AD13280BF [ADI]

Dual-Channel, 12-Bit, 80 MSPS ADC with Analog Input Signal Conditioning; 双通道, 12位, 80 MSPS ADC模拟输入信号调理
AD13280BF
型号: AD13280BF
厂家: ADI    ADI
描述:

Dual-Channel, 12-Bit, 80 MSPS ADC with Analog Input Signal Conditioning
双通道, 12位, 80 MSPS ADC模拟输入信号调理

文件: 总28页 (文件大小:1264K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual-Channel, 12-Bit, 80 MSPS ADC  
with Analog Input Signal Conditioning  
AD13280  
FEATURES  
APPLICATIONS  
Dual 80 MSPS, minimum sample rate  
Channel-to-channel matching, 1ꢀ gain error  
90 dB channel-to-channel isolation  
DC-coupled signal conditioning  
Radar processing (optimized for I/Q baseband operation)  
Phased array receivers  
Multichannel, multimode receivers  
GPS antijamming receivers  
80 dB spurious-free dynamic range  
Selectable bipolar inputs ( 1 V and 0.ꢁ V ranges)  
Integral single-pole, low-pass Nyquist filter  
Twos complement output format  
3.3 V compatible outputs  
Communications receivers  
PRODUCT HIGHLIGHTS  
1. Guaranteed sample rate of 80 MSPS.  
2. Input signal conditioning; gain and impedance match.  
3. Single-ended, differential, or off-module filter option.  
4. Fully tested/characterized full channel performance.  
1.8ꢁ W per channel  
FUNCTIONAL BLOCK DIAGRAM  
AMP-IN-B-2  
AMP-IN-B-1  
AMP-IN-A-1  
AMP-IN-A-2  
AMP-OUT-B  
AMP-OUT-A  
A–IN  
B+IN  
B–IN  
A+IN  
AD13280  
DROUTA  
D0A (LSB)  
D1A  
DROUTB  
ENCODEB  
ENCODEB  
D2A  
TIMING  
D3A  
VREF  
DROUT  
VREF  
DROUT  
D4A  
D11B (MSB)  
D10B  
D5A  
12  
12  
9
5
100OUTPUT TERMINATORS  
D6A  
D7A  
D8A  
100OUTPUT TERMINATORS  
D9B  
D8B  
7
3
TIMING  
D7B  
D0B  
(LSB)  
ENCODEA ENCODEA  
D1B D2B D3B D4B D5B D6B  
D9A D10A D11A  
(MSB)  
Figure 1.  
Rev. C  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 www.analog.com  
Fax: 781.461.3113 ©2002–2008 Analog Devices, Inc. All rights reserved.  
 
AD13280  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Input and Output Stages................................................................ 13  
Theory of Operation ...................................................................... 14  
Using the Single-Ended Input .................................................. 14  
Using the Differential Input...................................................... 14  
Applications Information.............................................................. 15  
Encoding the AD13280 ............................................................. 15  
Jitter Consideration.................................................................... 15  
Power Supplies............................................................................ 16  
Output Loading .......................................................................... 16  
Evaluation Board ............................................................................ 17  
Layout Information.................................................................... 17  
Bill of Materials List for Evaluation Board.............................. 24  
Outline Dimensions....................................................................... 25  
Ordering Guide .......................................................................... 26  
Applications....................................................................................... 1  
Product Highlights ........................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
General Description......................................................................... 3  
Specifications..................................................................................... 4  
Timing Diagram ........................................................................... 6  
Absolute Maximum Ratings............................................................ 7  
Explanation of Test Levels........................................................... 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
Typical Performance Characteristics ........................................... 10  
Terminology .................................................................................... 12  
REVISION HISTORY  
4/08—Rev. B to Rev. C  
8/02—Rev. 0 to Rev. A  
Updated Outline Dimensions....................................................... 25  
Edits to Specifications.......................................................................2  
Changes to the Ordering Guide.................................................... 26  
Packages Updated........................................................................... 19  
11/05—Rev. A to Rev. B  
Updated Format..................................................................Universal  
Changes to Features and Product Highlights ............................... 1  
Changes to General Description .................................................... 3  
Changes to Table 1............................................................................ 4  
Changes to Figure 3.......................................................................... 8  
Changes to Theory of Operation.................................................. 14  
Changes to Equation 1 ................................................................... 15  
Changes to Table 5.......................................................................... 18  
Changes to Figure 21...................................................................... 19  
Changes to Figure 22...................................................................... 20  
Changes to Figure 23...................................................................... 21  
Changes to Figure 28 and Figure 29............................................. 24  
Updated Outline Dimensions....................................................... 25  
Changes to the Ordering Guide.................................................... 26  
Rev. C | Page 2 of 28  
 
AD13280  
GENERAL DESCRIPTION  
The AD13280 is a complete, dual-channel, signal processing  
solution that includes on-board amplifiers, references, ADCs, and  
output termination components to provide optimized system  
performance. The AD13280 has on-chip track-and-hold circuitry  
and uses an innovative multipass architecture to achieve 12-bit, 80  
MSPS performance. The AD13280 uses innovative high density  
circuit design and laser-trimmed thin-film resistor networks to  
achieve exceptional channel matching, impedance control, and  
performance while maintaining excellent isolation and  
providing for significant board area savings.  
signal ranges to further minimize additional external signal  
conditioning, while remaining general purpose.  
The AD13280 operates with 5.0 V for the analog signal condi-  
tioning with a separate 5.0 V supply for the analog-to-digital  
conversion and 3.3 V digital supply for the output stage. Each  
channel is completely independent, allowing operation with  
independent encode and analog inputs and maintaining  
minimal crosstalk and interference.  
The AD13280 is available in a 68-lead, ceramic gull wing package.  
The components are manufactured using the Analog Devices, Inc.,  
high speed complementary bipolar process (XFCB).  
Multiple options are provided for driving the analog input,  
including single-ended, differential, and optional series fil-  
tering. The AD13280 also offers users a choice of analog input  
Rev. C | Page 3 of 28  
 
AD13280  
SPECIFICATIONS  
AVCC = +5 V, AVEE = −5 V, DVCC = +3.3 V; applies to each ADC with front-end amplifier, unless otherwise noted.  
Table 1.  
AD13280AZ  
Parameter  
Temperature  
Test Level  
Min  
Typ  
Max  
Unit  
RESOLUTION  
DC ACCURACY1  
No Missing Codes  
Offset Error  
12  
Bits  
Full  
25°C  
Full  
Full  
25°C  
Full  
25°C  
Max  
Min  
IV  
I
VI  
VI  
I
VI  
I
VI  
VI  
Guaranteed  
1.ꢀ  
1.ꢀ  
ꢀ.1  
−1.ꢀ  
2.ꢀ  
ꢀ.5  
1.ꢀ  
1.ꢀ  
−2.2  
−2.2  
−1.ꢀ  
−3  
−5.ꢀ  
−1.5  
−3.ꢀ  
−5  
+2.2  
+2.2  
+1.ꢀ  
+1  
+5.ꢀ  
+1.5  
+3.ꢀ  
+5  
% FS  
% FS  
%
% FS  
% FS  
%
Offset Error Channel Match  
Gain Error2  
Gain Error Channel Match  
%
%
SINGLE-ENDED ANALOG INPUT  
Input Voltage Range  
AMP-IN-X-1  
AMP-IN-X-2  
Full  
Full  
V
V
ꢀ.5  
1.ꢀ  
V
V
Input Resistance  
AMP-IN-X-1  
AMP-IN-X-2  
Capacitance  
Analog Input Bandwidth3  
DIFFERENTIAL ANALOG INPUT  
Analog Signal Input Range  
A+IN to A–IN and B+IN to B−IN4  
Input Impedance  
Analog Input Bandwidth  
ENCODE INPUT (ENCODE, ENCODE)1  
Differential Input Voltage  
Differential Input Resistance  
Differential Input Capacitance  
SWITCHING PERFORMANCE  
Maximum Conversion Rate5  
Minimum Conversion Rate5  
Aperture Delay (tA)  
Aperture Delay Matching  
Aperture Uncertainty (Jitter)  
ENCODE Pulse Width High at Max Conversion Rate  
ENCODE Pulse Width Low at Max Conversion Rate  
Output Delay (tOD)  
Full  
Full  
25°C  
Full  
IV  
IV  
V
99  
198  
1ꢀꢀ  
2ꢀꢀ  
4.ꢀ  
1ꢀ1  
2ꢀ2  
7.ꢀ  
Ω
Ω
pF  
MHz  
V
143  
Full  
25°C  
Full  
V
V
V
1
618  
5ꢀ  
V
Ω
MHz  
Full  
25°C  
25°C  
IV  
V
V
ꢀ.4  
8ꢀ  
V p-p  
kΩ  
pF  
1ꢀ  
2.5  
Full  
Full  
VI  
IV  
V
IV  
V
IV  
IV  
V
MSPS  
MSPS  
ns  
ps  
ps rms  
ns  
3ꢀ  
25°C  
25°C  
25°C  
25°C  
25°C  
Full  
ꢀ.9  
25ꢀ  
ꢀ.3  
6.25  
6.25  
5
5ꢀꢀ  
4.75  
4.75  
8
8
ns  
ns  
Encode, Rising to Data Ready, Rising Delay  
SNR1, 6  
Full  
V
8.5  
ns  
Analog Input @ 1ꢀ MHz  
25°C  
Min  
Max  
25°C  
Min  
Max  
I
66.5  
64.5  
66.3  
66.5  
64  
7ꢀ  
7ꢀ  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
II  
II  
I
II  
II  
Analog Input @ 21 MHz  
66.3  
Rev. C | Page 4 of 28  
 
 
 
AD13280  
AD13280AZ  
Parameter  
Temperature  
25°C  
Min  
Test Level  
Min  
63  
61.5  
63  
Typ  
Max  
Unit  
dBFS  
dBFS  
dBFS  
Analog Input @ 37 MHz  
I
II  
II  
65  
Max  
SINAD1, 7  
Analog Input @ 10 MHz  
25°C  
Min  
Max  
25°C  
Min  
Max  
25°C  
Min  
Max  
I
66  
63.5  
66  
64  
63  
64  
54  
53  
54  
69  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
II  
II  
I
II  
II  
I
Analog Input @ 21 MHz  
Analog Input @ 37 MHz  
68.5  
59  
II  
II  
SPURIOUS-FREE DYNAMIC RANGE1, 8  
Analog Input @ 10 MHz  
25°C  
Min  
Max  
25°C  
Min  
Max  
25°C  
Min  
Max  
I
75  
70  
75  
68  
67  
67  
56  
55  
55  
80  
75  
62  
dBFS  
dBFS  
dBFS  
II  
II  
I
II  
II  
I
Analog Input @ 21 MHz  
Analog Input @ 37 MHz  
II  
II  
SINGLE-ENDED ANALOG INPUT  
Pass-Band Ripple to 10 MHz  
Pass-Band Ripple to 25 MHz  
25°C  
25°C  
V
V
0.07  
0.12  
dB  
dB  
DIFFERENTIAL ANALOG INPUT  
Pass-Band Ripple to 10 MHz  
Pass-Band Ripple to 25 MHz  
25°C  
25°C  
V
V
0.3  
0.82  
dB  
dB  
TWO-TONE IMD REJECTION9  
fIN = 9.1 MHz and 10.1 MHz (f1 and f2 are −7 dBFS)  
25°C  
Min  
I
75  
71  
74  
80  
dBc  
II  
II  
V
V
IV  
V
Max  
25°C  
25°C  
25°C  
25°C  
fIN = 19.1 MHz and 20.7 MHz (f1 and f2 are −7 dBFS)  
fIN = 36 MHz and 37 MHz (f1 and f2 are −7 dBFS)  
CHANNEL-TO-CHANNEL ISOLATION10  
TRANSIENT RESPONSE  
DIGITAL OUTPUTS11  
Logic Compatibility  
DVCC = 3.3 V  
77  
60  
dBc  
dBc  
dB  
90  
25  
ns  
CMOS  
Logic 1 Voltage  
Logic 0 Voltage  
Full  
Full  
I
I
2.5  
DVCC − 0.2  
0.2  
V
V
0.5  
DVCC = 5 V  
Logic 1 Voltage  
Logic 0 Voltage  
Full  
Full  
V
V
DVCC − 0.3  
0.35  
V
V
Output Coding  
Twos complement  
POWER SUPPLY  
AVCC Supply Voltage12  
I (AVCC) Current  
AVEE Supply Voltage12  
I (AVEE) Current  
DVCC Supply Voltage12  
Full  
Full  
Full  
Full  
Full  
IV  
I
IV  
I
4.85  
5.0  
5.25  
364  
−4.75  
49  
V
mA  
V
mA  
V
313  
−5.0  
38  
−5.25  
3.135  
IV  
3.3  
3.465  
Rev. C | Page 5 of 28  
 
AD13280  
AD13280AZ  
Parameter  
Temperature  
Test Level  
Min  
Typ  
34  
375  
3.7  
Max  
46  
459  
4.3  
Unit  
I (DVCC) Current  
Full  
Full  
Full  
Full  
I
I
I
V
mA  
mA  
W
ICC (Total) Supply Current per Channel  
Power Dissipation (Total)  
Power Supply Rejection Ratio (PSRR)  
0.01  
% FSR/% VS  
1
ENCODE  
All ac specifications tested by driving ENCODE and  
differentially. Single-ended input: AMP-IN-x-1 = 1 V p-p, AMP-IN-x-2 = GND.  
2 Gain tests are performed on the AMP-IN-x-1 input voltage range.  
3 Full power bandwidth is the frequency at which the spectral power of the fundamental frequency (as determined by FFT analysis) is reduced by 3 dB.  
4 For differential input: +IN = 1 V p-p and −IN = 1 V p-p (signals are 180 Ω out of phase). For single-ended input: +IN = 2 V p-p and –IN = GND.  
5 Minimum and maximum conversion rates allow for variation in encode duty cycle of 50% 5%.  
6 Analog input signal power at –1 dBFS; signal-to-noise ratio (SNR) is the ratio of signal level to total noise (first five harmonics removed). Encode = 80 MSPS. SNR is  
reported in dBFS, related back to converter full scale.  
7 Analog input signal power at –1 dBFS; signal-to-noise and distortion (SINAD) is the ratio of signal level to total noise + harmonics. Encode = 80 MSPS. SINAD is  
reported in dBFS, related back to converter full scale.  
8 Analog input signal at –1 dBFS; SFDR is the ratio of converter full scale to worst spur.  
9 Both input tones at –7 dBFS; two-tone intermodulation distortion (IMD) rejection is the ratio of either tone to the worst third-order intermodulation product.  
10 Channel-to-channel isolation tested with A channel grounded and a full-scale signal applied to B channel.  
11 Digital output logic levels: DVCC = 3.3 V, CLOAD = 10 pF. Capacitive loads >10 pF degrades performance.  
12 Supply voltage recommended operating range. AVCC may be varied from 4.85 V to 5.25 V. However, rated ac (harmonics) performance is valid only over the range  
AVCC = 5.0 V to 5.25 V.  
TIMING DIAGRAM  
tA  
N + 3  
N
A
IN  
N + 1  
N + 2  
N + 4  
tENC  
tENCH  
N+1  
tENCL  
ENCODE,  
ENCODE  
N
N+2  
N+3  
N + 4  
tOD  
tE_DR  
D[11:0]  
DRY  
N – 3  
N – 2  
N – 1  
N
Figure 2.  
Rev. C | Page 6 of 28  
 
 
 
 
 
 
 
 
AD13280  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Parameter  
ELECTRICAL1  
EXPLANATION OF TEST LEVELS  
Ratings  
I.  
100% production tested.  
AVCC Voltage  
AVEE Voltage  
DVCC Voltage  
Analog Input Voltage  
ꢀ V to 7 V  
−7 V to ꢀ V  
ꢀ V to 7 V  
II.  
100% production tested at 25°C, and sample tested  
at specified temperatures. AC testing done on a  
sample basis.  
VEE to VCC  
III.  
IV.  
Sample tested only.  
Analog Input Current  
−1ꢀ mA to +1ꢀ mA  
ꢀ to VCC  
4 V max  
Digital Input Voltage (ENCODE)  
ENCODE, ENCODE Differential Voltage  
Digital Output Current  
ENVIRONMENTAL1  
Operating Temperature Range (Case)  
Maximum Junction Temperature  
Lead Temperature (Soldering, 1ꢀ sec)  
Storage Temperature Range (Ambient)  
Parameter guaranteed by design and characterization  
testing.  
−1ꢀ mA to +1ꢀ mA  
V.  
Parameter is a typical value only.  
−4ꢀ°C to +85°C  
175°C  
3ꢀꢀ°C  
VI.  
100% production tested with temperature at 25°C, and  
sample tested at temperature extremes.  
−65°C to +15ꢀ°C  
1 Typical thermal impedance for ES package: θJC 2.2°C/W; θJA 24.3°C/W.  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. C | Page 7 of 28  
 
 
AD13280  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44  
61  
AGNDB  
43  
42  
41  
40  
39  
DGNDB  
D3B  
62  
63  
AMP-IN-B-2  
AMP-IN-B-1  
D2B  
AMP-OUT-B 64  
B+IN 65  
D1B  
D0B (LSB)  
66  
67  
68  
1
B–IN  
AGNDB  
AGNDB  
SHIELD  
AGNDA  
AGNDA  
A–IN  
38 NC  
37  
36  
35  
34  
33  
32  
31  
30  
NC  
DROUTB  
SHIELD  
DROUTA  
D11A (MSB)  
D10A  
AD13280  
TOP VIEW  
(Not to Scale)  
PIN 1  
IDENTIFIER  
2
3
4
5
A+IN  
D9A  
6
AMP-OUT-A  
D8A  
7
AMP-IN-A-1  
AMP-IN-A-2  
AGNDA  
29 D7A  
28 D6A  
8
9
27  
DGNDA  
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26  
NC = NO CONNECT  
Figure 3. Pin Configuration  
Table 3. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1, 35  
2, 3, 9, 1ꢀ, 13, 16  
4
SHIELD  
AGNDA  
A−IN  
Internal Ground Shield Between Channels.  
A Channel Analog Ground. A and B grounds should be connected as close to the device as possible.  
Inverting Differential Input (Gain = +1).  
5
A+IN  
Noninverting Differential Input (Gain = +1).  
6
7
8
AMP-OUT-A Single-Ended Amplifier Output (Gain = +2).  
AMP-IN-A-1 Analog Input for A Side ADC (Nominally ꢀ.5 V).  
AMP-IN-A-2 Analog Input for A Side ADC (Nominally 1.ꢀ V).  
11  
12  
14  
AVEEA  
A Channel Analog Negative Supply Voltage (Nominally −5.ꢀ V or −5.2 V).  
A Channel Analog Positive Supply Voltage (Nominally +5.ꢀ V).  
Complement of ENCODEA. Differential input.  
Encode Input. Conversion initiated on rising edge.  
A Channel Digital Positive Supply Voltage (Nominally +5.ꢀ V/+3.3 V).  
No Connect.  
AVCCA  
ENCODEA  
ENCODEA  
DVCCA  
NC  
15  
17  
18, 19, 37, 38  
2ꢀ to 25, 28 to 33  
DꢀA to  
D11A  
Digital Outputs for ADC A. Dꢀ (LSB).  
26, 27  
34  
36  
DGNDA  
DROUTA  
DROUTB  
A Channel Digital Ground.  
Data Ready A Output.  
Data Ready B Output.  
39 to 42, 45 to 52  
DꢀB to  
D11B  
Digital Outputs for ADC B. Dꢀ (LSB).  
43, 44  
53  
DGNDB  
DVCCB  
B Channel Digital Ground.  
B Channel Digital Positive Supply Voltage (Nominally +5.ꢀ V/+3.3 V).  
Rev. C | Page 8 of 28  
 
AD13280  
Pin No.  
Mnemonic Description  
B Channel Analog Ground. A and B grounds should be connected as close to the device as possible.  
54, 57, 6ꢀ, 61, 67, 68 AGNDB  
55  
56  
58  
59  
62  
63  
64  
65  
66  
ENCODEB  
ENCODEB  
AVCCB  
Encode Input. Conversion initiated on rising edge.  
Complement of ENCODEB. Differential input.  
B Channel Analog Positive Supply Voltage (Nominally +5.ꢀ V).  
B Channel Analog Negative Supply Voltage (Nominally −5.ꢀ V or −5.2 V).  
AVEEB  
AMP-IN-B-2 Analog Input for B Side ADC (Nominally 1.ꢀ V).  
AMP-IN-B-1 Analog Input for B Side ADC (Nominally ꢀ.5 V).  
AMP-OUT-B Single-Ended Amplifier Output (Gain = +2).  
B+IN  
B−IN  
Noninverting Differential Input (Gain = +1).  
Inverting Differential Input (Gain = +1).  
Rev. C | Page 9 of 28  
AD13280  
TYPICAL PERFORMANCE CHARACTERISTICS  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
ENCODE = 80MSPS  
ENCODE = 80MSPS  
= 10MHz (–1dBFS)  
–10  
A
= 5MHz (–1dBFS)  
A
IN  
IN  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
SNR = 69.4dBFS  
SFDR = 81.9dBc  
SNR = 69.19dBFS  
SFDR = 79.55dBc  
3
5
3
2
5
2
4
–90  
–100  
–110  
–120  
–130  
6
–90  
–100  
–110  
–120  
–130  
6
4
0
0
0
5
5
5
10  
15  
20  
25  
30  
35  
40  
40  
40  
0
0
0
5
10  
15  
20  
25  
30  
35  
40  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 4. Single Tone @ 5 MHz  
Figure 7. Single Tone @ 10 MHz  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
0
–10  
–20  
–30  
–40  
–50  
–60  
ENCODE = 80MSPS  
= 18MHz (–1dBFS)  
ENCODE = 80MSPS  
A = 37MHz (–1dBFS)  
IN  
SNR = 68.38dBFS  
SFDR = 57.81dBc  
A
IN  
SNR = 69.79dBFS  
SFDR = 76.81dBc  
2
3
–70  
–80  
5
6
–90  
–100  
–110  
–120  
–130  
–90  
–100  
–110  
–120  
–130  
4
10  
15  
20  
25  
30  
35  
5
10  
15  
20  
25  
30  
35  
40  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 5. Single Tone @ 18 MHz  
Figure 8. Single Tone @ 37 MHz  
0
–10  
–20  
–30  
–40  
–50  
–60  
0
–10  
–20  
–30  
–40  
–50  
–60  
ENCODE = 80MSPS  
= 19MHz AND  
ENCODE = 80MSPS  
= 9MHz AND  
A
A
IN  
20MHz (–7dBFS)  
SFDR = 74.41dBc  
IN  
10MHz (–7dBFS)  
SFDR = 82.77dBc  
–70  
–80  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
–90  
–100  
–110  
–120  
–130  
5
10  
15  
20  
25  
30  
35  
40  
10  
15  
20  
25  
30  
35  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 6. Two Tone @ 9 MHz and 10 MHz  
Figure 9. Two Tone @ 19 MHz and 20 MHz  
Rev. C | Page 1ꢀ of 28  
 
AD13280  
3
3.0  
2.5  
2.0  
1.5  
1.0  
ENCODE = 80MSPS  
DNL MAX = 0.688 CODES  
DNL MIN = 0.385 CODES  
ENCODE = 80MSPS  
INL MAX = 0.562 CODES  
INL MIN = 0.703 CODES  
2
1
0
0.5  
0
–1  
–2  
–3  
–0.5  
–1.0  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
Figure 10. Differential Nonlinearity  
Figure 12. Integral Nonlinearity  
0
–1  
–2  
–3  
ENCODE = 80MSPS  
ROLL-OFF = 0.0459dB  
–4  
–5  
–6  
–7  
–8  
–9  
–10  
1.0  
3.5  
6.0 8.5 11.0 13.5 16.0 18.5 21.0 23.5 26.0  
FREQUENCY (MHz)  
Figure 11. Pass-Band Ripple to 25 MHz  
Rev. C | Page 11 of 28  
AD13280  
TERMINOLOGY  
Analog Bandwidth  
Minimum Conversion Rate  
The analog input frequency at which the spectral power of the  
fundamental frequency (as determined by the FFT analysis) is  
reduced by 3 dB.  
The encode rate at which the SNR of the lowest analog signal  
frequency drops by no more than 3 dB below the guaranteed  
limit.  
Aperture Delay  
The delay between a differential crossing of the ENCODEA  
Maximum Conversion Rate  
The encode rate at which parametric testing is performed.  
ENCODEA  
signal and the  
analog input is sampled.  
signal and the instant at which the  
Output Propagation Delay  
The delay between a differential crossing of the ENCODEA  
ENCODEA  
signal and the  
signal and the time at which all  
Aperture Uncertainty (Jitter)  
The sample-to-sample variation in aperture delay.  
output data bits are within valid logic levels.  
Differential Analog Input Resistance, Differential Analog  
Input Capacitance, and Differential Analog Input Impedance  
The real and complex impedances measured at each analog  
input port. The resistance is measured statically, and the  
capacitance and differential input impedances are measured  
with a network analyzer.  
Overvoltage Recovery Time  
The amount of time required for the converter to recover to  
0.02% accuracy after an analog input signal of the specified  
percentage of full scale is reduced to midscale.  
Power Supply Rejection Ratio  
The ratio of a change in input offset voltage to a change in  
Differential Analog Input Voltage Range  
power supply voltage.  
The peak-to-peak differential voltage that must be applied to  
the converter to generate a full-scale response. Peak differential  
voltage is computed by observing the voltage from the other  
pin, which is 180 degrees out of phase. Peak-to-peak differential  
is computed by rotating the input phase 180 degrees and taking  
the peak measurement again. The difference is then computed  
between both peak measurements.  
Signal-to-Noise-and-Distortion (SINAD)  
The ratio of the rms signal amplitude (set at 1 dB below full  
scale) to the rms value of the sum of all other spectral compo-  
nents, including harmonics but excluding dc. SINAD can be  
reported in dB (that is, degrades as signal level is lowered) or  
in dBFS (always related back to converter full scale).  
Signal-to-Noise Ratio (SNR) (Without Harmonics)  
The ratio of the rms signal amplitude (set at 1 dB below full  
scale) to the rms value of the sum of all other spectral com-  
ponents, excluding the first five harmonics and dc. SNR can be  
reported in dB (that is, degrades as signal level is lowered) or  
in dBFS (always related back to converter full scale).  
Differential Nonlinearity  
The deviation of any code from an ideal 1 LSB step.  
ENCODE Pulse Width/Duty Cycle  
Pulse width high is the minimum amount of time that the  
ENCODE pulse should be left in a Logic 1 state to achieve the  
rated performance. Pulse width low is the minimum time the  
ENCODE pulse should be left in a low state. At a given clock  
rate, these specifications define an acceptable encode duty cycle.  
Spurious-Free Dynamic Range (SFDR)  
The ratio of the rms signal amplitude to the rms value of  
the peak spurious spectral component. The peak spurious  
component may or may not be a harmonic.  
Harmonic Distortion  
The ratio of the rms signal amplitude to the rms value of the  
worst harmonic component.  
Transient Response  
The time required for the converter to achieve 0.02% accuracy  
when a one-half full-scale step function is applied to the analog  
input.  
Integral Nonlinearity  
The deviation of the transfer function from a reference line  
measured in fractions of 1 LSB using a best straight line  
determined by a least square curve fit.  
Two-Tone Intermodulation Distortion Rejection  
The ratio of the rms value of either input tone to the rms value  
of the worst third-order intermodulation product; reported in  
dBc.  
Rev. C | Page 12 of 28  
 
AD13280  
INPUT AND OUTPUT STAGES  
LOADS  
AV  
AV  
CC  
AV  
AV  
CC  
CC  
CC  
10k  
10kΩ  
ENCODE  
ENCODE  
10kΩ  
10kΩ  
AMP-IN-X-2  
100  
AMP-IN-X-1  
TOAD8045  
100  
LOADS  
Figure 15. ENCODE Inputs  
Figure 13. Single-Ended Input Stage  
DV  
CC  
DV  
CC  
CURRENT MIRROR  
CURRENT MIRROR  
DV  
CC  
DV  
CC  
V
V
REF  
REF  
100  
DROUT  
D0–D11  
CURRENT MIRROR  
CURRENT MIRROR  
Figure 14. DR Digital Output Stage  
Figure 16. Digital Output Stage  
Rev. C | Page 13 of 28  
 
 
AD13280  
THEORY OF OPERATION  
The AD13280 is a high dynamic range 12-bit, 80 MHz pipeline  
delay (three pipelines) analog-to-digital converter (ADC). The  
custom analog input section provides input ranges of 1 V p-p  
and 2 V p-p and input impedance configurations of 50 Ω, 100 Ω,  
and 200 Ω.  
USING THE SINGLE-ENDED INPUT  
The AD13280 has been designed with user ease of operation in  
mind. Multiple input configurations have been included on-  
board to allow the user a choice of input signal levels and input  
impedance. The standard inputs are 0.5 V and 1.0 V. The  
user can select the input impedance of the AD13280 on any  
input by using the other inputs as alternate locations for the  
GND. The following is a summary of the impedance options  
available at each input location:  
The AD13280 employs four monolithic Analog Devices com-  
ponents per channel (AD8045, AD8138, AD8031, and a custom  
ADC IC), along with multiple passive resistor networks and  
decoupling capacitors to fully integrate a complete 12-bit  
analog-to-digital converter (ADC).  
AMP-IN-x-1 = 100 Ω when AMP-IN-x-2 is open.  
AMP-IN-x-1 = 50 Ω when AMP-IN-x-2 is shorted to GND.  
AMP-IN-x-2 = 200 Ω when AMP-IN-x-1 is open.  
In the single-ended input configuration, the input signal is passed  
through a precision laser-trimmed resistor divider, allowing the  
user to externally select operation with a full-scale signal of 0.5 V  
or 1.0 V by choosing the proper input terminal for the applica-  
tion. The result of the resistor divider is to apply a full-scale  
input of approximately 0.4 V to the noninverting input of the  
internal AD8045 amplifier.  
Each channel has two analog inputs: AMP-IN-A-1 and  
AMP-IN-A-2 or AMP-IN-B-1 and AMP-IN-B-2. Use  
AMP-IN-A-1 or AMP-IN-B-1 when an input of 0.5 V full  
scale is desired. Use AMP-IN-A-2 or AMP-IN-B-2 when 1 V  
full scale is desired. Each channel has an AMP-OUT that must  
be tied to either a noninverting or inverting input of a  
differential amplifier with the remaining input grounded. For  
example, Side A, AMP-OUT-A (Pin 6) must be tied to A+IN  
(Pin 5) with A−IN (Pin 4) tied to ground for noninverting  
operation or AMP-OUT-A (Pin 6) tied to A−IN (Pin 4) with  
A+IN (Pin 5) tied to ground for inverting operation.  
The AD13280 analog input includes an AD8045 amplifier  
featuring an innovative architecture that maximizes the dynamic  
range capability on the amplifier inputs and outputs. The AD8045  
amplifier provides a high input impedance and gain for driving the  
AD8138 in a single-ended to differential amplifier configuration.  
The AD8138 has a −3 dB bandwidth at 300 MHz and delivers a  
differential signal with the lowest harmonic distortion available in  
a differential amplifier. The AD8138 differential outputs help  
balance the differential inputs to the custom ADC, maximizing  
the performance of the device.  
USING THE DIFFERENTIAL INPUT  
Each channel of the AD13280 is designed with two optional  
differential inputs, A+IN, A−IN and B+IN, B−IN. The inputs  
provide system designers with the ability to bypass the AD8045  
amplifier and drive the AD8138 directly. The AD8138 differen-  
tial ADC driver can be deployed in either a single-ended or  
differential input configuration. The differential analog inputs  
have a nominal input impedance of 620 Ω and nominal full-  
scale input range of 1.2 V p-p. The AD8138 amplifier drives a  
differential filter and the custom analog-to-digital converter.  
The differential input configuration provides the lowest even-  
order harmonics and signal-to-noise (SNR) performance  
improvement of up to 3 dB (SNR = 73 dBFS). Exceptional care  
was taken in the layout of the differential input signal paths.  
The differential input transmission line characteristics are  
matched and balanced. Equal attention to system level signal  
paths must be provided in order to realize significant perform-  
ance improvements.  
The AD8031 provides the buffer for the internal reference  
analog-to-digital converter. The internal reference voltage of  
the custom ADC is designed to track the offsets and drifts and  
is used to ensure matching over an extended temperature range  
of operation. The reference voltage is connected to the output  
common-mode input on the AD8138. This reference voltage  
sets the output common mode on the AD8138 at 2.4 V, which  
is the midsupply level for the ADC.  
AIN  
The custom ADC has complementary analog input pins,  
and AIN. Each analog input is centered at 2.4 V and should  
AIN  
swing 0.55 V around this reference. Because AIN and  
are  
180 degrees out of phase, the differential analog input signal is  
2.2 V peak-to-peak. Both analog inputs are buffered prior to  
the first track-and-hold.  
The custom ADC digital outputs drive 100 Ω series resistors  
(see Figure 16). The result is a 12-bit, parallel digital CMOS-  
compatible word, coded as a twos complement.  
Rev. C | Page 14 of 28  
 
AD13280  
APPLICATIONS INFORMATION  
ENCODING THE AD13280  
JITTER CONSIDERATION  
The AD13280 encode signal must be a high quality, extremely  
low phase noise source to prevent degradation of performance.  
Maintaining 12-bit accuracy at 80 MSPS places a premium on  
encode clock phase noise. SNR performance can easily degrade  
3 dB to 4 dB with 37 MHz input signals when using a high jitter  
clock source. See Analog Devices Application Note AN-501,  
Aperture Uncertainty and ADC System Performance, for com-  
plete details. For optimum performance, the AD13280 must be  
clocked differentially. The encode signal is usually ac-coupled  
The signal-to-noise ratio for any ADC can be predicted. When  
normalized to ADC codes, Equation 1 accurately predicts the  
SNR based on three terms. These are jitter, average DNL error,  
and thermal noise. Each of these terms contributes to the noise  
within the converter.  
1/2  
2
2
V
1+ ε  
NOISE rms  
2
SNR = − 20× log  
+
(
2×π × fANALOG × tJ rms  
)
+
2N  
2N  
⎢⎣  
(1)  
ENCODE  
into the ENCODE and  
pins via a transformer or  
where:  
capacitors. These pins are biased internally and require no  
additional bias.  
f
ANALOG is the analog input frequency.  
t
J rms is the rms jitter of the encode (rms sum of encode source  
Figure 17 shows one preferred method for clocking the AD13280.  
The clock source (low jitter) is converted from single-ended to  
differential using an RF transformer. The back-to-back Schottky  
diodes across the transformer secondary limit clock excursions  
into the AD13280 to approximately 0.8 V p-p differential. This  
helps prevent the large voltage swings of the clock from feeding  
through to the other portions of the AD13280 and limits the  
noise presented to the ENCODE inputs. A crystal clock  
oscillator can also be used to drive the RF transformer if an  
appropriate limited resistor (typically 100 Ω) is placed in series  
with the primary.  
and internal encode circuitry).  
ε is the average DNL of the ADC (typically 0.50 LSB).  
N is the number of bits in the ADC.  
V
NOISE rms is the analog input of the ADC (typically 5 LSB).  
For a 12-bit analog-to-digital converter like the AD13280,  
aperture jitter can greatly affect the SNR performance as the  
analog frequency is increased. The chart below shows a family  
of curves that demonstrates the expected SNR performance of  
the AD13280 as jitter increases. The chart is derived from  
Equation 1.  
For a complete discussion of aperture jitter, consult Analog  
Devices Application Note AN-501, Aperture Uncertainty and  
ADC System Performance.  
0.1µF  
T1-4T  
100  
CLOCK  
SOURCE  
ENCODE  
AD13280  
ENCODE  
71  
HSMS2812  
DIODES  
A
= 5MHz  
IN  
70  
69  
68  
Figure 17. Crystal Clock Oscillator—Differential Encode  
A
= 10MHz  
IN  
67  
66  
65  
64  
If a low jitter ECL/PECL clock is available, another option is to  
ac-couple a differential ECL/PECL signal to the encode input  
pins as shown below. A device that offers excellent jitter per-  
formance is the MC100LVEL16 (or within the same family)  
from Motorola.  
A
= 20MHz  
= 37MHz  
IN  
63  
62  
61  
VT  
60  
59  
58  
A
IN  
0.1µF  
ENCODE  
AD13280  
ECL/PECL  
CLOCK JITTER (ps)  
ENCODE  
0.1µF  
Figure 19. SNR vs. Jitter  
VT  
Figure 18. Differential ECL for Encode  
Rev. C | Page 15 of 28  
 
 
AD13280  
POWER SUPPLIES  
OUTPUT LOADING  
Care should be taken when selecting a power source. Linear  
supplies are strongly recommended. Switching supplies tend  
to have radiated components that may be received by the  
AD13280. Each of the power supply pins should be decoupled  
as close as possible to the package using 0.1 μF chip capacitors.  
Care must be taken when designing the data receivers for the  
AD13280. The digital outputs drive an internal series resistor  
(for example, 100 Ω) followed by a gate like 75LCX574. To  
minimize capacitive loading, there should be only one gate on  
each output pin. An example of this is shown in the evaluation  
board schematic (see Figure 20). The digital outputs of the  
AD13280 have a constant output slew rate of 1 V/ns.  
The AD13280 has separate digital and analog power supply  
pins. The analog supplies are denoted AVCC, and the digital  
supply pins are denoted DVCC. AVCC and DVCC should be  
separate power supplies because the fast digital output swings  
can couple switching current back into the analog supplies.  
A typical CMOS gate combined with a PCB trace has a load of  
approximately 10 pF. Therefore, as each bit switches, 10 mA  
(10 pF × 1 V ÷ 1 ns) of dynamic current per bit flows in or out  
of the device. A full-scale transition can cause up to 120 mA  
(12 bits × 10 mA/bit) of transient current through the output  
stages. These switching currents are confined between ground  
and the DVCC pin. Standard TTL gates should be avoided  
because they can appreciably add to the dynamic switching  
currents of the AD13280. It should also be noted that extra  
capacitive loading increases output timing and invalidates  
timing specifications. Digital output timing is guaranteed with  
10 pF loads.  
Note that AVCC must be held within 5% of 5 V. The AD13280 is  
specified for DVCC = 3.3 V because this is a common supply for  
digital ASICs.  
Rev. C | Page 16 of 28  
 
AD13280  
EVALUATION BOARD  
The AD13280 evaluation board (see Figure 20) is designed to  
provide optimal performance for evaluation of the AD13280  
analog-to-digital converter. The board encompasses everything  
needed to ensure the highest level of performance for evaluating  
the AD13280. The board requires an analog input signal, encode  
clock, and power supply inputs. The clock is buffered on-board  
to provide clocks for the latches. The digital outputs and out  
clocks are available at the standard 40-pin connectors J1 and J2.  
LAYOUT INFORMATION  
The schematics of the evaluation board (Figure 21, Figure 22,  
and Figure 23) represent a typical implementation of the  
AD13280. The pinout of the AD13280 is very straightforward  
and facilitates ease of use and the implementation of high  
frequency/high resolution design practices. It is recommended  
that high quality ceramic chip capacitors be used to decouple  
each supply pin to ground directly at the device. All capacitors  
can be standard, high quality ceramic chip capacitors.  
Power to the analog supply pins is connected via banana jacks.  
The analog supply powers the associated components and the  
analog section of the AD13280. The digital outputs of the  
AD13280 are powered via banana jacks with 3.3 V. Contact the  
factory if additional layout or applications assistance is required.  
Care should be taken when placing the digital output runs.  
Because the digital outputs have such a high slew rate, the  
capacitive loading on the digital outputs should be minimized.  
Circuit traces for the digital outputs should be kept short and  
should connect directly to the receiving gate. Internal circuitry  
buffers the outputs of the ADC through a resistor network to  
eliminate the need to externally isolate the device from the  
receiving gate.  
Figure 20. Evaluation Board Mechanical Layout  
Rev. C | Page 17 of 28  
 
 
AD13280  
J13  
SMA  
J6  
SMA  
E68  
AGNDA  
E67  
AGNDB  
E66  
LIDA  
J9  
SMA  
J8  
SMA  
J3  
SMA  
J14  
SMA  
AGNDB  
AGNDA  
E50  
J4  
E53  
J7  
SMA  
SMA  
E51  
E54  
AGNDB  
AGNDB  
AGNDA  
E49  
E70  
E52  
E85  
E69  
AGNDA  
E86  
AGNDB  
AGNDA  
AGNDA  
10  
AGNDB  
–5VAB  
C33  
0.1µF  
–5VAA  
C9  
0.1µF  
60  
AGNDB  
AGNDA  
AGNDB  
AGNDA  
11  
12  
59  
58  
AV  
AV  
A
A
AV  
AV  
B
B
EE  
EE  
AGNDB  
AGENDA  
+5VAA  
+5VAB  
C38  
0.1µF  
CC  
CC  
13  
14  
57  
56  
C17  
0.1µF  
C34  
0.1µF  
C35  
0.1µF  
AGNDB  
AGNDA  
AGNDB  
ENCODEB  
ENCODEB  
AGNDB  
AGNDA  
ENCODEA  
ENCODEA  
AGNDA  
ENCODEA  
ENCODEA  
AGNDA  
ENCODEB  
ENCODEB  
AGNDB  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
AGNDA  
OUT_3.3VDA  
AGNDB  
OUT_3.3VDB  
U1  
DV  
CC  
B
DV  
CC  
A
C18  
0.1µF  
C37  
0.1µF  
C36  
0.1µF  
C10  
0.1µF  
AD13280AZ  
D11B(MSB)  
D10B  
D9B  
D11B  
D10B  
D9B  
D8B  
D7B  
D6B  
D5B  
NC0A  
NC1A  
NC  
NC  
D0A(LSB)  
D1A  
D0A  
D1A  
DGNDB  
DGNDA  
D8B  
D2A  
D2A  
D7B  
D3A  
D3A  
D6B  
D4A  
D4A  
D5B  
D5A  
D5A  
D4B  
D4B  
DGNDA  
DGNDA  
DGNDB  
DGNDB  
NC = NO CONNECT  
DRAOUT  
DRBOUT  
E56  
E55  
LIDB  
E48  
E65  
E40  
DGNDB  
DGNDA  
47  
±20%  
@100MHz  
47Ω  
±20%  
@100MHz  
47Ω  
±20%  
@100MHz  
+3VDA  
1
+3VAA  
BJ6  
–5VAA  
BJ2  
BJ10  
+5VAA  
DUT_3.3VDA  
–5VAA  
U7  
L1  
L3  
1
C3  
10µF  
U1  
C20  
L5  
1
C11  
10µF  
U1  
C32  
C12  
C29  
10µF  
0.1µF  
0.1µF  
0.1µF  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
DGNDA  
47Ω  
±20%  
@100MHz  
47Ω  
±20%  
@100MHz  
47Ω  
±20%  
@100MHz  
+3VDB  
+5VAB  
BJ5  
–5VAB  
BJ1  
BJ9  
DUT_3.3VDB  
+5VAB  
–5VAB  
1
U8  
L2  
L4  
1
C4  
10µF  
U1  
L6  
1
C19  
10µF  
U1  
C30  
C16  
C21  
C31  
10µF 0.1µF  
0.1µF  
0.1µF  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
DGNDB  
Figure 21. Evaluation Board  
Rev. C | Page 18 of 28  
 
AD13280  
U8  
R47  
0  
LE2 OE2  
DGNDA  
R18, DNI  
R17, DNI  
J1  
H40DM  
24  
23  
22  
21  
25  
26  
27  
28  
115  
114  
O15  
O14  
F0A  
F1A  
1
2
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
3.3VDA  
R48  
0Ω  
DGNDA  
DGNDA  
GND GND  
(MSB) B11A  
B10A  
R16, DNI  
R40, DNI  
3
F2A  
F3A  
NC0A  
NC1A  
C15  
10µF  
113  
112  
VCC  
111  
110  
O13  
O12  
VCC  
O11  
O10  
20  
19  
18  
17  
16  
15  
14  
29  
30  
31  
32  
33  
34  
35  
DGNDA  
4
B9A  
5
DUT_3.3VDA  
DGNDA  
DUT_3.3VDA  
(LSB) D0A  
D1A  
B8A  
DGNDA  
R44, 100Ω  
R45, 100Ω  
6
B0A (LSB)  
B1A  
B7A  
7
B6A  
B5A  
8
DGNDA  
D2A  
GND GND  
9
R5  
R46, 100Ω  
R15, 100Ω  
R14, 100Ω  
R13, 100Ω  
B4A  
50Ω  
B2A  
B3A  
B4A  
B5A  
19  
O9  
E61  
E60  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
D3A  
18  
17  
16  
O8  
O7  
O6  
E59  
13  
12  
11  
36  
37  
38  
39  
D4A  
B3A  
B2A  
D5A  
GND GND  
DGNDA  
D6A  
DGNDA  
B1A  
R24, 100Ω  
R23, 100Ω  
10  
9
B6A  
B7A  
15  
14  
O5  
O4  
(LSB) B0A  
F3A  
40  
41  
42  
43  
D7A  
8
F2A  
DUT_3.3VDA  
DGNDA  
DUT_3.3VDA  
D8A  
VCC VCC  
R22, 100Ω  
R21, 100Ω  
7
F1A  
F0A  
13  
12  
O3  
O2  
B8A  
B9A  
6
D9A  
DGNDA  
5
4
3
44  
45  
46  
DGNDA  
GND GND  
R20, 100Ω  
R19, 100Ω  
11  
10  
O1  
O0  
B10A  
D10A  
DGNDA  
(MSB) D11A  
B11A (MSB)  
2
1
47  
48  
LE1 OE1  
DGNDA  
R7  
74LCX16374  
50Ω  
LATCHB  
E58  
U7  
R49  
0Ω  
LE2 OE2  
DGNDB  
DGNDB  
R11, DNI  
R10, DNI  
J2  
H40DN  
24  
23  
22  
21  
25  
26  
27  
115  
114  
O15  
O14  
F0B  
F1B  
1
2
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
3.3VDB  
R50  
0Ω  
DGNDB  
GND GND  
(MSB) B11B  
B10B  
R30, DNI  
R29, DNI  
28  
3
F2B  
F3B  
NC0B  
NC1B  
C14  
10µF  
113  
112  
O13  
O12  
20  
19  
18  
17  
16  
15  
14  
29  
30  
31  
32  
33  
34  
35  
DGNDB  
4
B9B  
5
DUT_3.3VDB  
(LSB) D0B  
D1B  
VCC VCC  
DUT_3.3VDB  
DGNDB  
B8B  
DGNDB  
R28, 100Ω  
R27, 100Ω  
6
B0B (LSB)  
B1B  
B7B  
111  
110  
O11  
O10  
7
B6B  
B5B  
8
DGNDB  
D2B  
GND GND  
9
R2  
R26, 100Ω  
R12, 100Ω  
R9, 100Ω  
R25, 100Ω  
B4B  
50Ω  
B2B  
B3B  
B4B  
B5B  
19  
O9  
E64  
E63  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
D3B  
18  
17  
16  
O8  
O7  
O6  
E62  
13  
12  
11  
36  
37  
38  
39  
D4B  
B3B  
B2B  
D5B  
GND GND  
DGNDB  
D6B  
DGNDB  
B1B  
R36, 100Ω  
R35, 100Ω  
10  
9
B6B  
B7B  
15  
14  
O5  
O4  
(LSB) B0B  
F3B  
40  
41  
42  
43  
D7B  
8
F2B  
DUT_3.3VDB  
D8B  
VCC VCC  
DUT_3.3VDB  
DGNDB  
R34, 100Ω  
R33, 100Ω  
7
F1B  
F0B  
13  
12  
O3  
O2  
B8B  
B9B  
6
D9B  
DGNDB  
5
4
3
44  
45  
46  
DGNDB  
GND GND  
R32, 100Ω  
R31, 100Ω  
11  
10  
O1  
O0  
B10B  
D10B  
DGNDB  
(MSB) D11B  
B11B (MSB)  
2
1
47  
48  
LE1 OE1  
DGNDB  
R8  
50Ω  
LATCHB  
E57  
74LCX16374  
Figure 22. Evaluation Board  
Rev. C | Page 19 of 28  
 
AD13280  
5
NR  
3
1
OUT  
ADP3330  
ERR  
2
6
U5  
IN  
+5VAA  
SD  
GND  
4
AGNDA  
+3.3VA  
AGNDA  
R42  
100Ω  
C13  
J5  
ENCODE  
SMA  
0.47µF  
8
7
C7  
0.1µF  
C1  
0.1µF  
1
NC  
VCC  
BJ3  
AGNDB  
2
3
ENCODEA  
ENCODEA  
1
D
Q
QB  
U2  
6
5
DB  
BJ4  
R1  
50Ω  
4
AGNDA  
DGNDB  
C8  
0.1µF  
AGNDA  
R43  
100Ω  
1
VBB  
VEE  
AGNDA  
BJ7  
AGNDA  
MC10EP16  
NC = NO CONNECT  
1
AGNDA  
DGNDB  
BJ8  
R56  
33kΩ  
DGNDA  
R55  
DGNDA  
J12  
DGNDA  
C2  
C6  
1
SMA  
33kΩ  
0.1µF  
0.1µF  
DGND  
C5  
0.1µF  
DGNDA  
1
8
R3  
100Ω  
+3.3VDA  
R41  
25Ω  
NC  
VCC  
Q
1
8
2
3
4
7
6
E15 E16  
E7 E12  
+3.3VDA  
D
D0  
D0  
D1  
VCC  
U3  
LATCHA  
E23  
2
3
4
7
6
5
QB  
DB  
Q0  
Q1  
U4  
5
AGNDA  
R4  
100Ω  
DGNDA  
AGNDB  
DGNDB  
E19  
BUFLATA  
VBB  
VEE  
DGNDA  
D1  
GND  
MC10EP16  
NC = NO CONNECT  
E11  
E39 E47  
E8  
DGNDA  
DGNDA  
MC100EPT23  
NC = NO CONNECT  
AGNDA  
5
E17 E18  
E27 E28  
E25 E26  
E21 E20  
E32 E31  
E44 E43  
E42 E41  
NR  
3
1
OUT  
ERR  
ADP3330  
2
6
U6  
IN  
+5VAB  
SD  
GND  
4
E10  
E9  
E33 E34  
AGNDB  
AGNDB  
E6  
E5  
R52  
100Ω  
C27  
J10  
0.47µF  
DGNDA  
AGNDA  
8
7
C24  
0.1µF  
1
ENCODE  
SMA  
C22  
0.1µF  
+3.3VB  
NC  
VCC  
2
3
ENCODEB  
D
Q
QB  
U11  
E38 E37  
E29 E30  
6
5
DB  
ENCODEB  
R54  
4
50Ω  
C28  
0.1µF  
AGNDB  
E1  
E2  
R51  
100Ω  
VBB  
VEE  
E36 E35  
E14 E13  
E45 E46  
AGNDB  
AGNDB  
MC10EP16  
NC = NO CONNECT  
AGNDB  
E3  
E4  
AGNDB  
SO1 SO4  
R38  
33kΩ  
DGNDB  
R39  
DGNDB  
J11  
DGNDB  
C23  
C25  
SMA  
33kΩ  
0.1µF  
0.1µF  
DGNDB  
C26  
0.1µF  
SO5  
SO6  
SO2  
SO3  
1
8
R37  
100Ω  
+3.3VDB  
R53  
25Ω  
NC  
VCC  
Q
1
8
2
3
4
7
6
+3.3VDA  
D
D0  
D0  
D1  
VCC  
U9  
LATCHB  
2
3
4
7
6
QB  
DB  
Q0  
Q1  
E24  
U10  
5
AGNDB  
R6  
100Ω  
E22  
BUFLATB  
VBB  
VEE  
5
DGNDB  
D1  
GND  
MC10EP16  
NC = NO CONNECT  
DGNDB  
DGNDB  
MC100EPT23  
NC = NO CONNECT  
Figure 23. Evaluation Board  
Rev. C | Page 2ꢀ of 28  
 
AD13280  
Figure 24. Top Silk  
Figure 25. Top Layer  
Rev. C | Page 21 of 28  
AD13280  
Figure 26. GND1  
Figure 27. GND2  
Rev. C | Page 22 of 28  
AD13280  
Figure 28. Bottom Silk  
Figure 29. Bottom Layer  
Rev. C | Page 23 of 28  
AD13280  
BILL OF MATERIALS LIST FOR EVALUATION BOARD  
Table 4.  
Component  
Qty Name  
Reference  
Value  
Description  
Latch  
AD1328ꢀ  
Manufacturing Part Number  
74LCX16374MTD (Fairchild)  
AD1328ꢀAZ  
2
1
2
1ꢀ  
2
74LCX16374MTD  
U7, U8  
U1  
U5, U6  
BJ1 to BJ1ꢀ  
R41, R53  
R38, R39, R55, R56  
C1, C2, C5 to C1ꢀ,  
C12, C16 to C18,  
C2ꢀ to C26, C28,  
C31 to C38  
C13, C27  
AD1328ꢀAZ  
ADP333ꢀ  
BJACK  
BRESꢀ8ꢀ5  
BRESꢀ8ꢀ5  
CAP2  
Regulator  
ADP333ꢀART-3.3RL7  
Banana jacks  
ꢀ8ꢀ5 SM resistor  
ꢀ8ꢀ5 SM resistor  
ꢀ8ꢀ5 SM capacitor  
1ꢀ8-ꢀ74ꢀ-ꢀꢀ1 (Johnson Components)  
ERJ-6GEYJ 24ꢀV (Panasonic)  
ERJ-6GEYJ 333V (Panasonic)  
GRM 4ꢀX7R1ꢀ4Kꢀ25BL  
25 Ω  
33 kΩ  
ꢀ.1 μF  
4
28  
2
2
6
4
2
8
CAP2  
H4ꢀDM  
IND2  
MC1ꢀEP16  
MC1ꢀꢀEPT23  
POLCAP2  
ꢀ.47 μF  
47 Ω  
ꢀ8ꢀ5 SM capacitor  
2 × 2ꢀ, 4ꢀ-pin male connector TSW-12ꢀ-ꢀ8-G-D  
SM inductor  
Clock drivers  
ECL/TTL clock drivers  
Tantalum polar capacitor  
VJ12ꢀ6U474MFXMB (Vishay)  
J1, J2  
L1 to L6  
2743ꢀ19447  
U2, U3, U9, U11  
U4, U1ꢀ  
C3, C4, C11, C14,  
C15, C19, C29, C3ꢀ  
R47 to R5ꢀ  
MC1ꢀEP16D (ON Semiconductor)  
SY1ꢀꢀEP23L (ON Semiconductor)  
T491C1ꢀ6Mꢀ16AT (Kemet)  
1ꢀ μF  
4
6
32  
RES2  
RES2  
RES2  
ꢀ Ω  
5ꢀ Ω  
1ꢀꢀ Ω  
ꢀ8ꢀ5 SM resistor  
ꢀ8ꢀ5 SM resistor  
ꢀ8ꢀ5 SM resistor  
ERJ-6GEY OR ꢀꢀV (Panasonic)  
ERJ-6GEYJ 51ꢀV (Panasonic)  
ERJ-6GEYJ 1ꢀ1V (Panasonic)  
R1, R2, R5, R7, R8, R54  
R3, R4, R6, R9, R12 to  
R15, R19 to R28, R31  
to R37, R42, R43, R44  
to R46, R51, R52  
12  
4
4
SMA  
J3 to J14  
SMA connectors  
Standoff  
Screws (standoff)  
AD1328ꢀ evaluation board  
142-ꢀ7ꢀ1-2ꢀ1  
Standoff  
Screws  
PCB  
313-2477-ꢀ16 (Johnson Components)  
MPMS ꢀꢀ4 ꢀꢀꢀ5 PH (Building Fasteners)  
GSꢀ3361  
1
Rev. C | Page 24 of 28  
 
AD13280  
OUTLINE DIMENSIONS  
2.00 (50.80)  
TYP  
0.035 (0.889)  
MAX  
0.350  
(8.89)  
TYP  
0.040 (1.02)  
× 45°  
DETAIL A  
PIN 1  
TOE DOWN  
ANGLE  
0–8 DEGREES  
0.960 (24.38)  
0.800 (20.32)  
BSC  
0.010 (0.254)  
0.950 (24.13) SQ  
0.940 (23.88)  
TOP VIEW  
(PINS DOWN)  
30°  
0.050 (1.27)  
0.020 (0.508)  
DETAIL A  
ROTATED 90° CCW  
0.040  
(1.02) R  
TYP  
0.015 (0.30)  
× 45°  
3 PLS  
0.010 (0.25)  
0.008 (0.20)  
0.007 (0.18)  
0.235 (5.97)  
MAX  
0.020 (0.508)  
0.017 (0.432)  
0.014 (0.356)  
0.055 (1.40)  
0.050 (1.27)  
0.045 (1.14)  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
Figure 30. 68-Lead Ceramic Leaded Chip Carrier with Nonconductive Tie-Bar [CLCC]  
(ES-68-1)  
Dimensions shown in inches and (millimeters)  
0.235 (5.97)  
0.960 (24.38)  
MAX  
0.010 (0.25)  
0.008 (0.20)  
0.007 (0.18)  
0.950 (24.13) SQ  
0.940 (23.88)  
9
61  
10  
60  
PIN 1  
TOP VIEW  
(PINS DOWN)  
1.190 (30.23)  
1.180 (29.97) SQ  
1.170 (29.72)  
1.070  
(27.18)  
MIN  
0.800  
(20.32)  
BSC  
TOE DOWN  
ANGLE  
0–8 DEGREES  
0.010 (0.254)  
26  
44  
30°  
27  
43  
0.050 (1.27)  
0.020 (0.508)  
DETAIL A  
0.060 (1.52)  
0.050 (1.27)  
0.040 (1.02)  
DETAIL A  
0.055 (1.40)  
0.050 (1.27)  
0.045 (1.14)  
0.020 (0.508)  
0.017 (0.432)  
0.014 (0.356)  
0.175 (4.45)  
MAX  
ROTATED 90° CCW  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
Figure 31. 68-Lead Ceramic Leaded Chip Carrier [CLCC]  
(ES-68-C)  
Dimensions shown in inches and (millimeters)  
Rev. C | Page 25 of 28  
 
AD13280  
ORDERING GUIDE  
Model  
Temperature Range1 Package Description  
Package Option  
ES-68-C  
ES-68-1  
AD1328ꢀAZ2  
AD1328ꢀAF  
AD1328ꢀ/PCB  
−25°C to +85°C  
−25°C to +85°C  
68-Lead Ceramic Leaded Chip Carrier [CLCC]  
68-Lead Ceramic Leaded Chip Carrier with Nonconductive Tie-Bar [CLCC]  
Evaluation Board with AD1328ꢀAZ  
1 Referenced temperature is case temperature.  
2 Z is a package indicator; the part is not RoHS compliant.  
Rev. C | Page 26 of 28  
 
 
AD13280  
NOTES  
Rev. C | Page 27 of 28  
AD13280  
NOTES  
©2002–2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D02386–0–4/08(C)  
Rev. C | Page 28 of 28  
 
 
 
 

相关型号:

AD13280BZ

Dual Channel, 12-Bit, 80 MSPS A/D Converter with Analog Input Signal Conditioning
ADI

AD132IV

TRANSISTOR | BJT | PNP | 60V V(BR)CEO | 3A I(C) | TO-3
ETC

AD132V

TRANSISTOR | BJT | PNP | 60V V(BR)CEO | 3A I(C) | TO-3
ETC

AD1330

IC 1-CH 12-BIT FLASH/SUCCESSIVE APPROXIMATION ADC, PARALLEL ACCESS, Analog to Digital Converter
ADI

AD1332BD

Analog-to-Digital Converter, 12-Bit
ETC

AD1332TD/883B

Analog-to-Digital Converter, 12-Bit
ETC

AD1334BD

Single-Ended Data Acquisition System
ETC

AD1334TD883B

Single-Ended Data Acquisition System
ETC

AD133III

TRANSISTOR | BJT | PNP | 32V V(BR)CEO | 15A I(C) | TO-41
ETC

AD133IV

TRANSISTOR | BJT | PNP | 32V V(BR)CEO | 15A I(C) | TO-41
ETC

AD133V

TRANSISTOR | BJT | PNP | 32V V(BR)CEO | 15A I(C) | TO-41
ETC

AD1341KZ

Single-Ended Data Acquisition System
ETC