUT A  
A1  
LATCH DAC A  
GAIN  
AGND  
74ALS  
869  
AD712  
ADG221  
1
R4  
RFB B  
7475  
LSB  
2
WR  
C2  
CONTROL  
LOGIC  
A3  
OUT B  
4
5
LATCH DAC B  
LSB  
6
MSB  
74ALS  
R8  
20k⍀  
7400  
7475  
1/2  
AD712  
2
R9  
AGND  
10k⍀  
528  
WR  
A/B  
+5V  
A2  
2
R10  
20k⍀  
V
REF  
P = Q  
OFFSET  
AD712  
R12  
5k⍀  
PIN 15  
AD588  
OFFSET  
+5V  
AGND  
NOTE: ALL BYPASS CAPACITORS ARE 0.1F  
LSB  
+5V  
Figure 43. High Accuracy A/D Converter  
–13–  
REV. D  
AD526  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
16-Lead Plastic  
DIP Package (N-16)  
16-Lead Sided-Brazed  
Ceramic Package (D-16)  
0.87 (22.1) MAX  
0.430  
(10.922)  
16  
9
8
0.25  
0.31  
16  
9
(6.25)  
(7.87)  
0.040R  
0.310 ؎0.01  
(7.874 ؎0.254)  
1
0.290 ؎0.010  
(7.37 ؎0.254)  
0.265  
(6.73)  
0.3 (7.62)  
PIN 1  
0.035  
(0.89)  
1
8
0.18  
(4.57)  
MAX  
PIN 1  
0.800 ؎0.010  
(20.32 ؎0.254)  
0.18  
(4.57)  
0.125 (3.18)  
MIN  
0.011  
(0.28)  
0.300  
SEATING  
PLANE  
(7.62)  
REF  
0.035 ؎0.01  
(0.889 ؎0.254)  
0.018  
(0.46)  
0.100  
(2.54)  
0.033  
(0.84)  
0.095 (2.41)  
0.085 (2.159)  
0.125  
(3.175)  
MIN  
0.180 ؎0.03  
(4.57 ؎0.762)  
0.010 ؎0.002  
(0.254 ؎0.05)  
0.100  
(2.54)  
BSC  
0.047 ؎0.007  
(1.19 ؎0.18)  
SEATING  
PLANE  
+0.003  
0.017  
–0.002  
+0.076  
(0.43  
)
–0.05  
0.700 (17.78) BSC  
REV. D  
–14–  

相关型号:

5962-9089401MEX

Instrumentation Amp, Digitally-Programmable
ETC

5962-9089501BPA

IC OP-AMP, 10 uV OFFSET-MAX, CDIP8, CERAMIC, DIP-8, Operational Amplifier
WEDC

5962-9089501BPX

IC OP-AMP, 10 uV OFFSET-MAX, CDIP8, CERAMIC, DIP-8, Operational Amplifier
WEDC

5962-9089501M2A

Advanced LinCMOS PRECISION CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS
TI

5962-9089501MCA

Advanced LinCMOS PRECISION CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS
TI

5962-9089501MGA

Chopper-Stabilized Operational Amplifier
ETC

5962-9089501MPA

Advanced LinCMOS PRECISION CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS
TI

5962-9089502BPA

IC OP-AMP, 50 uV OFFSET-MAX, CDIP8, CERAMIC, DIP-8, Operational Amplifier
WEDC

5962-9089502BPX

Operational Amplifier, 1 Func, 50uV Offset-Max, CDIP8, CERAMIC, DIP-8
WEDC

5962-9089502M2A

Chopper-Stabilized Operational Amplifier
ETC

5962-9089502MCA

Chopper-Stabilized Operational Amplifier
ETC

5962-9089502MGA

Chopper-Stabilized Operational Amplifier
ETC