AD10201/PCB [ADI]

DUAL-CHANNEL, 12-BIT 105MSPS IF SAMPLING A/D CONVERTER; 双通道, 12位105MSPS中频采样A / D转换器
AD10201/PCB
型号: AD10201/PCB
厂家: ADI    ADI
描述:

DUAL-CHANNEL, 12-BIT 105MSPS IF SAMPLING A/D CONVERTER
双通道, 12位105MSPS中频采样A / D转换器

转换器
文件: 总20页 (文件大小:759K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual-Channel, 12-Bit 105 MSPS  
IF Sampling A/D Converter  
a
AD10201  
FEATURES  
PRODUCT DESCRIPTION  
Two Independent 12-Bit, 105 MSPS ADCs  
Channel-to-Channel Isolation, > 90 dB  
AC-Coupled Signal Conditioning Included  
Gain Flatness up to Nyquist, < 0.1 dB  
Input VSWR 1.05:1 to Nyquist  
80 dB Spurious-Free Dynamic Range  
Two’s Complement Output Format  
3.3 V or 5 V CMOS-Compatible Output Levels  
900 mW Per Channel  
The AD10201 offers two complete ADC channels with on-module  
signal conditioning for improved dynamic performance. Each wide  
dynamic range ADC has a transformer coupled front end optimized  
for direct IF sampling. The AD10201 has on-chip track-and-hold  
circuitry, and uses an innovative architecture to achieve 12-bit,  
105 MSPS performance. The AD10201 uses innovative high  
density circuit design to achieve exceptional performance while still  
maintaining excellent isolation and providing for board area savings.  
The AD10201 operates with 5.0 V supply for the analog-to-digital  
conversion. Each channel is completely independent, allowing  
operation with independent ENCODE and analog inputs. The  
AD10201 is available as a 35 mm square 385-lead BGA package.  
Single-Ended or Differential Input  
250 MHz Input Bandwidth  
APPLICATIONS  
Wireless and Wired Broadband Communications  
Base Stations and “Zero-IF” or Direct IF Sampling  
Subsystems  
PRODUCT HIGHLIGHTS  
1. Guaranteed sample rate of 105 MSPS  
Wireless Local Loop (WLL)  
Local Multipoint Distribution Service (LMDS)  
Radar and Satellite Subsystems  
2. Input signal conditioning included with full-power bandwidth  
to 250 MHz  
3. Industry-leading IF sampling performance  
FUNCTIONAL BLOCK DIAGRAM  
A
A1 A A2  
IN  
A B1 A B2  
IN IN  
IN  
D0B  
(LSB)  
D0A  
(LSB)  
D1A  
D2A  
D1B  
D2B  
T1A  
T1B  
D3A  
D4A  
D5A  
D6A  
D7A  
D8A  
D9A  
D10A  
D3B  
D4B  
50  
50⍀  
T/H  
T/H  
D5B  
D6B  
D7B  
D8B  
AD10201  
ADC  
ADC  
12  
12  
12  
12  
D9B  
D10B  
OUTPUT  
OUTPUT  
RESISTORS  
RESISTORS  
D11B  
(MSB)  
D11A  
(MSB)  
TIMING  
REF  
REF  
TIMING  
ENCODEA  
REF_A_OUT  
REF_B_OUT  
ENCODEB  
ENCODEA  
ENCODEB  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2002  
AD10201–SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS1  
(VDD = 3.3 V, VCC = 5.0 V; ENCODE = 105 MSPS, unless otherwise noted.)  
Test  
Parameter  
Temp  
Level  
Min  
Typ  
Max  
Unit  
RESOLUTION  
12  
Bits  
DC ACCURACY  
Differential Nonlinearity  
Integral Nonlinearity  
No Missing Codes  
Gain Error2  
Output Offset  
Gain Tempco  
Full  
Full  
Full  
25°C  
25°C  
Full  
Full  
IV  
IV  
IV  
I
I
V
V
0.99  
1.5  
0.5  
0.1  
Guaranteed  
2
2
60  
12  
+0.99  
+1.5  
LSB  
LSB  
9  
8  
+9  
+8  
% FS  
LSB  
ppm/°C  
ppm/°C  
Offset Tempco  
ANALOG INPUT  
Input Voltage Range  
Input Impedance  
25°C  
25°C  
Full  
Full  
Full  
V
V
V
V
V
1.75  
50  
1.05:1  
250  
300  
V p-p  
Ratio  
MHz  
kHz  
Input VSWR3  
Analog Input Bandwidth, High  
Analog Input Bandwidth, Low  
ANALOG REFERENCE  
Output Voltage  
Load Current  
25°C  
25°C  
Full  
V
V
V
2.5  
5
50  
V
mA  
ppm/°C  
Tempco  
SWITCHING PERFORMANCE4  
Maximum Conversion Rate  
Minimum Conversion Rate  
Duty Cycle  
Full  
Full  
Full  
25°C  
25°C  
Full  
Full  
25°C  
25°C  
VI  
IV  
IV  
V
105  
45  
MSPS  
MSPS  
%
ns  
ps rms  
ns  
ns  
ns  
ns  
10  
55  
50  
Aperture Delay (tA)  
2.0  
0.25  
6.3  
6.5  
3.5  
3.3  
Aperture Uncertainty (Jitter)  
V
Output Valid Time (tV)5  
Output Propagation Delay (tPD  
Output Rise Time (tR)  
IV  
IV  
V
3.0  
5
)
9.0  
Output Fall Time (tF)  
V
DIGITAL INPUTS  
ENCODE Input Common-Mode  
Differential Input (ENC, ENC)  
Logic 1Voltage  
Logic 0Voltage  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
25°C  
IV  
IV  
IV  
IV  
IV  
V
1.2  
0.4  
2.0  
1.6  
2.0  
5.0  
V
V
V
V
kΩ  
pF  
0.8  
8.0  
3
5
4.5  
Input Capacitance  
DIGITAL OUTPUTS  
Logic 1Voltage5  
Logic 0Voltage5  
Output Coding  
Full  
Full  
IV  
IV  
3.1  
3.3  
0
V
V
0.2  
Twos Complement  
POWER SUPPLY6  
Power Dissipation7  
Power Supply Rejection Ratio  
Total I (DVDD) Current  
Total I (AVCC) Current  
Full  
Full  
Full  
Full  
VI  
IV  
VI  
VI  
1800  
0.5  
32  
2200  
+5.0  
40  
mW  
mV/V  
mA  
5.0  
340  
410  
mA  
–2–  
REV. 0  
AD10201  
Test  
Level  
Parameter  
Temp  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
Signal-to-Noise Ratio (SNR)8 (Without Harmonics)  
fIN = 10 MHz  
fIN = 41 MHz  
fIN = 71 MHz  
fIN = 121 MHz  
25°C  
25°C  
25°C  
25°C  
I
V
I
V
66  
68  
67  
66.5  
63  
dBFS  
dBFS  
dBFS  
dBFS  
63.5  
Signal-to-Noise Ratio (SINAD)9 (With Harmonics)  
fIN = 10 MHz  
fIN = 41 MHz  
fIN = 71 MHz  
fIN = 121 MHz  
25°C  
25°C  
25°C  
25°C  
I
V
I
65.5  
63  
67.5  
67.2  
65  
dBFS  
dBFS  
dBFS  
dBFS  
V
59  
Spurious-Free Dynamic Range10  
fIN = 10 MHz  
25°C  
25°C  
25°C  
25°C  
I
V
I
75.5  
71  
81  
76  
74  
63  
dBFS  
dBFS  
dBFS  
dBFS  
fIN = 41 MHz  
fIN = 71 MHz  
fIN = 121 MHz  
V
Two-Tone Intermodulation  
Distortion11 (IMD)  
f
IN = 10 MHz; fIN = 12 MHz  
25°C  
25°C  
25°C  
V
V
V
81  
66  
61  
dBc  
dBc  
dBc  
fIN = 71 MHz; fIN = 72 MHz  
f
IN = 121 MHz; fIN = 122 MHz  
Channel-to-Channel Isolation12  
fIN = 121 MHz  
Full  
IV  
90  
dBc  
NOTES  
1 All specifications tested by driving ENCODE and ENCODE differentially, with the analog input applied to AINX1 and AINX2 tied to ground.  
2 Gain error measured at 10.3 MHz.  
3 Input VSWR, see TPC 12.  
4 See Figure 1, Timing Diagram.  
5 tV and tPD are measured from the transition points of the ENCODE input to the 50%/50% levels of the digital outputs swing. The digital output load during test is  
not to exceed an ac load of 10 pF or a dc current of 40 A.  
6 Supply voltages should remain stable within 5% for normal operation.  
7 Power dissipation measures with encode at rated speed.  
8 Analog input signal power at 1 dBFS; signal-to-noise (SNR) is the ratio of signal level to total noise (first six harmonics removed).  
ENCODE = 105 MSPS. SNR is reported in dBFS, related back to converter full scale.  
9 Analog input signal power at 1 dBFS; signal-to-noise and distortion (SINAD) is the ratio of signal level to total noise + harmonics. ENCODE = 105 MSPS.  
SINAD is reported in dBFS, related back to converter full scale.  
10Analog input signal equals 1 dBFS; SFDR is ratio of converter full scale to worst spur.  
11Both input tones at 7 dBFS; two-tone intermodulation distortion (IMD) rejection is the ratio of either tone to the worst third order intermod product.  
12Channel-to-channel isolation tested with A channel/50 terminated (AIN A2 grounded) and a full-scale signal applied to B channel (AIN B2).  
Specifications subject to change without notice.  
–3–  
REV. 0  
AD10201  
ABSOLUTE MAXIMUM RATINGS*  
EXPLANATION OF TEST LEVELS  
Test Level  
VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V  
VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V  
Analog Inputs . . . . . . . . . . . . . . . . . . . . . . 5 V p-p (18 dBm)  
Digital Inputs . . . . . . . . . . . . . . . . . . . . 0.5 V to VDD +0.5 V  
Digital Output Current . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
Operating Temperature (Ambient) . . . . . . . 55°C to +125°C  
Storage Temperature (Ambient) . . . . . . . . . 65°C to +150°C  
Maximum Junction Temperature . . . . . . . . . . . . . . . . . 150°C  
* Stresses above those listed under Absolute Maximum Ratings may cause permanent  
damage to the device. This is a stress rating only; functional operation of the device  
at these or any other conditions outside of those indicated in the operation sections  
of this specification is not implied. Exposure to absolute maximum ratings for  
extended periods may affect device reliability.  
I
100% production tested  
II 100% production tested at 25°C and sample tested at specific  
temperatures  
III Sample tested only  
IV Parameter is guaranteed by design and characterization  
testing  
V
Parameter is a typical value only  
VI 100% production tested at 25°C; guaranteed by design and  
characterization testing for industrial temperature range  
Table I. Output Coding (VREF = 2.5 V) (Two’s Complement)  
Code  
AIN (V)  
Digital Output  
THERMAL CHARACTERISTICS  
385-Lead BGA Package:  
The typical θJA of the module as determined by an IR scan is  
25.33°C/W.  
+2047  
·
·
+0.875  
·
·
0111 1111 1111  
·
·
0
0
0000 0000 0000  
1  
·
0.000427  
·
1111 1111 1111  
·
·
·
·
2048  
0.875  
1000 0000 0000  
SAMPLE N؊1  
SAMPLE N  
SAMPLE N؉10  
SAMPLE N؉11  
AIN  
SAMPLE N؉1  
SAMPLE N؉9  
1/fS  
ENCODE  
ENCODE  
tPD  
tV  
D11؊D0  
DATA N؊11  
DATA N؊10  
N؊9  
N؊2  
DATA N؊1  
DATA N  
DATA N؉1  
Figure 1. Timing Diagram  
ORDERING GUIDE  
Package Description  
Model  
Temperature Range  
Package Option  
AD10201AB  
AD10201/PCB  
25°C to +85°C (Ambient)  
+25°C  
385-Lead BGA (35 mm 35 mm)  
Evaluation Board with AD10201AB  
B-385  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the AD10201 features proprietary ESD protection circuitry, permanent damage may occur on  
devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–4–  
REV. 0  
AD10201  
PIN CONFIGURATION  
25  
23  
21  
19  
17  
15  
13  
11  
9
7
5
3
1
24  
22  
20  
18  
16  
14  
12  
10  
8
6
4
2
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA  
AB  
AC  
AD  
AE  
35 mm square  
BOTTOMVIEW  
PIN FUNCTION DESCRIPTIONS  
Mnemonic  
Function  
AGNDA  
REF_A_OUT  
NC  
A Channel Analog Ground. A and B grounds should be connected as close to the device as possible  
A Channel Internal Voltage Reference  
No connection  
AIN A1  
Analog Input for A side ADC (؊ input)  
AIN A2  
Analog Input for A side ADC (+ input)  
AVCC  
A
Analog Positive Supply Voltage (nominally 5.0 V)  
A Channel Digital Ground  
DGNDA  
D11AD0A  
ENCODEA  
ENCODEA  
Digital Outputs for ADC A. D0 (LSB)  
Complement of ENCODE  
Data conversion initiated on the rising edge of ENCODE input  
Digital Positive Supply Voltage (nominally 3.3 V)  
B Channel Digital Ground  
DVCC  
A
DGNDB  
D11BD0B  
AGNDB  
Digital Outputs for ADC B. D0 (LSB)  
B Channel Analog Ground. A and B grounds should be connected as close to the device as possible.  
Digital Positive Supply Voltage (nominally 3.3 V)  
Complement of ENCODE  
DVCC  
B
ENCODEB  
ENCODEB  
REF_B_OUT  
AIN B1  
Data conversion initiated on rising edge of ENCODE input  
B Channel Internal Voltage Reference  
Analog Input for B side ADC (؊ input)  
AIN B2  
Analog Input for B side ADC (+ input)  
AVCC  
B
Analog Positive Supply Voltage (nominally 5.0 V)  
REV. 0  
–5–  
AD10201  
385-LEAD BGA PINOUT  
Ball Signal Ball Signal  
No. Name  
Ball Signal  
Ball Signal  
No. Name  
Ball Signal  
No. Name  
Ball Signal  
No. Name  
No.  
Name  
No. Name  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
DNC  
DNC  
AGNDA  
AVCCA  
REF_A_OUT  
AGNDA  
DNC  
AGNDB  
AGNDB  
AVCCB  
AGNDB  
AVCCB  
DNC  
C16 AVCCB  
C17 AGNDB  
C18 AVCCB  
C19 DNC  
H24 AGNDB  
H25 AGNDB  
N16 AGNDB  
N22 AGNDB  
N23 AGNDB  
N24 AGNDB  
N25 AGNDB  
V24  
V25  
W1  
W2  
W3  
W4  
W22 DB4  
W23 DB4  
W24 DB4  
W25 DB4  
Y1  
Y2  
Y3  
Y4  
Y22  
Y23  
Y24  
Y25  
AA1 DGNDA  
AA2 DGNDA  
AA3 DGNDA  
AA4 DGNDA  
AA22 DGNDB  
AA23 DGNDB  
AA24 DGNDB  
AA25 DGNDB  
AB1 OVRA  
AB2 OVRA  
AB3 OVRA  
AB4 OVRA  
AB5 DGNDA  
AB6 DA6  
AB7 DA5  
AB8 DA4  
AB9 DA3  
AB10 DA2  
AB11 DA1  
AB12 DA0  
AB13 DGNDA  
AB14 DGNDB  
AB15 DB11  
AB16 DB10  
AB17 DB9  
AB18 DB8  
AB19 DB7  
AB20 DB6  
AB21 DGNDB  
AB22 OVRB  
AB23 OVRB  
AB24 OVRB  
AB25 OVRB  
AC1 DGNDA  
AC2 DGNDA  
AC3 DGNDA  
AC4 DGNDA  
AC5 DGNDA  
AC6 DA6  
DB3  
DB3  
DA8  
DA8  
DA8  
DA8  
AC13 DGNDA  
AC14 DGNDB  
AC15 DB11  
AC16 DB10  
AC17 DB9  
AC18 DB8  
AC19 DB7  
AC20 DB6  
AC21 DGNDB  
AC22 DGNDB  
AC23 DGNDB  
AC24 DGNDB  
AC25 DGNDB  
AD1 DGNDA  
AD2 DGNDA  
AD3 DGNDA  
AD4 DGNDA  
AD5 DGNDA  
AD6 DA6  
AD7 DA5  
AD8 DA4  
AD9 DA3  
AD10 DA2  
AD11 DA1  
AD12 DA0  
AD13 DGNDA  
AD14 DGNDB  
AD15 DB11  
AD16 DB10  
AD17 DB9  
AD18 DB8  
AD19 DB7  
AD20 DB6  
AD21 DGNDB  
AD22 DGNDB  
AD23 DGNDB  
AD24 DGNDB  
AD25 DGNDB  
AE1 DGNDA  
AE2 DGNDA  
AE3 DGNDA  
AE4 DGNDA  
AE5 DGNDA  
AE6 DA6  
AE7 DA5  
AE8 DA4  
AE9 DA3  
AE10 DA2  
AE11 DA1  
AE12 DA0  
AE13 DGNDA  
AE14 DGNDB  
AE15 DB11  
AE16 DB10  
AE17 DB9  
AE18 DB8  
AE19 DB7  
AE20 DB6  
AE21 DGNDB  
AE22 DGNDB  
AE23 DGNDB  
AE24 DGNDB  
AE25 DGNDB  
J1  
J2  
J3  
AVCCA  
AVCCA  
AVCCA  
C20 DNC  
C21 AGNDB  
C22 AGNDB  
C23 AGNDB  
C24 AGNDB  
C25 AGNDB  
J4  
AVCCA  
P1  
P2  
P3  
P4  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
DNC  
AGNDB  
AGNDB  
AGNDB  
DVCCB  
J22  
J23  
J24  
J25  
K1  
K2  
K3  
K4  
REF_B_OUT  
REF_B_OUT  
REF_B_OUT  
REF_B_OUT  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
A9  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
B24  
B25  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P22  
P23  
P24  
P25  
P25  
R1  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AINA2  
AINA1  
AGNDA  
DA7  
DA7  
DA7  
DA7  
DB5  
DB5  
DB5  
DB5  
K10 AVCCA  
K11 AGNDA  
K12 AGNDA  
K13 DNC  
K14 AGNDB  
K15 AGNDB  
K16 AVCCB  
K22 AGNDB  
K23 AGNDB  
K24 AGNDB  
K25 AGNDB  
DVCCB  
DVCC  
B
DNC  
D10 AVCCA  
D11 REF_A_OUT  
D12 AGNDA  
D13 DNC  
D14 AGNDB  
D15 AGNDB  
D16 AVCCB  
D17 AGNDB  
D18 AVCCB  
DVCCB  
DVCCB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
DNC  
DNC  
AGNDA  
AVCCA  
REF_A_OUT  
AGNDA  
DNC  
AGNDB  
AGNDB  
AVCCB  
DVCC  
A
R2  
DVCCA  
R3  
DVCCA  
R4  
DVCC  
A
L1  
L2  
L3  
L4  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
DNC  
AGNDA  
AGNDA  
DNC  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R22  
R23  
R24  
R25  
T1  
AGNDA  
AGNDA  
AGNDA  
DNC  
AGNDB  
AGNDB  
AGNDB  
DB0  
DB0  
DB0  
DB0  
DA11  
D19  
A
INB2  
D20 AINB1  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
L22  
L23  
L24  
L25  
M1  
M2  
M3  
M4  
D21 AGNDB  
D22 AGNDB  
D23 AGNDB  
D24 AGNDB  
D25 AGNDB  
AGNDB  
AGNDB  
DNC  
E1  
E2  
E3  
E4  
E22  
E23  
E24  
E25  
F1  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
ENCBB  
ENCBB  
ENCBB  
ENCBB  
ENCAB  
ENCAB  
ENCAB  
ENCAB  
T2  
DA11  
T3  
DA11  
T4  
DA11  
T10 AVCCA  
T11 AGNDA  
T12 AGNDA  
T13 DNC  
T14 AVCCB  
T15 AGNDB  
T16 AGNDB  
T22 DB1  
AGNDB  
AVCCB  
DNC  
DNC  
F2  
F3  
F4  
M10 AGNDA  
M11 AGNDA  
M12 AGNDA  
M13 DNC  
M14 AGNDB  
M15 AGNDB  
M16 AGNDB  
M22 ENCB  
M23 ENCB  
M24 ENCB  
M25 ENCB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
DNC  
F22  
F23  
F24  
F25  
G1  
G2  
G3  
G4  
T23 DB1  
T24 DB1  
T25 DB1  
U1  
U2  
U3  
U4  
DA10  
DA10  
DA10  
DA10  
G22 AGNDB  
G23 AGNDB  
G24 AGNDB  
G25 AGNDB  
N1  
N2  
N3  
N4  
ENCA  
ENCA  
ENCA  
ENCA  
U22 DB2  
U23 DB2  
U24 DB2  
U25 DB2  
DNC  
AGNDA  
AC7 DA5  
AC8 DA4  
AC9 DA3  
AC10 DA2  
AC11 DA1  
AC12 DA0  
C10 AVCCA  
H1  
H2  
H3  
H4  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
N10 AGNDA  
N11 AGNDA  
N12 AGNDA  
N13 DNC  
N14 AGNDB  
N15 AGNDB  
V1  
V2  
V3  
V4  
V22  
V23  
DA9  
DA9  
DA9  
DA9  
DB3  
DB3  
C11 REF_A_OUT  
C12 AGNDA  
C13 DNC  
C14 AGNDB  
C15 AGNDB  
H22 AGNDB  
H23 AGNDB  
–6–  
REV. 0  
AD10201  
385-LEAD BGA PINOUT (Top View, PCB Footprint)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA DNC  
AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA DNC  
DNC AGNDA AV  
A
REF_A_OUT AGNDA DNC AGNDB AGNDB AV B AGNDB AV  
B
DNC DNC AGNDB AGNDB AGNDB AGNDB AGNDB  
B DNC DNC AGNDB AGNDB AGNDB AGNDB AGNDB  
CC  
A
B
C
D
CC  
CC  
CC  
DNC AGNDA AV  
A
REF_A_OUT AGNDA DNC AGNDB AGNDB AV B AGNDB AV  
CC  
CC  
AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA DNC  
DNC AGNDA AV  
A
REF_A_OUT AGNDA DNC AGNDB AGNDB AV B AGNDB AV  
CC  
B
DNC DNC AGNDB AGNDB AGNDB AGNDB AGNDB  
CC  
CC  
AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA  
AGNDA AGNDA AGNDA AGNDA  
AGNDA AGNDA AGNDA AGNDA  
AGNDA AGNDA AGNDA AGNDA  
AGNDA AGNDA AGNDA AGNDA  
AGNDA AGNDA AGNDA AGNDA  
A
A2  
A
A1 AGNDA AV  
A
REF_A_OUT AGNDA DNC AGNCB AGNCB AV B AGNCB AV  
CC CC  
B
A
B2  
A
B1 AGNDB AGNDB AGNDB AGNDB AGNDB  
CC  
IN  
IN  
IN  
IN  
AGNDB AGNDB AGNDB AGNDB  
AGNDB AGNDB AGNDB AGNDB  
AGNDB AGNDB AGNDB AGNDB  
AGNDB AGNDB AGNDB AGNDB  
E
F
G
H
J
K
L
REF_B_OUTREF_B_OUT REF_B_OUTREF_B_OUT  
AGNDB AGNDB AGNDB AGNDB  
AV  
A
AGNDA AGNDA DNC AGNDB AGNDB AV B  
CC  
AGNDA AGNDA AGNDA AGNDA  
AGNDA AGNDA AGNDA AGNDA  
CC  
DNC  
AGNDA AGNDA DNC AGNDB AGNDB DNC  
ENCBB ENCBB ENCBB ENCBB  
M
N
AGNDA AGNDA AGNDA DNC AGNDB AGNDB AGNDB  
ENCB  
AGNDB AGNDB AGNDB AGNDB  
DV DV DV DV  
ENCB  
ENCB ENCB  
ENCAB ENCAB ENCAB ENCAB  
ENCA ENCA ENCA ENCA  
AGNDA AGNDA AGNDA DNC AGNDB AGNDB AGNDB  
DNC  
P
R
T
AGNDA AGNDA AGNDA AGNDA  
AGNDA AGNDA AGNDA  
AGNDB AGNDB AGNDB  
B
B
B
B
CC  
CC  
CC  
CC  
DV  
A
DV A DV A DV  
CC CC  
A
CC  
AGNDA AGNDA AGNDA DNC AGNDB AGNDB AGNDB  
DB0  
DB0  
DB0  
DB0  
CC  
DA11 DA11 DA11 DA11  
DA10 DA10 DA10 DA10  
AV  
A
AGNDA AGNDA DNC AV B AGNDB AGNDB  
CC  
DB1  
DB2  
DB1  
DB2  
DB1  
DB2  
DB1  
DB2  
CC  
U
V
DB3  
DB4  
DB5  
DB3  
DB4  
DB5  
DB3  
DB4  
DB5  
DB3  
DB4  
DB5  
DA9  
DA8  
DA7  
DA9  
DA8  
DA7  
DA9  
DA8  
DA7  
DA9  
DA8  
DA7  
W
Y
DGNDA DGNDA DGNDA DGNDA  
OVRA OVRA OVRA OVRA  
DGNDA DGNDA DGNDA DGNDA  
DGNDA DGNDA DGNDA DGNDA  
AA  
DGNDB DGNDB DGNDB DGNDB  
DB6 DGNDB OVRB OVRB OVRB OVRB  
DGNDA DA6  
DGNDA DA6  
DGNDA DA6  
DGNDA DA6  
DA5  
DA5  
DA5  
DA5  
DA4  
DA3  
DA3  
DA3  
DA3  
DA2  
DA2  
DA2  
DA2  
DA1  
DA1  
DA1  
DA1  
DA0 DGNDA DGNDB DB11 DB10 DB9 DB8  
DA0 DGNDA DGNDB DB11 DB10 DB9 DB8  
DA0 DGNDA DGNDB DB11 DB10 DB9 DB8  
DA0 DGNDA DGNDB DB11 DB10 DB9 DB8  
DB7  
DB7  
DB7  
DB7  
AB  
AC  
AD  
AE  
DA4  
DA4  
DA4  
DB6 DGNDB DGNDB DGNDB DGNDB DGNDB  
DB6 DGNDB DGNDB DGNDB DGNDB DGNDB  
DB6 DGNDB DGNDB DGNDB DGNDB DGNDB  
DGNDA DGNDA DGNDA DGNDA  
DNC = DO NOT CONNECT  
REV. 0  
–7–  
– Typical Performance Characteristics  
AD10201  
0
؊10  
؊20  
؊30  
؊40  
؊50  
؊60  
؊70  
؊80  
؊90  
؊100  
؊110  
؊120  
0
ENCODE = 105MSPS  
IN  
SNR = 67.65dBFS  
SFDR = 88.14dBFS  
ENCODE = 105MSPS  
IN = 121MHz (–1dBFS)  
SNR = 64.4dBFS  
SFDR = 65.4dBFS  
؊10  
؊20  
A
= 10MHz (–1dBFS)  
A
؊30  
؊40  
؊50  
؊60  
؊70  
؊80  
؊90  
؊100  
؊110  
؊120  
؊130  
؊130  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
45  
45  
50  
50  
50  
0
0
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
FREQUENCY – MHz  
FREQUENCY – MHz  
TPC 1. Single Tone @ 10 MHz  
TPC 4. Single Tone @ 121 MHz  
0
؊10  
؊20  
؊30  
؊40  
؊50  
؊60  
0
ENCODE = 105MSPS  
؊10  
ENCODE = 105MSPS  
= 10.3MHz AND 12MHz  
A
= 49MHz (–1dBFS)  
IN  
A
IN  
SFDR = 87.82dBFS  
؊20  
؊30  
؊40  
؊50  
؊60  
؊70  
؊80  
؊90  
؊100  
؊110  
SNR = 66.97dBFS  
SFDR = 82.66dBFS  
؊70  
؊80  
؊90  
؊100  
؊110  
؊120  
؊130  
؊120  
؊130  
0
5
10  
15  
20  
25  
30  
35  
40  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
FREQUENCY – MHz  
FREQUENCY – MHz  
TPC 2. Single Tone @ 49 MHz  
TPC 5. Two Tone @ 10/12 MHz  
0
؊10  
0
؊10  
؊20  
؊30  
؊40  
؊50  
؊60  
ENCODE = 105MSPS  
ENCODE = 105 MSPS  
= 71 AND 72 MHz  
SFDR = 83.03dBFS  
A
= 71MHz (–1dBFS)  
IN  
A
؊20  
SNR = 66.1dBFS  
SFDR = 81.3dBFS  
IN  
؊30  
؊40  
؊50  
2 2  
F F  
2 1  
2
F
F
؊60  
2
F
2
2
F
1
؊70  
؊70  
؊80  
F
1
1
F F  
1 2  
F
1
+
F
2
F
2
؊80  
؊90  
؊90  
؊100  
؊110  
؊120  
؊130  
؊100  
؊110  
؊120  
؊130  
0
5
10  
15  
20  
25  
30  
35  
40  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
FREQUENCY – MHz  
FREQUENCY – MHz  
TPC 3. Single Tone @ 71 MHz  
TPC 6. Two Tone @ 71/72 MHz  
–8–  
REV. 0  
AD10201  
0
؊10  
3.0  
2.0  
1.0  
ENCODE = 105MSPS  
INL MIN = 0.586  
INL MAX = 0.472  
ENCODE = 105MSPS  
= 121MHz AND 122MHz  
SFDR = 69.05dBFS  
A
IN  
؊20  
؊30  
؊40  
؊50  
؊60  
0.0  
؊70  
؊80  
؊1.0  
؊90  
؊100  
؊110  
؊120  
؊130  
؊2.0  
؊3.0  
0
1
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
512  
1024  
1536  
2048  
2560 3072 3584  
4096  
FREQUENCY – MHz  
OUTPUT CODES  
TPC 7. Two Tone @ 121/122 MHz  
TPC 10. Integral Nonlinearity  
0
1MHz = 1.007  
10MHz = 1.030  
50MHz = 1.028  
100MHz = 1.042  
140MHz = 1.095  
160MHz = 1.134  
200MHz = 1.254  
؊
؊
؊
1
2
3
؊
4
5
؊
؊6  
10  
100  
1000  
FREQUENCY – MHz  
TPC 8. Gain Flatness*  
TPC 11. Input Impedance S11  
3.0  
2.5  
10  
9
10MHz = 51.45 ؉ j 0.09  
50MHz = 50.34 ؉ j 1.21  
100MHz = 47.91 ؉ j 0.05  
150MHz = 46.57 ؉ j 4.13  
200MHz = 48.92 ؉ j 10.0  
ENCODE = 105MSPS  
DNL MIN = 0.244  
DNL MAX = 0.306  
8
2.0  
1.5  
1.0  
0.5  
0.0  
7
6
5
4
3
2
؊0.5  
؊1.0  
1
0
0.1  
1
10  
100  
1000  
512  
1024  
1536  
2048  
2560 3072 3584 4096  
FREQUENCY – MHz  
OUTPUT CODES  
TPC 9. Differential Nonlinearity  
TPC 12. Voltage Standing Wave Ratio (VSWR)  
*Gain flatness measurement is performed by  
applying a constant voltage at the device input.  
REV. 0  
–9–  
– Equivalent Circuits  
AD10201  
V
CC  
V
CC  
V
CC  
17k  
17k⍀  
8k⍀  
Q1  
NPN  
ENCODE  
ENCODE  
100⍀  
100⍀  
8k⍀  
V
OUTPUT  
REF  
Test Circuit 1. Equivalent ENCODE Input  
Test Circuit 3. Equivalent Voltage Reference Output  
V
CC  
V
CC  
5k⍀  
5k⍀  
7k⍀  
A
2
IN  
50⍀  
100  
DIGITAL  
OUTPUT  
A
1
IN  
7k⍀  
Test Circuit 2. Equivalent Digital Output  
Test Circuit 4. Equivalent Analog Input  
DEFINITION OF TERMS  
Analog Bandwidth  
The analog input frequency at which the spectral power of the  
fundamental frequency (as determined by the FFT analysis) is  
reduced by 3 dB.  
Output Propagation Delay  
The delay between the 50% point of the rising edge of ENCODE  
command and the time when all output data bits are within valid  
logic levels.  
Power Supply Rejection Ratio  
Aperture Delay  
The delay between the 50% point on the rising edge of the ENCODE  
command and the instant at which the analog input is sampled.  
The ratio of a change in output offset voltage to a change in  
power supply voltage.  
Signal-to-Noise-and-Distortion (SINAD)  
Aperture Uncertainty (Jitter)  
The sample-to-sample variation in aperture delay.  
The ratio of the rms signal amplitude (set at 1 dB below full-scale)  
to the rms value of the sum of all other spectral components,  
excluding the first six harmonics and dc. [May be reported in dBc  
(i.e., degrades as signal levels are lowered) or in dBFS (always  
related back to converter full-scale).]  
Differential Nonlinearity  
The deviation of any code from an ideal 1 LSB step.  
ENCODE Pulsewidth/Duty Cycle  
Signal-to-Noise Ratio (without Harmonics)  
Pulsewidth high is the minimum amount of time that the  
ENCODE pulse should be left in logic 1state to achieve rated  
performance; pulsewidth low is the minimum time ENCODE  
pulse should be left in low state. At a given clock rate, these specs  
define an acceptable ENCODE duty cycle.  
The ratio of the rms signal amplitude (set at 1 dB below full-scale)  
to the rms value of the sum of all other spectral components,  
excluding the first six harmonics and dc. [May be reported in  
dBc (i.e., degrades as signal levels are lowered) or in dBFS (always  
related back to converter full-scale).]  
Harmonic Distortion  
The ratio of the rms signal amplitude to the rms value of the  
worst harmonic component.  
Spurious-Free Dynamic Range  
The ratio of the rms signal amplitude to the rms value of the peak  
spurious spectral component. The peak spurious component may  
or may not be a harmonic. [May be reported in dBc (i.e., degrades  
as signal levels is lowered) or in dBFS (always related back to  
converter full-scale).]  
Integral Nonlinearity  
The deviation of the transfer function from a reference line measured  
in fractions of 1 LSB using a best straight linedetermined by  
a least square curve fit.  
Two-Tone Intermodulation Distortion Rejection  
The ratio of the rms value of either input tone to the rms value  
of the worst third order intermodulation product; reported in dBc.  
Minimum Conversion Rate  
The ENCODE rate at which the SNR of the lowest analog signal  
frequency drops by no more than 3 dB below the guaranteed limit.  
Voltage Standing Wave Ratio (VSWR)  
The ratio of the amplitude of the electric field at a voltage maximum  
to that at an adjacent voltage minimum.  
Maximum Conversion Rate  
The ENCODE rate at which parametric testing is performed.  
–10–  
REV. 0  
AD10201  
APPLICATION NOTES  
Theory of Operation  
Often, the cleanest clock source is a crystal oscillator producing  
a pure sine wave. In this configuration, or with any roughly sym-  
metrical clock input, the input can be ac-coupled and biased to a  
reference voltage that also provides the ENCODE. This ensures  
that the reference voltage is centered on the encode signal.  
The AD10201 is a high-dynamic-range dual 12-bit, 105 MHz sub-  
range pipeline converter that uses switched capacitor architecture.  
The analog input section uses AINA2/B2 at 1.75 V p-p with an input  
impedance of 50 . The analog input includes an ac-coupled  
wideband 1:1 transformer, which provides high dynamic range and  
SNR while maintaining VSWR and gain flatness. The ADC includes  
a high bandwidth linear track/hold that gives excellent spurious  
performance up to and beyond the Nyquist rate. The high bandwidth  
track/hold has a low jitter of 0.25 ps rms, leading to excellent SNR  
and SFDR performance. AC-coupled differential PECL/ECL  
encode inputs are recommended for optimum performance.  
Digital Outputs  
The digital outputs are 3.3 V (2.7 V to 3.6 V) TTL/CMOS-  
compatible for lower power consumption.  
Analog Input  
The analog input is a single-ended ac-coupled high performance  
1:1 transformer with an input impedance of 50 to 250 MHz.  
The nominal full-scale input is 1.75 V p-p.  
Special care was taken in the design of the analog input section  
of the AD10201 to prevent damage and corruption of data when  
the input is overdriven.  
USING THE AD10201  
ENCODE Input  
Any high speed A/D converter is extremely sensitive to the quality  
of the sampling clock provided by the user. A track/hold circuit  
is essentially a mixer, and any noise, distortion, or timing jitter  
on the clock will be combined with the desired signal at the A/D  
output. For that reason, considerable care has been taken in the  
design of the ENCODE input of the AD10201, and the user is  
advised to give commensurate thought to the clock source. The  
ENCODE inputs are fully TTL/CMOS compatible. For optimum  
performance, the AD10201 must be clocked differentially. Note  
that the ENCODE inputs cannot be driven directly from PECL  
level signals (VIHD is 3.5 V max). PECL level signals can easily  
be accommodated by ac-coupling as shown in Figure 2. Good  
performance is obtained using an MC10EL16 in the circuit to  
drive the encode inputs.  
Voltage Reference  
A stable and accurate 2.5 V voltage reference is designed into the  
AD10201 (VREFOUT). An external voltage reference is not required.  
Timing  
The AD10201 provides latched data outputs, with 10 pipeline  
delays. Data outputs are available one propagation delay (tPD) after  
the rising edge of the ENCODE command (see Figure 1). The  
length of the output data lines and loads placed on them should  
be minimized to reduce transients within the AD10201; these  
transients can detract from the converters dynamic performance.  
The minimum guaranteed conversion rate of the AD10201 is  
10 MSPS. At internal clock rates below 10 MSPS dynamic perfor-  
mance may degrade. Therefore, input clock rates below 10 MHz  
should be avoided.  
AD10201  
0.1F  
ENCODE  
GROUNDING AND DECOUPLING  
Analog and Digital Grounding  
PECL  
GATE  
ENCODE  
Proper grounding is essential in any high speed, high resolution  
system. Multilayer printed circuit boards (PCBs) are recommended  
to provide optimal grounding and power schemes. The use of  
ground and power planes offers distinct advantages:  
0.1F  
510⍀  
510⍀  
GND  
Figure 2. AC-Coupling to ENCODE Inputs  
ENCODE Voltage Level Definition  
1. The minimization of the loop area encompassed by a signal  
and its return path.  
The voltage level definitions for driving ENCODE and ENCODE  
in differential mode are shown in Figure 3 and Table II.  
2. The minimization of the impedance associated with ground  
and power paths.  
3. The inherent distributed capacitor formed by the powerplane,  
PCB insulation, and ground plane.  
ENCODE  
V
IHD  
V
V
ID  
ICM  
These characteristics result in both a reduction of electromagnetic  
interference (EMI) and an overall improvement in performance.  
ENCODE  
V
ILD  
It is important to design a layout that prevents noise from coupling  
to the input signal. Digital signals should not be run in parallel  
with input signal traces and should be routed away from the input  
circuitry. The PCB should have a ground plane covering all unused  
portions of the component side of the board to provide a low  
impedance path and manage the power and ground currents. The  
ground plane should be removed from the area near the input  
pins to reduce stray capacitance.  
Figure 3. Differential Input Levels  
Table II. ENCODE Inputs  
Description  
Min  
Nom  
Max  
Differential Signal  
Amplitude (VID)  
500 mV  
750 mV  
Differential Signal  
Amplitude (VID)  
5 V  
Low Differential Input  
Voltage (VILD  
Common-Mode  
Input (VICN  
)
0 V  
)
1.25 V  
1.6 V  
REV. 0  
–11–  
AD10201  
Solder Reflow Profile  
The solder reflow profile provided in Figure 4 is recommended.  
It is recommended that high quality ceramic chip capacitors be used  
to decouple each supply pin to ground directly at the device. All  
capacitors can be standard high quality ceramic chip capacitors.  
250  
200  
Care should be taken when placing the digital output runs. Because  
the digital outputs have such a high slew rate, the capacitive loading  
on the digital outputs should be minimized. Circuit traces for the  
digital outputs should be kept short and connect directly to the  
receiving gate. Internal circuitry buffers the outputs of the AD9432  
ADC through a resistor network to eliminate the need to exter-  
nally buffer the device from the receiving gate.  
150  
100  
EVALUATION BOARD  
The AD10201 evaluation board (Figures 6a6f) is designed to  
provide optimal performance for evaluation of the AD10201  
analog-to-digital converter. The board encompasses everything  
needed to ensure the highest level of performance for evaluating  
the AD10201. The board requires an analog input signal, encode  
clock, and power supply inputs. The clock is buffered on-board  
to provide clocks for the latches. The digital outputs and out  
clocks are available at the standard 40-pin connectors J1 and J2.  
50  
0
0
50  
100  
150  
200  
250  
300  
350  
400  
TIME – Seconds  
Figure 4. Typical Solder Reflow Profile  
LAYOUT INFORMATION  
The schematic of the evaluation board (Figures 5a5d) represents  
a typical implementation of the AD10201. The pinout of the  
AD10201 is very straightforward and facilitates ease of use and the  
implementation of high-frequency/high resolution design practices.  
Power to the analog supply pins is connected via banana jacks.  
The analog supply powers the associated components and the  
analog section of the AD10201. The digital outputs of the  
AD10201 are powered via banana jacks with 3.3 V. Contact the  
factory if additional layout or applications assistance is required.  
BILL OF MATERIALS LIST FOR AD10201 EVALUATION BOARD  
Quantity Reference Designator  
Value  
Description  
Part Number  
2
U16, U17  
IC, Low Voltage 16-Bit D-Type Flip-Flop  
with 5 V Tolerant Inputs and Outputs  
IC, BGA 35 35 385  
IC, Precision Low Dropout any CAP  
Voltage Regulator  
74LCX16374MTD  
(Fairchild)  
AD10201AB  
ADP3330ART-3.3-RL7  
(Analog)  
1
2
U1  
U14, U15  
4
8
32  
R38, R39, R56, R58  
R1, R7, R8, R41, R60, R61, R71, R72 51  
R3, R4, R9R18, R23R30, R35,  
R36, R40, R42R46, R63R66  
C1, C2, C5C10, C12, C16C18,  
C20C26, C28, C33C35  
C13, C27  
J1, J2  
L1, L2, L3, L4  
U2, U3, U9, U11  
33 kΩ  
RES 33 k1/10W 0.1% 0805 SMD  
RES 51 1/10W 5% 0805 SMD  
RES 100 1/10W 1% 0805 SMD  
ERA-6YEB333V (Panasonic)  
ERJ-6GEYJ510V (Panasonic)  
ERJ-6ENF1000V  
(Panasonic)  
ECJ-2VF1H104Z  
(Panasonic)  
100 Ω  
23  
0.1 µF CAP 0.1 µF 50 V Ceramic Y5V 0805  
0.47 µF CAP 0.47 µF 25 V Ceramic Y5V 0805  
2
2
4
4
ECJ-2YF1E474Z (Panasonic)  
2 20 Male Connector Strip, 100 Centers TSW-120-08G-D (Samtec)  
SMT Ferrite Bead  
IC, 3.3 V/5 V ECL Differential  
Receiver/Driver  
47 Ω  
2743019447 (Fair Rite)  
MC10EP16D  
(Motorola)  
8
2
E3E6, E25, E26, E33, E34  
U4, U10  
Power Jack, Banana Plug  
3.3 V Dual Differential  
108-0740-001 (Johnson Company)  
SY100ELT23L  
LVPECL-to-LVTTL Translator  
Solid Tantalum Chip Capacitor,  
10 µF, 16 V, 20%  
(Micrel-Synergy)  
T491C106M016AS  
(KEMET)  
10  
8
C3, C4, C11, C14, C15, C19,  
C29, C30C32  
J3J7, J10J12  
10 µF  
SMA PLUG 200Mil STR GOLD  
142-0801-201  
(Johnson Components Inc.)  
4
4
1
2
4
Spacer Aluminum, Hex MF (Standoff)  
Nut Hex Stl #4-40 UNC-2B  
GS03983 Rev. A (PCB)  
CAP 0.047 µF 25 V Ceramic Y5V 0603  
RES 0 1/16 W 5% 0402  
AD10201/AD10226 Evaluation Board  
C36, C37  
JP3, JP6, JP8, JP12  
ECJ-1VB1C473K  
ER J-2GEOR00  
0 Ω  
–12–  
REV. 0  
AD10201  
R18  
100  
B11A MSB  
B10A  
B9A  
DUT_3.3VDA  
42  
R17  
U16  
100⍀  
VCC  
R7  
31  
7
VCC  
VCC  
VCC  
O15  
O14  
O13  
O12  
O11  
O10  
O9  
R16  
100⍀  
3.3VDA  
51⍀  
25  
24  
26  
27  
29  
30  
32  
33  
35  
36  
48  
1
37  
38  
40  
41  
43  
44  
46  
47  
28  
34  
39  
45  
J1  
40  
LATCHA  
CP2  
OE2  
18  
23  
22  
20  
19  
17  
16  
14  
13  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
1
40  
39  
38  
37  
36  
35  
34  
33  
R40  
100⍀  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
MSB D11A  
D10A  
D9A  
I15  
I14  
I13  
I12  
I11  
I10  
I9  
MSB B11A  
B10A  
B9A  
2
3
4
5
6
7
8
B8A  
C15  
+
10F  
R44  
100⍀  
D8A  
D7A  
D6A  
D5A  
16V  
B8A  
B7A  
B6A  
B7A  
R45  
100⍀  
DGNDA  
B5A  
B4A  
B6A  
R71  
51⍀  
D4A  
I8  
O8  
9
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
R46  
100⍀  
CP1  
BUFLATA  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
OE1  
I7  
I6  
I5  
I4  
I3  
I2  
I1  
I0  
GND  
GND  
GND  
GND  
B5A  
12  
11  
9
8
6
5
3
2
21  
15  
10  
4
O7  
O6  
O5  
O4  
O3  
O2  
O1  
O0  
GND  
GND  
GND  
GND  
D3A  
D2A  
D1A  
R15  
100⍀  
B3A  
B2A  
B1A  
B4A  
R14  
100⍀  
LSB D0A  
LSB B0A  
B3A  
R13  
100⍀  
B2A  
R24  
100⍀  
B1A  
R23  
100⍀  
DGNDA  
DGNDA  
B0A LSB  
74LCX16374MTD  
DGNDA  
DGNDA  
R11  
100⍀  
B11B MSB  
B10B  
B9B  
DUT_3.3VDB  
42  
R10  
100⍀  
U17  
VCC  
R8  
31  
7
VCC  
VCC  
VCC  
O15  
O14  
O13  
O12  
O11  
O10  
O9  
R30  
100⍀  
3.3VDB  
51⍀  
25  
24  
26  
27  
29  
30  
32  
33  
35  
36  
48  
1
37  
38  
40  
41  
43  
44  
46  
47  
28  
34  
39  
45  
J2  
LATCHB  
CP2  
OE2  
18  
23  
22  
20  
19  
17  
16  
14  
13  
1
2
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
1
2
3
4
5
6
7
8
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
R29  
MSB D11B  
D10B  
D9B  
I15  
I14  
I13  
I12  
I11  
I10  
I9  
MSB B11B  
100⍀  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
B10B  
B9B  
B8B  
B7B  
B6B  
B5B  
B4B  
B8B  
C14  
10F  
16V  
+
R28  
100⍀  
D8B  
D7B  
D6B  
D5B  
B7B  
R27  
100⍀  
DGNDB  
B6B  
R72  
51⍀  
D4B  
I8  
O8  
9
R26  
100⍀  
CP1  
BUFLATB  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
OE1  
I7  
I6  
I5  
I4  
I3  
I2  
I1  
I0  
GND  
GND  
GND  
GND  
B5B  
12  
11  
9
8
6
5
3
2
21  
15  
10  
4
O7  
O6  
O5  
O4  
O3  
O2  
O1  
O0  
GND  
GND  
GND  
GND  
D3B  
D2B  
D1B  
R12  
100⍀  
B3B  
B2B  
B1B  
B4B  
R9  
100⍀  
LSB D0B  
LSB B0B  
B3B  
R25  
100⍀  
B2B  
R36  
100⍀  
B1B  
R35  
100⍀  
DGNDB  
DGNDB  
B0B LSB  
74LCX16374MTD  
DGNDB  
DGNDB  
Figure 5a. Evaluation Board Schematic  
REV. 0  
–13–  
AD10201  
E4  
AGNDA  
5VAA  
L3  
E6  
1
2
J3  
5VAA  
A
A1  
AINA1  
IN  
47@ 100MHz  
C3  
10F  
16V  
C11  
+
+
JP1  
C20  
0.1F  
10F  
16V  
STITCHESTOTIE GROUNDSTOGETHER  
AGNDA  
AGNDA  
AGNDA  
DGNDA  
DGNDA  
DGNDA  
AGNDA  
DGNDB  
E78  
E7  
E10  
E8  
E77  
E12  
E9  
E11  
E2  
DGNDB  
DGNDB  
AGNDA  
AGNDB  
AGNDB  
E3  
E5  
E1  
AGNDB  
J4  
L4  
5VAB  
A
A2  
AINA2  
AINB2  
IN  
1
2
5VAB  
E42  
E44  
E48  
E66  
E67  
E70  
E72  
E73  
E76  
E81  
E41  
E43  
E47  
E65  
E68  
E69  
E71  
E74  
E75  
E82  
47@ 100MHz  
AGNDA  
J7  
C4  
C19  
+
+
C21  
0.1F  
10F  
16V  
10F  
16V  
A
B2  
IN  
AGNDB  
AGNDB  
AGNDB  
E34  
E25  
DGNDA  
AGNDA  
DGNDA  
3.3VDA  
L1  
E29  
E36  
E38  
E40  
E45  
E79  
E84  
E30  
E35  
E37  
E39  
E46  
E80  
E83  
1
2
J6  
DUT_3.3VDA  
A
B1  
AINB1  
IN  
47@ 100MHz  
C29  
C31  
+
+
JP2  
C12  
10F  
10F  
0.1F  
16V  
16V  
AGNDB  
DGNDB  
AGNDB  
DGNDA  
DGNDA  
E33  
E26  
DGNDB  
3.3VDB  
L2  
1
2
DUT_3.3VDB  
47@ 100MHz  
DUT_3.3VDA  
DUT_3.3VDB  
C18  
5VAA  
C30  
C32  
+
+
C16  
0.1F  
10F  
10F  
C34  
0.1F  
C10  
0.1F  
C9  
0.1F  
C17  
0.1F  
16V  
16V  
0.1F  
DGNDB  
DGNDB  
AGNDA  
DGNDA  
DGNDB  
Figure 5b. Evaluation Board Schematic  
–14–  
REV. 0  
AD10201  
3.3VA  
U14  
OUT  
2
6
1
5
3
IN  
5VAA  
NR  
SD  
ERR  
GND  
4
AGNDA  
C1  
0.1F  
C7  
0.1F  
J5  
U2  
ENCODE  
ENCAB  
ENCA  
1
8
R56  
33k⍀  
R1  
51⍀  
NC  
VCC  
2
3
4
7
6
5
3.3VA  
D
Q
AGNDA  
D
Q
C8  
0.1F  
AGNDA  
C13  
VBB VEE  
R42  
100⍀  
R43  
100⍀  
0.1F  
MC10EP16D  
25V  
AGNDA  
AGNDA  
3.3VDA  
U3  
1
2
3
4
8
7
6
5
R58  
33k⍀  
NC  
D
VCC  
Q
3.3VDA  
U4  
3.3VDA  
1
2
3
4
8
7
6
5
LATCHA  
E23  
D0  
D0  
D1  
D1  
VCC  
Q
D
Q
C2  
0.1F  
VBB VEE  
C6  
0.1F  
J12  
E19  
Q
R3  
100⍀  
R4  
100⍀  
MC10EP16D  
ENCA  
GND  
BUFLATA  
C5  
0.1F  
R41  
51⍀  
SY100EPT23L  
DGNDA  
AGNDA  
DGNDA  
AGNDA  
DGNDA  
3.3VB  
U15  
2
1
5
3
IN  
OUT  
NR  
5VAB  
6
SD  
ERR  
GND  
4
AGNDB  
C22  
0.1F  
C24  
0.1F  
J10  
U11  
ENCODE  
ENCBB  
ENCB  
1
8
R38  
33k⍀  
R60  
51⍀  
NC  
VCC  
2
3
4
7
6
5
3.3VB  
D
Q
AGNDB  
D
Q
C28  
0.1F  
AGNDB  
C27  
0.47F  
25V  
VBB VEE  
R63  
100⍀  
R64  
100⍀  
MC10EP16D  
AGNDB  
AGNDB  
3.3VDB  
U9  
1
2
3
4
8
7
6
5
R39  
33k⍀  
NC  
D
VCC  
Q
3.3VDB  
U10  
VCC  
3.3VDB  
1
2
3
4
8
7
6
5
LATCHB  
E24  
D0  
D0  
D1  
D1  
D
Q
C23  
0.1F  
Q
VBB VEE  
C25  
0.1F  
J11  
E22  
Q
R65  
100⍀  
R66  
100⍀  
MC10EP16D  
ENCB  
GND  
BUFLATB  
C26  
0.1F  
R61  
51⍀  
SY100EPT23L  
DGNDB  
AGNDB  
DGNDB  
AGNDB  
DGNDB  
Figure 5c. Evaluation Board Schematic  
REV. 0  
–15–  
AD10201  
C33  
0.1F  
E49  
AGNDA  
A1  
A2  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
A3  
A4  
A5  
AGNDA  
A6  
J1  
J2  
J3  
J4  
A10  
B10  
C10  
D10  
A9  
5VAA  
5VAA  
5VAA  
5VAA  
5VAA  
5VAA  
5VAA  
5VAA  
+5VAA  
A12  
B1  
B2  
B3  
B4  
B5  
B6  
B9  
R1  
R2  
R3  
R4  
B12  
C1  
3.3VDA  
3.3VDA  
3.3VDA  
3.3VDA  
DUT_3.3VDA  
C2  
C3  
C4  
A13  
B13  
C13  
D13  
K13  
L13  
M13  
N13  
P13  
R13  
T13  
C5  
SHEILD  
SHEILD  
SHEILD  
SHEILD  
SHEILD  
SHEILD  
SHEILD  
SHEILD  
SHEILD  
SHEILD  
SHEILD  
C6  
C9  
C12  
D1  
D2  
D3  
D4  
D5  
D6  
D9  
D12  
E1  
P22  
P23  
P24  
P25  
3.3VDB  
3.3VDB  
3.3VDB  
3.3VDB  
DUT_3.3VDB  
+5VAB  
E2  
E3  
E4  
F1  
A16  
B16  
C16  
D16  
A18  
B18  
C18  
D18  
F2  
5VAB  
5VAB  
5VAB  
5VAB  
5VAB  
5VAB  
5VAB  
5VAB  
F3  
F4  
G1  
G2  
G3  
G4  
H1  
H2  
A14  
A15  
A17  
A21  
A22  
A23  
A24  
A25  
B14  
B15  
B17  
B21  
B22  
B23  
B24  
B25  
C14  
C15  
C17  
C21  
C22  
C23  
C24  
C25  
D14  
D15  
D17  
D21  
D22  
D23  
D24  
D25  
E22  
E23  
E24  
E25  
F22  
F23  
F24  
F25  
G22  
G23  
G24  
G25  
H22  
H23  
H24  
H25  
K14  
K15  
K16  
K22  
K23  
K24  
K25  
L14  
L15  
L16  
M14  
M15  
M16  
N14  
N15  
N16  
N22  
N23  
N24  
N25  
P14  
P15  
P16  
R14  
R15  
R16  
T14  
T15  
T16  
H3  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
H4  
K1  
+5VAA  
K2  
C36  
K3  
0.047F  
K4  
K10  
K11  
K12  
L1  
JP3  
AGNDA  
+5VAA  
JP4  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
L2  
L3  
L4  
AGNDA  
+5VAA  
L10  
L11  
L12  
M10  
M11  
M12  
N10  
N11  
N12  
P1  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AD10201  
AGNDA  
JP6  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
P2  
P3  
P4  
AGNDA  
P10  
P11  
P12  
R10  
R11  
R12  
T10  
T11  
T12  
+5VAA  
AGNDA  
AGNDA  
AA1  
AA2  
AA3  
AA4  
AB5  
AB13  
AC1  
AC2  
AC3  
AC4  
AC5  
AC13  
AD1  
AD2  
AD3  
AD4  
AD5  
AD13  
AE1  
AE2  
AE3  
AE4  
AE5  
AE13  
DGNDA  
DGNDA  
DGNDA  
DGNDA  
DGNDA  
DGNDA  
DGNDA  
DGNDA  
DGNDA  
DGNDA  
DGNDA  
DGNDA  
DGNDA  
DGNDA  
DGNDA  
DGNDA  
DGNDA  
DGNDA  
DGNDA  
DGNDA  
DGNDA  
DGNDA  
DGNDA  
DGNDA  
DGNDA  
+5VAB  
JP8  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
+5VAB  
JP9  
C37  
0.047F  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
AA22  
AA23  
AA24  
AA25  
AB14  
AB21  
AC14  
AC21  
AC22  
AC23  
AC24  
AC25  
AD14  
AD21  
AD22  
AD23  
AD24  
AD25  
AE14  
AE21  
AE22  
AE23  
AE24  
AE25  
DGNDB  
DGNDB  
DGNDB  
DGNDB  
DGNDB  
DGNDB  
DGNDB  
DGNDB  
DGNDB  
DGNDB  
DGNDB  
DGNDB  
DGNDB  
DGNDB  
DGNDB  
DGNDB  
DGNDB  
DGNDB  
DGNDB  
DGNDB  
DGNDB  
DGNDB  
DGNDB  
DGNDB  
AGNDB  
DGNDB  
+5VAB  
JP12  
+5VAB  
AGNDB  
AGNDB  
C35  
0.1F  
AGNDB  
AGNDB  
E50  
Figure 5d. Evaluation Board Schematic  
–16–  
REV. 0  
AD10201  
J2  
E5 +5VAB  
E3  
AGNDB  
E33 DGNDB  
C16  
E26 +3.3VDB  
E37  
E30  
E38  
E29  
C30  
+
+
C4  
L4  
E1  
E2  
E35  
E80  
E46  
E83  
L2  
+
E36  
E79  
E45  
E84  
C32  
C19  
+
J10  
ENCB  
ENCB  
E22  
BUFLATB  
LATCHB  
E24  
J11  
E50  
REF_B  
J6  
JP2  
A
B2  
IN  
A
B1  
E11  
E39  
IN  
J7  
E12  
E77  
GNDTIE  
A
A1  
GNDTIE  
GNDTIE  
GNDTIE  
IN  
E78  
E7  
J3  
E49  
E8  
E47  
REF_A  
J1  
JP1  
J4  
U1  
GS03983 REV: A  
AD10201/ AD10206  
EVALUATION BOARD  
A
A2  
IN  
BUFLATA  
E19  
E23  
ENCA  
J12  
LATCHA  
E82  
E81  
E66  
E10  
E42  
E44  
E67  
E73  
E72  
E70  
E76  
ENCA  
E65  
E9  
J5  
C31  
L3  
+
C11  
E41  
E43  
E68  
E74  
E71  
E69  
E75  
+
L1  
C29  
+
C3  
+
C12  
DGNDA  
AGNDA  
+5V  
AA  
E4  
E6  
E34  
E25  
+3.3VDA  
Figure 6a. Mechanical Layout Top View  
Figure 6c. Top View  
C14  
R72  
R61  
U10  
C23  
U11  
R60  
C22  
R39  
C26  
R38  
C27  
C17  
R8  
R66  
R65  
C25  
U17  
U9  
U15  
C18C28 C24  
C21  
C33  
C37  
C36  
JP8  
JP3  
GNDTIE  
GNDTIE  
+5V  
GNDTIE  
GNDTIE  
U16  
C20  
C8  
C10  
C7  
R42  
C15  
C34  
U3  
C9  
R7  
R4  
R3  
U14  
C1  
R1  
U2  
C6  
U4  
R71  
C5  
Figure 6b. Mechanical Layout Bottom View  
Figure 6d. Layer 2  
REV. 0  
–17–  
AD10201  
Figure 6f. Bottom View  
Figure 6e. Layer 3  
–18–  
REV. 0  
AD10201  
OUTLINE DIMENSIONS  
Dimensions shown in millimeters (mm).  
385-Lead Ball Grid Array (BGA)  
(B-385)  
37.00  
35.00 BSC SQ  
33.00  
24 22 20 18 16 14 12 10  
25 23 21 19 17 15 13 11  
8 6 4 2  
7 5 3 1  
DETAIL C  
9
A
C
E
B
D
F
H
K
M
P
T
G
J
L
30.48 BSC  
SQ  
N
R
U
W
V
Y
AA  
AC  
AE  
AB  
AD  
DETAIL A  
1.27 TYP  
DETAIL B  
3.20  
MAX  
COMPONENT  
VOLUME  
1.15  
1.02  
0.89  
0.90  
0.75  
0.60  
0.75  
0.60  
0.50  
DETAIL A  
DETAIL B  
DETAIL C  
REV. 0  
–19–  
–20–  

相关型号:

AD10201AB

DUAL-CHANNEL, 12-BIT 105MSPS IF SAMPLING A/D CONVERTER
ADI

AD10201PCB

High Speed ADC USB FIFO Evaluation Kit
ADI

AD10226

Dual-Channel, 12-Bit 125 MSPS IF Sampling A/D Converter
ADI

AD10226/PCB

Dual-Channel, 12-Bit 125 MSPS IF Sampling A/D Converter
ADI

AD10226AB

Dual-Channel, 12-Bit 125 MSPS IF Sampling A/D Converter
ADI

AD10226PCB

High Speed ADC USB FIFO Evaluation Kit
ADI

AD1024-12F

Very Low Cost, 20W DIN Rail Mount Single Output AC/DC Power Supplies
MPD

AD1024-24F

Very Low Cost, 20W DIN Rail Mount Single Output AC/DC Power Supplies
MPD

AD1024-48F

Very Low Cost, 20W DIN Rail Mount Single Output AC/DC Power Supplies
MPD

AD102412F

AD1024F Series
MPD

AD10242

Dual, 12-Bit, 40 MSPS MCM A/D Converter with Analog Input Signal Conditioning
ADI

AD10242/PCB

Dual, 12-Bit, 40 MSPS MCM A/D Converter with Analog Input Signal Conditioning
ADI