5962-9581501HXX [ADI]

IC DUAL 3-CH 12-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, CQFP68, CERAMIC, LCC-68, Analog to Digital Converter;
5962-9581501HXX
型号: 5962-9581501HXX
厂家: ADI    ADI
描述:

IC DUAL 3-CH 12-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, CQFP68, CERAMIC, LCC-68, Analog to Digital Converter

转换器 模数转换器
文件: 总16页 (文件大小:253K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual, 12-Bit, 40 MSPS MCM A/D Converter  
with Analog Input Signal Conditioning  
a
AD10242  
FEATURES  
T he AD10242 operates with ±5.0 V for the analog signal condi-  
Tw o Matched ADCs w ith Input Signal Conditioning  
Selectable Bipolar Input Voltage Range  
(؎0.5 V, ؎1.0 V, ؎2.0 V)  
Full MIL-STD-883B Com pliant  
80 dB Spurious-Free Dynam ic Range  
Trim m ed Channel-Channel Matching  
tioning with a separate +5.0 V supply for the analog-to-digital  
conversion. Each channel is completely independent allowing  
operation with independent encode or analog inputs. T he  
AD10242 also offers the user a choice of analog input signal  
ranges to minimize additional signal conditioning required for  
multiple functions within a single system. T he heart of the  
AD10242 is the AD9042 which is designed specifically for appli-  
cations requiring wide dynamic range.  
APPLICATIONS  
Radar Processing  
T he AD10242 is manufactured by Analog Devices on our  
MIL-PRF-38534 MCM line and is completely qualified. Units  
are packaged in a custom cofired ceramic 68-lead gull wing  
package and specified for operation from –55°C to +125°C.  
Contact the factory for additional custom options including  
those which allow the user to ac couple the ADC directly, by-  
passing the front end amplifier section. Also see the AD9042  
data sheet for additional details on ADC performance.  
Com m unications Receivers  
FLIR Processing  
Secure Com m unications  
Any I/ Q Signal Processing Application  
P RO D UCT D ESCRIP TIO N  
T he AD10242 is a complete dual signal chain solution including  
onboard amplifiers, references, ADCs, and output buffering pro-  
viding unsurpassed total system performance. Each channel is  
laser trimmed for gain and offset matching and provides channel-  
to-channel crosstalk performance better than 80 dB. The AD10242  
utilizes two each of the AD9631, OP279, and the AD9042 in a  
custom MCM to gain space, performance, and cost advantages  
over solutions previously available.  
P RO D UCT H IGH LIGH TS  
1. Guaranteed sample rate of 40 MSPS.  
2. Dynamic performance specified over entire Nyquist band;  
spurious signals @ 80 dBc for –1 dBFS input signals.  
3. Low power dissipation: <2 W off ±5.0 V supplies.  
4. User defined input amplitude.  
5. Packaged in 68-lead ceramic leaded chip carrier.  
FUNCTIO NAL BLO CK D IAGRAM  
A
1
A
2
A
1
A
2
A
3
A
3
UNEG UCOM UPOS  
IN  
62  
IN  
7
IN  
6
IN  
63  
IN  
64  
IN  
8
56  
55  
57  
12  
UPOS  
OP279  
OP279  
AD9631  
AD9631  
AD9042  
4
3
UCOM  
UNEG  
OP279  
OP279  
AD9042  
52  
51  
ENC  
(LSB) D0A 17  
D1A 18  
TIMING  
ENC  
V
V
REF  
REF  
D2A 19  
49  
48  
47  
46  
45  
D11B (MSB)  
D10B  
20  
21  
22  
23  
24  
25  
D3A  
D4A  
D5A  
D6A  
D7A  
D8A  
AD10242  
12  
OUTPUT BUFFERING  
12  
9
5
D9B  
OUTPUT BUFFERING  
7
D8B  
D7B  
TIMING  
32  
D10A  
29  
ENC  
28  
ENC  
31  
37  
40  
42  
D6B  
33  
36  
38  
39  
41  
D11A  
(MSB)  
D9A  
D0B D1B  
(LSB)  
D2B  
D3B  
D4B  
D5B  
REV. A  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A.  
Tel: 617/ 329-4700  
Fax: 617/ 326-8703  
World Wide Web Site: http:/ / w w w .analog.com  
© Analog Devices, Inc., 1997  
AD10242–SPECIFICATIONS  
(AV = +5 V; AV = 5.0 V; DV = +5 V; applies to each ADC unless otherwise noted)  
Electrical Characteristics  
CC  
EE  
CC  
Test  
Mil  
Subgroup  
AD 10242BZ/TZ  
Typ  
P aram eter  
Tem p  
Level  
Min  
Max  
Units  
RESOLUT ION  
12  
Bits  
DC ACCURACY  
No Missing Codes  
Offset Error  
Full  
+25°C  
Full  
Full  
+25°C  
Full  
VI  
I
VI  
V
I
1, 2, 3  
1
2, 3  
Guaranteed  
±0.05  
±1.0  
±0.1  
±0.5  
–0.5  
–2.0  
+0.5  
+2.0  
% FS  
% FS  
%
% FS  
% FS  
%
Offset Error Channel Match  
Gain Error1  
1
2, 3  
–1.0  
–1.5  
+1.0  
+1.5  
VI  
V
±0.8  
±0.1  
Gain Error Channel Match  
Full  
ANALOG INPUT (AIN  
Input Voltage Range  
)
AIN  
IN2  
AIN  
Input Resistance  
1
Full  
Full  
Full  
I
I
I
±0.5  
±1.0  
±2  
V
V
V
A
3
AIN  
AIN  
AIN  
1
2
3
Full  
Full  
Full  
+25°C  
Full  
IV  
IV  
IV  
IV  
V
12  
12  
12  
12  
99  
100  
200  
400  
4.0  
60  
101  
202  
404  
7.0  
pF  
MHz  
198  
396  
0
Input Capacitance2  
Analog Input Bandwidth3  
ENCODE INPUT 4, 5  
Logic Compatibility  
T T L/CMOS  
Logic “1” Voltage  
Logic “0” Voltage  
Logic “1” Current (VINH = 5 V)  
Logic “0” Current (VINL = 0 V)  
Input Capacitance  
Full  
Full  
Full  
Full  
I
I
I
I
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
12  
2.0  
0
5.0  
0.8  
800  
V
V
µA  
µA  
pF  
625  
–300  
–400  
+25°C  
V
7.0  
SWIT CHING PERFORMANCE  
Maximum Conversion Rate6  
Minimum Conversion Rate6  
Aperture Delay (tA)  
Aperture Delay Matching  
Aperture Uncertainty (Jitter)  
ENCODE Pulse Width High  
ENCODE Pulse Width Low  
Full  
Full  
VI  
V
V
V
V
IV  
IV  
IV  
4, 5, 6  
12  
40  
50  
MSPS  
MSPS  
ns  
ns  
ps rms  
ns  
5
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
Full  
1.0  
±2.0  
1
10  
10  
12  
12  
12  
12  
10  
41  
14  
ns  
ns  
Output Delay (tOD  
)
12  
SNR7  
Analog Input @ 1.2 MHz  
@ 4.85 MHz  
+25°C  
+25°C  
Full  
+25°C  
Full  
V
I
II  
I
II  
I
II  
68  
66  
66  
65  
65  
63  
62  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
4
5, 6  
4
5, 6  
4
5, 6  
63  
62  
63  
62  
60  
59  
@ 9.9 MHz  
@ 19.5 MHz  
+25°C  
Full  
SINAD8  
Analog Input @ 1.2 MHz  
@ 4.85 MHz  
+25°C  
+25°C  
Full  
+25°C  
Full  
V
I
II  
I
II  
I
II  
67  
65  
64  
64  
63  
61  
60  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
4
5, 6  
4
5, 6  
4
5, 6  
62  
61  
60  
60  
58  
58  
@ 9.9 MHz  
@ 19.5 MHz  
+25°C  
Full  
–2–  
REV. A  
AD10242  
Test  
Level  
Mil  
Subgroup  
AD 10242BZ/TZ  
Typ  
P aram eter  
Tem p  
Min  
Max  
Units  
SPURIOUS-FREE DYNAMIC RANGE9  
Analog Input @ 1.2 MHz  
@ 4.85 MHz  
+25°C  
+25°C  
Full  
+25°C  
Full  
I
I
II  
I
II  
I
81  
80  
79  
70  
69  
67  
66  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
4
5, 6  
4
5, 6  
4
5, 6  
70  
70  
63  
63  
60  
60  
@ 9.9 MHz  
@ 19.5 MHz  
+25°C  
Full  
II  
T WO-T ONE IMD REJECT ION 10  
F1, F2 @ –7 dBFS  
Full  
II  
4, 5, 6  
12  
70  
75  
76  
80  
10  
dBc  
dB  
ns  
CHANNEL-TO-CHANNEL ISOLAT ION11  
T RANSIENT RESPONSE  
+25°C  
+25°C  
IV  
V
LINEARIT Y  
Differential Nonlinearity  
(Encode = 20 MHz)  
Integral Nonlinearity  
+25°C  
Full  
+25°C  
Full  
IV  
IV  
V
12  
12  
0.3  
0.5  
0.3  
0.5  
1.0  
1.25  
LSB  
LSB  
LSB  
LSB  
(
Encode = 20 MHz)  
V
OVERVOLT AGE RECOVERY T IME12  
VIN = 2.0 × FS  
VIN = 4.0 × FS  
Full  
Full  
IV  
IV  
12  
12  
50  
75  
100  
200  
ns  
ns  
DIGIT AL OUT PUT S  
Logic Compatibility  
Logic “1” Voltage13  
Logic “0” Voltage14  
Output Coding  
CMOS  
4.2  
0.45  
Full  
Full  
I
I
1, 2, 3  
1, 2, 3  
3.5  
V
V
0.65  
T wos Complement  
POWER SUPPLY  
AVCC Supply Voltage  
I (AVCC) Current  
AVEE Supply Voltage  
I (AVEE) Current  
DVCC Supply Voltage  
I (DVCC) Current  
ICC (T otal) Supply Current  
Power Dissipation (T otal)  
Power Supply Rejection Ratio (PSRR)  
Pass Band Ripple to 10 MHz  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
VI  
V
VI  
V
VI  
V
I
I
I
IV  
+5.0  
260  
–5.0  
55  
+5.0  
25  
350  
1.75  
0.01  
V
mA  
V
mA  
V
mA  
mA  
W
1, 2, 3  
1, 2, 3  
7, 8  
400  
2.0  
0.02  
0.2  
% FSR/% VS  
dB  
12  
NOT ES  
1 Gain tests are performed on AIN3 over specified input voltage range.  
2 Input capacitance specifications combines AD9631 die capacitance + ceramic package capacitance.  
3 Full power bandwidth is the frequency at which the spectral power of the fundamental frequency (as determined by FFT analysis) is reduced by 3 dB.  
4 ENCODE (Pin 4) driven by single-ended source; ENCODE (Pin 5) bypassed to ground through 0.01 µF capacitor.  
5 ENCODE (Pin 4) may also be driven differentially in conjunction with ENCODE (Pin 5); see “Encoding the AD10242” for details.  
6 Minimum and maximum conversion rates allow for variation in Encode Duty Cycle of 50% ± 5%.  
7 Analog Input signal power at –1 dBFS; signal-to-noise ratio (SNR) is the ratio of signal level to total noise (first 5 harmonics removed). Encode = 40.0 MSPS.  
8 Analog Input signal power at –1 dBFS; signal-to-noise and distortion (SINAD) is the ratio of signal level to total noise + harmonics. Encode = 40.0 MSPS.  
9 Analog Input signal equal –1 dBFS; SFDR is ratio of converter full scale to worst spur.  
10 Both input tones at –7 dBFS; two tone intermodulation distortion (IMD) rejection is the ratio of either tone to the worst 3rd order intermod product. f1 = 10.0 MHz  
± 100 kHz, 50 kHz f1 – f2 300 kHz.  
11 Channel-to-channel isolation tested with A channel grounded and a full-scale signal applied to B channel (AIN1).  
12 Input driven to 2× and 4× AIN1 range for >4 clock cycles. Output recovers inband in specified time with Encode = 40 MSPS. No foldover guaranteed.  
13 Outputs are sourcing 10 µA.  
14 Outputs are sinking 10 µA.  
All specifications guaranteed within 100 ms of initial power up regardless of sequencing.  
Specifications subject to change without notice.  
REV. A  
–3–  
AD10242  
ABSO LUTE MAXIMUM RATINGS1  
Table I. O utput Coding  
Base 10  
P aram eter  
Min  
Max Units  
MSB  
LSB  
Input  
ELECT RICAL  
VCC Voltage  
VEE Voltage  
Analog Input Voltage  
Analog Input Current  
Digital Input Voltage (ENCODE)  
ENCODE, ENCODE Differential Voltage  
Digital Output Current  
0111111111111  
0000000000001  
0000000000000  
1111111111111  
1000000000000  
2047  
+1  
0
–1  
2048  
+FS  
0
7
0
VCC  
+10  
VCC  
4
V
V
V
mA  
V
–7  
VEE  
–10  
0
0.0 V  
FS  
V
mA  
–40  
–55  
+40  
EXP LANATIO N O F TEST LEVELS  
Test Level  
ENVIRONMENT AL2  
I
100% Production T ested.  
Operating T emperature (Case)  
Maximum Junction T emperature  
Lead Temperature (Soldering, 10 sec)  
Storage Temperature Range (Ambient)  
+125 °C  
+175 °C  
+300 °C  
+150 °C  
II  
100% production tested at +25°C, and sample tested at  
specified temperatures. AC testing done on sample basis.  
–65  
III – Sample T ested Only.  
NOT ES  
IV – Parameter is guaranteed by design and characterization  
testing.  
1Absolute maximum ratings are limiting values to be applied individually, and  
beyond which the serviceability of the circuit may be impaired. Functional  
operability is not necessarily implied. Exposure to absolute maximum rating  
conditions for an extended period of time may affect device reliability.  
V
– Parameter is a typical value only.  
T ypical thermal impedances for “Z” package: θJC = 11oC/W; θJA = 30oC/W.  
2
VI – All devices are 100% production tested at +25°C; sample  
tested at temperature extremes.  
O RD ERING GUID E  
M
odel  
Tem perature Range  
P ackage D escription  
P ackage O ption  
AD10242BZ  
AD10242T Z  
AD10242T Z/883B  
5962-9581501HXA –55°C to +125°C (Case) 68-Pin Ceramic  
AD10242/PCB  
–40°C to +85°C (Case)  
68-Pin Ceramic Leaded Chip Carrier Z-68A  
–55°C to +125°C (Case) 68-Pin Ceramic  
Carrier Z-68A  
Leaded Chip  
–55°C to +125°C (Case) 68-Pin Ceramic Leaded Chip Carrier Z-68A  
Carrier Z-68A  
Leaded Chip  
Evaluation Board with AD10242BZ  
+25°C  
CAUTIO N  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD10242 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. T herefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. A  
–4–  
AD10242  
P IN FUNCTIO N D ESCRIP TIO NS  
P in No.  
Nam e  
Function  
Internal Ground Shield between channels.  
A Channel Ground. A and B grounds should be connected as close to the device as possible.  
Unipolar Negative.  
1
SHIELD  
GNDA  
UNEGA  
UCOMA  
2, 5, 9–11, 26–27  
3
4
Unipolar Common.  
6
7
8
12  
13  
14  
15–16  
A
A
A
INA1  
INA2  
INA3  
Analog Input for A side ADC (nominally ±0.5 V).  
Analog Input for A side ADC (nominally ±1.0 V).  
Analog Input for A side ADC (nominally ±2.0 V).  
Unipolar Positive.  
Analog Negative Supply Voltage (nominally –5.0 V or –5.2 V).  
Analog Positive Supply Voltage (nominally +5.0 V).  
No Connect.  
UPOSA  
AVEE  
AVCC  
NC  
17–25, 31–33  
28  
29  
30  
D0A–D11A  
ENCODEA  
ENCODEA  
DVCC  
Digital Outputs for ADC A. D0 (LSB).  
ENCODE is complement of ENCODE.  
Data conversion initiated on rising edge of ENCODE input.  
Digital positive supply voltage (nominally +5.0 V).  
No Connect.  
34–35  
NC  
36–42, 45–49  
43–44, 53–54  
58–61, 65, 68  
D0B–D11B  
GNDB  
Digital Outputs for ADC B. D0 (LSB).  
B Channel Ground. A and B grounds should be connected as close to the device  
as possible.  
50  
51  
52  
55  
56  
57  
62  
63  
64  
66  
67  
DVCC  
Digital Positive Supply Voltage (nominally +5.0 V).  
Data conversion initiated on rising edge of ENCODE input.  
ENCODE is complement of ENCODE.  
Unipolar Common.  
Unipolar Negative.  
Unipolar Positive.  
Analog Input for B side ADC (nominally ±0.5 V).  
Analog Input for B side ADC (nominally ±1.0 V).  
Analog Input for B side ADC (nominally ±2.0 V).  
Analog Positive Supply Voltage (nominally +5.0 V).  
Analog Negative Supply Voltage (nominally –5.0 V or –5.2 V).  
ENCODEB  
ENCODEB  
UCOMB  
UNEGB  
UPOSB  
A
A
A
INB1  
INB2  
INB3  
AVCC  
AVEE  
P IN CO NFIGURATIO N  
68-Lead Ceram ic Leaded Chip Carrier  
4
9
8
7
6
5
3
2
1 68 67 66 65 64 63 62 61  
10  
11  
12  
13  
14  
GNDA  
GNDA  
60  
59  
GNDB  
GNDB  
PIN 1  
UPOSA  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
GNDB  
AV  
EE  
UPOSB  
UNEGB  
AV  
CC  
15  
16  
17  
18  
19  
20  
NC  
NC  
UCOMB  
GNDB  
AD10242  
(LSB) D0A  
D1A  
GNDB  
TOP VIEW  
(Not to Scale)  
ENCODEB  
D2A  
ENCODEB  
D3A  
DV  
CC  
21  
22  
23  
24  
25  
26  
D4A  
D11B (MSB)  
D10B  
D5A  
D6A  
47  
46  
45  
44  
D9B  
D7A  
D8B  
D8A  
D7B  
GNDA  
GNDB  
28 29 30 31  
42  
43  
27  
32 33 34 35 36 37 38 39 40 41  
NC = NO CONNECT  
REV. A  
–5–  
AD10242  
O ver voltage Recover y Tim e  
D EFINITIO N O F SP ECIFICATIO NS  
Analog Bandwidth  
T he analog input frequency at which the spectral power of the  
fundamental frequency (as determined by the FFT analysis) is  
reduced by 3 dB.  
T he amount of time required for the converter to recover to  
0.02% accuracy after an analog input signal of the specified per-  
centage of full scale is reduced to midscale.  
P ower Supply Rejection Ratio  
T he ratio of a change in input offset voltage to a change in  
power supply voltage.  
Aper tur e D elay  
T he delay between the 50% point of the rising edge of the  
ENCODE command and the instant at which the analog input  
is sampled.  
Signal-to-Noise-and-D istor tion (SINAD )  
T he ratio of the rms signal amplitude (set at 1 dB below full  
scale) to the rms value of the sum of all other spectral compo-  
nents, including harmonics but excluding dc.  
Aper tur e Uncer tainty (Jitter )  
T he sample-to-sample variation in aperture delay.  
Signal-to-Noise Ratio (without H ar m onics)  
D iffer ential Nonlinear ity  
T he ratio of the rms signal amplitude (set at 1 dB below full  
scale) to the rms value of the sum of all other spectral compo-  
nents, excluding the first five harmonics and dc.  
T he deviation of any code from an ideal 1 LSB step.  
Encode P ulse Width/D uty Cycle  
Pulse width high is the minimum amount of time that the  
ENCODE pulse should be left in logic “1” state to achieve rated  
performance; pulse width low is the minimum time ENCODE  
pulse should be left in low state. At a given clock rate, these  
specs define an acceptable Encode duty cycle.  
Spur ious-Fr ee D ynam ic Range  
T he ratio of the rms signal amplitude to the rms value of the  
peak spurious spectral component. T he peak spurious compo-  
nent may or may not be a harmonic. May be reported in dBc  
(i.e., degrades as signal levels is lowered) or in dBFS (always re-  
lated back to converter full scale).  
H ar m onic D istor tion  
T he ratio of the rms signal amplitude to the rms value of the  
worst harmonic component.  
Tr ansient Response  
T he time required for the converter to achieve 0.02% accuracy  
when a one-half full-scale step function is applied to the analog  
input.  
Integr al Nonlinear ity  
T he deviation of the transfer function from a reference line mea-  
sured in fractions of 1 LSB using a “best straight line” deter-  
mined by a least square curve fit.  
Two-Tone Inter m odulation D istor tion Rejection  
T he ratio of the rms value of either input tone to the rms value  
of the worst third order intermodulation product; reported in  
dBc.  
Minim um Conver sion Rate  
T he encode rate at which the SNR of the lowest analog signal  
frequency drops by no more than 3 dB below the guaranteed  
limit.  
Two-Tone SFD R  
T he ratio of the rms value of either input tone to the rms value  
of the peak spurious component. T he peak spurious compo-  
nent may or may not be an IMD product. May be reported  
in dBc (i.e., degrades as signal levels is lowered) or in dBFS  
(always related back to converter full scale).  
Maxim um Conver sion Rate  
T he encode rate at which parametric testing is performed.  
O utput P r opagation D elay  
The delay between the 50% point of the rising edge of ENCODE  
command and the time when all output data bits are within  
valid logic levels.  
REV. A  
–6–  
AD10242  
N + 4  
N + 5  
N
N + 1  
N + 2  
N + 3  
ENC  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
TTL CLOCK  
10MHz  
f
ENC  
A
IN  
1/2  
AD10242  
SHOWN  
3
2
A
A
IN  
tA = 1.0ns TYP  
tOD = 12ns TYP  
IN  
ENCODE  
1
A
IN  
DIGITAL  
OUTPUTS  
N – 2  
N – 1  
N
N + 1  
N + 2  
NOTE: ALL ±5V SUPPLY PINS BYPASSED  
TO GND WITH A 0.1µF CAPACITOR  
Figure 2. Equivalent Burn-In Circuit  
Figure 1. Tim ing Diagram  
DV  
CC  
EQ UIVALENT CIRCUITS  
A
3
CURRENT  
MIRROR  
IN  
IN  
R4  
200  
A
2
R3  
100Ω  
A
1
IN  
R2  
21Ω  
DV  
CC  
TO AD9631  
R1  
79Ω  
V
REF  
D0 D11  
Figure 3. Analog Input Stage  
AV  
CC  
AV  
AV  
CC  
CC  
R1  
17k  
R1  
17k⍀  
CURRENT  
MIRROR  
ENCODE  
ENCODE  
TIMING  
CIRCUITS  
R2  
8k⍀  
R2  
8k⍀  
Figure 5. Digital Output Stage  
Figure 4. Encode Inputs  
REV. A  
–7–  
AD10242–Typical Performance Characteristics  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
ENCODE = 40.0 MSPS  
ENCODE = 40.0 MSPS  
A
A
A
A
1 = 9.8 MHz  
1 = –7 dBFs  
2 = 10.1 MHz  
2 = –7 dBFs  
IN  
IN  
IN  
IN  
A
A
= 4.85 MHz  
= –1 dBFs  
IN  
IN  
SNR = 66.4 dB  
SFDR = 72.8 dBc  
SFDR = 76.0 dBc  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
20  
20  
FREQUENCY – MHz  
FREQUENCY – MHz  
Figure 9. Two Tone FFT @ 9.8/10.1 MHz  
Figure 6. Single Tone @ 4.85 MHz  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
ENCODE = 40.0 MSPS  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
A
A
A
A
1 = 19.5 MHz  
1 = –7 dBFs  
2 = 19.7 MHz  
2 = –7 dBFs  
IN  
IN  
IN  
IN  
ENCODE = 40.0 MSPS  
A
A
= 9.9 MHz  
= –1 dBFs  
IN  
IN  
SNR = 66.0 dB  
SFDR = 65.7 dBc  
SFDR = 70.6 dBc  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
2
4
6
8
10  
12  
14  
16  
18  
FREQUENCY – MHz  
FREQUENCY – MHz  
Figure 10. Two Tone FFT @ 19.5/19.7 MHz  
Figure 7. Single Tone @ 9.9 MHz  
76  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
74  
ENCODE = 40.0 MSPS  
ENCODE = 40.0 MSPS  
A
= –1 dBFs  
IN  
A
A
= 19.5 MHz  
= –1 dBFs  
72  
70  
68  
66  
64  
62  
60  
58  
IN  
IN  
SNR = 64.3 dB  
SFDR = 63.3 dBc  
T = +125؇C  
T = +25؇C  
T = –55؇C  
10  
5
20  
2
4
6
8
10  
12  
14  
16  
18  
ANALOG INPUT FREQUENCY – MHz  
FREQUENCY – MHz  
Figure 11. Harm onics vs. AIN  
Figure 8. Single Tone @ 19.5 MHz  
REV. A  
–8–  
AD10242  
67  
66.5  
66  
–90  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
IN A1  
IN B1  
T = –55؇C  
65.5  
65  
IN B3  
T = +25؇C  
IN A3  
64.5  
64  
T = +125؇C  
63.5  
63  
ENCODE = 40.0 MSPS  
A = –1 dBFs  
IN  
ENCODE = 40.0 MSPS  
A
= –1 dBFs  
IN  
62.5  
62  
–10  
0
61.5  
10  
5
20  
20  
25  
30  
35  
40  
10  
15  
ANALOG INPUT FREQUENCY – MHz  
ANALOG INPUT FREQUENCY – MHz  
Figure 12. SNR vs. AIN  
Figure 15. Isolation vs. Frequency  
90  
80  
70  
60  
70  
68  
66  
64  
62  
60  
58  
A
A
= 9.9 MHz  
= –1 dBFs  
IN  
IN  
SFDR (dBFs)  
SFDR  
SFDR (dBc)  
50  
40  
SNR  
SFDR = 75dB  
30  
20  
ENCODE = 40 MSPS  
= 9.98 MHz  
10  
0
A
IN  
–60  
–50  
–40  
–30  
–20  
–10  
0
–70  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
ANALOG INPUT POWER LEVEL – dBFs  
SAMPLE RATE – MSPS  
Figure 13. SNR and Harm onics vs. Encode Rate  
Figure 16. Single Tone SFDR (AIN @ 9.98) vs. Power Level  
100  
90  
2.0  
1.5  
80  
SFDR (dBFs)  
1.0  
70  
60  
GAIN  
0.5  
0
SFDR (dBc)  
50  
40  
OFFSET  
–0.5  
–1.5  
SFDR = 75dB  
30  
20  
ENCODE = 40 MSPS  
–1.5  
–2.0  
10  
0
A
= 19.9 MHz  
IN  
–60  
–50  
–40  
–30  
–20  
–10  
0
–70  
5
25  
45  
65  
85  
105  
125  
–55 –35  
–15  
ANALOG INPUT POWER LEVEL – dBFs  
TEMPERATURE – ؇C  
Figure 14. Offset and Gain Error vs. Tem perature  
Figure 17. Single Tone SFDR (AIN @ 19.9) vs. Power Level  
REV. A  
–9–  
AD10242–Typical Performance Characteristics  
80  
–0.5  
0
70  
SNR (dB)  
ENCODE = 40 MSPS  
60  
0.5  
1
50  
40  
30  
20  
10  
0
SFDR (dBFS)  
1.5  
2
ENCODE = 40 MSPS  
2.5  
3
A
= 1dBFs  
IN  
5
10  
20  
29.2  
34.5  
52.5  
60.95  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
ANALOG INPUT FREQUENCY – MHz  
INPUT FREQUENCY – MHz  
Figure 18. SNR/Harm onics to AIN > Nyquist MSPS  
Figure 19. Gain Flatness vs. Input Frequency  
TH EO RY O F O P ERATIO N  
AP P LYING TH E AD 10242  
Encoding the AD 10242  
T he AD10242 is designed to interface with T T L and CMOS  
logic families. T he source used to drive the ENCODE pin(s)  
must be clean and free from jitter. Sources with excessive jitter  
will limit SNR and overall performance.  
Refer to the block diagram. T he AD10242 employs three  
monolithic ADI components per channel (AD9631, OP279, and  
AD9042), along with multiple passive resistor networks and de-  
coupling capacitors to fully integrate a complete 12-bit analog-  
to-digital converter.  
T he input signal is first passed through a precision laser  
trimmed resistor divider allowing the user to externally select  
operation with a full scale signal of ±0.5 V, ±1.0 V, or ±2.0 V by  
choosing the proper input terminal for the application. The result  
of the resistor divider is to apply a full-scale input of approxi-  
mately 0.4 V to the noninverting input of the internal AD9631  
amplifier.  
AD10242  
TTL OR CMOS  
ENCODE  
SOURCE  
ENCODE  
0.01µF  
Figure 20. Single-Ended TTL/CMOS Encode  
T he AD9631 provides the dc coupled level shift circuit required  
for operation with the AD9042 ADC. Configuring the amplifier  
in a noninverting mode the ac signal gain can be trimmed to  
provide a constant input to the ADC centered around the inter-  
nal reference voltage of the AD9042. T his allows the converter  
to be used in multiple system applications without the need for  
external gain and level shift circuitry normally requiring trim.  
T he AD9631 was chosen for its superior ac performance and in-  
put drive capabilities which have limited the ability of many am-  
plifiers to drive high performance ADCs. As new amplifiers are  
developed, pin compatible improvements are planned to incor-  
porate the latest operational amplifier technology.  
T he AD10242 encode inputs are connected to a differential in-  
put stage (see Figure 4 under EQUIVALENT CIRCUIT S).  
With no input connected to either the ENCODE or input, the  
voltage divider bias the inputs to 1.6 volts. For T T L or CMOS  
usage, the encode source should be connected to ENCODE  
(Pins 29 and/or 51). ENCODE (Pins 28 and/or 52) should be  
decoupled using a low inductance or microwave chip capacitor  
to ground. Devices such as AVX 05085C103MA15, a  
0.01 µF capacitor, work well.  
P er for m ance Im pr ovem ents  
It is possible to improve the performance of the AD10242  
slightly by taking advantage of the internal characteristics of the  
amplifier and converter combination. By increasing the +5 V  
supply slightly, the user may be able to gain up to a 5 dB improve-  
ment in SFDR over the entire frequency range of the converter.  
It is not recommended to exceed +5.5 V on the analog supplies  
as there are no performance benefits beyond that range and care  
should be taken to avoid the absolute maximum ratings.  
T he OP279 provides the buffer and inversion of the internal ref-  
erence of the AD9042 in order to supply the summing node of  
the AD9631 input amplifier. T his dc voltage is then summed  
with the input voltage and applied to the input of the AD9042  
ADC. T he reference voltage of the AD9042 is designed to track  
internal offsets and drifts of the ADC and is used to ensure  
matching over an extended temperature range of operation.  
REV. A  
–10–  
AD10242  
If a logic threshold other than the nominal 1.6 V is required,  
the following equations show how to use an external resistor,  
RX, to raise or lower the trip point (see Figure 4, R1 = 17 k,  
R2 = 8 k).  
If no T T L source is available, a clean sine wave may be substi-  
tuted. In the case of the sine source, the matching network is  
shown below. Since the matching transformer specified is a 1:1  
impedance ratio, R, the load resistor should be selected to  
match the source impedance. T he input impedance of the  
AD9042 is negligible in most cases.  
5R2RX  
V1  
=
to lower logic threshold.  
R1R2 + R1RX + R2RX  
T1-1T  
SINE  
SOURCE  
ENCODE  
+5V  
ENCODE  
SOURCE  
ENCODE  
R
AD10242  
R1  
V
l
ENCODE  
ENCODE  
0.01µF  
R2  
R
X
AD10242  
Figure 24. Sine Source—Differential Encode  
If a low jitter ECL clock is available, another option is to ac-  
couple a differential ECL signal to the encode input pins as  
shown below. T he capacitors shown here should be chip capaci-  
tors but do not need to be of the low inductance variety.  
Figure 21. Lower Threshold for Encode  
5R2  
V1  
=
R1RX  
to raise logic threshold.  
R2 +  
R1 + RX  
AV  
CC  
0.1µF  
R
X
ENCODE  
+5V  
R1  
ECL  
GATE  
ENCODE  
SOURCE  
AD10242  
0.1µF  
ENCODE  
ENCODE  
ENCODE  
V
l
510  
510Ω  
R2  
0.01µF  
AD10242  
–V  
S
Figure 25. Differential ECL for Encode  
Figure 22. Raise Logic Threshold for Encode  
As a final alternative, the ECL gate may be replaced by an ECL  
comparator. T he input to the comparator could then be a logic  
signal or a sine signal.  
While the single ended encode will work well for many applica-  
tions, driving the encode differentially will provide increased  
performance. Depending on circuit layout and system noise, a  
1 dB to 3 dB improvement in SNR can be realized. It is recom-  
mended that the encode signal be ac-coupled into the ENCODE  
and ENCODE pins.  
AD96687 (1/2)  
0.1µF  
ENCODE  
AD10242  
0.1µF  
50  
ENCODE  
T he simplest option is shown below. T he low jitter T T L signal  
is coupled with a limiting resistor, typically 100 , to the pri-  
mary side of an RF transformer (these transformers are inexpen-  
sive and readily available; Part No. in figure is from Mini-  
Circuits). T he secondary side is connected to the ENCODE  
and ENCODE pins of the converter. Since both encode inputs  
are self-biased, no additional components are required.  
510Ω  
510Ω  
–V  
S
Figure 26. ECL Com parator for Encode  
Care should be taken not to overdrive the encode input pin  
when ac coupled. Although the input circuitry is electrically pro-  
tected from over or under voltage conditions, improper circuit  
operations may result from overdriving the encode input pin.  
100  
T1-1T  
ENCODE  
TTL  
AD10242  
ENCODE  
Figure 23. TTL Source—Differential Encode  
REV. A  
–11–  
AD10242  
USING TH E FLEXIBLE INP UT  
A
A
A
1
2
3
IN  
IN  
IN  
T he AD10242 has been designed with the user’s ease of opera-  
tion in mind. Multiple input configurations have been included  
on board to allow the user to have a choice of input signal levels  
and input impedance. While the standard inputs are ±0.5 V,  
±1.0 V, and ±2.0 V, the user can select the input impedance of  
the AD10242 on any input by using the other inputs as alternate  
locations for GND or an external resistor. T he following  
chart summarizes the impedance options available at each  
input location:  
AD10242  
UNEG  
2.67k  
UCOM  
Figure 28. Unipolar Negative  
GRO UND ING AND D ECO UP LING  
Analog and D igital Gr ounding  
A
A
A
IN1 = 100 when AIN2 and AIN3 Are Open.  
IN1 = 75 when AIN3 Is Shorted to GND.  
IN1 = 50 when AIN2 Is Shorted to GND.  
Proper grounding is essential in any high speed, high resolution  
system. Multilayer printed circuit boards (PCBs) are recom-  
mended to provide optimal grounding and power schemes. T he  
use of ground and power planes offers distinct advantages:  
AIN2 = 200 when AIN3 Is Open.  
A
A
A
A
A
IN2 = 100 when AIN3 Is Shorted to GND.  
IN2 = 75 when AIN2 to AIN3 Has an External Resistor of  
IN2 = 300 , with AIN 3 Shorted to GND.  
IN2 = 50 when AIN2 to AIN3 Has an External Resistor of  
IN2 = 100 , with AIN3 Shorted to GND.  
1. T he minimization of the loop area encompassed by a signal  
and its return path.  
2. T he minimization of the impedance associated with ground  
and power paths.  
3. T he inherent distributed capacitor formed by the power  
plane, PCB insulation, and ground plane.  
AIN3 = 400 .  
AIN3 = 100 when AIN3 Has an External Resistor of 133 to GND.  
AIN3 = 75 when AIN3 Has an External Resistor of 92 to GND.  
AIN3 = 50 when AIN3 Has an External Resistor of 57 to GND.  
T hese characteristics result in both a reduction of electro-  
magnetic interference (EMI) and an overall improvement in  
performance.  
While the Analog inputs of the AD10242 are designed for dc  
coupled bipolar inputs, the AD10242 has the ability to use uni-  
polar inputs in a user selectable mode through the addition of a  
external resistor. T his allows for 1 V, 2 V, and 4 V full-scale  
unipolar signals to be applied to the various inputs (AIN1, AIN2,  
and AIN3 respectively). Placing a 2.43 kresistor (typical, off-  
set calibration required) between UPOS and UCOM shifts the  
reference voltage setpoint to allow a unipolar positive voltage  
to be applied at the inputs of the device. T o calibrate offset a  
midscale dc voltage should be applied to the converter while  
adjusting the unipolar resistor for a midscale output transition.  
It is important to design a layout that prevents noise from cou-  
pling to the input signal. Digital signals should not be run in  
parallel with input signal traces and should be routed away from  
the input circuitry. T he AD10242 does not distinguish between  
analog and digital ground pins as the AD10242 should always  
be treated like an analog component. All ground pins should be  
connected together directly under the AD10242. T he PCB  
should have a ground plane covering all unused portions of the  
component side of the board to provide a low impedance path  
and manage the power and ground currents. T he ground plane  
should be removed from the area near the input pins to reduce  
stray capacitance.  
A
A
A
1
2
3
IN  
IN  
IN  
LAYO UT INFO RMATIO N  
T he schematic of the evaluation board (Figure 29) represents a  
typical implementation of the AD10242. T he pinout of the  
AD10242 is very straightforward and facilitates ease of use  
and the implementation of high frequency/high resolution  
design practices. It is recommended that high quality ceramic  
chip capacitors be used to decouple each supply pin to  
ground directly at the device. All capacitors except the one  
placed on ENCODE can be standard high quality ceramic chip  
capacitors. T he capacitor used on ENCODE pin must be a low  
inductance chip capacitor as referenced previously in the data  
sheet.  
AD10242  
UPOS  
2.43kΩ  
UCOM  
Figure 27. Unipolar Positive  
T o operate with –1 V, –2 V, or –4 V full-scale unipolar signals  
place a 2.67 kresistor (typical, offset calibration required)  
between UNEG and UCOM. T his again shifts the reference  
voltage setpoint to allow a unipolar negative voltage to be  
applied at the inputs of the device. T o calibrate offset a mid-  
scale dc voltage should be applied to the converter while adjust-  
ing the unipolar resistor for a midscale output transition.  
REV. A  
–12–  
AD10242  
+5VA  
C2  
0.1µF  
SMA SMA  
J8 JB  
SMA  
JD  
+5VA  
C1  
0.1µF  
SMA SMA  
J1 JA  
SMA  
JC  
14  
VCC  
14  
VCC  
H2DM  
J16  
H2DM  
J15  
8
8
OUT  
VEE  
7
OUT  
VEE  
7
U2  
K1115  
U1  
K1115  
1
2
1
2
U5  
AD9696KN  
8
2
U5  
AD9696KN  
8
2
+5VA  
R11  
+5VA  
51  
51⍀  
H2DM  
J18  
H2DM  
J17  
R9  
470⍀  
E5  
E5  
470⍀  
3
3
1
2
1
2
BUFLATB  
BUFLATA  
7
5
7
5
R12  
470⍀  
C5  
0.1µF  
R10  
470⍀  
C14  
0.1µF  
T2  
T1 – 1T  
T1  
T1 – 1T  
4
4
3
3
GND  
GND  
ENCBB  
2
ENCAB  
ENCA  
2
R2  
100⍀  
R1  
100⍀  
B SECTION  
A SECTION  
1
6
1
6
ENCB  
1 : 1  
1 : 1  
PULSE A  
IN  
PULSE A  
OUT  
PULSE B  
IN  
PULSE B  
OUT  
H40DM  
U3  
AD8036Q  
U4  
AD8036Q  
B JACKS  
E4  
J9  
VHIGH  
8
VHIGH  
SMA  
J11  
SMA  
J13  
SMA  
J12  
SMA  
J14  
E1  
E3  
1
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
3
3
8
+5VD  
(MSB) D11A  
D10A  
D9A  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
2
6
6
+5VA  
GND  
+5VA  
GND  
2
2
3
R7  
49.9⍀  
R8  
49.9⍀  
5
5
4
E2  
VLOW  
VHIGH  
VLOW  
VHIGH  
5
VLOW  
VLOW  
–5.2V  
–5.2V  
D8A  
6
D7A  
7
R5  
470⍀  
R6  
470⍀  
R3  
470⍀  
R4  
470⍀  
D6A  
8
D5A  
9
D4A  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
VHIGH  
+5V  
BUFLATA  
U4  
C22  
0.1µF  
U3  
C21  
0.1µF  
U4  
C17  
0.1µF  
U3  
C18  
0.1µF  
DUT  
C8  
0.1µF  
DUT  
C9  
0.1µF  
U5  
C12  
0.1µF  
U6  
C3  
0.1µF  
C23  
D3A  
D2A  
10µF  
D1A  
–5.2V  
VLOW  
(LSB) D0A  
GND  
U3  
C15  
0.1µF  
U4  
C16  
0.1µF  
DUT  
C10  
0.1µF  
U5  
C13  
0.1µF  
DUT  
C11  
0.1µF  
U6  
C4  
0.1µF  
U3  
C19  
0.1µF  
U4  
C20  
0.1µF  
C24  
10µF  
GND  
GND  
+5VD  
GND  
DUT  
C7  
0.1µF  
DUT  
C6  
0.1µF  
C25  
10µF  
GND  
SMA  
J2  
SMA  
J3  
SMA  
J4  
SMA  
J5  
SMA  
J6  
SMA  
J7  
AINA1  
AINA2  
AINA3  
AINB1  
AINB2  
AINB3  
H40DM  
J10  
1
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
+5VD  
(MSB) D11B  
D10B  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
2
3
4
D9B  
5
9
8
7
6
5
4
3
2
1
68 67 66 65 64 63 62 61  
D8B  
6
NOTES;  
D7B  
7
1) UNIPOLAR OPERATION  
D6B  
8
A SIDE + CONNECT 2.43kRES. FROM TP1 TO TP5.  
A SIDE – CONNECT 2.67kRES. FROM TP5 TO TP6.  
B SIDE + CONNECT 2.43kRES. FROM TP2 TO TP4.  
B SIDE – CONNECT 2.67kRES. FROM TP4 TO TP3.  
D5B  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
60  
GND  
GNDA  
GNDA  
GNDB  
GNDB  
GNDB  
GND  
D4B  
10  
11  
12  
59  
GND  
TP1  
GND  
BUFLATB  
58  
UNIPOSA  
–5.2VAA  
+5VAA  
NCA  
GND  
57  
–5.2V  
+5VA  
GND  
GND  
D0A  
D1A  
D2A  
D3A  
D4A  
D5A  
D6A  
D7A  
D8A  
GND  
UNIPOSB  
UNINEGB  
UNICOMB  
GNDB  
TP2  
2) ABOVE UNIPOLAR RESISTOR VALUES ARE  
NOMINAL & MAY HAVE TO BE ADJUSTED  
DEPENDING ON OFFSET OF DUT.  
D3B  
D2B  
56  
13  
14  
15  
16  
17  
18  
19  
20  
TP3  
55  
TP4  
D1B  
54  
NCA  
GND  
(LSB) D0B  
GND  
3) ENCODE SOURCES  
53  
D0A (LSBA)  
D1A  
GNDB  
GND  
DUT  
AD10242  
A)FOR NORMAL OPERATION, A 40MHz TTL CLOCK  
OSCILLATOR IS INSTALLED IN U1 & U2. THERE  
IS A 51RESISTOR BETWEEN J15 & J16.  
J17 & J18 ARE OPEN.  
B)FOR EXTERNAL SQUAREWARE ENCODE, INPUT  
SIGNAL AT J1 & J8, REMOVE U1, U2, JUMPERS  
J15 & J16. CONNECT JUMPERS J17 & J18.  
C)FOR EXTERNAL SINEWAVE ENCODE, INPUT  
SIGNAL AT J1 & J8, REMOVE U1, U2, R9, R11,  
JUMPERS J15 & J16.  
52  
ENCBB  
ENCB  
ENCBB  
GND  
51  
50  
49  
48  
47  
46  
45  
44  
D2A  
ENCB  
GND  
+5VDB  
(MSBB) D11B  
D10B  
+5VD  
D11B  
D10B  
D9B  
D3A  
GND  
D4A  
GND  
D5A  
D6A  
D9B  
D7A  
D8B  
D8B  
D8A  
D7B  
D7B  
TEST POINTS  
TP1 TP6  
TP2 TP7  
TP3 TP8  
TP4 TP9  
TP5 TP10  
GNDA  
GNDB  
GND  
CONNECT JUMPERS J17 & J18.  
TP1  
TP2  
TP3  
TP4  
TP5  
TP6  
ENCAB  
ENCA  
4) POWER (+5VD) FOR DIGITAL OUTPUTS OF THE  
AD10242 IS SUPPLIED VIA PIN 1 OF EITHER J9 OR J10  
(THE DIGITAL INTERFACES). TO POWER THE EVAL.  
BOARD WITH ONE +5V SUPPLY, JUMPER A WIRE  
FROM E1 TO E4 (CONNECTED AT FACTORY).  
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43  
ENCBB  
ENCB  
Figure 29. Evaluation Board Schem atic  
–13–  
REV. A  
AD10242  
Care should be taken when placing the digital output runs.  
Because the digital outputs have such a high slew rate, the  
capacitive loading on the digital outputs should be minimized.  
Circuit traces for the digital outputs should be kept short and  
connect directly to the receiving gate. Internal circuitry buffers  
the outputs of the AD9042 ADC through a resistor network to  
eliminate the need to externally isolate the device from the  
receiving gate.  
analog-to-digital converter. T he board encompasses everything  
needed to ensure the highest level of performance for evaluating  
the AD10242.  
Power to the analog supply pins is connected via banana jacks.  
T he analog supply powers the crystal oscillator, the associated  
components and amplifiers, and the analog section of the  
AD10242. T he Digital outputs of the AD10242 are powered  
via Pin 1 of either J9 or J10 found on the digital interface con-  
nector. T o power the evaluation board with one +5 V supply a  
jumper wire is required from test point E1 to E4. Contact the  
factory if additional layout or applications assistance is required.  
EVALUATIO N BO ARD  
T he AD10242 evaluation board (see Figure 30) is designed to  
provide optimal performance for evaluation of the AD10242  
Figure 30. Evaluation Board Mechanical Layout  
REV. A  
–14–  
AD10242  
O UTLINE D IMENSIO NS  
D imensions shown in inches and (mm).  
68-Lead Ceram ic Leaded Chip Carrier  
(Z-68A)  
1.180 (29.97) SQ  
0.950 (24.13) SQ  
0.060 (1.52)  
9
61  
10  
60  
PIN 1  
0.800  
(20.32)  
TOP VIEW  
(PINS DOWN)  
26  
44  
27  
43  
0.050 (1.27)  
0.018 (0.457)  
0.240 (6.096)  
REV. A  
–15–  
–16–  

相关型号:

5962-9581601QXA

ACT SERIES, 16-BIT REGISTERED TRANSCEIVER, TRUE OUTPUT, CDFP56, CERPACK-56
TI

5962-9581601QXX

Dual 8-bit Bus Transceiver
ETC

5962-9583101Q2A

3.3-V ABT OCTAL TRANSPARENT D-TYPE LATCHES WITH 3-STATE OUTPUTS
TI

5962-9583101QRA

3.3-V ABT OCTAL TRANSPARENT D-TYPE LATCHES WITH 3-STATE OUTPUTS
TI

5962-9583101QSA

3.3-V ABT OCTAL TRANSPARENT D-TYPE LATCHES WITH 3-STATE OUTPUTS
TI

5962-9583201Q2A

3.3V ABT OCTAL EDGE-TRIGGERED D-TYPE FLIP FLOPS WITH 3 STATE OUTPUTS
TI

5962-9583201QRA

3.3V ABT OCTAL EDGE-TRIGGERED D-TYPE FLIP FLOPS WITH 3 STATE OUTPUTS
TI

5962-9583201QSA

3.3V ABT OCTAL EDGE-TRIGGERED D-TYPE FLIP FLOPS WITH 3 STATE OUTPUTS
TI

5962-9583201VRA

3.3V ABT OCTAL EDGE-TRIGGERED D-TYPE FLIP FLOPS WITH 3 STATE OUTPUTS
TI

5962-9583201VSA

3.3V ABT OCTAL EDGE-TRIGGERED D-TYPE FLIP FLOPS WITH 3 STATE OUTPUTS
TI

5962-95833

LVDS Quad CMOS Differential Line Driver
NSC