AD14160LKB-4 [ADI]

Quad-SHARC DSP Multiprocessor Family; 四SHARC DSP多处理器家族
AD14160LKB-4
型号: AD14160LKB-4
厂家: ADI    ADI
描述:

Quad-SHARC DSP Multiprocessor Family
四SHARC DSP多处理器家族

文件: 总52页 (文件大小:1195K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Quad-SHARC®  
DSP Multiprocessor Family  
a
AD14160/AD14160L  
PERFORMANCE FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
ADSP-21060 Core Processor (. . . 
؋
4)  
480 MFLOPS Peak, 320 MFLOPS Sustained  
25 ns Instruction Rate, Single-Cycle  
Instruction Execution–Each of Four Processors  
16 Mbit Shared SRAM (Internal to SHARCs)  
4 Gigawords Addressable Off-Module Memory  
Sixteen 40 Mbyte/s Link Ports (Four per SHARC)  
Eight 40 Mbit/s Independent Serial Ports (Two  
from Each SHARC)  
ID  
2-0  
LINK 0  
LINK 0  
ID  
2-0  
CPA  
CPA  
SPORT 1  
SPORT 0  
SPORT 1  
SPORT 0  
TDI  
LINK 5  
TDO  
LINK 5  
TDI  
SHARC_B  
SHARC_A  
5 V and 3.3 V Operation  
32-Bit Single Precision and 40-Bit Extended  
Precision IEEE Floating Point Data Formats, or  
32-Bit Fixed Point Data Format  
IEEE JTAG Standard 1149.1 Test Access Port and  
On-Chip Emulation  
SHARC BUS (ADDR31-0  
,
DATA47-0 MS3-0, RD, WR, PAGE, ADRCLK, SW, ACK,  
,
AD14160/  
AD14160L  
SBTS, HBR, HBG, REDY, BR6-1, RPBA, DMAR1.2, DMAG1.2  
)
PACKAGING FEATURES  
452-Lead Ceramic Ball Grid Array (CBGA)  
1.85" (47 mm) Body Size  
0.200" Max Height  
0.050" Ball Pitch  
29 Grams (typical)  
ID  
2-0  
ID  
2-0  
CPA  
SPORT 1  
SPORT 0  
CPA  
SHARC_D  
SHARC_C  
LINK 0  
LINK 0  
SPORT 1  
SPORT 0  
TDO  
JC = 0.36؇C/W  
LINK 5  
TDO  
LINK 5  
TDI  
The ADSP-21060 link ports are interconnected to provide  
direct communication among the four SHARCs as well as high  
speed off-module access. Internally, links connect the SHARC  
in a ring. Externally, each SHARC has a total of 160 Mbytes/s  
link port bandwidth.  
GENERAL DESCRIPTION  
The AD14160/AD14160L Quad-SHARC Ceramic Ball Grid  
Array (CBGA) puts the power of the first generation AD14060  
(CQFP) DSP multiprocessor into a very high density ball grid  
array package; now with additional link and serial I/O pinned  
out, beyond that from the CQFP package. The core of the multi-  
processor is the ADSP-21060 DSP microcomputer. The AD14x60  
modules have the highest performance—density and lowest  
cost— performance ratios of any in their class. They are ideal  
for applications requiring higher levels of performance and/or  
functionality per unit area.  
Multiprocessor performance is enhanced with embedded power  
and ground planes, matched impedance interconnect, and opti-  
mized signal routing lengths and separation. The fully tested  
and ready-to-insert multiprocessor also significantly reduces  
board space.  
The AD14160/AD14160L takes advantage of the built-in  
multiprocessing features of the ADSP-21060 to achieve 480 peak  
MFLOPS with a single chip type, in a single package. The on-  
chip SRAM of the DSPs provides 16 Mbits of on-module  
shared SRAM. The complete shared bus (48 data, 32 address)  
is also brought off-module for interfacing with expansion  
memory or other peripherals.  
s
s
s
s
SHARC is a registered trademark of Analog Devices, Inc.  
REV. A  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 1998  
AD14160/AD14160L  
DETAILED DESCRIPTION  
Architectural Features  
ADSP-21060 Core  
is a 10-port, 32-register (16 primary, 16 secondary) file. Each  
SHARC’s core also implements two data address generators  
(DAGs), implementing circular data buffers in hardware. The  
DAGs contain sufficient registers to allow the creation of up to  
32 circular buffers. The 48-bit instruction word accommodates a  
variety of parallel operations, for concise programming. For ex-  
ample, the ADSP-21060 can conditionally execute a multiply, an  
add, a subtract, and a branch, all in a single instruction.  
The AD14160/AD14160L is based on the powerful ADSP-21060  
(SHARC) DSP chip. The ADSP-21060 SHARC combines a  
high performance floating-point DSP core with integrated, on-  
chip system features including a 4 Mbit SRAM memory, host  
processor interface, DMA controller, serial ports, and both link  
port and parallel bus connectivity for glueless DSP multiprocess-  
ing, (see Figure 1). It is fabricated in a high speed, low power  
CMOS process, and has a 25 ns instruction cycle time. The arith-  
metic/ logic unit (ALU), multiplier and shifter all perform single-  
cycle instructions, and the three units are arranged in parallel,  
maximizing computational throughput.  
The SHARCs contain 4 Mbits of on-chip SRAM each, orga-  
nized as two blocks of 2 Mbits, which can be configured for  
different combinations of code and data storage. The memory  
can be configured as a maximum of 128K words of 32-bit data,  
256K words of 16-bit data, 80K words of 48-bit instructions (or  
40-bit data), or combinations of different word sizes up to  
4 megabits. A 16-bit floating-point storage format is supported  
which effectively doubles the amount of data that may be stored  
on chip. Conversion between the 32-bit floating point and 16-  
bit floating point formats is done in a single instruction. Each  
memory block is dual-ported for single-cycle, independent  
accesses by the core processor and I/O processor or DMA con-  
troller. The dual-ported memory and separate on-chip buses  
allow two data transfers from the core and one from I/O, all in a  
single cycle.  
The SHARC features an enhanced Harvard architecture in  
which the data memory (DM) bus transfers data, and the pro-  
gram memory (PM) bus transfers both instructions and data.  
There is also an on-chip instruction cache which selectively  
caches only those instructions whose fetches conflict with the  
PM bus data accesses. This combines with the separate program  
and data memory buses to enable three-bus operation for fetch-  
ing an instruction and two operands, all in a single cycle. The  
SHARC also contains a general purpose data register file, which  
DUAL-PORTED SRAM  
CORE PROCESSOR  
INSTRUCTION  
TIMER  
JTAG  
TWO INDEPENDENT  
DUAL-PORTED BLOCKS  
7
CACHE  
32 x 48-BIT  
TEST AND  
EMULATION  
PROCESSOR PORT  
I/O PORT  
DATA  
ADDR  
DATA  
ADDR  
DATA  
ADDR  
ADDR  
DATA  
DAG1  
8 x 4 x 32  
DAG2  
8 x 4 x 24  
PROGRAM  
SEQUENCER  
EXTERNAL  
PORT  
IOD  
48  
IOA  
17  
PM ADDRESS BUS  
24  
32  
32  
48  
ADDR BUS  
MUX  
DM ADDRESS BUS  
PM DATA BUS  
MULTIPROCESSOR  
INTERFACE  
48  
BUS  
CONNECT  
(PX)  
DATA BUS  
MUX  
DM DATA BUS 40/32  
HOST PORT  
4
6
DMA  
DATA  
REGISTER  
FILE  
IOP  
REGISTERS  
MEMORY MAPPED)  
CONTROLLER  
(
SERIAL PORTS  
(2)  
16 x 40-BIT  
BARREL  
SHIFTER  
6
MULTIPLIER  
ALU  
CONTROL,  
STATUS, AND  
DATA BUFFERS  
36  
LINK PORTS  
(6)  
I/O PROCESSOR  
Figure 1. ADSP-21060 Processor Block Diagram (Core of the AD14160/AD14160L)  
REV. A  
–2–  
AD14160/AD14160L  
0x0000 0000  
0x0002 0000  
0x0040 0000  
IOP REGISTERS  
INTERNAL  
MEMORY  
SPACE  
(INDIVIDUAL  
SHARCs)  
BANK 0  
MS  
MS  
MS  
0
1
2
NORMAL WORD ADDRESSING  
SHORT WORD ADDRESSING  
DRAM  
(OPTIONAL)  
0x0004 0000  
0x0008 0000  
INTERNAL MEMORY SPACE  
OF SHARC_A  
BANK 1  
BANK 2  
ID=001  
0x0010 0000  
0x0018 0000  
INTERNAL MEMORY SPACE  
OF SHARC_B  
ID=010  
INTERNAL  
TO AD14160x  
INTERNAL MEMORY SPACE  
OF SHARC_C  
ID=011  
EXTERNAL  
MEMORY  
SPACE  
0x0020 0000  
0x0028 0000  
INTERNAL MEMORY SPACE  
OF SHARC_D  
MULTIPROCESSOR  
MEMORY SPACE  
ID=100  
MS  
BANK 3  
3
INTERNAL MEMORY SPACE  
OF ADSP-2106x  
WITH ID=101  
BANK SIZE IS  
EXTERNAL  
TO AD14160x  
0x0030 0000  
0x0038 0000  
0x003F FFFF  
SELECTED BY  
MSIZE BIT FIELD OF  
SYSCON  
INTERNAL MEMORY SPACE  
OF ADSP-2106x  
WITH ID=110  
REGISTER.  
BROADCAST WRITE  
TO ALL  
NONBANKED  
ADSP-2106xs  
NORMAL WORD ADDRESSING: 32-BIT DATA WORDS  
48-BIT INSTRUCTION WORDS  
SHORT WORD ADDRESSING: 16-BIT DATA WORDS  
0xFFFF FFFF  
Figure 2. AD14160/AD14160L Memory Map  
SYSTEM EXPANSION  
SHARC_A  
SHARC_B  
ADDR  
DATA  
1X CLOCK  
CLKIN  
31-0  
LINKS 1, 2, 3, & 4; LINKS 1, 2, 3, & 4;  
47-0  
RD  
IRQ  
;
IRQ  
;
RESET  
2-0  
2-0  
FLAG  
;
FLAG  
;
3-0  
3-0  
TIMEXP,  
SPORT1  
CPA  
TIMEXP,  
SPORT1  
CPA  
WR  
ACK  
ID  
ID  
MS  
-0  
2
-0  
2
3-0  
BOOTSELECT A  
PAGE  
AD14160/  
AD14160L  
BOOTSELECT BCD  
SBTS  
SW  
(QUAD PROCESSOR  
CLUSTER)  
DMAR1,2  
DMAG1,2  
ADRCLK  
SHARC_D  
SHARC_C  
CS  
HBR  
LINKS 1, 2, 3, & 4;  
LINKS 1, 2, 3, & 4;  
SPORT0  
SPORT1  
IRQ  
;
IRQ  
;
2-0  
2-0  
HBG  
FLAG  
;
FLAG  
;
3-0  
3-0  
REDY  
TIMEXP,  
SPORT1  
CPA  
TIMEXP,  
SPORT1  
CPA  
BR  
1-6  
JTAG  
RPBA  
ID  
ID  
-0  
2
-0  
2
Figure 3. Complete Shared Memory Multiprocessing System  
REV. A  
–3–  
AD14160/AD14160L  
Shared Memory Multiprocessing  
The bus master can communicate with slave SHARCs by writ-  
ing messages to their internal IOP registers. The MSRG0–  
MSRG7 registers are general-purpose registers that can be used  
for convenient message passing, semaphores and resource shar-  
ing between the SHARCs. For message passing, the master  
communicates with a slave by writing and/or reading any of the  
eight message registers on the slave. For vector interrupts, the  
master can issue a vector interrupt to a slave by writing the  
address of an interrupt service routine to the slave’s VIRPT  
register. This causes an immediate high priority interrupt on the  
slave which, when serviced, will cause it to branch to the speci-  
fied service routine.  
The AD14160/AD14160L takes advantage of the powerful  
multiprocessing features built into the SHARC. The SHARCs are  
connected to maximize the performance of this cluster-of-four  
architecture, and still allow for off-module expansion. The  
AD14160/AD14160L in itself is a complete shared memory  
multiprocessing system, as shown in Figure 3. The unified ad-  
dress space of the SHARCs allows direct interprocessor ac-  
cesses of each SHARCs’ internal memory. In other words, each  
SHARC can directly access the internal memory and IOP registers  
of each of the other SHARCs by simply reading or writing to the  
appropriate address in multi-processor memory space (see Fig-  
ure 2)—this is called a direct read or direct write.  
Off-Module Memory and Peripherals Interface  
Bus arbitration is accomplished with the on-SHARC arbitration  
logic. Each SHARC has a unique ID, and drives the Bus-Request  
(BR) line corresponding to its ID, while monitoring all others.  
BR1–BR4 are used within the AD14160/AD14160L, while BR5  
and BR6 can be used for expansion. All bus requests (BR1–BR6)  
are included in the module I/O.  
The AD14160/AD14160L’s external port provides the interface to  
off-module memory and peripherals (see Figure 5). This port  
consists of the complete external port bus of the SHARC, bused  
together in common among the four SHARCs.  
The 4-gigaword off-module address space is included in the  
AD14160/AD14160L’s unified address space. Addressing of  
external memory devices is facilitated by each SHARC inter-  
nally decoding the high order address lines to generate memory  
bank select signals. Separate control lines are also generated for  
simplified addressing of page-mode DRAM. The AD14160/  
AD14160L also supports programmable memory wait states and  
external memory acknowledge controls to allow interfacing to  
DRAM and peripherals with variable access, hold and disable  
time requirements.  
Two different priority schemes, fixed and rotating, are available  
to resolve competing bus requests. The RPBA pin selects which  
scheme is used: when RPBA is high, rotating priority bus arbitra-  
tion is selected, and when RPBA is low, fixed priority is selected.  
Table I. Rotating Priority Arbitration Example  
Hardware Processor IDs  
Cycle ID1 ID2  
ID3  
ID4 ID5 ID6  
1
2
3
4
5
M
4
4
5 BR  
1 BR  
1
2 BR  
3
1
1
2
4
4
2
2
3
5
5
3
3
Initial Priority Assignments  
Final Priority Assignments  
Link Port I/O  
5 BR M-BR  
5 BR  
M
Each individual SHARC features six 4-bit link ports that facili-  
tate SHARC-to-SHARC communication and external I/O inter-  
facing. Each link port can be configured for either 1× or 2×  
operation, allowing each to transfer either 4 or 8 bits per cycle.  
The link ports can operate independently and simultaneously,  
with a maximum bandwidth of 40 MBytes/s each, or a total of  
240 MBytes/s per SHARC.  
M
1
3
4 BR  
M
2
NOTES  
1–5 = Assigned Priority.  
M = Bus Mastership (in that cycle).  
BR = Requesting Bus Mastership with BRx.  
The AD14160/AD14160L provides additional link port I/O  
beyond that of the AD14060. Internally, two links from each  
SHARC form a ring connection among the four. The remaining  
four link ports from each SHARC are brought out indepen-  
dently from each SHARC. A maximum of 640 MBytes/s link  
port bandwidth is then available off of the AD14160/AD14160L.  
The link port connections are detailed in Figure 4.  
Bus mastership is passed from one SHARC to another during a  
bus transition cycle. A bus transition cycle only occurs when the  
current bus master deasserts its BR line and one of the slave  
SHARCs asserts its BR line. The bus master can therefore re-  
tain bus mastership by keeping its BR line asserted. When the  
bus master deasserts its BR line, and no other BR line is as-  
serted, then the master will not lose any bus cycles. When more  
than one SHARC asserts its BR line, the SHARC with the  
highest priority request becomes bus master on the following  
cycle. Each SHARC observes all of the BR lines, and therefore  
tracks when a bus transition cycle has occurred, and which  
processor has become the new bus master. Master processor  
changeover incurs only one cycle of overhead. An example bus  
transition sequence is shown in Table I.  
1
2
1
2
5
5
SHARC_A  
SHARC_B  
3
4
3
4
0
0
0
0
Bus locking is possible, allowing indivisible read-modify-write  
sequences for semaphores. In either the fixed or rotating priority  
scheme, it is also possible to limit the number of cycles the  
master can control the bus. The AD14160/AD14160L also  
provides the option of using the Core Priority Access (CPA)  
mode of the SHARC. Using the CPA signal allows external bus  
accesses by the core processor of a slave SHARC to take priority  
over ongoing DMA transfers. Also, each SHARC can broadcast  
write to all other SHARCs simultaneously, allowing the implemen-  
tation of reflective semaphores.  
1
2
1
2
SHARC_D  
SHARC_C  
3
4
3
4
5
5
Figure 4. Link Port Connections  
REV. A  
–4–  
AD14160/AD14160L  
AD14160/  
AD14160L  
1x  
CLOCK  
CLKIN  
RESET  
RPBA  
ID  
ADDR  
ADDR  
DATA  
31–0  
GLOBAL  
MEMORY  
DATA  
47–0  
RESET  
AND  
RD  
WR  
OE  
PERIPHERALS  
(OPTIONAL)  
WE  
ACK  
ACK  
3
MS  
CS  
3–0  
CS  
BMS  
BOOT  
EPROM  
(OPTIONAL)  
PAGE  
ADDR  
DATA  
SBTS  
SW  
CONTROL  
ADRCLK  
CS  
HBR  
HOST  
PROCESSOR  
INTERFACE  
(OPTIONAL)  
HBG  
REDY  
ADDR  
DATA  
SERIALS  
LINKS  
CPA  
5
BR  
2–6  
DISCRETES  
BR  
1
ADSP-2106x #5  
(OPTIONAL)  
ADDR  
31–0  
47–0  
CLKIN  
DATA  
RESET  
RPBA  
ID  
3
CONTROL  
CPA  
5
BR  
, 2, 3, 4, 6  
1
BR  
5
ADSP-2106x #6  
(OPTIONAL)  
ADDR  
DATA  
CLKIN  
31–0  
47–0  
RESET  
RPBA  
ID  
3
CONTROL  
CPA  
BR  
5
1–5  
BR  
6
Figure 5. Optional System Interconnections  
REV. A  
–5–  
AD14160/AD14160L  
Link port 4, the boot link port, is brought off independently  
from each SHARC. Individual booting is then allowed, or  
chained link port booting is possible as described under “Link  
Port Booting.”  
to become bus master and boot itself. Only the BMS pin of  
SHARC_A is connected to the chip select of the EPROM.  
When SHARC_A has finished booting, it can boot the re-  
maining ADSP-21060s by writing to their external port DMA  
buffer 0 (EPB0) via multiprocessor memory space.  
Link port data is packed into 32-bit or 48-bit words, and can be  
directly read by the SHARC core processor or DMA-transferred  
to on-SHARC memory.  
All ADSP-21060s Boot in Turn From a Single EPROM.  
The BMS signals from each ADSP-21060 may be wire-ORed  
together to drive the chip select pin of the EPROM. Each  
ADSP-21060 can boot in turn, according to its priority. When  
the last one has finished booting, it must inform the others (which  
may be in the idle state) that program execution can begin.  
Each link port has its own double-buffered input and output  
registers. Clock/acknowledge handshaking controls link port  
transfers. Transfers are programmable as either transmit or  
receive.  
Multiprocessor Link Port Booting  
Serial Ports  
Booting can also be accomplished from a single source through  
the link ports. Link Buffer 4 must always be used for booting.  
To simultaneously boot all of the ADSP-21060s, a parallel  
common connection is available through Link Port 4 on each of  
the processors. Or, using the daisy chain connection that exists  
between the processors’ link ports, each ADSP-21060 can boot  
the next one in turn. In this case, the Link Assignment Register  
(LAR) must be programmed to configure the internal link ports  
with Link Buffer 4.  
The SHARC serial ports provide an inexpensive interface to a  
wide variety of digital and mixed-signal peripheral devices. Each  
SHARC has two serial ports. All eight of the AD14160/AD14160L  
serial ports are brought off-module.  
The serial ports can operate at the full clock rate of the module,  
providing each with a maximum data rate of 40 Mbit/s. Inde-  
pendent transmit and receive functions provide more flexible  
communications. Serial port data can be automatically trans-  
ferred to and from on-SHARC memory via DMA, and each of  
the serial ports offers time division multiplexed (TDM) multi-  
channel mode.  
Multiprocessor Booting From External Memory  
If external memory contains a program after reset, then  
SHARC_A should be set up for no boot mode; it will begin ex-  
ecuting from address 0x0040 0004 in external memory. When  
booting has completed, the other ADSP-21060s may be booted  
by SHARC_A if they are set up for host booting, or they can  
begin executing out of external memory if they are set up for no  
boot mode. Multiprocessor bus arbitration will allow this booting  
to occur in an orderly manner.  
The serial ports can operate with little-endian or big-endian  
transmission formats, with word lengths selectable from 3 bits to  
32 bits. They offer selectable synchronization and transmit  
modes as well as optional µ-law or A-law companding. Serial  
port clocks and frame syncs can be internally or externally  
generated.  
Program Booting  
Host Processor Interface  
The AD14160/AD14160L supports automatic downloading of  
programs following power-up or a software reset. The SHARC  
offers four options for program booting: 1) from an 8-bit  
EPROM; 2) from a host processor; 3) through the link ports;  
and 4) no-boot. In no-boot mode, the SHARC starts executing  
instructions from address 0x0040 0004 in external memory.  
The boot mode is selected by the state of the following signals:  
BMS, EBOOT, and LBOOT.  
The AD14160/AD14160L’s host interface allows for easy con-  
nection to standard microprocessor buses, both 16-bit and 32-  
bit, with little additional hardware required. Asynchronous  
transfers at speeds up to the full clock rate of the module are  
supported. The host interface is accessed through the AD14160/  
AD14160L external port and is memory-mapped into the uni-  
fied address space. Four channels of DMA are available for the  
host interface; code and data transfers are accomplished with  
low software overhead.  
On the AD14160/AD14160L, SHARC_A’s boot mode is sepa-  
rately controlled, while SHARCs B, C, and D are controlled as  
a group. With this flexibility, the AD14160/AD14160L can be  
configured to boot in any of the following methods.  
The host processor requests the AD14160/AD14160L’s external  
bus with the host bus request (HBR), host bus grant (HBG),  
and ready (REDY) signals. The host can directly read and write  
the internal memory of the SHARCs, and can access the DMA  
channel setup and mailbox registers. Vector interrupt support is  
provided for efficient execution of host commands.  
Multiprocessor Host Booting  
To boot multiple ADSP-21060 processors from a host, each  
ADSP-21060 must have its EBOOT, LBOOT and BMS pins  
configured for host booting: EBOOT = 0, LBOOT = 0, and  
BMS = 1. After system power-up, each ADSP-21060 will be in  
the idle state and the BRx bus request lines will be deasserted.  
The host must assert the HBR input and boot each ADSP-21060  
by asserting its CS pin and downloading instructions.  
Direct Memory Access (DMA) Controller  
The SHARCs on-chip DMA control logic allows zero-over-  
head data transfers without processor intervention. The DMA  
controller operates independently and invisibly to each SHARCs  
processor core, allowing DMA operations to occur while the core  
is simultaneously executing its program instructions.  
Multiprocessor EPROM Booting  
There are two methods of booting the multiprocessor system  
from an EPROM.  
DMA transfers can occur between SHARC internal memory  
and either external memory, external peripherals, or a host  
processor. DMA transfers can also occur between the SHARC’s  
internal memory and its serial ports or link ports. DMA trans-  
fers between external memory and external peripheral devices are  
another option. External bus packing to 16-, 32- or 48-bit words  
is performed during DMA transfers.  
SHARC_A Is Booted, Which Then Boots the Others. The  
EBOOT pin on the SHARC_A must be set high for EPROM  
booting. All other ADSP-21060s should be configured for host  
booting (EBOOT = 0, LBOOT = 0, and BMS = 1), which  
leaves them in the idle state at start-up and allows SHARC_A  
REV. A  
–6–  
AD14160/AD14160L  
Ten channels of DMA are available on the SHARCs—two via  
the link ports, four via the serial ports, and four via the processor’s  
external port (for either host processor, other SHARCs, memory,  
or I/O transfers). Four additional link port DMA channels are  
shared with serial port 1 and the external port. Programs can be  
downloaded to the SHARCs using DMA transfers. Asynchro-  
nous off-module peripherals can control two DMA channels  
using DMA Request/Grant lines (DMAR1-2, DMAG1-2).  
Other DMA features include interrupt generation upon comple-  
tion of DMA transfers and DMA chaining for automatic linked  
DMA transfers.  
EZ-ICE provides full-speed emulation, allowing inspection and  
modification of memory, registers and processor stacks.  
Nonintrusive in-circuit emulation is assured by the use of the  
processor’s JTAG interface—the emulator does not affect target  
system loading or timing.  
Further details and ordering information are available in the  
ADSP-21000 Family Hardware & Software Development Tools  
data sheet (ADDS-2100xx-TOOLS). This data sheet can be  
requested from any Analog Devices sales office or distributor,  
or from the Literature Center.  
In addition to the software and hardware development tools  
available from Analog Devices, third parties provide a wide  
range of tools supporting the SHARC processor family. Hard-  
ware tools include SHARC PC plug-in cards, multiprocessor  
SHARC VME boards, and daughter card modules with multiple  
SHARCs and additional memory. These modules are based on  
the SHARCPAC™ module specification. Third party software  
tools include an Ada compiler, DSP libraries, operating systems  
and block diagram design tools.  
Development Tools  
The AD14160/AD14160L is supported with a complete set  
of software and hardware development tools, including an  
EZ-LAB® In-Circuit Emulator, and development software.  
Analog Devices’ ADSP-21000 Family Development Software  
includes an easy to use Assembler based on an algebraic syntax,  
an Assembly Library/Librarian, a Linker, an Instruction-Level  
Simulator, an ANSI C optimizing Compiler, the CBug™ C  
Source-Level Debugger, and a C Runtime Library including  
DSP and mathematical functions. The Optimizing Compiler  
includes Numerical C extensions based on the work of the ANSI  
Numerical C Extensions Group. Numerical C provides exten-  
sions to the C language for array selection, vector math op-  
erations, complex data types, circular pointers and variably  
dimensioned arrays. The ADSP-21000 Family Development  
Software is available for both the PC and Sun platforms.  
Other Package Details  
The AD14160/AD14160L contains 14 on-module 0.1 micro-  
farad bypass capacitors. It is recommended that in the target  
system at least four additional capacitors, of 0.018 microfarad  
value, be placed around the module—one near each of the four  
corners.  
The top surface, lid, of the AD14160/AD14160L is electrically  
connected to GND.  
The SHARC EZ-KIT combines the ADSP-21000 Family De-  
velopment Software for the PC and the EZ-LAB Development  
Board in one package.  
The ADSP-2106x EZ-ICE® Emulator uses the IEEE 1149.1  
JTAG test access port of the ADSP-2106x processor to monitor  
and control the target board processor during emulation. The  
Additional Information  
This data sheet provides a general overview of the AD14160/  
AD14160L architecture and functionality. For detailed infor-  
mation on the ADSP-2106x SHARC and the ADSP-21000  
Family core architecture and instruction set, refer to the  
ADSP-2106x SHARC User’s Manual.  
EZ-ICE and EZ-LAB are registered trademarks of Analog Devices, Inc.  
CBug and SHARCPAC are trademarks of Analog Devices, Inc.  
REV. A  
–7–  
AD14160/AD14160L  
PIN FUNCTION DESCRIPTIONS  
TCLKx, RCLKx, LxDAT3-0, LxCLK, LxACK, TMS and  
TDI)—these pins can be left floating. These pins have a logic-  
level hold circuit that prevents the input from floating internally.  
AD14160/AD14160L pin definitions are listed below. Inputs  
identified as synchronous (S) must meet timing requirements  
with respect to CLKIN (or with respect to TCK for TMS,  
TDI). Inputs identified as asynchronous (A) can be asserted  
asynchronously to CLKIN (or to TCK for TRST).  
A = Asynchronous O = Output  
(A/D) = Active Drive  
G = Ground  
I = Input  
P = Power Supply (O/D) = Open Drain  
S = Synchronous  
Unused inputs should be tied or pulled to VDD or GND, except  
for ADDR31-0, DATA47-0, FLAG2-0, SW, and inputs that have  
internal pull-up or pull-down resistors (CPA, ACK, DTx, DRx,  
T = Three-State (when SBTS is asserted, or when the AD14160/  
AD14160L is a bus slave)  
Pin  
Type  
Function  
ADDR31-0  
I/O/T  
External Bus Address. (Common to all SHARCs) The AD14160/AD14160L outputs addresses for  
external memory and peripherals on these pins. In a multiprocessor system, the bus master outputs ad-  
dresses for read/writes on the internal memory or IOP registers of slave ADSP-2106xs. The AD14160/  
AD14160L inputs addresses when a host processor or multiprocessing bus master is reading or writing  
the internal memory or IOP registers of internal ADSP-21060s.  
DATA47-0  
I/O/T  
O/T  
External Bus Data. (Common to all SHARCs) The AD14160/AD14160L inputs and outputs data and  
instructions on these pins. 32-bit single-precision floating-point data and 32-bit fixed-point data is trans-  
ferred over bits 47-16 of the bus. 40-bit extended-precision floating-point data is transferred over bits 47-  
8 of the bus. 16-bit short word data is transferred over bits 31-16 of the bus. In PROM boot mode, 8-bit  
data is transferred over bits 23-16. Pull-up resistors on unused DATA pins are not necessary.  
MS3-0  
Memory Select Lines. (Common to all SHARCs) These lines are asserted (low) as chip selects for the  
corresponding banks of external memory. Memory bank size must be defined in the individual ADSP-  
21060’s system control registers (SYSCON). The MS3-0 lines are decoded memory address lines that  
change at the same time as the other address lines. When no external memory access is occurring the MS3-0  
lines are inactive; they are active, however, when a conditional memory access instruction is executed, whether  
or not the condition is true. MS0 can be used with the PAGE signal to implement a bank of DRAM memory  
(Bank 0). In a multiprocessing system, the MS3-0 lines are output by the bus master.  
RD  
I/O/T  
I/O/T  
O/T  
Memory Read Strobe. (Common to all SHARCs) This pin is asserted (low) when the AD14160/  
AD14160L reads from external devices or when the internal memory of internal ADSP-2106xs is being  
accessed. External devices (including other ADSP-2106xs) must assert RD to read from the AD14160/  
AD14160L’s internal memory. In a multiprocessing system, RD is output by the bus master and is input  
by all other ADSP-2106xs.  
WR  
Memory Write Strobe. (Common to all SHARCs) This pin is asserted (low) when the AD14160/  
AD14160L writes to external devices or when the internal memory of internal ADSP-2106xs is being  
accessed. External devices (including other ADSP-2106xs) must assert WR to write to the AD14160/  
AD14160L’s internal memory. In a multiprocessing system WR is output by the bus master and is input by all  
other ADSP-2106xs.  
PAGE  
DRAM Page Boundary. (Common to all SHARCs) The AD14160/AD14160L asserts this pin to signal  
that an external DRAM page boundary has been crossed. DRAM page size must be defined in the indi-  
vidual ADSP-21060’s memory control register (WAIT). DRAM can only be implemented in external  
memory Bank 0; the PAGE signal can only be activated for Bank 0 accesses. In a multiprocessing system,  
PAGE is output by the bus master.  
ADRCLK  
O/T  
Clock Output Reference. (Common to all SHARCs) In a multiprocessing system, ADRCLK is output  
by the bus master.  
SW  
I/O/T  
Synchronous Write Select. (Common to all SHARCs) This signal is used to interface the AD14160/  
AD14160L to synchronous memory devices (including other ADSP-2106xs). The AD14160/AD14160L  
asserts SW (low) to provide an early indication of an impending write cycle, which can be aborted if WR  
is not later asserted (e.g., in a conditional write instruction). In a multiprocessing system, SW is output  
by the bus master and is input by all other ADSP-2106xs to determine if the multiprocessor memory  
access is a read or write. SW is asserted at the same time as the address output. A host processor using  
synchronous writes must assert this pin when writing to the AD14160/AD14160L.  
ACK  
I/O/S  
Memory Acknowledge. (Common to all SHARCs) External devices can deassert ACK (low) to add  
wait states to an external memory access. ACK is used by I/O devices, memory controllers, or other pe-  
ripherals to hold off completion of an external memory access. The AD14160/AD14160L deasserts ACK,  
as an output, to add wait states to a synchronous access of its internal memory. In a multiprocessing  
system, a slave ADSP-2106x deasserts the bus master’s ACK input to add wait state(s) to an access of its  
internal memory. The bus master has a keeper latch on its ACK pin that maintains the input at the level  
it was last driven to.  
REV. A  
–8–  
AD14160/AD14160L  
Pin  
Type  
Function  
SBTS  
I/S  
Suspend Bus Three-State. (Common to all SHARCs) External devices can assert SBTS (low) to  
place the external bus address, data, selects, and strobes in a high impedance state for the following cycle.  
If the AD14160/AD14160L attempts to access external memory while SBTS is asserted, the processor  
will halt and the memory access will not be completed until SBTS is deasserted. SBTS should only be  
used to recover from host processor/AD14160/AD14160L deadlock, or used with a DRAM controller.  
HBR  
HBG  
I/A  
I/O  
Host Bus Request. (Common to all SHARCs) Must be asserted by a host processor to request control  
of the AD14160/AD14160L’s external bus. When HBR is asserted in a multiprocessing system, the  
ADSP-2106x that is bus master will relinquish the bus and assert HBG. To relinquish the bus, the  
ADSP-2106x places the address, data, select, and strobe lines in a high impedance state. HBR has priority  
over all ADSP-2106x bus requests (BR6-1) in a multiprocessing system.  
Host Bus Grant. (Common to all SHARCs) Acknowledges an HBR bus request, indicating that the  
host processor may take control of the external bus. HBG is asserted (held low) by the AD14160/  
AD14160L until HBR is released. In a multiprocessing system, HBG is output by the ADSP-2106x bus  
master and is monitored by all others.  
CSA  
I/A  
I/A  
I/A  
I/A  
O
Chip Select. Asserted by host processor to select SHARC_A.  
Chip Select. Asserted by host processor to select SHARC_B.  
Chip Select. Asserted by host processor to select SHARC_C.  
Chip Select. Asserted by host processor to select SHARC_D.  
CSB  
CSC  
CSD  
REDY (O/D)  
Host Bus Acknowledge. (Common to all SHARCs) The AD14160/AD14160L deasserts REDY (low)  
to add wait states to an asynchronous access of its internal memory or IOP registers by a host. Open drain  
output (O/D) by default; can be programmed in ADREDY bit of SYSCON register of individual ADSP-  
21060s to be active drive (A/D). REDY will only be output if the CS and HBR inputs are asserted.  
BR6-1  
I/O/S  
I
Multiprocessing Bus Requests. (Common to all SHARCs) Used by multiprocessing ADSP-2106xs to  
arbitrate for bus mastership. An ADSP-2106x only drives its own BRx line (corresponding to the value of  
its ID2-0 inputs) and monitors all others. In a multiprocessor system with less than six ADSP-2106xs, the  
unused BRx pins should be pulled high; BR4-1 must not be pulled high or low because they are outputs.  
IDy2-0  
Multiprocessing ID. (Individual ID2–0 from y = SHARC_A, SHARC_B, SHARC_C, SHARC_D.)  
Determines which multiprocessing bus request (BR1BR6) is used by individual ADSP-2106x’s. ID =  
001 corresponds to BR1, ID = 010 corresponds to BR2, etc. ID = 000 is reserved for single processor  
systems. These lines are a system configuration selection, which should be hardwired or only changed at  
reset.  
RPBA  
I/S  
Rotating Priority Bus Arbitration Select. (Common to all SHARCs) When RPBA is high, rotating  
priority for multiprocessor bus arbitration is selected. When RPBA is low, fixed priority is selected. This  
signal is a system configuration selection that must be set to the same value on every ADSP-2106x. If the  
value of RPBA is changed during system operation, it must be changed in the same CLKIN cycle on  
every ADSP-2106x.  
CPAy (O/D)  
I/O  
Core Priority Access. (y = SHARC_A, B, C, D) Asserting its CPA pin allows the core processor of an  
ADSP-2106x bus slave to interrupt background DMA transfers and gain access to the external bus.  
CPA is an open drain output that is connected to all ADSP-2106x in the system if this function is  
required. The CPA pin of each internal ADSP-21060 is brought out individually. The CPA pin has  
an internal 5 kpull-up resistor. If core access priority is not required in a system, the CPA pin  
should be left unconnected.  
DTy0  
O/T  
I
Data Transmit (Serial Port 0 individual from SHARC_A, SHARC_B, SHARC_C, SHARC_D). DT  
pin has a 50 kinternal pull-up resistor.  
DRy0  
Data Receive (Serial Port 0 individual from SHARC_A, SHARC_B, SHARC_C, SHARC_D). DR pin  
has a 50 kinternal pull-up resistor.  
TCLKy0  
RCLKy0  
I/O  
I/O  
Transmit Clock (Serial Port 0 individual from SHARC_A, SHARC_B, SHARC_C, SHARC_D).  
TCLK pin has a 50 kinternal pull-up resistor.  
Receive Clock (Serial Port 0 individual from SHARC_A, SHARC_B, SHARC_C, SHARC_D). RCLK  
pin has a 50 kinternal pull-up resistor.  
TFSy0  
RFSy0  
I/O  
I/O  
Transmit Frame Sync (Serial Port 0 individual from SHARC_A, SHARC_B, SHARC_C, SHARC_D).  
Receive Frame Sync (Serial Port 0 individual from SHARC_A, SHARC_B, SHARC_C, SHARC_D).  
REV. A  
–9–  
AD14160/AD14160L  
Pin  
Type  
Function  
DTy1  
O/T  
Data Transmit (Serial Port 1 individual from SHARC_A, SHARC_B, SHARC_C, SHARC_D) DT pin  
has a 50 kinternal pull-up resistor.  
DRy1  
I
Data Receive (Serial Port 1 individual from SHARC_A, SHARC_B, SHARC_C, SHARC_D) DR pin  
has a 50 kinternal pull-up resistor.  
TCLKy1  
RCLKy1  
I/O  
I/O  
Transmit Clock (Serial Port 1 individual from SHARC_A, SHARC_B, SHARC_C, SHARC_D) TCLK  
pin has a 50 kinternal pull-up resistor.  
Receive Clock (Serial Port 1 individual from SHARC_A, SHARC_B, SHARC_C, SHARC_D) RCLK  
pin has a 50 kinternal pull-up resistor.  
TFSy1  
I/O  
Transmit Frame Sync (Serial Port 1 individual from SHARC_A, SHARC_B, SHARC_C, SHARC_D)  
Receive Frame Sync (Serial Port 1 individual from SHARC_A, SHARC_B, SHARC_C, SHARC_D)  
RFSy1  
I/O  
FLAGy3-0  
I/O/A  
Flag Pins. (Individual FLAG3-0 from y = SHARC_A, SHARC_B, SHARC_C, SHARC_D) Each is  
configured via control bits as either an input or output. As an input, it can be tested as a condition. As an  
output, it can be used to signal external peripherals.  
IRQy2-0  
I/A  
Interrupt Request Lines. (Individual IRQ2-0 from y = SHARC_A, SHARC_B, SHARC_C, SHARC_D)  
May be either edge-triggered or level-sensitive.  
DMAR1  
DMAR2  
DMAG1  
DMAG2  
LyxCLK  
I/A  
DMA Request 1 (DMA Channel 7). Common to SHARC_A, SHARC_B, SHARC_C, SHARC_D.  
DMA Request 2 (DMA Channel 8). Common to SHARC_A, SHARC_B, SHARC_C, SHARC_D.  
DMA Grant 1 (DMA Channel 7). Common to SHARC_A, SHARC_B, SHARC_C, SHARC_D.  
DMA Grant 2 (DMA Channel 8). Common to SHARC_A, SHARC_B, SHARC_C, SHARC_D.  
Link Port Clock (y = SHARC_A, B, C, D; x = Link Ports 1, 2, 3, 4)1. Each LyxCLK pin has a 50 kΩ  
internal pull-down resistor which is enabled or disabled by the LPDRD bit of the LCOM register, of the  
ADSP-20160.  
I/A  
O/T  
O/T  
I/O  
LyxDAT3-0  
LyxACK  
EBOOTA  
LBOOTA  
BMSA  
I/O  
Link Port Data (y = SHARC_A, B, C, D; x = Link Ports 1, 2, 3, 4)1. Each LyxDAT pin has a  
50 kinternal pull-down resistor which is enabled or disabled by the LPDRD bit of the LCOM register,  
of the ADSP-21060.  
Link Port Acknowledge (y = SHARC_A, B, C, D; x = Link Ports 1, 2, 3, 4)1. Each LyxACK pin has a  
50 kinternal pull-down resistor which is enabled or disabled by the LPDRD bit of the LCOM register,  
of the ADSP-21060.  
I/O  
I
EPROM Boot Select. (SHARC_A) When EBOOTA is high, SHARC_A is configured for booting from  
an 8-bit EPROM. When EBOOTA is low, the LBOOTA and BMSA inputs determine booting mode for  
SHARC_A. See the following table. This signal is a system configuration selection which should be hardwired.  
I
Link Boot. When LBOOTA is high, SHARC_A is configured for link port booting. When LBOOTA is  
low, SHARC_A is configured for host processor booting or no booting. See the following table. This  
signal is a system configuration selection which should be hardwired.  
I/O/T2  
Boot Memory Select. Output: Used as chip select for boot EPROM devices (when EBOOTA = 1,  
LBOOTA = 0). In a multiprocessor system, BMS is output by the bus master. Input: When low, indicates  
that no booting will occur and that SHARC_A will begin executing instructions from external memory.  
See the following table. This input is a system configuration selection which should be hardwired.  
EBOOTBCD  
LBOOTBCD  
I
I
EPROM Boot Select. (Common to SHARC_B, SHARC_C, SHARC_D) When EBOOTBCD is high,  
SHARC_B, C, D are configured for booting from an 8-bit EPROM. When EBOOTBCD is low, the  
LBOOTBCD and BMSBCD inputs determine booting mode for SHARC_B, C and D. See the following  
table. This signal is a system configuration selection which should be hardwired.  
LINK Boot. (Common to SHARC_B, SHARC_C, SHARC_D) When LBOOTBCD is high, SHARC_B, C,  
D are configured for link port booting. When LBOOTBCD is low, SHARC_B, C, D are configured for  
host processor booting or no booting. See the following table. This signal is a system configuration selec-  
tion which should be hardwired.  
REV. A  
–10–  
AD14160/AD14160L  
Pin  
Type  
Function  
BMSBCD  
I/O/T2  
Boot Memory Select. Output: Used as chip select for boot EPROM devices (when EBOOTBCD = 1,  
LBOOTBCD = 0). In a multiprocessor system, BMS is output by the bus master. Input: When low,  
indicates that no booting will occur and that SHARC_B, C, D will begin executing instructions from  
external memory. See table below. This input is a system configuration selection which should be  
hardwired.  
EBOOT  
LBOOT  
BMS  
Booting Mode  
1
0
0
0
0
1
0
0
1
0
1
1
Output  
1 (Input) Host Processor  
1 (Input) Link Port  
0 (Input) No Booting. Processor executes from external memory.  
0 (Input) Reserved  
EPROM (Connect BMS to EPROM chip select)  
x (Input) Reserved  
TIMEXPy  
CLKIN  
O
I
Timer Expired. (Individual TIMEXP from y = SHARC_A, SHARC_B, SHARC_C, SHARC_D) Asserted  
for four cycles when the timer is enabled and TCOUNT decrements to zero.  
Clock In. (Common to all SHARCs) External clock input to the AD14160/AD14160L. The instruction  
cycle rate is equal to CLKIN. CLKIN may not be halted, changed, or operated below the minimum specified  
frequency.  
RESET  
TCK  
TMS  
TDI  
I/A  
I
Module Reset. (Common to all SHARCs) Resets the AD14160/AD14160L to a known state. This input  
must be asserted (low) at power-up.  
Test Clock (JTAG). (Common to all SHARCs) Provides an asynchronous clock for JTAG boundary  
scan.  
I/S  
I/S  
Test Mode Select (JTAG). (Common to all SHARCs) Used to control the test state machine. TMS has  
a 20 kinternal pull-up resistor.  
Test Data Input (JTAG). Provides serial data for the boundary scan logic chain starting at SHARC_A.  
TDI has a 20 kinternal pull-up resistor.  
TDO  
O
Test Data Output (JTAG). Serial scan output of the boundary scan chain path, from SHARC_D.  
TRST  
I/A  
Test Reset (JTAG). (Common to all SHARCs) Resets the test state machine. TRST must be asserted  
(pulsed low) after power-up or held low for proper operation of the AD14160/AD14160L. TRST has a  
20 kinternal pull-up resistor.  
EMU (O/D)  
O
Emulation Status. (Common to all SHARCs) Must be connected to the ADSP-2106x EZ-ICE target  
board connector only.  
VDD  
P
Power Supply. Nominally +5.0 V dc for 5 V devices or +3.3 V dc for 3.3 V devices (50 pins).  
Power Supply Return. (64 pins).  
GND  
G
NOTES  
1LINK PORTS 0 and 5 are connected internally as described earlier in Link Port I/O.  
2Three-statable only in EPROM boot mode (when BMS is an output).  
REV. A  
–11–  
AD14160/AD14160L  
The 14-pin, 2-row pin strip header is keyed at the Pin 3 location;  
Pin 3 must be removed from the header. The pins must be  
0.025 inch square and at least 0.20 inch in length. Pin spacing  
should be 0.1 × 0.1 inches. Pin strip headers are available from  
vendors such as 3M, McKenzie and Samtec.  
TARGET BOARD CONNECTOR FOR EZ-ICE PROBE  
The ADSP-2106x EZ-ICE Emulator uses the IEEE 1149.1  
JTAG test access port of the ADSP-2106x to monitor and con-  
trol the target board processor during emulation. The EZ-ICE  
probe requires that the AD14160/AD14160L’s CLKIN (op-  
tional), TMS, TCK, TRST, TDI, TDO, EMU and GND signals  
be made accessible on the target system via a 14-pin connector  
(a pin strip header) such as that shown in Figure 6. The EZ-  
ICE probe plugs directly onto this connector for chip-on-board  
emulation. You must add this connector to your target board  
design if you intend to use the ADSP-2106x EZ-ICE. The  
length of the traces between the connector and the AD14160/  
AD14160L’s JTAG pins should be as short as possible.  
The BTMS, BTCK, BTRST and BTDI signals are provided so  
that the test access port can also be used for board-level testing.  
When the connector is not being used for emulation, place  
jumpers between the Bxxx pins and the xxx pins as shown in  
Figure 6. If you are not going to use the test access port for  
board testing, tie BTRST to GND and tie or pull up BTCK to  
V
DD. The TRST pin must be asserted after power-up (through  
BTRST on the connector) or held low for proper operation of  
the AD14160/AD14160L. None of the Bxxx pins (Pins 5, 7, 9,  
11) are connected on the EZ-ICE probe.  
1
2
EMU  
GND  
The JTAG signals are terminated on the EZ-ICE probe as follows:  
3
5
4
6
KEY (NO PIN)  
CLKIN (OPTIONAL)  
TMS  
Signal  
Termination  
TMS  
TCK  
Driven through 22 Resistor (16 mA/3.2 mA Driver)  
Driven at 10 MHz through 22 Resistor (16 mA/  
3.2 mA Driver)  
Driven by Open-Drain Driver* (Pulled Up by On-Chip  
20 kResistor)  
Driven by 16 mA/3.2 mA Driver  
One TTL Load, No Termination  
BTMS  
7
9
8
TCK  
BTCK  
TRST  
10  
12  
BTRST  
TRST  
TDI  
TDO  
11  
BTDI  
GND  
TDI  
CLKIN One TTL Load, No Termination (Optional Signal)  
EMU  
4.7 kPull-Up Resistor, One TTL Load (Open-Drain  
Output from ADSP-2106x)  
13  
14  
TDO  
*TRST is driven low until the EZ-ICE probe is turned on by the EZ-ICE  
TOP VIEW  
software (after the invocation command).  
Figure 6. Target Board Connector for ADSP-2106x EZ-ICE  
Emulator (Jumpers in Place)  
Figure 7 shows JTAG scan path connections for the multi-  
processor system.  
JTAG DEVICE  
(OPTIONAL)  
ADSP-2106x  
#n  
SHARC_A  
SHARC_B  
SHARC_C  
SHARC_D  
TDI  
TDI  
TDO  
TDI  
TDO  
TDI  
TDO  
TDI  
TDO  
TDI  
TDO  
TDI  
TDO  
EZ-ICE  
JTAG  
CONNECTOR  
OTHER  
JTAG  
CONTROLLER  
TCK  
TMS  
EMU  
TRST  
TDO  
CLKIN  
OPTIONAL  
Figure 7. JTAG Scan Path Connections for the AD14160/AD14160L  
REV. A  
–12–  
AD14160/AD14160L  
Connecting CLKIN to Pin 4 of the EZ-ICE header is optional.  
The emulator only uses CLKIN when directed to perform op-  
erations such as starting, stopping and single-stepping multiple  
ADSP-2106xs in a synchronous manner. If you do not need  
these operations to occur synchronously on the multiple proces-  
sors, simply tie Pin 4 of the EZ-ICE header to ground.  
treated as critical signals in terms of skew, and should be laid  
out as short as possible on your board. If TCK, TMS and  
CLKIN are driving a large number of ADSP-2106xs (more than  
eight) in your system, then treat them as a “clock tree” using  
multiple drivers to minimize skew. (See Figure 8 JTAG Clock  
Tree and Clock Distribution in the “High Frequency Design  
Considerations” section of the ADSP-2106x User’s Manual).  
If synchronous multiprocessor operations are needed and  
CLKIN is connected, clock skew between the AD14160/  
AD14160L and the CLKIN pin on the EZ-ICE header must be  
minimal. If the skew is too large, synchronous operations may  
be off by one cycle between processors. For synchronous multi-  
processor operation TCK, TMS, CLKIN and EMU should be  
If synchronous multiprocessor operations are not needed (i.e.,  
CLKIN is not connected), just use appropriate parallel termina-  
tion on TCK and TMS. TDI, TDO, EMU and TRST are not  
critical signals in terms of skew.  
TDI  
TDO  
TDI  
TDO  
TDI  
TDO  
5k  
*
TDI  
TDO  
TDI  
TDO  
TDI  
TDO  
TDI  
5k⍀  
*
EMU  
TCK  
TMS  
TRST  
TDO  
SYSTEM  
CLKIN  
CLKIN  
EMU  
*
OPEN DRAIN DRIVER OR EQUIVALENT, i.e.,  
Figure 8. JTAG Clocktree for Multiple ADSP-2106x Systems  
REV. A  
–13–  
AD14160/AD14160L–SPECIFICATIONS  
RECOMMENDED OPERATING CONDITIONS  
B Grade  
Min  
K Grade  
Parameter  
Max  
Min  
Max  
Units  
VDD  
Supply Voltage (5 V)  
Supply Voltage (3.3 V)  
Case Operating Temperature  
4.75  
3.15  
–40  
5.25  
3.6  
+100  
4.75  
3.15  
0
5.25  
3.6  
+85  
V
V
°C  
TCASE  
ELECTRICAL CHARACTERISTICS (5 V, 3.3 V SUPPLY)  
Case Test  
5 V  
3.3 V  
Min Typ Max  
Parameter  
Temp Level Test Condition  
Min Typ Max  
Units  
VIH1  
VIH2  
VIL  
VOH  
VOL  
IIH  
IIHX4  
IIL  
IILX4  
IILP  
IILPX4  
IOZH  
High Level Input Voltage1  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
@ VDD = max  
@ VDD = max  
@ VDD = min  
2.0  
2.2  
VDD + 0.5 2.0  
VDD + 0.5 2.2  
0.8  
2.4  
0.4  
10  
40  
10  
40  
150  
600  
10  
40  
10  
VDD + 0.5  
VDD + 0.5  
0.8  
V
V
V
V
High Level Input Voltage2  
Low Level Input Voltage1, 2  
High Level Output Voltage3, 4  
Low Level Output Voltage3, 4  
High Level Input Current5, 6  
High Level Input Current7, 8  
Low Level Input Current5  
Low Level Input Current7  
Low Level Input Current6  
Low Level Input Current8  
Three-State Leakage Current9, 10, 11  
@ VDD = min, IOH = –2.0 mA4  
@ VDD = min, IOL = 4.0 mA4  
@ VDD = max, VIN = VDD max  
@ VDD = max, VIN = VDD max  
@ VDD = max, VIN = 0 V  
@ VDD = max, VIN = 0 V  
@ VDD = max, VIN = 0 V  
@ VDD = max, VIN = 0 V  
@ VDD = max, VIN = VDD max  
@ VDD = max, VIN = VDD max  
@ VDD = max, VIN = 0 V  
@ VDD = max, VIN = 0 V  
@ VDD = max, VIN = VDD max  
@ VDD = max, VIN = 0 V  
@ VDD = max, VIN = 0 V  
@ VDD = max, VIN = 2 V (3.3 V),  
1.5 V (5 V)  
4.1  
0.4  
10  
40  
10  
40  
150  
600  
10  
40  
10  
V
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
mA  
mA  
IOZHX4 Three-State Leakage Current12  
IOZL  
Three-State Leakage Current9, 13  
Three-State Leakage Current12  
Three-State Leakage Current13  
Three-State Leakage Current14  
IOZLX4  
IOZHP  
IOZLC  
40  
40  
350  
1.5  
4.2  
350  
1.5  
4.2  
IOZLAR Three-State Leakage Current11  
IOZLA  
Three-State Leakage Current15  
350  
150  
1.4 3.4  
800  
350  
150  
2.2  
µA  
µA  
A
mA  
pF  
IOZLS  
IDDIN  
Three-State Leakage Current10  
Supply Current (Internal)16  
Full  
Full  
Full  
+25°C  
I
IV  
I
@ VDD = max, VIN = 0 V  
tCK = 25 ns, VDD = max  
VDD = max  
1
IDDIDLE Supply Current (Idle)17  
760  
CIN  
Input Capacitance18, 19  
V
15  
15  
EXPLANATION OF TEST LEVELS  
Test Level  
I
II  
100% Production Tested20  
.
100% Production Tested at +25°C, and Sample Tested at Specified Temperatures.  
III  
IV  
V
Sample Tested Only.  
Parameter is guaranteed by design and analysis, and characterization testing on discrete SHARCs.  
Parameter is typical value only.  
All devices are 100% production tested at +25°C; sample tested at temperature extremes.  
VI  
NOTES  
1 Applies to input and bidirectional pins: DATA47-0, ADDR31-0, RD, WR, SW, ACK, SBTS, IRQy2-0, FLAGy0-3, HBG, CSy, DMAR1, DMAR2, BR6-1, IDy0-2,  
RPBA, CPAy, TFSy0, TFSy1, RFSy0, RFSy1, LyxDAT3-0, LyxCLK, LyxACK, EBOOTA, LBOOTA, EBOOTBCD, LBOOTBCD, BMSA, BMSBCD, TMS,  
TDI, TCK, HBR, DRy0, DRy1, TCLKy0, TCLKy1, RCLKy0, RCLKy1.  
2 Applies to input pins: CLKIN, RESET, TRST.  
3 Applies to output and bidirectional pins: DATA47-0, ADDR31-0, MS3-0 RD, WR, PAGE, ADRCLK, SW, ACK, FLAGy0-3, TIMEXPy, HBG, REDY, DMAG1,  
DMAG2, BR6-1, CPAy, DTy0, DTy1, TCLKy0, TCLKy1, RCLKy0, RCLKy1, TFSy0, TFSy1, RFSy0, RFSy1 LyxDAT 3-0, LyxCLK, LyxACK, BMSA,  
BMSBCD, TDO, EMU.  
4 See Output Drive Currents for typical drive current capabilities.  
5Applies to input pins: IRQy2-0, CSy, IDy0-2, EBOOTA, LBOOTA.  
6 Applies to input pins with internal pull-ups: DRy0, DRy1, TDI.  
7Applies to bussed input pins: SBTS, HBR, DMAR1, DMAR2, RPBA, EBOOTBCD, LBOOTBCD, CLKIN, RESET, TCK.  
8Applies to bussed input pins with internal pull-ups: TRST, TMS.  
9Applies to three-statable pins: FLAGy0-3, BMSA, TDO.  
10 Applies to three-statable pins with internal pull-ups: DTy0, TCLKy0, RCLKy0, DTy1, TCLKy1, RCLKy1.  
11 Applies to ACK pin when pulled up. (Note that ACK is pulled up internally with 2 kduring reset in a multiprocessor system, when ID2-0 = 001 and another  
ADSP-2106x is not requesting bus mastership.)  
12Applies to bussed three-statable pins: DATA47-0, ADDR31-0, MS3-0, RD, WR, PAGE, ADRCLK, SW, ACK, REDY, HBG, DMAG1, DMAG2, BMSBCD, EMU. (Note  
that ACK is pulled up internally with 2 kduring reset in a multiprocessor system, when ID2-0 = 001 and another ADSP-2106x is not requesting bus mastership.  
HBG and EMU are not tested for leakage current.)  
REV. A  
–14–  
AD14160/AD14160L  
13 Applies to three-statable pins with internal pull-downs: LyxDAT3-0, LyxCLK, LyxACK.  
14 Applies to CPAy pin.  
15 Applies to ACK pin when keeper latch enabled.  
16 Applies to VDD pins. Conditions of operation: each processor executing radix-2 FFT butterfly with instruction in cache, one data operand fetched from each inter-  
nal memory block, and one DMA transfer occurring from/to internal memory at tCK = 25 ns.  
17 Applies to VDD pins. Idle denotes AD14160/AD14160L state during execution of IDLE instruction.  
18 Applies to all signal pins.  
19 Guaranteed but not tested.  
20 Link and Serial Ports: All are 100% tested at die level prior to assembly. All are 100% ac tested at module level; Link-4 and Serial-0 are also dc tested at the module  
level. See Timing Specifications.  
Specifications subject to change without notice.  
*Stresses greater than those listed above may cause permanent damage to the  
device. These are stress ratings only; functional operation of the device at these  
or any other conditions greater than those indicated in the operational sections of  
ABSOLUTE MAXIMUM RATINGS*  
Supply Voltage (5 V) . . . . . . . . . . . . . . . . . . . . –0.3 V to +7 V  
Supply Voltage (3.3 V) . . . . . . . . . . . . . . . . –0.3 V to +4.6 V  
Input Voltage . . . . . . . . . . . . . . . . . . . . –0.5 V to VDD + 0.5 V  
Output Voltage Swing . . . . . . . . . . . . . –0.5 V to VDD + 0.5 V  
Load Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 pF  
Junction Temperature Under Bias . . . . . . . . . . . . . . . . 130°C  
Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C  
Solder Ball Temperature (5 seconds) . . . . . . . . . . . . . +230°C  
this specification is not implied. Exposure to absolute maximum rating conditions  
for extended periods may affect device reliability.  
ESD SENSITIVITY  
The AD14160/AD14160L modules are ESD (electrostatic discharge) sensitive devices. Electro-  
static charges readily accumulate on the human body and equipment and can discharge without  
detection. Permanent damage may occur to devices subjected to high energy electrostatic  
discharges.  
WARNING!  
The ADSP-21060 processors include proprietary ESD protection circuitry to dissipate high  
energy discharges. Per method 3015 of MIL-STD-883, the ADSP-21060 processors have been  
classified as a Class 2 device.  
ESD SENSITIVE DEVICE  
Proper ESD precautions are recommended to avoid performance degradation or loss of function-  
ality. Unused devices must be stored in conductive foam or shunts, and the foam should be  
discharged to the destination socket before devices are removed.  
While addition or subtraction would yield meaningful results for  
an individual device, the values given in this data sheet reflect  
statistical variations and worst cases. Consequently, you cannot  
meaningfully add parameters to derive longer times.  
TIMING SPECIFICATIONS  
GENERAL NOTES  
This data sheet represents production released specifications for  
the AD14160L (3.3 V), and the AD14160 (5 V). The ADSP-  
21060 die components are 100% tested, and the assembled  
AD14160/AD14160L units are again extensively tested at-  
speed, and across-temperature. Parametric limits were estab-  
lished from the ADSP-21060 characterization followed by  
further design/analysis of the AD14160/AD14160L package char-  
acteristics. The specifications shown are based on a CLKIN  
frequency of 40 MHz (tCK = 25 ns). The DT derating allows  
specifications at other CLKIN frequencies (within the min-max  
range of the tCK specification; see “Clock Input” below). DT is the  
difference between the actual CLKIN period and a CLKIN period  
of 25 ns:  
Switching Characteristics specify how the processor changes its  
signals. You have no control over this timing—circuitry external  
to the processor must be designed for compatibility with these  
signal characteristics. Switching characteristics tell you what the  
processor will do in a given circumstance. You can also use  
switching characteristics to ensure that any timing requirement  
of a device connected to the processor (such as memory) is  
satisfied.  
Timing Requirements apply to signals that are controlled by cir-  
cuitry external to the processor, such as the data input for a read  
operation. Timing requirements guarantee that the processor  
operates correctly with other devices.  
DT = tCK – 25 ns  
(O/D) = Open Drain  
(A/D) = Active Drain  
Use the exact timing information given. Do not attempt to  
derive parameters from the addition or subtraction of others.  
REV. A  
–15–  
AD14160/AD14160L  
40 MHz–5 V  
Max  
40 MHz–3.3 V  
Parameter  
Min  
Min  
Max  
Units  
Clock Input  
Timing Requirements:  
tCK  
CLKIN Period  
25  
7
5
100  
3
25  
8.75  
5
100  
3
ns  
ns  
ns  
ns  
tCKL  
tCKH  
tCKRF  
CLKIN Width Low  
CLKIN Width High  
CLKIN Rise/Fall (0.4 V–2.0 V)  
tCK  
CLKIN  
tCKH  
tCKL  
Figure 9. Clock Input  
40 MHz–5 V  
40 MHz–3.3 V  
Parameter  
Reset  
Min  
Max  
Min  
Max  
Units  
Timing Requirements:  
tWRST  
RESET Pulsewidth Low1  
tSRST  
RESET Setup Before CLKIN High2  
4tCK  
4tCK  
ns  
ns  
14.5 + DT/2 tCK  
14.5 + DT/2 tCK  
NOTES  
1Applies after the power-up sequence is complete. At power-up, the processor’s internal phase-locked loop requires no more than 2000 CLKIN cycles while RESET is  
low, assuming stable VDD and CLKIN (not including start-up time of external clock oscillator).  
2Only required if multiple ADSP-2106xs must come out of reset synchronous to CLKIN with program counters (PC) equal (i.e., for a SIMD system). Not required  
for multiple ADSP-2106xs communicating over the shared bus (through the external port), because the bus arbitration logic automatically synchronizes itself after  
reset.  
CLKIN  
tSRST  
tWRST  
RESET  
Figure 10. Reset  
40 MHz–5 V  
40 MHz–3.3 V  
Min Max  
Parameter  
Min  
Max  
Units  
Interrupts  
Timing Requirements:  
tSIR  
tHIR  
tIPW  
IRQ2-0 Setup Before CLKIN High1  
18 + 3DT/4  
2 + tCK  
18 + 3DT/4  
2 + tCK  
ns  
ns  
ns  
IRQ2-0 Hold Before CLKIN High1  
IRQ2-0 Pulsewidth2  
12 + 3DT/4  
12 + 3DT/4  
NOTES  
1Only required for IRQx recognition in the following cycle.  
2Applies only if tSIR and tHIR requirements are not met.  
CLKIN  
tSIR  
tHIR  
IRQ  
2-0  
tIPW  
Figure 11. Interrupts  
–16–  
REV. A  
AD14160/AD14160L  
40 MHz–5 V  
Max  
40 MHz–3.3 V  
Parameter  
Min  
Min  
Max  
Units  
Timer  
Switching Characteristic:  
tDTEX  
CLKIN High to TIMEXP  
15.5  
15.5  
ns  
CLKIN  
tDTEX  
tDTEX  
TIMEXP  
Figure 12. Timer  
40 MHz–5 V  
40 MHz–3.3 V  
Parameter  
Flags  
Min  
Max  
Min  
Max  
Units  
Timing Requirements:  
tSFI  
tHFI  
tDWRFI  
tHFIWR  
FLAG3-0IN Setup Before CLKIN High1  
FLAG3-0IN Hold After CLKIN High1  
FLAG3-0IN Delay After RD/WR Low1  
FLAG3-0IN Hold After RD/WR Deasserted1  
8 + 5DT/16  
0 – 5DT/16  
8 + 5DT/16  
0 – 5DT/16  
ns  
ns  
ns  
ns  
5 + 7DT/16  
5 + 7DT/16  
0.5  
0.5  
Switching Characteristics:  
tDFO  
FLAG3-0OUT Delay After CLKIN High  
16.5  
14.5  
16.5  
14.5  
ns  
ns  
ns  
ns  
tHFO  
FLAG3-0OUT Hold After CLKIN High  
CLKIN High to FLAG3-0OUT Enable  
CLKIN High to FLAG3-0OUT Disable  
4
3
4
3
tDFOE  
tDFOD  
NOTE  
1Flag inputs meeting these setup and hold times will affect conditional instructions in the following instruction cycle.  
CLKIN  
tDFOE  
tDFO  
tDFO  
tDFOD  
tHFO  
FLAG3–0  
OUT  
FLAG OUTPUT  
CLKIN  
tHFI  
tSFI  
FLAG3–0  
IN  
tHFIWR  
tDWRFI  
RD, WR  
FLAG INPUT  
Figure 13. Flags  
REV. A  
–17–  
AD14160/AD14160L  
Memory Read—Bus Master  
These switching characteristics also apply for bus master syn-  
chronous read/write timing (see Synchronous Read/Write—Bus  
Master below). If these timing requirements are met, the syn-  
chronous read/write timing can be ignored (and vice versa).  
Use these specifications for asynchronous interfacing to memo-  
ries (and memory-mapped peripherals) without reference to  
CLKIN. These specifications apply when the AD14160/  
AD14160L is the bus master accessing external memory space.  
40 MHz–5 V  
40 MHz–3.3 V  
Parameter  
Min  
Max  
Min  
Max  
Units  
Timing Requirements:  
tDAD  
tDRLD  
tHDA  
tHDRH  
tDAAK  
tDSAK  
Address, Selects Delay to Data Valid1, 2  
17 + DT + W  
11 + 5DT/8 + W  
17 + DT + W  
11 + 5DT/8 + W  
ns  
ns  
ns  
ns  
ns  
ns  
RD Low to Data Valid1  
Data Hold from Address3  
Data Hold from RD High3  
ACK Delay from Address2, 4  
ACK Delay from RD Low4  
1.5  
3
1.5  
3
13 + 7DT/8 + W  
7 + DT/2 + W  
13 + 7DT/8 + W  
7 + DT/2 + W  
Switching Characteristics:  
tDRHA  
tDARL  
tRW  
tRWR  
tSADADC  
Address Hold After RD High  
–1 + H  
1 + 3DT/8  
12.5 + 5DT/8 + W  
7.5 + 3DT/8 + HI  
–0.5 + DT/4  
–1 + H  
1 + 3DT/8  
12.5 + 5DT/8 + W  
7.5 + 3DT/8 + HI  
–0.5 + DT/4  
ns  
ns  
ns  
ns  
ns  
Address to RD Low2  
RD Pulsewidth  
RD High to WR, RD, DMAGx Low  
Address Setup Before ADRCLK High2  
W = (number of wait states specified in WAIT register) × tCK.  
HI = tCK (if an address hold cycle or bus idle cycle occurs, as specified in WAIT register; otherwise HI = 0).  
H = tCK (if an address hold cycle occurs as specified in WAIT register; otherwise H = 0).  
NOTES  
1Data Delay/Setup: User must meet tDAD or tDRLD or synchronous spec tSSDATI  
.
2For MSx, SW, BMS, the falling edge is referenced.  
3Data Hold: User must meet tHDA or tHDRH or synchronous spec tHDATI. See System Hold Time Calculation under Test Conditions for the calculation of hold times  
given capacitive and dc loads.  
4ACK Delay/Setup: User must meet tDSAK or tDAAK or synchronous specification tSACKC  
.
ADDRESS  
MSx, SW  
BMS  
tDRHA  
tDARL  
tRW  
RD  
tHDA  
tHDRH  
tDRLD  
tDAD  
DATA  
tDSAK  
tRWR  
tDAAK  
ACK  
WR, DMAG  
tSADADC  
ADRCLK  
(OUT)  
Figure 14. Memory Read—Bus Master  
REV. A  
–18–  
AD14160/AD14160L  
Memory Write—Bus Master  
These switching characteristics also apply for bus master syn-  
chronous read/write timing (see Synchronous Read/Write—Bus  
Master). If these timing requirements are met, the synchronous  
read/write timing can be ignored (and vice versa).  
Use these specifications for asynchronous interfacing to memo-  
ries (and memory-mapped peripherals) without reference to  
CLKIN. These specifications apply when the AD14160/  
AD14160L is the bus master accessing external memory space.  
40 MHz–5 V  
40 MHz–3.3 V  
Parameter  
Min  
Max  
Min  
Max  
Units  
Timing Requirements:  
tDAAK  
tDSAK  
ACK Delay from Address, Selects1, 2  
13 + 7DT/8 + W  
7 + DT/2 + W  
13 + 7DT/8 + W ns  
ACK Delay from WR Low1  
7 + DT/2 + W  
ns  
Switching Characteristics:  
tDAWH  
tDAWL  
tWW  
tDDWH  
tDWHA  
tDATRWH  
tWWR  
tDDWR  
tWDE  
tSADADC  
Address, Selects to WR Deasserted2  
16 + 15DT/16 + W  
2 + 3DT/8  
12 + 9DT/16 + W  
6 + DT/2 + W  
0 + DT/16 + H  
0.5 + DT/16 + H  
16 + 15DT/16 + W  
2 + 3DT/8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address, Selects to WR Low2  
WR Pulsewidth  
12 + 9DT/16 + W  
6 + DT/2 + W  
0 + DT/16 + H  
0.5 + DT/16 + H  
7.5 + 7DT/16 + H  
4 + 3DT/8 + I  
–1.5 + DT/16  
Data Setup Before WR High  
Address Hold After WR Deasserted  
Data Disable After WR Deasserted3  
WR High to WR, RD, DMAGx Low 7.5 + 7DT/16 + H  
Data Disable Before WR or RD Low 4 + 3DT/8 + I  
7 + DT/16 + H  
7 + DT/16 + H  
WR Low to Data Enabled  
–1.5 + DT/16  
Address, Selects to ADRCLK High2 –0.5 + DT/4  
–0.5 + DT/4  
W = (number of wait states specified in WAIT register) × tCK  
.
H = tCK (if an address hold cycle occurs, as specified in WAIT register; otherwise H = 0).  
I = tCK (if a bus idle cycle occurs, as specified in WAIT register; otherwise I = 0).  
NOTES  
1ACK Delay/Setup: User must meet tDAAK or tDSAK or synchronous specification tSACKC  
.
2For MSx, SW, BMS, the falling edge is referenced.  
3See System Hold Time Calculation under Test Conditions for calculation of hold times given capacitive and dc loads.  
ADDRESS  
MSx , SW  
BMS  
tDWHA  
tDAWH  
tWW  
tDAWL  
WR  
tWWR  
tDDWR  
tDDWH  
tWDE  
tDATRWH  
DATA  
tDSAK  
tDAAK  
ACK  
RD , DMAG  
tSADADC  
ADRCLK  
(OUT)  
Figure 15. Memory Write—Bus Master  
REV. A  
–19–  
AD14160/AD14160L  
Synchronous Read/Write—Bus Master  
When accessing a slave ADSP-2106x, these switching character-  
istics must meet the slave’s timing requirements for synchronous  
read/writes (see Synchronous Read/Write—Bus Slave). The  
slave ADSP-2106x must also meet these (bus master) timing  
requirements for data and acknowledge setup and hold times.  
Use these specifications for interfacing to external memory  
systems that require CLKIN—relative timing or for accessing a  
slave ADSP-2106x (in multiprocessor memory space). These  
synchronous switching characteristics are also valid during asyn-  
chronous memory reads and writes (see Memory Read—Bus  
Master and Memory Write—Bus Master).  
40 MHz–5 V  
40 MHz–3.3 V  
Max  
Parameter  
Min  
Max  
Min  
Units  
Timing Requirements:  
tSSDATI  
tHSDATI  
tDAAK  
Data Setup Before CLKIN  
3.5 + DT/8  
3.5 – DT/8  
3.5 + DT/8  
3.5 – DT/8  
ns  
ns  
Data Hold After CLKIN  
ACK Delay After Address,  
MSx, SW, BMS1, 2  
13 + 7 DT/8 + W  
13 + 7 DT/8 + W  
ns  
ns  
ns  
tSACKC  
tHACKC  
ACK Setup Before CLKIN2  
ACK Hold After CLKIN  
7 + DT/4  
–1 – DT/4  
7 + DT/4  
–1 – DT/4  
Switching Characteristics:  
tDADRO  
Address, MSx, BMS, SW Delay  
After CLKIN1  
8 – DT/8  
8 – DT/8  
ns  
tHADRO  
Address, MSx, BMS, SW Hold  
After CLKIN  
–1 – DT/8  
9 + DT/8  
–2 – DT/8  
–3 – 3DT/16  
8 + DT/4  
–1 – DT/8  
9 + DT/8  
–2 – DT/8  
–3 – 3DT/16  
8 + DT/4  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDPGC  
tDRDO  
tDWRO  
tDRWL  
tSDDATO  
tDATTR  
tDADCCK  
tADRCK  
tADRCKH  
tADRCKL  
PAGE Delay After CLKIN  
RD High Delay After CLKIN  
WR High Delay After CLKIN  
RD/WR Low Delay After CLKIN  
Data Delay After CLKIN  
Data Disable After CLKIN3  
ADRCLK Delay After CLKIN  
ADRCLK Period  
16.5 + DT/8  
5 – DT/8  
5 – 3DT/16  
13.5 + DT/4  
20 + 5DT/16  
8 – DT/8  
16.5 + DT/8  
5 – DT/8  
5 – 3DT/16  
13.5 + DT/4  
20 + 5DT/16  
8 – DT/8  
0 – DT/8  
4 + DT/8  
tCK  
(tCK/2 – 2)  
(tCK/2 – 2)  
0 – DT/8  
4 + DT/8  
tCK  
(tCK/2 – 2)  
(tCK/2 – 2)  
10.5 + DT/8  
10.5 + DT/8  
ADRCLK Width High  
ADRCLK Width Low  
W = (number of Wait states specified in WAIT register) × tCK  
.
NOTES  
1For MSx, SW, BMS, the falling edge is referenced.  
2ACK Delay/Setup: User must meet tDAAK or tDSAK or synchronous specification tSACKC  
.
3See System Hold Time Calculation under Test Conditions for calculation of hold times given capacitive and dc loads.  
REV. A  
–20–  
AD14160/AD14160L  
CLKIN  
tADRCK  
tADRCKL  
tADRCKH  
tDADCCK  
ADRCLK  
tHADRO  
tDAAK  
tDADRO  
ADDRESS  
SW  
tDPGC  
PAGE  
tHACKC  
tSACKC  
ACK  
(IN)  
READ CYCLE  
tDRWL  
tDRDO  
RD  
tHSDATI  
tSSDATI  
DATA  
(IN)  
WRITE CYCLE  
tDWRO  
tDRWL  
WR  
tDATTR  
tSDDATO  
DATA  
(OUT)  
Figure 16. Synchronous Read/Write—Bus Master  
REV. A  
–21–  
AD14160/AD14160L  
Synchronous Read/Write—Bus Slave  
The bus master must meet these (bus slave) timing requirements.  
Use these specifications for bus master accesses of a slave’s IOP  
registers or internal memory (in multiprocessor memory space).  
40 MHz–5 V  
40 MHz–3.3 V  
Max  
Parameter  
Min  
Max  
Min  
Units  
Timing Requirements:  
tSADRI  
tHADRI  
tSRWLI  
tHRWLI  
tRWHPI  
tSDATWH  
tHDATWH  
Address, SW Setup Before CLKIN  
15.5 + DT/2  
10 + 5DT/16  
–4 – 5DT/16 7.5 + 7DT/16  
3
6
1.5  
15.5 + DT/2  
10 + 5DT/16  
–4 – 5DT/16 7.5 + 7DT/16  
3
6
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address, SW Hold Before CLKIN  
RD/WR Low Setup Before CLKIN1  
RD/WR Low Hold After CLKIN  
RD/WR Pulse High  
5 + DT/2  
5 + DT/2  
Data Setup Before WR High  
Data Hold After WR High  
Switching Characteristics:  
tSDDATO  
tDATTR  
tDACKAD  
tACKTR  
Data Delay After CLKIN  
20 + 5DT/16  
8 – DT/8  
10  
20 + 5DT/16  
8 – DT/8  
10  
ns  
ns  
ns  
ns  
Data Disable After CLKIN2  
ACK Delay After Address, SW3  
ACK Disable After CLKIN3  
0 – DT/8  
0 – DT/8  
–1 – DT/8  
7 – DT/8  
–1 – DT/8  
7 – DT/8  
NOTES  
1tSRWLI (min) = 10 + 5DT/16 when Multiprocessor Memory Space Wait State (MMSWS bit in WAIT register) is disabled; when MMSWS is enabled,  
tSRWLI (min) = 4.5 + DT/8.  
2See System Hold Time Calculation under Test Conditions for calculation of hold times given capacitive and dc loads.  
3tDACKAD is true only if the address and SW inputs have setup times (before CLKIN) greater than 10.5 + DT/8 and less than 19 + 3DT/4. If the address and SW inputs have  
setup times greater than 19 + 3DT/4, then ACK is valid 15 + DT/4 (max) after CLKIN. A slave that sees an address with an M field match will respond with ACK  
regardless of the state of MMSWS or strobes. A slave will three-state ACK every cycle with tACKTR  
.
CLKIN  
tSADRI  
tHADRI  
ADDRESS  
SW  
tDACKAD  
tACKTR  
ACK  
READ ACCESS  
tSRWLI  
tHRWLI  
tRWHPI  
RD  
tSDDATO  
tDATTR  
DATA  
(OUT)  
WRITE ACCESS  
tRWHPI  
tSRWLI  
tHRWLI  
WR  
tHDATWH  
tSDATWH  
DATA  
(IN)  
Figure 17. Synchronous Read/Write—Bus Slave  
REV. A  
–22–  
AD14160/AD14160L  
Multiprocessor Bus Request and Host Bus Request  
Use these specifications for passing of bus mastership between  
multiprocessing ADSP-2106x’s (BRx) or a host processor  
(HBR, HBG).  
40 MHz–5 V  
40 MHz–3.3 V  
Parameter  
Min  
Max  
Min  
Max  
Units  
Timing Requirements:  
tHBGRCSV  
tSHBRI  
tHHBRI  
tSHBGI  
tHHBGI  
tSBRI  
HBG Low to RD/WR/CS Valid1  
19.5 + 5DT/4  
14 + 3DT/4  
6 + DT/2  
19.5 + 5DT/4  
14 + 3DT/4  
6 + DT/2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
HBR Setup Before CLKIN2  
20 + 3DT/4  
13 + DT/2  
20 + 3DT/4  
13 + DT/2  
HBR Hold Before CLKIN2  
HBG Setup Before CLKIN  
HBG Hold Before CLKIN High  
BRx, CPA Setup Before CLKIN3  
BRx, CPA Hold Before CLKIN High  
RPBA Setup Before CLKIN  
RPBA Hold Before CLKIN  
13.5 + DT/2  
21.5 + 3DT/4  
13.5 + DT/2  
21.5 + 3DT/4  
tHBRI  
tSRPBAI  
tHRPBAI  
6 + DT/2  
6 + DT/2  
12 + 3DT/4  
12 + 3DT/4  
Switching Characteristics:  
tDHBGO  
tHHBGO  
tDBRO  
HBG Delay After CLKIN  
7.5 – DT/8  
8 – DT/8  
7.5 – DT/8  
8 – DT/8  
ns  
ns  
ns  
ns  
ns  
ns  
HBG Hold After CLKIN  
BRx Delay After CLKIN  
BRx Hold After CLKIN  
CPA Low Delay After CLKIN  
CPA Disable After CLKIN  
REDY (O/D) or (A/D) Low from CS  
and HBR Low4  
–2 – DT/8  
–2 – DT/8  
–2 – DT/8  
–2 – DT/8  
–2 – DT/8  
–2 – DT/8  
tHBRO  
tDCPAO  
tTRCPA  
tDRDYCS  
8.5 – DT/8  
5 – DT/8  
8.5 – DT/8  
5 – DT/8  
9.5  
10.25  
ns  
ns  
ns  
tTRDYHG  
tARDYTR  
REDY (O/D) Disable or REDY (A/D)  
High from HBG4  
43.5 + 27DT/16  
43.5 + 27DT/16  
REDY (A/D) Disable from CS or HBR  
High4  
11  
11  
NOTES  
1For first asynchronous access after HBR and CS asserted, ADDR31–0 must be a non-MMS value 1/2 tCK before RD or WR goes low or by tHBGRCSV after HBG goes  
low. This is easily accomplished by driving an upper address signal high when HBG is asserted.  
2Only required for recognition in the current cycle.  
3CPA assertion must meet the setup to CLKIN; deassertion does not need to meet the setup to CLKIN.  
4(O/D) = open drain, (A/D) = active drive.  
REV. A  
–23–  
AD14160/AD14160L  
CLKIN  
tSHBRI  
tHHBRI  
HBR  
tDHBGO  
tHHBGO  
HBG  
(OUT)  
tDBRO  
tHBRO  
BRx  
(OUT)  
tDCPAO  
tTRCPA  
CPA (OUT)  
(O/D)  
tSHBGI  
tHHBGI  
HBG (IN)  
BRx (IN)  
tSBRI  
tHBRI  
CPA (IN)  
(O/D)  
HBR  
CS  
tTRDYHG  
tDRDYCS  
REDY (O/D)  
REDY (A/D)  
tARDYTR  
tHBGRCSV  
HBG (OUT)  
RD  
WR  
CS  
tSRPBAI  
tHRPBAI  
RPBA  
O/D = OPEN DRAIN, A/D = ACTIVE DRIVE  
NOTE:  
HBG WILL BE DELAYED BY n CLOCK CYCLES  
WHEN WAIT STATES OR BUS LOCK ARE IN EFFECT.  
Figure 18. Multiprocessor Bus Request and Host Bus Request  
REV. A  
–24–  
AD14160/AD14160L  
Asynchronous Read/Write—Host to AD14160/AD14160L  
Use these specifications for asynchronous host processor accesses  
of an AD14160/AD14160L, after the host has asserted CS and  
HBR (low). After HBG is returned by the AD14160/AD14160L,  
the host can drive the RD and WR pins to access the AD14160/  
AD14160L’s internal memory or IOP registers. HBR and HBG  
are assumed low for this timing.  
40 MHz–5 V  
Max  
40 MHz–3.3 V  
Max  
Parameter  
Min  
Min  
Units  
Lead Cycle  
Timing Requirements:  
tSADRDL  
tHADRDH  
tWRWH  
Address Setup/CS Low Before RD Low1  
Address Hold/CS Hold Low After RD  
RD/WR High Width  
1
1
6
0.5  
0.5  
1
1
6
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
tDRDHRDY RD High Delay After REDY (O/D) Disable  
tDRDHRDY RD High Delay After REDY (A/D) Disable  
Switching Characteristics:  
tSDATRDY  
Data Valid Before REDY Disable from Low  
1
1
ns  
ns  
ns  
ns  
tDRDYRDL REDY (O/D) or (A/D) Low Delay After RD Low  
tRDYPRD  
tHDARWH  
11  
11.5  
10  
REDY (O/D) or (A/D) Low Pulsewidth for Read  
Data Disable After RD High  
45 + DT  
2
45 + DT  
2
9.5  
Write Cycle  
Timing Requirements:  
tSCSWRL  
tHCSWRH  
tSADWRH  
tHADWRH  
tWWRL  
CS Low Setup Before WR Low  
0
0.5  
6
2.5  
7
6
0.5  
6
1.5  
0
0.5  
6
2.5  
7
6
0.5  
6
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CS Low Hold After WR High  
Address Setup Before WR High  
Address Hold After WR High  
WR Low Width  
tWRWH  
RD/WR High Width  
tDWRHRDY WR High Delay After REDY (O/D) or (A/D) Disable  
tSDATWH  
tHDATWH  
Data Setup Before WR High  
Data Hold After WR High  
Switching Characteristics:  
tDRDYWRL REDY (O/D) or (A/D) Low Delay After WR/CS Low  
11  
11.5  
ns  
ns  
ns  
tRDYPWR  
tSRDYCK  
REDY (O/D) or (A/D) Low Pulsewidth for Write  
REDY (O/D) or (A/D) Disable to CLKIN  
15  
15  
0.5 + 7DT/16 8 + 7DT/16  
0.5 + 7DT/16  
8 + 7DT/16  
NOTE  
1Not required if RD and address are valid tHBGRCSV after HBG goes low. For first access after HBR asserted, ADDR31–0 must be a non-MMS value 1/2 tCLK before RD  
or WR goes low or by tHBGRCSV after HBG goes low. This is easily accomplished by driving an upper address signal high when HBG is asserted. For address bits to be  
driven during asynchronous host accesses, see Table 8.2 of the ADSP-2106x SHARC User’s Manual.  
CLKIN  
tSRDYCK  
REDY (O/D)  
REDY (A/D)  
O/D = OPEN DRAIN, A/D = ACTIVE DRIVE  
Figure 19a. Synchronous REDY Timing  
REV. A  
–25–  
AD14160/AD14160L  
READ CYCLE  
ADDRESS/CS  
tHADRDH  
tSADRDL  
tWRWH  
RD  
tHDARWH  
DATA (OUT)  
tDRDHRDY  
tSDATRDY  
tRDYPRD  
tDRDYRDL  
REDY (O/D)  
REDY (A/D)  
WRITE CYCLE  
ADDRESS  
tHADWRH  
tSADWRH  
tHCSWRH  
tSCSWRL  
CS  
tWWRL  
tWRWH  
WR  
tHDATWH  
tSDATWH  
DATA (IN)  
tDWRHRDY  
tDRDYWRL  
tRDYPWR  
REDY (O/D)  
REDY (A/D)  
O/D = OPEN DRAIN, A/D = ACTIVE DRIVE  
Figure 19b. Asynchronous Read/Write—Host to ADSP-2106x  
REV. A  
–26–  
AD14160/AD14160L  
Three-State Timing—Bus Master, Bus Slave, HBR, SBTS  
These specifications show how the memory interface is disabled  
(stops driving) or enabled (resumes driving) relative to CLKIN  
and the SBTS pin. This timing is applicable to bus master tran-  
sition cycles (BTC) and host transition cycles (HTC) as well as  
the SBTS pin.  
40 MHz–5 V  
Max  
40 MHz–3.3 V  
Parameter  
Min  
Min  
Max  
Units  
Timing Requirements:  
tSTSCK  
tHTSCK  
SBTS Setup Before CLKIN  
SBTS Hold Before CLKIN  
12 + DT/2  
12 + DT/2  
ns  
ns  
6 + DT/2  
6 + DT/2  
Switching Characteristics:  
tMIENA  
tMIENS  
tMIENHG  
tMITRA  
Address/Select Enable After CLKIN  
–1.5 – DT/8  
–1.5 – DT/8  
–1.5 – DT/8  
–1.25 – DT/8  
–1.5 – DT/8  
–1.5 – DT/8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Strobes Enable After CLKIN1  
HBG Enable After CLKIN  
Address/Select Disable After CLKIN  
Strobes Disable After CLKIN1  
HBG Disable After CLKIN  
Data Enable After CLKIN2  
Data Disable After CLKIN2  
ACK Enable After CLKIN2  
ACK Disable After CLKIN2  
ADRCLK Enable After CLKIN  
ADRCLK Disable After CLKIN  
1 – DT/4  
2.5 – DT/4  
2.5 – DT/4  
1 – DT/4  
2.5 – DT/4  
2.5 – DT/4  
tMITRS  
tMITRHG  
tDATEN  
tDATTR  
tACKEN  
tACKTR  
tADCEN  
tADCTR  
tMTRHBG  
tMENHBG  
9 + 5DT/16  
0 – DT/8  
7.5 + DT/4  
–1 – DT/8  
–2 – DT/8  
9 + 5DT/16  
0 – DT/8  
7.5 + DT/4  
–1 – DT/8  
–2 – DT/8  
8 – DT/8  
7 – DT/8  
8.5 – DT/4  
8 – DT/8  
7 – DT/8  
8.5 – DT/4  
Memory Interface Disable Before HBG Low3 –0.5 + DT/8  
Memory Interface Enable After HBG High3  
18.5 + DT  
–0.5 + DT/8  
18.5 + DT  
NOTES  
1Strobes = RD, WR, SW, PAGE, DMAG.  
2In addition to bus master transition cycles, these specs also apply to bus master and bus slave synchronous read/write.  
3Memory Interface = Address, RD, WR, MSx, SW, HBG, PAGE, DMAGx, BMS (in EPROM boot mode).  
CLKIN  
tSTSCK  
tHTSCK  
SBTS  
tMITRA, tMITRS, tMITRHG  
tMIENA, tMIENS, tMIENHG  
MEMORY  
INTERFACE  
tDATTR  
tDATEN  
DATA  
tACKTR  
tACKEN  
ACK  
ADRCLK  
HBG  
tADCEN  
tADCTR  
tMTRHBG  
tMENHBG  
MEMORY  
INTERFACE  
MEMORY INTERFACE = ADDRESS, RD, WR, MSx, SW, HBG, PAGE, DMAGx. BMS (IN EPROM BOOT MODE)  
Figure 20. Three-State Timing  
REV. A  
–27–  
AD14160/AD14160L  
DMA Handshake  
transfer is controlled by ADDR31-0, RD, WR, MS3-0, and ACK  
(not DMAG). For Paced Master mode, the “Memory Read–Bus  
Master”, “Memory Write–Bus Master”, and “Synchronous  
These specifications describe the three DMA handshake modes.  
In all three modes DMAR is used to initiate transfers. For hand-  
shake mode, DMAG controls the latching or enabling of data  
externally. For external handshake mode, the data transfer is  
Read/Write–Bus Master” timing specifications for ADDR31-0  
,
RD, WR, MS3-0, SW, PAGE, DATA47-0, and ACK also apply.  
controlled by the ADDR31-0, RD, WR, SW, PAGE, MS3-0  
,
ACK, and DMAG signals. For Paced Master mode, the data  
40 MHz–5 V  
40 MHz–3.3 V  
Parameter  
Min  
Max  
Min  
Max  
Units  
Timing Requirements:  
tSDRLC  
tSDRHC  
tWDR  
DMARx Low Setup Before CLKIN1  
5.5  
5.5  
6
5.5  
5.5  
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DMARx High Setup Before CLKIN1  
DMARx Width Low (Nonsynchronous)  
tSDATDGL Data Setup After DMAGx Low2  
9 + 5DT/8  
9 + 5DT/8  
tHDATIDG  
tDATDRH  
tDMARLL  
tDMARH  
Data Hold After DMAGx High  
Data Valid After DMAGx High2  
DMAGx Low Edge to Low Edge  
DMAGx Width High  
2.5  
2.5  
15 + 7DT/8  
15 + 7DT/8  
23 + 7DT/8  
6
23 + 7DT/8  
6
Switching Characteristics:  
tDDGL  
tWDGH  
tWDGL  
tHDGC  
DMAGx Low Delay After CLKIN  
DMAGx High Width  
DMAGx Low Width  
9 + DT/4  
6 + 3DT/8  
12 + 5DT/8  
–2 – DT/8  
7 + 9DT/16  
–0.5  
16 + DT/4  
7 – DT/8  
9 + DT/4  
6 + 3DT/8  
12 + 5DT/8  
–2 – DT/8  
7 + 9DT/16  
–0.5  
16 + DT/4  
7 – DT/8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DMAGx High Delay After CLKIN  
tVDATDGH Data Valid Before DMAGx High3  
tDATRDGH Data Disable After DMAGx High4  
8
2.5  
8
2.5  
tDGWRF  
tDGWRH  
tDGWRR  
tDGRDF  
tDRDGH  
tDGRDR  
tDGWR  
WR Low Before DMAGx Low  
–0.5  
–0.5  
DMAGx Low Before WR High  
WR High Before DMAGx High  
RD Low Before DMAGx Low  
9.5 + 5DT/8 + W  
0.5 + DT/16  
–0.5  
10.5 + 9DT/16 + W  
–0.5  
5 + 3DT/8 + HI  
16 + DT  
–1.5  
9.5 + 5DT/8 + W  
0.5 + DT/16  
–0.5  
10.5 + 9DT/16 + W  
–0.5  
5 + 3DT/8 + HI  
16 + DT  
–1.5  
3.5 + DT/16  
2.5  
3.5 + DT/16 ns  
2.5  
ns  
ns  
ns  
ns  
ns  
ns  
RD Low Before DMAGx High  
RD High Before DMAGx High  
DMAGx High to WR, RD, DMAGx Low  
Address/Select Valid to DMAGx High  
Address/Select Hold After DMAGx High  
3.5  
3.5  
tDADGH  
tDDGHA  
W = (number of wait states specified in WAIT register) × tCK  
.
HI = tCK (if an address hold cycle or bus idle cycle occurs, as specified in WAIT register; otherwise HI = 0).  
NOTES  
1Only required for recognition in the current cycle.  
2tSDATDGL is the data setup requirement if DMARx is not being used to hold off completion of a write. Otherwise, if DMARx low holds off completion of the write, the  
data can be driven tDATDRH after DMARx is brought high.  
3tVDATDGH is valid if DMARx is not being used to hold off completion of a read. If DMARx is used to prolong the read, then tVDATDGH = 7 + 9DT/16 + (n × tCK) where  
n equals the number of extra cycles that the access is prolonged.  
4See System Hold Time Calculation under Test Conditions for calculation of hold times given capacitive and dc loads.  
REV. A  
–28–  
AD14160/AD14160L  
CLKIN  
tSDRLC  
tDMARLL  
tSDRHC  
tWDR  
tDMARH  
DMARx  
DMAGx  
tHDGC  
tDDGL  
tWDGL  
tWDGH  
TRANSFERS BETWEEN ADSP-2106x INTERNAL MEMORY AND EXTERNAL DEVICE  
tDATRDGH  
tVDATDGH  
DATA (FROM  
ADSP-2106x TO  
EXTERNAL DRIVE)  
tDATDRH  
tHDATIDG  
tSDATDGL  
DATA (FROM  
EXTERNAL DRIVE  
TO ADSP-2106x)  
TRANSFERS BETWEEN EXTERNAL DEVICE AND EXTERNAL MEMORY* (EXTERNAL HANDSHAKE MODE)  
tDGWRL  
WR  
tDGWRH  
tDGWRR  
(EXTERNAL DEVICE  
TO EXTERNAL  
MEMORY)  
tDGRDR  
tDGRDL  
RD  
(EXTERNAL  
MEMORY TO  
EXTERNAL DEVICE)  
tDRDGH  
tDADGH  
tDDGHA  
ADDRESS  
MS , SW  
X
*
“MEMORY READ – BUS MASTER,” “MEMORY WRITE – BUS MASTER,” AND “SYNCHRONOUS READ/WRITE – BUS MASTER”  
TIMING SPECIFICATIONS FOR ADDR  
, RD, WR, SW, MS AND ACK ALSO APPLY HERE.  
31–0  
3-0  
Figure 21. DMA Handshake Timing  
REV. A  
–29–  
AD14160/AD14160L  
Link Ports: 1 × CLK Speed Operation  
Parameter  
40 MHz–5 V  
Max  
40 MHz–3.3 V  
Min  
Min  
Max  
Units  
Receive  
Timing Requirements:  
tSLDCL  
tHLDCL  
tLCLKIW  
tLCLKRWL  
tLCLKRWH  
Data Setup Before LCLK Low  
Data Hold After LCLK Low  
LCLK Period (1 × Operation)  
LCLK Width Low  
3.5  
3
tCK  
6
3
3
tCK  
6
5
ns  
ns  
ns  
ns  
ns  
LCLK Width High  
5
Switching Characteristics:  
tDLAHC  
tDLALC  
tENDLK  
tTDLK  
LACK High Delay After CLKIN High  
18 + DT/2  
–3  
5 + DT/2  
29 + DT/2  
13.5  
18 + DT/2  
–3  
5 + DT/2  
29 + DT/2  
13.5  
ns  
ns  
ns  
ns  
LACK Low Delay After LCLK High1  
LACK Enable from CLKIN  
LACK Disable from CLKIN  
20.5 + DT/2  
20.5 + DT/2  
Transmit  
Timing Requirements:  
tSLACH LACK Setup Before LCLK High  
tHLACH LACK Hold After LCLK High  
18  
–7  
20  
–7  
ns  
ns  
Switching Characteristics:  
tDLCLK  
LCLK Delay After CLKIN (1 × Operation)  
16  
3.5  
17  
3
ns  
ns  
ns  
ns  
ns  
tDLDCH  
tHLDCH  
tLCLKTWL  
tLCLKTWH  
tDLACLK  
tENDLK  
tTDLK  
Data Delay After LCLK High  
Data Hold After LCLK High  
LCLK Width Low  
–3  
–3  
(tCK/2) – 2  
(tCK/2) – 2  
(tCK/2) + 2  
(tCK/2) + 2  
(tCK/2) + 8.5 (3 × tCK/2) + 17.5  
5 + DT/2  
(tCK/2) – 1  
(tCK/2) – 1.25  
(tCK/2) + 8  
5 + DT/2  
(tCK/2) + 1.25  
(tCK/2) + 1  
(3 × tCK/2) + 18 ns  
LCLK Width High  
LCLK Low Delay After LACK High  
LDAT, LCLK Enable After CLKIN  
LDAT, LCLK Disable After CLKIN  
ns  
ns  
20.5 + DT/2  
20.5 + DT/2  
Link Port Service Request Interrupts: 1 × and  
2 × Speed Operations  
Timing Requirements:  
tSLCK  
tHLCK  
LACK/LCLK Setup Before CLKIN Low2  
LACK/LCLK Hold After CLKIN Low2  
10  
2
10  
2
ns  
ns  
NOTES  
1LACK will go low with tDLALC relative to rising edge of LCLK after first nibble is received. LACK will not go low if the receiver’s link buffer is not about to fill.  
2Only required for interrupt recognition in the current cycle.  
REV. A  
–30–  
AD14160/AD14160L  
Link Ports: 2 × CLK Speed Operation  
40 MHz–5 V  
40 MHz–3.3 V  
Parameter  
Min  
Max  
Min  
Max  
Units  
Receive  
Timing Requirements:  
tSLDCL  
tHLDCL  
tLCLKIW  
tLCLKRWL  
tLCLKRWH  
Data Setup Before LCLK Low  
Data Hold After LCLK Low  
LCLK Period (2 × Operation)  
LCLK Width Low  
2.5  
2.25  
2.25  
tCK/2  
5
ns  
ns  
ns  
ns  
ns  
2.25  
tCK/2  
4.5  
LCLK Width High  
4.25  
4
Switching Characteristics:  
tDLAHC LACK High Delay After CLKIN High  
tDLALC  
LACK Low Delay After LCLK High1  
18 + DT/2  
6
29 + DT/2  
16.5  
18 + DT/2  
6
30 + DT/2  
18.5  
ns  
ns  
Transmit  
Timing Requirements:  
tSLACH LACK Setup Before LCLK High  
tHLACH LACK Hold After LCLK High  
19  
–6.75  
19  
–6.5  
ns  
ns  
Switching Characteristics:  
tDLCLK  
tDLDCH  
tHLDCH  
tLCLKTWL  
tLCLKTWH  
tDLACLK  
LCLK Delay After CLKIN  
8.5  
3
8.5  
2.75  
ns  
ns  
ns  
ns  
ns  
ns  
Data Delay After LCLK High  
Data Hold After LCLK High  
LCLK Width Low  
LCLK Width High  
LCLK Low Delay After LACK High  
–2  
–2  
(tCK/4) – 1  
(tCK/4) – 1  
(tCK/4) + 9  
(tCK/4) + 1  
(tCK/4) + 1  
(3 × tCL/4) + 17  
(tCK/4) – 0.75  
(tCK/4) – 1.5  
(tCK/4) + 9  
(tCK/4) + 1.5  
(tCK/4) + 1  
(3 × tCL/4) + 17  
NOTE  
1LACK will go low with tDLALC relative to rising edge of LCLK after first nibble is received. LACK will not go low if the receiver’s link buffer is not about to fill.  
REV. A  
–31–  
AD14160/AD14160L  
TRANSMIT  
CLKIN  
tDLCLK  
tLCLKTWL  
tLCLKTWH  
LAST NIBBLE  
TRANSMITTED  
FIRST NIBBLE  
TRANSMITTED  
LCLK INACTIVE  
(HIGH)  
LCLK 1x  
OR  
LCLK 2x  
tDLDCH  
tHLDCH  
LDAT(3:0)  
LACK (IN)  
OUT  
tDLACLK  
tSLACH  
tHLACH  
THE tSLACH REQUIREMENT APPLIES TO THE RISING EDGE OF LCLK ONLY FOR THE FIRST NIBBLE TRANSMITTED.  
RECEIVE  
CLKIN  
tLCLKIW  
tLCLKRWH  
tLCLKRWL  
LCLK 1x  
OR  
LCLK 2x  
tHLDCL  
tSLDCL  
LDAT(3:0)  
IN  
tDLALC  
tDLAHC  
LACK (OUT)  
LACK GOES LOW ONLY AFFTER THE SECOND NIBBLE IS RECEIVED.  
LINK PORT ENABLE/THREE-STATE DELAY FROM INSTRUCTION  
CLKIN  
tENDLK  
tTDLK  
LCLK  
LDAT(3:0)  
LACK  
LINK PORT ENABLE OR THREE-STATE TAKES EFFECT 2 CYCLES AFTER A WRITE TO A LINK PORT CONTROL REGISTER.  
LINK PORT INTERRUPT SETUP TIME  
CLKIN  
tHLCK  
tSLCK  
LCLK  
LACK  
Figure 22. Link Ports  
REV. A  
–32–  
AD14160/AD14160L  
Serial Ports  
Parameter  
40 MHz–5 V  
Max  
40 MHz–3.3 V  
Min  
Min  
Max  
Units  
External Clock  
Timing Requirements:  
tSFSE  
TFS/RFS Setup Before TCLK/RCLK1  
3.5  
4
1.5  
4
9.5  
tCK  
3.5  
4
1.5  
4
9
tCK  
ns  
ns  
ns  
ns  
ns  
ns  
tHFSE  
tSDRE  
tHDRE  
tSCLKW  
tSCLK  
TFS/RFS Hold After TCLK/RCLK1, 2  
Receive Data Setup Before RCLK1  
Receive Data Hold After RCLK1  
TCLK/RCLK Width  
TCLK/RCLK Period  
Internal Clock  
Timing Requirements:  
tSFSI  
TFS Setup Before TCLK1; RFS Setup Before RCLK1  
8
1
3
3
8
1
3
3
ns  
ns  
ns  
ns  
tHFSI  
tSDRI  
tHDRI  
TFS/RFS Hold After TCLK/RCLK1, 2  
Receive Data Setup Before RCLK1  
Receive Data Hold After RCLK1  
External or Internal Clock  
Switching Characteristics:  
tDFSE  
tHFSE  
RFS Delay After RCLK (Internally Generated RFS)3  
13.5  
13.5  
ns  
ns  
RFS Hold After RCLK (Internally Generated RFS)3  
3
3
External Clock  
Switching Characteristics:  
tDFSE  
tHFSE  
tDDTE  
tHDTE  
TFS Delay After TCLK (Internally Generated TFS)3  
13.5  
16.5  
13.5  
16.5  
ns  
ns  
ns  
ns  
TFS Hold After TCLK (Internally Generated TFS)3  
Transmit Data Delay After TCLK3  
3
5
3
5
Transmit Data Hold After TCLK3  
Internal Clock  
Switching Characteristics:  
tDFSI  
tHFSI  
tDDTI  
tHDTI  
tSCLKIW  
TFS Delay After TCLK (Internally Generated TFS)3  
4.5  
7.5  
4.5  
7.5  
ns  
ns  
ns  
ns  
ns  
TFS Hold After TCLK (Internally Generated TFS)3 –1.5  
Transmit Data Delay After TCLK3  
–1.5  
0
Transmit Data Hold After TCLK3  
TCLK/RCLK Width  
0
(SCLK/2) – 2 (SCLK/2) + 2 (SCLK/2) – 2.5 (SCLK/2) + 2.5  
Enable and Three-State  
Switching Characteristics:  
tDDTEN  
tDDTTE  
tDDTIN  
tDDTTI  
tDCLK  
Data Enable from External TCLK3  
3.5  
0
4
0
ns  
ns  
ns  
ns  
ns  
ns  
Data Disable from External TCLK3  
Data Enable from Internal TCLK3  
Data Disable from Internal TCLK3  
TCLK/RCLK Delay from CLKIN  
SPORT Disable After CLKIN  
11  
11  
3
3
22.5 + 3DT/8  
17.5  
22.5 + 3DT/8  
17.5  
tDPTR  
External Late Frame Sync  
Switching Characteristics:  
tDDTLFSE Data Delay from Late External TFS or  
External RFS with MCE = 1, MFD = 04  
tDDTENFS Data Enable from Late FS or MCE = 1, MFD = 04  
12.5  
13.3  
ns  
ns  
3
3.5  
To determine whether communication is possible between two devices at clock speed n, the following specifications must be confirmed: 1) frame sync delay and frame  
sync setup and hold, 2) data delay and data setup and hold, and 3) SCLK width.  
NOTES  
1Referenced to sample edge.  
2RFS hold after RCK when MCE = 1, MFD = 0 is 0 ns minimum from drive edge. TFS hold after TCK for late external TFS is 0 ns minimum from drive edge.  
3Referenced to drive edge.  
4MCE = 1, TFS enable and TFS valid follow tDDTLFSE and tDDTENFS  
.
REV. A  
–33–  
AD14160/AD14160L  
EXTERNAL RFS with MCE = 1, MFD = 0  
DRIVE  
DRIVE  
SAMPLE  
RCLK  
RFS  
tHFSE/I  
(SEE NOTE 2)  
tSFSE/I  
tDDTE/I  
tDDTENFS  
tHDTE/I  
DT  
1ST BIT  
2ND BIT  
tDDTLFSE  
LATE EXTERNAL TFS  
DRIVE  
DRIVE  
SAMPLE  
TCLK  
TFS  
tHFSE/I  
(SEE NOTE 2)  
tSFSE/I  
tDDTE/I  
tDDTENFS  
tHDTE/I  
DT  
1ST BIT  
2ND BIT  
tDDTLFSE  
Figure 23. External Late Frame Sync  
REV. A  
–34–  
AD14160/AD14160L  
DATA RECEIVE– INTERNAL CLOCK  
DATA RECEIVE– EXTERNAL CLOCK  
SAMPLE  
EDGE  
DRIVE  
EDGE  
DRIVE  
EDGE  
SAMPLE  
EDGE  
tSCLKIW  
tSCLKW  
RCLK  
RCLK  
tDFSE  
tHFSE  
tDFSE  
tHFSE  
tHFSE  
tSFSI  
tHFSI  
tSFSE  
RFS  
DR  
RFS  
DR  
tSDRE  
tHDRE  
tSDRI  
tHDRI  
NOTE: EITHER THE RISING EDGE OR FALLING EDGE OF RCLK, TCLK CAN BE USED AS THE ACTIVE SAMPLING EDGE.  
DATA TRANSMIT– INTERNAL CLOCK  
DATA TRANSMIT– EXTERNAL CLOCK  
SAMPLE  
EDGE  
DRIVE  
EDGE  
DRIVE  
EDGE  
SAMPLE  
EDGE  
tSCLKIW  
tSCLKW  
TCLK  
TCLK  
tDFSI  
tDFSE  
tHFSE  
tHFSI  
tSFSI  
tHFSI  
tHFSE  
tSFSE  
TFS  
TFS  
tDDTI  
tDDTE  
tHDTI  
tHDTE  
DT  
DT  
NOTE: EITHER THE RISING EDGE OR FALLING EDGE OF RCLK, TCLK CAN BE USED AS THE ACTIVE SAMPLING EDGE.  
DRIVE  
EDGE  
DRIVE  
EDGE  
TCLK / RCLK  
TCLK (EXT)  
DT  
tDDTEN  
tDDTTE  
DRIVE  
EDGE  
DRIVE  
EDGE  
TCLK / RCLK  
TCLK (INT)  
tDDTIN  
tDDTTI  
DT  
CLKIN  
CLKIN  
tHTFSCK  
tDPTR  
tSTFSCK  
SPORT ENABLE AND  
THREE-STATE  
LATENCY  
TCLK, RCLK  
SPORT DISABLE DELAY  
FROM INSTRUCTION  
TFS (EXT)  
TFS, RFS, DT  
IS TWO CYCLES  
tDCLK  
NOTE: APPLIES ONLY TO GATED SERIAL CLOCK MODE WITH  
EXTERNAL TFS, AS USED IN THE SERIAL PORT SYSTEM I/O FOR  
MESH MULTIPROCESSING.  
TCLK (INT)  
RCLK (INT)  
LOW TO HIGH ONLY  
Figure 24. Serial Ports  
REV. A  
–35–  
AD14160/AD14160L  
JTAG Test Access Port and Emulation  
40 MHz–5 V  
Max  
40 MHz–3.3 V  
Parameter  
Min  
Min  
Max  
Units  
Timing Requirements:  
tTCK  
TCK Period  
tCK  
5.5  
6.5  
8
18.5  
4tCK  
tCK  
5.5  
6.5  
8
19  
4tCK  
ns  
ns  
ns  
ns  
ns  
ns  
tSTAP  
tHTAP  
tSSYS  
tHSYS  
tTRSTW  
TDI, TMS Setup Before TCK High  
TDI, TMS Hold After TCK High  
System Inputs Setup Before TCK Low1  
System Inputs Hold After TCK Low1  
TRST Pulsewidth  
Switching Characteristics:  
tDTDO TDO Delay from TCK Low  
tDSYS  
System Outputs Delay After TCK Low 2  
13.5  
20  
13.5  
20  
ns  
ns  
NOTES  
1System Inputs = DATA47-0, ADDR31-0, RD, WR, ACK, SBTS, SW, HBR, HBG, CS, DMAR1, DMAR2, BR6-1, RPBA, IDy2-0, IRQ2-0, FLAGy3-0, DRy0, DyR1,  
TCLKy0, TCLKy1, RCLKy0, RCLKy1, TFSy0, TFSy1, RFSy0, RFSy1, LxDAT3-0, LxCLK, LxACK, EBOOT, LBOOT, BMS, CLKIN, RESET.  
2System Outputs = DATA47-0, ADDR31-0, MS3-0, RD, WR, ACK, PAGE, ADRCLK, SW, HBG, REDY, DMAG1, DMAG2, BR6-1, CPA, FLAG2-0, TIMEXP, DT0,  
DT1, TCLK0, TCLK1, RCLK0, RCLK1, TFS0, TFS1, RFS0, RFS1, LxDAT3-0, LxCLK, LxACK, BMS.  
tTCK  
TCK  
tSTAP  
tHTAP  
TMS  
TDI  
tDTDO  
TDO  
tSSYS  
tHSYS  
SYSTEM  
INPUTS  
tDSYS  
SYSTEM  
OUTPUTS  
Figure 25. IEEE 11499.1 JTAG Test Access Port  
REV. A  
–36–  
AD14160/AD14160L  
POWER DISSIPATION  
OUTPUT DRIVE CURRENTS  
Total power dissipation has two components, one due to inter-  
nal circuitry and one due to the switching of external output  
drivers. Internal power dissipation is dependent on the instruc-  
tion execution sequence and the data operands involved. Inter-  
nal power dissipation is calculated in the following way:  
Figure 26 shows typical I-V characteristics for the output drivers  
of the ADSP-2106x. The curves represent the current drive  
capability of the output drivers as a function of output voltage.  
100  
75  
P
INT = IDDIN × VDD  
50  
The external component of total power dissipation is caused by  
the switching of output pins. Its magnitude depends on:  
25  
5.25V, –40؇C  
0
5.0V, +25°C  
4.75V, +85  
°
C
– the number of output pins that switch during each cycle (O)  
– the maximum frequency at which they can switch (f)  
– their load capacitance (C)  
–25  
–50  
4.75V, +85  
°C  
–75  
– their voltage swing (VDD  
)
5.0V, +25  
°
C
–100  
–125  
5.25V, –40°C  
and is calculated by:  
PEXT = O × C × VDD2 × f  
–150  
–175  
–200  
The load capacitance should include the processor’s package  
capacitance (CIN). The switching frequency includes driving the  
load high and then back low. Address and data pins can drive  
high and low at a maximum rate of 1/(2tCK). The write strobe  
can switch every cycle at a frequency of 1/tCK. Select pins switch  
at 1/(2tCK), but selects can switch on each cycle.  
0
0.75  
1.50  
2.25  
3.00  
3.75  
4.50  
5.25  
SOURCE VOLTAGE – V  
Figure 26. ADSP-2106x Typical Drive Currents (VDD = 5 V)  
120  
100  
Example:  
3.3V, +25°C  
80  
60  
40  
Estimate PEXT with the following assumptions:  
3.6V, –40°C  
–A system with one bank of external data memory RAM  
(32-bit).  
–Four 128K × 8 RAM chips are used, each with a load of 10 pF.  
–External data memory writes occur every other cycle, a rate  
of 1/(4tCK), with 50% of the pins switching.  
–The instruction cycle rate is 40 MHz (tCK = 25 ns) and  
VDD = 3.3 V.  
3.0V, +85؇C  
V
20  
0
OH  
–20  
–40  
–60  
3.0V, +85°C  
3.3V, +25°C  
3.6V, –40°C  
–80  
–100  
–120  
The PEXT equation is calculated for each class of pins that can  
drive:  
V
OL  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
SOURCE VOLTAGE – V  
Pin  
# of  
%
2
Type  
Pins  
Switching 
؋
 C  
؋
؋
 VDD = PEXT  
Figure 27. ADSP-2106x Typical Drive Currents (VDD = 3.3 V)  
Address  
MS0  
WR  
Data  
ADRCLK  
15  
1
1
32  
1
50  
0
50  
× 55 pF × 20 MHz × 10.9 V = 0.089 W  
× 55 pF × 20 MHz × 10.9 V = 0.00 W  
× 55 pF × 40 MHz × 10.9 V = 0.024 W  
× 25 pF × 20 MHz × 10.9 V = 0.087 W  
× 15 pF × 40 MHz × 10.9 V = 0.007 W  
PEXT (3.3 V)= 0.207 W  
PEXT (5 V)= 0.476 W  
A typical power consumption can now be calculated for these  
conditions by adding a typical internal power dissipation:  
P
TOTAL = PEXT + (IDDIN2 × 5.0 V )  
Note that the conditions causing a worst-case PEXT are different  
from those causing a worst-case PINT. Maximum PINT cannot  
occur while 100% of the output pins are switching from all ones  
to all zeros. Also note that it is not common for an application to  
have 100% or even 50% of the outputs switching simultaneously.  
REV. A  
–37–  
AD14160/AD14160L  
TEST CONDITIONS  
Output Disable Time  
REFERENCE  
SIGNAL  
Output pins are considered to be disabled when they stop driv-  
ing, go into a high impedance state, and start to decay from  
their output high or low voltage. The time for the voltage on the  
bus to decay by V is dependent on the capacitive load, CL, and  
the load current, IL. This decay time can be approximated by  
the following equation:  
tMEASURED  
tENA  
tDIS  
V
V
OH (MEASURED)  
V
V
OH (MEASURED)  
V
V  
+ V  
2.0V  
1.0V  
OH (MEASURED)  
V
OL (MEASURED)  
OL (MEASURED)  
OL (MEASURED)  
tDECAY  
CL V  
tDECAY  
=
IL  
OUTPUT STARTS  
DRIVING  
OUTPUT STOPS  
DRIVING  
The output disable time, tDIS, is the difference between tMEASURED  
and tDECAY as shown in Figure 28. The time tMEASURED is the  
interval from when the reference signal switches to when the  
output voltage decays V from the measured output high or  
output low voltage. tDECAY is calculated with test loads CL and  
IL, and with V equal to 0.5 V.  
HIGH-IMPEDANCE STATE.  
TEST CONDITIONS CAUSE  
THIS VOLTAGE TO BE  
APPROXIMATELY 1.5V  
Figure 28. Output Enable/Disable  
I
OL  
Output Enable Time  
Output pins are considered to be enabled when they have made  
a transition from a high impedance state to when they start  
driving. The output enable time, tENA, is the interval from when  
a reference signal reaches a high or low voltage level to when the  
output has reached a specified high or low trip point, as shown  
in the Output Enable/Disable diagram (Figure 28). If multiple  
pins (such as the data bus) are enabled, the measurement value  
is that of the first pin to start driving.  
TO  
OUTPUT  
PIN  
+1.5V  
50pF  
Example System Hold Time Calculation  
I
OH  
To determine the data output hold time in a particular system,  
first calculate tDECAY using the equation given above. Choose  
V to be the difference between the ADSP-2106x’s output  
voltage and the input threshold for the device requiring the hold  
time. A typical V will be 0.4 V. CL is the total bus capacitance  
(per data line), and IL is the total leakage or three-state current  
(per data line). The hold time will be tDECAY plus the minimum  
disable time (i.e., tHDWD for the write cycle).  
Figure 29. Equivalent Device Loading for AC Measure-  
ments (Includes All Fixtures)  
INPUT OR  
OUTPUT  
1.5V  
1.5V  
Figure 30. Voltage Reference Levels for AC Measurements  
(Except Output Enable/Disable)  
Capacitive Loading  
Output delays and holds are based on standard capacitive loads:  
50 pF on all pins (see Figure 29). The delay and hold specifica-  
tions given should be derated by a factor of 1.5 ns/50 pF for  
loads other than the nominal value of 50 pF. Figures 31, 32, 33  
and 34 show how output rise time varies with capacitance.  
Figures 35 and 36 graphically show how output delays and  
holds vary with load capacitance. (Note that these graphs or  
derating does not apply to output disable delays; see the previ-  
ous section Output Disable Time under Test Conditions.) The  
graphs of Figures 31 through 36 may not be linear outside the  
ranges shown.  
REV. A  
–38–  
AD14160/AD14160L  
9
8
16.0  
14.0  
12.0  
10.0  
8.0  
7
6
Y = 0.0391X + 0.36  
RISE TIME  
5
4
Y = 0.005X + 3.7  
RISE TIME  
FALL TIME  
Y = 0.0305X + 0.24  
6.0  
3
2
1
0
FALL TIME  
4.0  
2.0  
0
Y = 0.0031X + 1.1  
0
20  
40  
60  
80 100 120 140 160 180 200  
0
20  
40  
60  
80  
100 120 140 160 180 200  
LOAD CAPACITANCE – pF  
LOAD CAPACITANCE – pF  
Figure 31. Typical Output Rise Time (10%–90%)  
vs. Load Capacitance (VDD = 5 V)  
Figure 34. Typical Output Rise Time (0.8 V –2.0 V)  
vs. Load Capacitance (VDD = 3.3 V)  
18  
16  
5
4
14  
Y = 0.0796X + 1.17  
12  
3
Y = 0.03X –1.45  
10  
2
1
RISE TIME  
8
6
Y = 0.0467X + 0.55  
4
2
0
FALL TIME  
NOMINAL  
–1  
0
20  
40  
60  
80 100 120 140 160 180 200  
25  
50  
75  
100  
125  
150  
175  
200  
LOAD CAPACITANCE – pF  
LOAD CAPACITANCE – pF  
Figure 35. Typical Output Delay or Hold vs. Load Capaci-  
tance (at Maximum Case Temperature) (VDD = 5 V)  
Figure 32. Typical Output Rise Time (10%–90%)  
vs. Load Capacitance (VDD = 3.3 V)  
5
3.5  
3.0  
2.5  
4
3
2
1
Y = 0.0329X –1.65  
RISE TIME  
2.0  
Y = 0.009X + 1.1  
1.5  
FALL TIME  
1.0  
Y = 0.005X + 0.6  
NOMINAL  
–1  
0.5  
0
25  
50  
75  
100  
125  
150  
175  
200  
0
20  
40  
60  
80  
100 120 140 160 180 200  
LOAD CAPACITANCE – pF  
LOAD CAPACITANCE – pF  
Figure 33. Typical Output Rise Time (0.8 V–2.0 V)  
vs. Load Capacitance (VDD = 5 V)  
Figure 36. Typical Output Delay or Hold vs. Load Capaci-  
tance (at Maximum Case Temperature) (VDD = 3.3 V)  
REV. A  
–39–  
AD14160/AD14160L  
ASSEMBLY RECOMMENDATIONS  
Signal Pad Assignment Topology  
Socket Information  
The AD14160/AD14160L signal pad assignments were care-  
fully analyzed for improved board routing and maximum reliabil-  
ity. By restricting the required 432 I/O to the inner 25 mm circle,  
TCE mismatch concerns are minimized. (BGA ball patterns of  
25 mm size are well characterized and documented.) The signal  
I/O is carefully placed and grouped to minimize pin escape  
difficulties in routing. Redundant power/ground contact pads are  
also provided (but not required) to improve the thermal perfor-  
mance and the ground bounce performance of the package (see  
Figure 42).  
Standard sockets are available from 3M and Plastronics. The  
3M socket used is the BGA III style. The customer must specify  
how they want the socket populated with pins and a slight modifi-  
cation is required to compensate for the tolerance of the package  
thickness.  
PCB Board Layout  
A classical dog bone style pad should be used. A solder pad  
diameter of 0.65 mm is recommended. The pad should be non-  
soldermask defined.  
DENSITY IMPROVEMENTS  
NON-SOLDERMASK  
DEFINED PAD  
In addition to careful considerations to performance characteris-  
tics such as ground bounce, signal quality, and noise isolation,  
the AD14160/AD14160L also provides significant density ad-  
vantages.  
Board Area Reduction  
SOLDERMASK  
The minimally packaged AD14160/AD14160L CBGA reduces  
required board area by approximately 75%.  
DISCRETE  
SHARC  
DISCRETE  
SHARC  
Figure 37.  
Solder Paste Printing  
A solder paste print of 0.7 mm diameter with thickness of 0.15  
to 0.2 mm is recommended. Normal solder paste alloy can be  
used, i.e., 60/40, 63/37, etc.  
Reflow Profile  
The profile shown below is recommended.  
QUAD SHARC  
BGA MCM  
MEASUREMENT POINT  
DISCRETE  
SHARC  
BGA  
PCB  
PIN ONE  
PEAK 220 ؎10؇C  
220  
200  
200  
–40 ؎10؇C/MIN  
170؇C  
160  
50 ؎10؇C/MIN  
200؇C  
1.850 IN SQ  
160  
150  
Figure 39.  
Embedded Wiring  
120 ؎30 SEC  
150
ف
160؇C  
60 ؎10 SEC  
OVER 200؇C  
Forty feet of optimized routing is embedded in four integrated  
signal routing layers (in addition to power and ground planes).  
This eliminated hundreds of feet of multiprocessing intercon-  
nect on the target PCB; thereby, also reducing board cost and  
required routing layers.  
100  
100  
50 ؎10؇C/MIN  
150؇C  
TIME – Sec  
Figure 38.  
REV. A  
–40–  
AD14160/AD14160L  
GROUND BOUNCE ESTIMATE  
In the Quad-SHARC module, the worse case ground bounce  
condition occurs during an external memory operation in which  
86 signals switch simultaneously from high to low. Because of  
the ground planes embedded within the substrate of the mod-  
ule, the effective ground pin inductance is found by dividing the  
CBGA’s single ground pin inductance, estimated to be about  
3 nH, by the 64 ground pins resulting in LGND = 0.05 nH.  
Typical output fall times for varying load conditions can be  
obtained from this data sheet.  
Ground bounce diminishes noise margins in a system and must  
be held as low as possible. Ground bounce results from switch-  
ing output pins from a high to a low state with the ensuing dis-  
charge current creating a voltage across the parasitic inductance  
of the MCM’s ground pins (and to a lesser extent across the  
wirebond wires connecting the ground pads). A useful model for  
calculating the level of ground bounce is shown below (Johnson,  
Howard W. and Graham, Martin, “High-Speed Digital Design,”  
Prentice Hall p67, 1993).  
The induced voltage generated by the switching currents is  
V
DD  
given by  
d
dt  
VGND = LGND  
(IDISCHARGE)  
SHARC DIE  
Assuming the voltage waveform is an integrated Gaussian pulse,  
the peak amplitude is approximated by  
V
IN  
1. 5 2 V  
|VGND| max = LGND  
C.  
2
T10–90  
Calculated ground bounce maximum values for the CBGA  
module are listed below.  
I
LOAD C  
DISCHARGE  
Load per Output  
(pF)  
Fall Time  
(ns)  
Ground Bounce  
(V)  
GROUND PIN  
INDUCTANCE  
V
GND  
L
20  
100  
200  
1.8  
4.2  
7.4  
0.161  
0.148  
0.095  
GND  
SYSTEM GROUND PLANE  
Figure 40.  
REV. A  
–41–  
AD14160/AD14160L  
Thermal Characteristics  
Metal Coverage Per Layer  
Percent Metal  
The AD14160/AD14160L is packaged in a 452-lead ceramic  
ball grid array (CBGA). The package is optimized for thermal  
conduction through the core (base of the package) down to the  
mounting surface. The AD14160/AD14160L is specified for a  
case temperature (TCASE). Design of the mounting surface and  
attachment material should be such that TCASE is not exceeded.  
Layer  
(1 Mil Thick)  
VDD  
87  
12  
12  
89  
14  
13  
91  
SIG2  
SIG3  
GND  
SIG4  
SIG5  
BASE  
θJC = 0.36°C/W  
Thermal Cross-Section  
The data below, together with the detailed mechanical drawings  
at the end of the data sheet, allows for constructing simple ther-  
mal models for further analysis within targeted systems. The top  
layer of the package, where the die are mounted, is a metal VDD  
layer. The approximate metal area coverage from the metal  
planes and routing layers is estimated below.  
(Assume Uniformly Distributed)  
Thermal Conductivity  
Thermal Conductivity  
Material  
W/cm؇C  
Ceramic  
Kovar  
Tungsten  
Thermoplastic  
Silicon  
0.18  
0.14  
1.78  
0.03  
1.45  
KOVAR LID  
0.015 IN  
KOVAR SEAL RING  
HEIGHT = 50 MILS  
SUB-PAD  
SIGI  
SEAL RING METALIZATION  
SILICON DIE  
19 MILS  
THERMOPLASTIC  
THICKNESS 5 MILS  
CERAMIC LAYER 28 MILS  
(2 LAYERS 14 MILS EACH)  
V
DD  
SIG2  
SIG3  
GND  
SIG4  
SIG5  
CERAMIC LAYER 6 MILS  
CERAMIC LAYER 6 MILS  
CERAMIC LAYER 10 MILS  
CERAMIC LAYER 4 MILS  
CERAMIC LAYER 10 MILS  
CERAMIC LAYER 10 MILS  
CERAMIC LAYER 4 MILS  
CERAMIC LAYER 10 MILS  
CERAMIC LAYER 4 MILS  
CERAMIC LAYER 8 MILS  
BASE  
DBGA PADS  
Figure 41.  
REV. A  
–42–  
AD14160/AD14160L  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
A
A
A
B
A
C
A
D
A
E
A
F
A
G
A
H
A
J
A
K
A
L
A
M
A
N
A
P
A
R
A
T
ADDRESS  
DATA  
CONTROLS, MISC  
VDD  
GND  
NOTE:  
PADS OUTSIDE THE DARK BORDER ARE REDUNDANT  
OR NOT REQUIRED. THE MODULE IS PRODUCTION  
TESTED WITH ONLY THOSE SIGNALS INSIDE THE  
DARK BORDER.  
LINKS  
SERIAL PORTS  
UNUSED  
Figure 42. Board Footprint for AD14160/AD14160L Quad SHARC BGA  
REV. A  
–43–  
AD14160/AD14160L  
MECHANICAL CHARACTERISTICS  
Lid Deflection Analysis  
1.850؎0.012 SQ.  
25  
20  
15  
0.670؎0.007  
4
؋
 
0.653؎0.007  
4
؋
 
0.195  
0.633  
0.616  
10  
5
0.188  
0.230  
0.188  
1.790  
1.710  
1.680  
0
7.33034759  
4.87379679  
2.41724599  
2
0.69766043  
EXTERNAL PRESSURE – lbs/in  
0.024 TYP  
Figure 43. Deflection (mils) vs. External Pressure  
Mechanical Model  
0.012 REF  
0.060  
4
؋
 
0.008 REF  
4
؋
 
The data below, together with the detailed mechanical drawings  
at the end of the data sheet, allows for construction of simple  
mechanical models for further analysis within targeted systems.  
The following pages list two separate pin listings. The first is  
ordered by pin number and the second is an alphabetical list by  
pin name. Note that there are many not required or redundant  
pins beyond the standard package 452 leads. These pins are  
noted in parentheses. For example: (GND), (VDD), (unused),  
(TEST). These pins are extraneous and only the redundant  
(GND) and (VDD) should be connected if desired.  
Mechanical Properties  
Material  
Modulus of Elasticity  
Ceramic  
Kovar  
Tungsten  
Thermoplastic  
Silicon  
26 × 103 kg/mm2  
14.1 × 103 kg/mm2  
35 × 103 kg/mm2  
279 kg/mm2  
11 × 103 kg/mm2  
452-LEAD CBGA PIN CONFIGURATION  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
PIN A1  
INDEX  
BOTTOM VIEW  
REV. A  
–44–  
AD14160/AD14160L  
PIN CONFIGURATIONS (Pin Order Listing)  
Pin  
No  
Pin  
Name  
Pin Pin  
No Name  
Pin  
No.  
Pin  
Name  
Pin  
No  
Pin  
Name  
Pin  
No.  
Pin  
Name  
Pin  
No.  
Pin  
Name  
C1 (GND)  
C2 (GND)  
C3 (unused)  
C4 (VDD)  
C5 (unused)  
C6 (unused)  
C7 (unused)  
C8 (unused)  
C9 (unused)  
C10 (unused)  
C11 (unused)  
C12 (unused)  
C13 (unused)  
C14 (unused)  
C15 (unused)  
C16 (unused)  
C17 (unused)  
C18 (GND)  
C19 (VDD)  
C20 (unused)  
C21 (unused)  
C22 (unused)  
C23 (unused)  
C24 (unused)  
C25 (unused)  
C26 (unused)  
C27 (unused)  
C28 (unused)  
C29 (unused)  
C30 (unused)  
C31 (unused)  
C32 (unused)  
C33 (GND)  
C34 (unused)  
C35 (VDD)  
C36 (GND)  
D1 (GND)  
D2 (unused)  
D3 (unused)  
D4 (GND)  
D5 (unused)  
D6 (GND)  
D7 (unused)  
D8 (GND)  
D9 (unused)  
D10 (GND)  
D11 (unused)  
D12 (GND)  
D13 (unused)  
D14 (GND)  
D15 (unused)  
D16 (GND)  
D17 (unused)  
D18 (VDD)  
D19 (VDD)  
D20 (unused)  
D21 (GND)  
D22 (unused)  
D23 (GND)  
D24 (unused)  
D25 (GND)  
D26 (unused)  
D27 (GND)  
D28 (unused)  
D29 (GND)  
D30 (unused)  
D31 (GND)  
D32 (unused)  
D33 (GND)  
D34 (unused)  
D35 (unused)  
D36 (GND)  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
(GND)  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
(GND)  
J1  
(GND)  
(unused)  
(unused)  
(unused)  
(GND)  
(unused)  
(GND)  
(unused)  
(GND)  
(unused)  
(TEST11)  
DATA10  
LB2ACK  
LB2CLK  
LB2DAT0  
LB2DAT1  
GND  
L1  
L2  
L3  
L4  
L5  
L6  
L7  
L8  
L9  
(GND)  
(unused)  
(unused)  
(unused)  
(GND)  
(unused)  
(unused)  
(unused)  
(GND)  
J2  
(unused)  
(unused)  
(unused)  
(GND)  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
J3  
J4  
J5  
(unused)  
(GND)  
(unused)  
(GND)  
(unused)  
(GND)  
(unused)  
(GND)  
J6  
(unused)  
(GND)  
(unused)  
(TEST10)  
J7  
J8  
J9  
A10 (GND)  
A11 (GND)  
A12 (GND)  
A13 (GND)  
A14 (GND)  
A15 (GND)  
A16 (GND)  
A17 (GND)  
A18 (GND)  
A19 (GND)  
A20 (GND)  
A21 (GND)  
A22 (GND)  
A23 (GND)  
A24 (GND)  
A25 (GND)  
A26 (GND)  
A27 (GND)  
A28 (GND)  
A29 (GND)  
A30 (GND)  
A31 (GND)  
A32 (GND)  
A33 (GND)  
A34 (GND)  
E10 (unused)  
E11 (GND)  
E12 (unused)  
E13 (GND)  
E14 (unused)  
E15 (GND)  
E16 (unused)  
E17 (unused)  
E18 (VDD)  
E19 (VDD)  
E20 (unused)  
E21 (unused)  
E22 (GND)  
E23 (unused)  
E24 (GND)  
E25 (unused)  
E26 (GND)  
E27 (unused)  
E28 (GND)  
E29 (unused)  
E30 (GND)  
E31 (unused)  
E32 (GND)  
E33 (unused)  
E34 (unused)  
E35 (unused)  
E36 (GND)  
G10 (unused)  
G11 (GND)  
G12 (unused)  
G13 (GND)  
G14 (unused)  
G15 (GND)  
G16 GND  
G17 LB1DAT2  
G18 LB1DAT3  
G19 RFSA1  
G20 RFSA0  
G21 VDD  
G22 (GND)  
G23 (unused)  
G24 (GND)  
G25 (unused)  
G26 (GND)  
G27 (unused)  
G28 (GND)  
G29 (unused)  
G30 (GND)  
G31 (unused)  
G32 (GND)  
G33 (unused)  
G34 (unused)  
G35 (unused)  
G36 (GND)  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
J17  
J18  
J19  
J20  
J21  
J22  
J23  
J24  
J25  
J26  
J27  
J28  
J29  
J30  
J31  
J32  
J33  
J34  
J35  
J36  
K1  
K2  
K3  
K4  
K5  
K6  
K7  
K8  
K9  
L10 DATA30  
L11 DATA22  
L12 DATA12  
L13 LB4ACK  
L14 LB4CLK  
L15 LB4DAT0  
L16 LB4DAT1  
L17 LB4DAT2  
L18 LB4DAT3  
L19 TCLKA1  
L20 TCLKA0  
L21 RESET  
L22 LA2ACK  
L23 LA2CLK  
L24 LA2DAT0  
L25 LA2DAT1  
L26 LA2DAT2  
L27 LA2DAT3  
L28 (TEST15)  
L29 (unused)  
L30 (GND)  
L31 (unused)  
L32 (GND)  
L33 (unused)  
L34 (unused)  
L35 (unused)  
L36 (GND)  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
VDD  
DRA1  
DRA0  
ACK  
PAGE  
GND  
VDD  
GND  
(TEST14)  
(unused)  
(GND)  
(unused)  
(GND)  
(unused)  
(GND)  
(unused)  
(unused)  
(unused)  
(GND)  
(GND)  
(unused)  
(unused)  
(GND)  
(unused)  
(GND)  
(unused)  
(GND)  
(unused)  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
(GND)  
(GND)  
(GND)  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
(GND)  
(unused)  
(unused)  
(GND)  
(unused)  
(unused)  
(GND)  
(unused)  
(unused)  
(GND)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(GND)  
(unused)  
(GND)  
(unused)  
(unused)  
(GND)  
(unused)  
(GND)  
(unused)  
(unused)  
(GND)  
(unused)  
(TEST10)  
RFSB0  
B10 (unused)  
B11 (unused)  
B12 (unused)  
B13 (unused)  
B14 (unused)  
B15 (unused)  
B16 (unused)  
B17 (unused)  
B18 (unused)  
B19 (unused)  
B20 (unused)  
B21 (unused)  
B22 (unused)  
B23 (unused)  
B24 (unused)  
B25 (unused)  
B26 (unused)  
B27 (unused)  
B28 (unused)  
B29 (unused)  
B30 (unused)  
B31 (unused)  
B32 (unused)  
B33 (unused)  
B34 (unused)  
B35 (GND)  
F10 (GND)  
F11 (unused)  
F12 (GND)  
F13 (unused)  
F14 (GND)  
F15 (unused)  
F16 (GND)  
F17 (TEST12)  
F18 (TEST12)  
F19 (TEST13)  
F20 (TEST13)  
F21 (GND)  
F22 (unused)  
F23 (GND)  
F24 (unused)  
F25 (GND)  
F26 (unused)  
F27 (GND)  
F28 (unused)  
F29 (GND)  
F30 (unused)  
F31 (GND)  
F32 (unused)  
F33 (GND)  
F34 (unused)  
F35 (unused)  
F36 (GND)  
H10 (GND)  
H11 (unused)  
H12 (TEST11)  
H13 LB1ACK  
H14 LB1CLK  
H15 LB1DAT0  
H16 LB1DAT1  
H17 LB2DAT2  
H18 LB2DAT3  
H19 RCLKA1  
H20 RCLKA0  
H21 REDY  
K10 GND  
M10 DATA31  
M11 DATA23  
M12 DATA13  
M13 DATA2  
M14 DATA0  
M15 DMAG1  
M16 DMAR1  
M17 DMAR2  
M18 VDD  
K11 DATA21  
K12 DATA11  
K13 LB3ACK  
K14 LB3CLK  
K15 LB3DAT0  
K16 LB3DAT1  
K17 LB3DAT2  
K18 LB3DAT3  
K19 TFSA1  
M19 DTA1  
K20 TFSA0  
K21 CSA  
M20 DTA0  
M21 CPAA  
H22 VDD  
K22 LA1ACK  
K23 LA1CLK  
K24 LA1DAT0  
K25 LA1DAT1  
K26 LA1DAT2  
K27 LA1DAT3  
K28 (unused)  
K29 (GND)  
K30 (unused)  
K31 (GND)  
K32 (unused)  
K33 (GND)  
M22 LA3ACK  
M23 LA3CLK  
M24 LA3DAT0  
M25 LA3DAT1  
M26 LA3DAT2  
M27 LA3DAT3  
M28 VDD  
H23 GND  
H24 VDD  
H25 (TEST14)  
H26 (unused)  
H27 (GND)  
H28 (unused)  
H29 (GND)  
H30 (unused)  
H31 (GND)  
H32 (unused)  
H33 (GND)  
H34 (unused)  
H35 (unused)  
H36 (GND)  
M29 (TEST15)  
M30 (unused)  
M31 (GND)  
M32 (unused)  
M33 (GND)  
M34 (unused)  
M35 (unused)  
M36 (GND)  
K34 (unused)  
K35 (unused)  
K36 (GND)  
REV. A  
–45–  
AD14160/AD14160L  
PIN CONFIGURATIONS (Pin Order Listing Continued)  
Pin  
No  
Pin  
Name  
Pin  
No  
Pin  
Name  
Pin  
No.  
Pin  
Name  
Pin  
No  
Pin  
Name  
Pin  
Pin  
Name  
Pin  
No.  
Pin  
Name  
No.  
N1  
(GND)  
(unused)  
(unused)  
(unused)  
(GND)  
(unused)  
(GND)  
VDD  
RCLKB0  
DATA32  
DATA24  
DATA14  
DATA3  
DATA1  
DMAG2  
SBTS  
R1  
(GND)  
(unused)  
(unused)  
(unused)  
(GND)  
(unused)  
(GND)  
RCLKB1  
TFSB0  
DATA34  
DATA26  
DATA16  
DATA5  
GND  
U1  
(GND)  
(unused)  
(unused)  
(unused)  
(unused)  
(TEST9)  
GND  
W1  
(GND)  
(GND)  
(VDD)  
(VDD)  
(VDD)  
(TEST8)  
GND  
AA1  
(GND)  
(unused)  
(unused)  
(GND)  
(unused)  
(GND)  
GND  
AC1  
(GND)  
(unused)  
(unused)  
(GND)  
(unused)  
(GND)  
(unused)  
GND  
N2  
R2  
U2  
W2  
AA2  
AC2  
N3  
R3  
U3  
W3  
AA3  
AC3  
N4  
R4  
U4  
W4  
AA4  
AC4  
N5  
R5  
U5  
W5  
AA5  
AC5  
N6  
R6  
U6  
W6  
AA6  
AC6  
N7  
R7  
U7  
W7  
AA7  
AC7  
N8  
R8  
U8  
TFSB1  
DTB0  
W8  
DTB1  
AA8  
HBR  
AC8  
N9  
R9  
U9  
W9  
DATA46  
DATA38  
DATA29  
DATA20  
DATA9  
(unused)  
(unused)  
GND  
AA9  
BR2  
CPAB  
AC9  
BR4  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
N17  
N18  
N19  
N20  
N21  
N22  
N23  
N24  
N25  
N26  
N27  
N28  
N29  
N30  
N31  
N32  
N33  
N34  
N35  
N36  
P1  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
R24  
R25  
R26  
R27  
R28  
R29  
R30  
R31  
R32  
R33  
R34  
R35  
R36  
T1  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
U18  
U19  
U20  
U21  
U22  
U23  
U24  
U25  
U26  
U27  
U28  
U29  
U30  
U31  
U32  
U33  
U34  
U35  
U36  
V1  
DATA36  
CLKIN  
DATA18  
DATA7  
VDD  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
W17  
W18  
W19  
W20  
W21  
W22  
W23  
W24  
W25  
W26  
W27  
W28  
W29  
W30  
W31  
W32  
W33  
W34  
W35  
W36  
Y1  
AA10  
AA11  
AA12  
AA13  
AA14  
AA15  
AA16  
AA17  
AA18  
AA19  
AA20  
AA21  
AA22  
AA23  
AA24  
AA25  
AA26  
AA27  
AA28  
AA29  
AA30  
AA31  
AA32  
AA33  
AA34  
AA35  
AA36  
AB1  
AC10  
AC11  
AC12  
AC13  
AC14  
AC15  
AC16  
AC17  
AC18  
AC19  
AC20  
AC21  
AC22  
AC23  
AC24  
AC25  
AC26  
AC27  
AC28  
AC29  
AC30  
AC31  
AC32  
AC33  
AC34  
AC35  
AC36  
AD1  
FLAGC0  
RCLKC1  
RCLKC0  
ADRCLK  
VDD  
DATA44  
DATA42  
DATA40  
(unused)  
(unused)  
GND  
GND  
GND  
VDD  
GND  
TIMEXPB  
VDD  
VDD  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
LA4ACK  
LA4CLK  
LA4DAT0  
LA4DAT1  
LA4DAT2  
LA4DAT3  
GND  
IRQB0  
IRQB1  
IRQB2  
GND  
VDD  
GND  
VDD  
VDD  
VDD  
GND  
GND  
VDD  
VDD  
GND  
GND  
VDD  
GND  
GND  
GND  
GND  
GND  
VDD  
VDD  
VDD  
VDD  
GND  
VDD  
VDD  
VDD  
RPBA  
GND  
GND  
GND  
TIMEXPC  
ADDR0  
ADDR1  
ADDR2  
ADDR3  
FLAGD3  
VDD  
MS0  
ADDR24  
ADDR25  
ADDR26  
ADDR27  
IRQA2  
ADDR16  
ADDR17  
ADDR18  
ADDR19  
FLAGA3  
FLAGA2  
TDI  
ADDR8  
ADDR9  
ADDR10  
ADDR11  
FLAGD1  
IRQD1  
VDD  
MS1  
MS2  
MS3  
IDA0  
VDD  
LBOOTA  
(GND)  
(unused)  
(GND)  
(unused)  
(unused)  
(unused)  
(GND)  
(GND)  
(unused)  
(unused)  
(GND)  
(unused)  
(GND)  
VDD  
IRQA1  
TDOA  
(GND)  
(unused)  
(GND)  
(unused)  
(unused)  
(unused)  
(GND)  
(GND)  
(unused)  
(unused)  
(GND)  
(unused)  
(GND)  
(unused)  
RFSB1  
(unused)  
(GND)  
(unused)  
(GND)  
(unused)  
(unused)  
(GND)  
(GND)  
(unused)  
(unused)  
(unused)  
(GND)  
(unused)  
(GND)  
VDD  
BR5  
FLAGC1  
DRC1  
DRC0  
CPAC  
CSC  
EMU  
(TEST16)  
(unused)  
(unused)  
(unused)  
(unused)  
(GND)  
(GND)  
(GND)  
(VDD)  
(VDD)  
(VDD)  
(TEST9)  
CSB  
(TEST1)  
(VDD)  
(VDD)  
(GND)  
(VDD)  
(GND)  
(GND)  
(unused)  
(unused)  
(unused)  
(unused)  
(TEST8)  
VDD  
(GND)  
(unused)  
(GND)  
(unused)  
(unused)  
(GND)  
(GND)  
(unused)  
(unused)  
(unused)  
(GND)  
(unused)  
(GND)  
HBG  
P2  
T2  
V2  
Y2  
AB2  
AD2  
P3  
T3  
V3  
Y3  
AB3  
AD3  
P4  
T4  
V4  
Y4  
AB4  
AD4  
P5  
T5  
V5  
Y5  
AB5  
AD5  
P6  
T6  
V6  
Y6  
AB6  
AD6  
P7  
T7  
V7  
Y7  
AB7  
AD7  
P8  
T8  
DRB1  
V8  
TCLKB1  
DATA45  
DATA37  
DATA28  
DATA19  
DATA8  
FLAGB0  
FLAGB1  
FLAGB2  
FLAGB3  
VDD  
Y8  
SW  
BR1  
AB8  
AD8  
P9  
DRB0  
T9  
TCLKB0  
DATA35  
DATA27  
DATA17  
DATA6  
VDD  
V9  
Y9  
AB9  
BR3  
GND  
AD9  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
P20  
P21  
P22  
P23  
P24  
P25  
P26  
P27  
P28  
P29  
P30  
P31  
P32  
P33  
P34  
P35  
P36  
DATA33  
DATA25  
DATA15  
DATA4  
GND  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
T22  
T23  
T24  
T25  
T26  
T27  
T28  
T29  
T30  
T31  
T32  
T33  
T34  
T35  
T36  
V10  
V11  
V12  
V13  
V14  
V15  
V16  
V17  
V18  
V19  
V20  
V21  
V22  
V23  
V24  
V25  
V26  
V27  
V28  
V29  
V30  
V31  
V32  
V33  
V34  
V35  
V36  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
Y21  
Y22  
Y23  
Y24  
Y25  
Y26  
Y27  
Y28  
Y29  
Y30  
Y31  
Y32  
Y33  
Y34  
Y35  
Y36  
DATA47  
DATA43  
DATA41  
DATA39  
(unused)  
(unused)  
GND  
AB10  
AB11  
AB12  
AB13  
AB14  
AB15  
AB16  
AB17  
AB18  
AB19  
AB20  
AB21  
AB22  
AB23  
AB24  
AB25  
AB26  
AB27  
AB28  
AB29  
AB30  
AB31  
AB32  
AB33  
AB34  
AB35  
AB36  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
AD17  
AD18  
AD19  
AD20  
AD21  
AD22  
AD23  
AD24  
AD25  
AD26  
AD27  
AD28  
AD29  
AD30  
AD31  
AD32  
AD33  
AD34  
AD35  
AD36  
RFSC1  
RFSC0  
TDOB  
(unused)  
(unused)  
GND  
GND  
GND  
IDB0  
GND  
GND  
IDB1  
GND  
GND  
GND  
TMS  
IDB2  
GND  
VDD  
GND  
TRST  
(unused)  
(unused)  
(unused)  
GND  
GND  
VDD  
VDD  
GND  
RFSD1  
RFSD0  
BMSBCD  
LD1ACK  
LD1CLK  
LD1DAT0  
LD1DAT1  
LD1DAT2  
LD1DAT3  
TIMEXPD  
GND  
(GND)  
(unused)  
(GND)  
(unused)  
(unused)  
(unused)  
(GND)  
(unused)  
(unused)  
(unused)  
(unused)  
ADDR28  
ADDR29  
ADDR30  
ADDR31  
IRQA0  
EBOOTA  
GND  
GND  
VDD  
VDD  
VDD  
VDD  
VDD  
BMSA  
GND  
VDD  
GND  
GND  
GND  
VDD  
GND  
ADDR20  
ADDR21  
ADDR22  
ADDR23  
FLAGA0  
FLAGA1  
TIMEXPA  
(TEST16)  
(VDD)  
ADDR12  
ADDR13  
ADDR14  
ADDR15  
FLAGD0  
IRQD0  
GND  
ADDR4  
ADDR5  
ADDR6  
ADDR7  
FLAGD2  
IRQD2  
(GND)  
(unused)  
(GND)  
(unused)  
(unused)  
(unused)  
(GND)  
GND  
GND  
GND  
IDA1  
IDA2  
(unused)  
(GND)  
(unused)  
(GND)  
(unused)  
(unused)  
(GND)  
(GND)  
(unused)  
(GND)  
(unused)  
(unused)  
(GND)  
(TEST1)  
(unused)  
(unused)  
(unused)  
(unused)  
(GND)  
(VDD)  
(GND)  
(VDD)  
(GND)  
REV. A  
–46–  
AD14160/AD14160L  
PIN CONFIGURATIONS (Pin Order Listing Continued)  
Pin  
No  
Pin  
Name  
Pin  
No  
Pin  
Name  
Pin  
No.  
Pin  
Name  
Pin  
No  
Pin  
Name  
Pin  
No.  
Pin  
Name  
Pin  
No.  
Pin  
Name  
AE1  
(GND)  
AG1  
(GND)  
AJ1  
(GND)  
AL1  
(GND)  
AN1  
(GND)  
AE2  
(unused)  
(unused)  
(GND)  
AG2  
(unused)  
(unused)  
(GND)  
AJ2  
(unused)  
(unused)  
(GND)  
AL2  
(unused)  
(unused)  
(GND)  
AN2  
(unused)  
(unused)  
(GND)  
AR2  
(GND)  
AE3  
AG3  
AJ3  
AL3  
AN3  
AR3  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(GND)  
AE4  
AG4  
AJ4  
AL4  
AN4  
AR4  
AE5  
(unused)  
(GND)  
(unused)  
(TEST7)  
BR6  
FLAGC2  
TFSC1  
TFSC0  
LC1ACK  
LC1CLK  
LC1DAT0  
LC1DAT1  
LC1DAT2  
LC1DAT3  
RCLKD1  
RCLKD0  
WR  
LD2ACK  
LD2CLK  
LD2DAT0  
LD2DAT1  
LD2DAT2  
LD2DAT3  
VDD  
AG5  
(unused)  
(GND)  
(unused)  
(GND)  
(unused)  
GND  
AJ5  
(unused)  
(GND)  
(unused)  
(GND)  
(unused)  
(GND)  
(unused)  
(TEST6)  
LC4ACK  
LC4CLK  
LC4DAT0  
LC4DAT1  
LC4DAT2  
LC4DAT3  
DTD1  
DTD0  
CPAD  
TDO  
LBOOTBCD  
TCK  
(TEST3)  
(unused)  
(GND)  
(unused)  
(GND)  
(unused)  
(GND)  
(unused)  
(GND)  
AL5  
(unused)  
(GND)  
(unused)  
(GND)  
(unused)  
(GND)  
(unused)  
(GND)  
(unused)  
(GND)  
(unused)  
(GND)  
(TEST5)  
(TEST5)  
(TEST4)  
(TEST4)  
(GND)  
(unused)  
(GND)  
(unused)  
(GND)  
(unused)  
(GND)  
(unused)  
(GND)  
(unused)  
(GND)  
AN5  
(unused)  
(GND)  
(unused)  
(GND)  
(unused)  
(GND)  
(unused)  
(GND)  
(unused)  
(GND)  
(unused)  
(GND)  
(unused)  
(VDD)  
(VDD)  
(unused)  
(GND)  
(unused)  
(GND)  
(unused)  
(GND)  
(unused)  
(GND)  
(unused)  
(GND)  
(unused)  
(GND)  
(unused)  
(GND)  
AR5  
AE6  
AG6  
AJ6  
AL6  
AN6  
AR6  
AE7  
AG7  
AJ7  
AL7  
AN7  
AR7  
AE8  
AG8  
AJ8  
AL8  
AN8  
AR8  
AE9  
AG9  
AJ9  
AL9  
AN9  
AR9  
AE10  
AE11  
AE12  
AE13  
AE14  
AE15  
AE16  
AE17  
AE18  
AE19  
AE20  
AE21  
AE22  
AE23  
AE24  
AE25  
AE26  
AE27  
AE28  
AE29  
AE30  
AE31  
AE32  
AE33  
AE34  
AE35  
AE36  
AF1  
AG10  
AG11  
AG12  
AG13  
AG14  
AG15  
AG16  
AG17  
AG18  
AG19  
AG20  
AG21  
AG22  
AG23  
AG24  
AG25  
AG26  
AG27  
AG28  
AG29  
AG30  
AG31  
AG32  
AG33  
AG34  
AG35  
AG36  
AH1  
AJ10  
AJ11  
AJ12  
AJ13  
AJ14  
AJ15  
AJ16  
AJ17  
AJ18  
AJ19  
AJ20  
AJ21  
AJ22  
AJ23  
AJ24  
AJ25  
AJ26  
AJ27  
AJ28  
AJ29  
AJ30  
AJ31  
AJ32  
AJ33  
AJ34  
AJ35  
AJ36  
AK1  
AK2  
AK3  
AK4  
AK5  
AK6  
AK7  
AK8  
AK9  
AL10  
AL11  
AL12  
AL13  
AL14  
AL15  
AL16  
AL17  
AL18  
AL19  
AL20  
AL21  
AL22  
AL23  
AL24  
AL25  
AL26  
AL27  
AL28  
AL29  
AL30  
AL31  
AL32  
AL33  
AL34  
AL35  
AL36  
AM1  
AN10  
AN11  
AN12  
AN13  
AN14  
AN15  
AN16  
AN17  
AN18  
AN19  
AN20  
AN21  
AN22  
AN23  
AN24  
AN25  
AN26  
AN27  
AN28  
AN29  
AN30  
AN31  
AN32  
AN33  
AN34  
AN35  
AN36  
AP1  
AR10  
AR11  
AR12  
AR13  
AR14  
AR15  
AR16  
AR17  
AR18  
AR19  
AR20  
AR21  
AR22  
AR23  
AR24  
AR25  
AR26  
AR27  
AR28  
AR29  
AR30  
AR31  
AR32  
AR33  
AR34  
AR35  
DTC1  
DTC0  
IRQC0  
IRQC1  
IRQC2  
IDC0  
IDC1  
IDC2  
TFSD1  
TFSD0  
CSD  
LD4ACK  
LD4CLK  
LD4DAT0  
LD4DAT1  
LD4DAT2  
LD4DAT3  
(unused)  
(GND)  
(unused)  
(GND)  
(unused)  
(GND)  
(TEST2)  
(unused)  
(GND)  
(unused)  
(GND)  
(unused)  
(GND)  
(unused)  
(unused)  
(GND)  
(unused)  
(unused)  
(GND)  
(unused)  
(unused)  
(GND)  
(unused)  
(unused)  
(GND)  
(unused)  
(unused)  
(GND)  
(GND)  
(GND)  
(unused)  
(VDD)  
(GND)  
(GND)  
(GND)  
(GND)  
AF2  
(unused)  
(unused)  
(unused)  
(GND)  
AH2  
(unused)  
(unused)  
(unused)  
(GND)  
(unused)  
(unused)  
(unused)  
(GND)  
AM2  
(unused)  
(unused)  
(unused)  
(GND)  
AP2  
AF3  
AH3  
AM3  
AP3  
AT3  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
AF4  
AH4  
AM4  
AP4  
AT4  
AF5  
AH5  
AM5  
AP5  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(GND)  
AT5  
AF6  
(unused)  
(GND)  
AH6  
(unused)  
(GND)  
(unused)  
(GND)  
(unused)  
(TEST6)  
VDD  
LC3ACK  
LC3CLK  
LC3DAT0  
LC3DAT1  
LC3DAT2  
LC3DAT3  
TCLKD1  
TCLKD0  
IDD0  
(unused)  
(GND)  
(unused)  
(GND)  
AM6  
(unused)  
(GND)  
(unused)  
(GND)  
(unused)  
(GND)  
(unused)  
(GND)  
AP6  
AT6  
AF7  
AH7  
AM7  
AP7  
AT7  
AF8  
(unused)  
(TEST7)  
FLAGC3  
TCLKC1  
TCLKC0  
LC2ACK  
LC2CLK  
LC2DAT0  
LC2DAT1  
LC2DAT2  
LC2DAT3  
DRD1  
AH8  
AM8  
AP8  
AT8  
AF9  
AH9  
AM9  
AP9  
AT9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
AF16  
AF17  
AF18  
AF19  
AF20  
AF21  
AF22  
AF23  
AF24  
AF25  
AF26  
AF27  
AF28  
AF29  
AF30  
AF31  
AF32  
AF33  
AF34  
AF35  
AH10  
AH11  
AH12  
AH13  
AH14  
AH15  
AH16  
AH17  
AH18  
AH19  
AH20  
AH21  
AH22  
AH23  
AH24  
AH25  
AH26  
AH27  
AH28  
AH29  
AH30  
AH31  
AH32  
AH33  
AH34  
AH35  
AK10 (unused)  
AK11 (GND)  
AK12 (unused)  
AK13 (GND)  
AK14 (unused)  
AK15 (GND)  
AK16 GND  
AK17 VDD  
AK18 GND  
AK19 VDD  
AK20 VDD  
AK21 GND  
AK22 (GND)  
AK23 (unused)  
AM10  
AM11  
AM12  
AM13  
AM14  
AM15  
AM16  
AM17  
AM18  
AM19  
AM20  
AM21  
AM22  
AM23  
AM24  
AM25  
AM26  
AM27  
AM28  
AM29  
AM30  
AM31  
AM32  
AM33  
AM34  
AM35  
AP10  
AP11  
AP12  
AP13  
AP14  
AP15  
AP16  
AP17  
AP18  
AP19  
AP20  
AP21  
AP22  
AP23  
AP24  
AP25  
AP26  
AP27  
AP28  
AP29  
AP30  
AP31  
AP32  
AP33  
AP34  
AP35  
AT10  
AT11  
AT12  
AT13  
AT14  
AT15  
AT16  
AT17  
AT18  
AT19  
AT20  
AT21  
AT22  
AT23  
AT24  
AT25  
AT26  
AT27  
AT28  
AT29  
AT30  
AT31  
AT32  
AT33  
AT34  
(unused)  
(GND)  
(unused)  
(unused)  
(VDD)  
(VDD)  
(VDD)  
DRD0  
RD  
(unused)  
(unused)  
(GND)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(GND)  
LD3ACK  
LD3CLK  
LD3DAT0  
LD3DAT1  
LD3DAT2  
LD3DAT3  
(TEST2)  
(unused)  
(GND)  
(unused)  
(GND)  
(unused)  
(unused)  
(unused)  
IDD1  
IDD2  
(unused)  
(GND)  
(unused)  
(GND)  
(unused)  
(GND)  
(unused)  
(GND)  
(unused)  
(GND)  
(unused)  
(unused)  
(unused)  
EBOOTBCD AK24 (GND)  
TDOC  
(TEST3)  
(unused)  
(GND)  
(unused)  
(GND)  
(unused)  
(GND)  
(unused)  
(unused)  
(unused)  
AK25 (unused)  
AK26 (GND)  
AK27 (unused)  
AK28 (GND)  
AK29 (unused)  
AK30 (GND)  
AK31 (unused)  
AK32 (GND)  
AK33 (unused)  
AK34 (unused)  
AK35 (unused)  
(unused)  
(VDD)  
AF36  
(GND)  
AH36  
(GND)  
AK36 (GND)  
AM36  
(GND)  
AP36  
(GND)  
REV. A  
–47–  
AD14160/AD14160L  
PIN CONFIGURATIONS (Alphabetical Listing)  
Pin  
Name  
Pin  
No.  
Pin  
Name  
Pin  
No.  
Pin  
Name  
Pin  
No.  
Pin  
Name  
Pin  
No.  
Pin  
Name  
Pin  
No.  
Pin  
Name  
Pin  
No.  
ACK  
J21  
DATA21  
DATA22  
DATA23  
DATA24  
DATA25  
DATA26  
DATA27  
DATA28  
DATA29  
DATA30  
DATA31  
DATA32  
DATA33  
DATA34  
DATA35  
DATA36  
DATA37  
DATA38  
DATA39  
DATA40  
DATA41  
DATA42  
DATA43  
DATA44  
DATA45  
DATA46  
DATA47  
DMAG1  
DMAG2  
DMAR1  
DMAR2  
DRA0  
DRA1  
DRB0  
DRB1  
DRC0  
DRC1  
DRD0  
DRD1  
DTA0  
DTA1  
DTB0  
DTB1  
DTC0  
DTC1  
DTD0  
DTD1  
EBOOTA  
K11  
L11  
M11  
N11  
P11  
R11  
T11  
V11  
W11  
L10  
M10  
N10  
P10  
R10  
T10  
U10  
V10  
W10  
Y13  
AA13  
Y12  
AA12  
Y11  
AA11  
V9  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
HBG  
HBR  
N28  
P14  
P15  
P22  
P23  
P24  
P25  
P26  
P27  
R14  
R15  
R16  
R20  
R21  
R22  
T15  
T16  
IRQA0  
IRQA1  
IRQA2  
IRQB0  
IRQB1  
IRQB2  
IRQC0  
IRQC1  
IRQC2  
IRQD0  
IRQD1  
IRQD2  
T28  
U29  
U28  
R17  
R18  
R19  
AG13  
AG14  
AG15  
Y29  
AA29  
AB29  
K22  
K23  
K24  
K25  
K26  
K27  
L22  
LC2DAT2  
LC2DAT3  
LC3ACK  
LC3CLK  
LC3DAT0  
LC3DAT1  
LC3DAT2  
LC3DAT3  
LC4ACK  
LC4CLK  
LC4DAT0  
LC4DAT1  
LC4DAT2  
LC4DAT3  
LD1ACK  
LD1CLK  
LD1DAT0  
LD1DAT1  
LD1DAT2  
LD1DAT3  
LD2ACK  
LD2CLK  
LD2DAT0  
LD2DAT1  
LD2DAT2  
LD2DAT3  
LD3ACK  
LD3CLK  
LD3DAT0  
LD3DAT1  
LD3DAT2  
LD3DAT3  
LD4ACK  
LD4CLK  
LD4DAT0  
LD4DAT1  
LD4DAT2  
LD4DAT3  
MS0  
MS1  
MS2  
MS3  
PAGE  
RCLKA0  
RCLKA1  
RCLKB0  
RCLKB1  
RCLKC0  
RCLKC1  
RCLKD0  
RCLKD1  
RD  
REDY  
RESET  
RFSA0  
RFSA1  
RFSB0  
RFSB1  
RFSC0  
RFSC1  
AF17  
AF18  
AH13  
AH14  
AH15  
AH16  
AH17  
AH18  
AJ13  
AJ14  
AJ15  
AJ16  
AJ17  
AJ18  
AD22  
AD23  
AD24  
AD25  
AD26  
AD27  
AE22  
AE23  
AE24  
AE25  
AE26  
AE27  
AF22  
AF23  
AF24  
AF25  
AF26  
AF27  
AG22  
AG23  
AG24  
AG25  
AG26  
AG27  
R24  
R25  
R26  
R27  
J22  
H20  
H19  
N9  
R8  
AC12  
AC11  
AE20  
AE19  
AF21  
H21  
L21  
G20  
G19  
M9  
TCLKD0  
TCLKD1  
TDI  
AH20  
AH19  
W30  
AJ22  
U30  
AB13  
AH25  
K20  
K19  
R9  
U8  
AE12  
AE11  
AG20  
AG19  
V30  
ADDR0  
ADDR1  
ADDR2  
ADDR3  
ADDR4  
ADDR5  
ADDR6  
ADDR7  
ADDR8  
ADDR9  
ADDR10  
ADDR11  
ADDR12  
ADDR13  
ADDR14  
ADDR15  
ADDR16  
ADDR17  
ADDR18  
ADDR19  
ADDR20  
ADDR21  
ADDR22  
ADDR23  
ADDR24  
ADDR25  
ADDR26  
ADDR27  
ADDR28  
ADDR29  
ADDR30  
ADDR31  
ADRCLK  
BMSA  
BMSBCD  
BR1  
BR2  
BR3  
BR4  
BR5  
BR6  
CLKIN  
CPAA  
CPAB  
CPAC  
CPAD  
CSA  
CSB  
CSC  
CSD  
DATA0  
DATA1  
DATA2  
DATA3  
DATA4  
DATA5  
DATA6  
DATA7  
DATA8  
DATA9  
DATA10  
DATA11  
DATA12  
DATA13  
DATA14  
DATA15  
DATA16  
DATA17  
DATA18  
DATA19  
DATA20  
AC24  
AC25  
AC26  
AC27  
AB24  
AB25  
AB26  
AB27  
AA24  
AA25  
AA26  
AA27  
Y24  
Y25  
Y26  
Y27  
W24  
W25  
W26  
W27  
V24  
V25  
V26  
TDO  
TDOA  
TDOB  
TDOC  
TFSA0  
TFSA1  
TFSB0  
TFSB1  
TFSC0  
TFSC1  
TFSD0  
TFSD1  
TIMEXPA  
TIMEXPB  
TIMEXPC  
TIMEXPD  
TMS  
TRST  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
LA1ACK  
LA1CLK  
LA1DAT0  
LA1DAT1  
LA1DAT2  
LA1DAT3  
LA2ACK  
LA2CLK  
LA2DAT0  
LA2DAT1  
LA2DAT2  
LA2DAT3  
LA3ACK  
LA3CLK  
LA3DAT0  
LA3DAT1  
LA3DAT2  
LA3DAT3  
LA4ACK  
LA4CLK  
LA4DAT0  
LA4DAT1  
LA4DAT2  
LA4DAT3  
LB1ACK  
LB1CLK  
LB1DAT0  
LB1DAT1  
LB1DAT2  
LB1DAT3  
LB2ACK  
LB2CLK  
LB2DAT0  
LB2DAT1  
LB2DAT2  
LB2DAT3  
LB3ACK  
LB3CLK  
LB3DAT0  
LB3DAT1  
LB3DAT2  
LB3DAT3  
LB4ACK  
LB4CLK  
LB4DAT0  
LB4DAT1  
LB4DAT2  
LB4DAT3  
LBOOTA  
LBOOTBCD  
LC1ACK  
LC1CLK  
LC1DAT0  
LC1DAT1  
LC1DAT2  
LC1DAT3  
LC2ACK  
LC2CLK  
LC2DAT0  
LC2DAT1  
U16  
T17  
T18  
T19  
T30  
AC23  
AD28  
AD17  
AD18  
G21  
H22  
H24  
J18  
J24  
M18  
M28  
N8  
N29  
T7  
T14  
U14  
U17  
U18  
U19  
U20  
U21  
V18  
V19  
V21  
W17  
W18  
W19  
W21  
W22  
Y7  
Y18  
Y19  
Y20  
Y21  
AA21  
AA22  
AA30  
AB20  
AB21  
AB22  
AB23  
AC14  
AC15  
AC16  
AC17  
AC21  
AC22  
AC29  
AD8  
AE28  
AH12  
AK17  
AK19  
AK20  
AE21  
L23  
L24  
L25  
L26  
U7  
U15  
U22  
U23  
V20  
V23  
W7  
W16  
W20  
W23  
Y16  
Y17  
Y22  
L27  
V27  
M22  
M23  
M24  
M25  
M26  
M27  
N22  
N23  
N24  
N25  
N26  
N27  
H13  
H14  
H15  
H16  
G17  
G18  
J13  
U24  
U25  
U26  
U27  
T24  
T25  
T26  
T27  
AC13  
V22  
AD21  
Y9  
AA9  
AB9  
AC9  
AD9  
AE9  
U11  
M21  
AA10  
AD13  
AJ21  
K21  
V7  
AD14  
AG21  
M14  
N14  
M13  
N13  
P13  
R13  
T13  
U13  
V13  
W13  
J12  
K12  
L12  
M12  
N12  
P12  
R12  
T12  
W9  
Y10  
M15  
N15  
M16  
M17  
J20  
J19  
P9  
T8  
AD12  
AD11  
AF20  
AF19  
M20  
M19  
U9  
Y23  
Y30  
AA7  
AA16  
AA17  
AA18  
AA19  
AA20  
AA23  
AB10  
AB16  
AB17  
AB18  
AB19  
AC8  
AC18  
AC19  
AC20  
AD16  
AD29  
AG10  
AK16  
AK18  
AK21  
AB8  
AA8  
R28  
W8  
AG12  
AG11  
AJ20  
AJ19  
T29  
J14  
J15  
J16  
H17  
H18  
K13  
K14  
K15  
K16  
K17  
K18  
L13  
L14  
L15  
L16  
L17  
EBOOTBCD AH24  
EMU  
AD15  
V28  
V29  
W29  
W28  
V14  
V15  
V16  
V17  
AC10  
AD10  
AE10  
AF10  
Y28  
AA28  
AB28  
AC28  
G16  
H23  
J17  
FLAGA0  
FLAGA1  
FLAGA2  
FLAGA3  
FLAGB0  
FLAGB1  
FLAGB2  
FLAGB3  
FLAGC0  
FLAGC1  
FLAGC2  
FLAGC3  
FLAGD0  
FLAGD1  
FLAGD2  
FLAGD3  
GND  
P8  
AB12  
AB11  
AD20  
AD19  
R23  
N16  
Y8  
AJ24  
L20  
L19  
T9  
V8  
L18  
R29  
IDA0  
IDA1  
IDA2  
IDB0  
IDB1  
IDB2  
IDC0  
IDC1  
IDC2  
IDD0  
IDD1  
IDD2  
RFSD0  
RFSD1  
RPBA  
SBTS  
SW  
TCK  
TCLKA0  
TCLKA1  
TCLKB0  
TCLKB1  
TCLKC0  
TCLKC1  
P28  
P29  
P16  
P17  
AJ23  
AE13  
AE14  
AE15  
AE16  
AE17  
AE18  
AF13  
AF14  
AF15  
AF16  
P18  
AG16  
AG17  
AG18  
AH21  
AH22  
AH23  
GND  
GND  
GND  
GND  
U12  
V12  
W12  
J23  
J25  
K10  
VDD  
VDD  
WR  
AF12  
AF11  
GND  
REV. A  
–48–  
AD14160/AD14160L  
PIN CONFIGURATIONS (Alphabetical Listing Continued)  
Pin  
Name  
Pin  
No.  
Pin  
Name  
Pin  
No.  
Pin  
Name  
Pin  
No.  
Pin  
Name  
Pin  
No.  
Pin  
Name  
Pin  
No.  
Pin  
Name  
Pin  
No.  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
A3  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
F8  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
P4  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
AG36  
AH1  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(GND)  
(VDD)  
(VDD)  
(VDD)  
(VDD)  
(VDD)  
(VDD)  
(VDD)  
(VDD)  
(VDD)  
(VDD)  
(VDD)  
(VDD)  
(VDD)  
(VDD)  
(VDD)  
(VDD)  
(VDD)  
(VDD)  
(VDD)  
(VDD)  
(VDD)  
(VDD)  
(VDD)  
(VDD)  
(VDD)  
(VDD)  
AN23  
AN25  
AN27  
AN29  
AN31  
AN33  
AN36  
AP1  
(TEST1)  
(TEST1)  
(TEST2)  
(TEST2)  
(TEST3)  
(TEST3)  
(TEST4)  
(TEST4)  
(TEST5)  
(TEST5)  
(TEST6)  
(TEST6)  
(TEST7)  
(TEST7)  
(TEST8)  
(TEST8)  
(TEST9)  
(TEST9)  
(TEST10)  
(TEST10)  
(TEST11)  
(TEST11)  
(TEST12)  
(TEST12)  
(TEST13)  
(TEST13)  
(TEST14)  
(TEST14)  
(TEST15)  
(TEST15)  
(TEST16)  
(TEST16)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
W31  
Y31  
AE29  
AF28  
AH26  
AJ25  
AL19  
AL20  
AL17  
AL18  
AH11  
AJ12  
AE8  
AF9  
W6  
A4  
F10  
F12  
F14  
F16  
F21  
F23  
F25  
F27  
F29  
F31  
F33  
F36  
G1  
P6  
A5  
P31  
AH5  
A6  
P33  
AH7  
AH9  
A7  
P36  
A8  
R1  
AH28  
AH30  
AH32  
AH36  
AJ1  
A9  
R5  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
A27  
A28  
A29  
A30  
A31  
A32  
A33  
A34  
B2  
R7  
R30  
R32  
AP2  
AP18  
AP33  
AP36  
AR2  
R36  
T1  
T4  
T6  
T31  
T33  
T36  
U1  
AJ4  
AJ6  
AJ8  
AJ10  
AJ27  
AJ29  
AJ31  
AJ33  
AJ36  
AK1  
AR35  
AT3  
G5  
G7  
AT4  
Y6  
G9  
AT5  
U6  
G11  
G13  
G15  
G22  
G24  
G26  
G28  
G30  
G32  
G36  
H1  
AT6  
V6  
U36  
V1  
AT7  
L9  
AT8  
M8  
V2  
AK5  
AT9  
H12  
J11  
V34  
AK7  
AT10  
AT11  
AT12  
AT13  
AT14  
AT15  
AT16  
AT17  
AT18  
AT19  
AT20  
AT21  
AT22  
AT23  
AT24  
AT25  
AT26  
AT27  
AT28  
AT29  
AT30  
AT31  
AT32  
AT33  
AT34  
C4  
V36  
AK9  
F17  
F18  
F19  
F20  
H25  
J26  
W1  
AK11  
AK13  
AK15  
AK22  
AK24  
AK26  
AK28  
AK30  
AK32  
AK36  
AL1  
W2  
W34  
W36  
Y1  
H4  
Y36  
L28  
M29  
U31  
V31  
B3  
H6  
AA1  
AA4  
AA6  
AA31  
AA33  
AA36  
AB1  
AB5  
AB7  
AB30  
AB32  
AB36  
AC1  
AC4  
AC6  
AC31  
AC33  
AC36  
AD1  
AD5  
AD7  
AD30  
AD32  
AD36  
AE1  
AE4  
AE6  
AE31  
AE33  
AE36  
AF1  
AF5  
AF7  
AF30  
AF32  
AF36  
AG1  
AG4  
AG6  
AG8  
AG29  
AG31  
AG33  
H8  
H10  
H27  
H29  
H31  
H33  
H36  
J1  
B35  
C1  
C2  
B4  
AL4  
B5  
AL6  
B6  
C18  
C33  
C36  
D1  
AL8  
B7  
AL10  
AL12  
AL14  
AL16  
AL21  
AL23  
AL25  
AL27  
AL29  
AL31  
AL33  
AL36  
AM1  
AM5  
AM7  
AM9  
AM11  
AM13  
AM15  
AM22  
AM24  
AM26  
AM28  
AM30  
AM32  
AM36  
AN1  
B8  
J5  
B9  
J7  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
B24  
B25  
B26  
B27  
B28  
B29  
B30  
B31  
B32  
B33  
B34  
C3  
D4  
J9  
D6  
J28  
D8  
J30  
D10  
D12  
D14  
D16  
D21  
D23  
D25  
D27  
D29  
D31  
D33  
D36  
E1  
J32  
J36  
K1  
K4  
K6  
C19  
K8  
C35  
K29  
K31  
K33  
K36  
L1  
D18  
D19  
E18  
E19  
V3  
L5  
L7  
V4  
V5  
E5  
L30  
L32  
L36  
M1  
M4  
M6  
M31  
M33  
M36  
N1  
N5  
N7  
N30  
N32  
N36  
P1  
V32  
E7  
V33  
E9  
V35  
E11  
E13  
E15  
E22  
E24  
E26  
E28  
E30  
E32  
E36  
F1  
W3  
W4  
W5  
W32  
W33  
W35  
AM18  
AM19  
AN18  
AN19  
AP4  
AN4  
AN6  
C5  
AN8  
C6  
AN10  
AN12  
AN14  
AN16  
AN21  
C7  
C8  
C9  
F4  
F6  
AP19  
AP35  
C10  
C11  
REV. A  
–49–  
AD14160/AD14160L  
PIN CONFIGURATIONS (Alphabetical Listing Continued)  
Pin  
Name  
Pin  
No.  
Pin  
Name  
Pin  
No.  
Pin  
Name  
Pin  
No.  
Pin  
Name  
Pin  
No.  
Pin  
Name  
Pin  
No.  
Pin  
Name  
Pin  
No.  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
C12  
C13  
C14  
C15  
C16  
C17  
C20  
C21  
C22  
C23  
C24  
C25  
C26  
C27  
C28  
C29  
C30  
C31  
C32  
C34  
D2  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
F34  
F35  
G2  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
N4  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
AB14  
AB15  
AB31  
AB33  
AB34  
AB35  
AC2  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
AJ34  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
(unused)  
AP3  
N6  
AJ35  
AP5  
N17  
N18  
N19  
N20  
N21  
N31  
N33  
N34  
N35  
P2  
AK2  
AP6  
G3  
AK3  
AP7  
G4  
AK4  
AP8  
G6  
AK6  
AP9  
G8  
AK8  
AP10  
AP11  
AP12  
AP13  
AP14  
AP15  
AP16  
AP17  
AP20  
AP21  
AP22  
AP23  
AP24  
AP25  
AP26  
AP27  
AP28  
AP29  
AP30  
AP31  
AP32  
AP34  
AR3  
G10  
G12  
G14  
G23  
G25  
G27  
G29  
G31  
G33  
G34  
G35  
H2  
AC3  
AK10  
AK12  
AK14  
AK23  
AK25  
AK27  
AK29  
AK31  
AK33  
AK34  
AK35  
AL2  
AC5  
AC7  
AC30  
AC32  
AC34  
AC35  
AD2  
AD3  
AD4  
AD6  
AD31  
AD33  
AD34  
AD35  
AE2  
P3  
P5  
P7  
P19  
P20  
P21  
P30  
P32  
P34  
P35  
R2  
H3  
AL3  
H5  
AL5  
D3  
H7  
AL7  
D5  
H9  
AL9  
D7  
H11  
H26  
H28  
H30  
H32  
H34  
H35  
J2  
R3  
AE3  
AL11  
AL13  
AL15  
AL22  
AL24  
AL26  
AL28  
AL30  
AL32  
AL34  
AL35  
AM2  
AM3  
AM4  
AM6  
AM8  
AM10  
AM12  
AM14  
AM16  
AM17  
AM20  
AM21  
AM23  
AM25  
AM27  
AM29  
AM31  
AM33  
AM34  
AM35  
AN2  
D9  
R4  
AE5  
D11  
D13  
D15  
D17  
D20  
D22  
D24  
D26  
D28  
D30  
D32  
D34  
D35  
E2  
R6  
AE7  
R31  
R33  
R34  
R35  
T2  
AE30  
AE32  
AE34  
AE35  
AF2  
AR4  
AR5  
J3  
T3  
T5  
AF3  
AR6  
J4  
AF4  
AR7  
J6  
T20  
T21  
T22  
T23  
T32  
T34  
T35  
U2  
AF6  
AR8  
J8  
AF8  
AR9  
J10  
AF29  
AF31  
AF33  
AF34  
AF35  
AG2  
AG3  
AG5  
AG7  
AG9  
AG28  
AG30  
AG32  
AG34  
AG35  
AH2  
AH3  
AH4  
AH6  
AH8  
AH10  
AH27  
AH29  
AH31  
AH33  
AH34  
AH35  
AJ2  
AR10  
AR11  
AR12  
AR13  
AR14  
AR15  
AR16  
AR17  
AR18  
AR19  
AR20  
AR21  
AR22  
AR23  
AR24  
AR25  
AR26  
AR27  
AR28  
AR29  
AR30  
AR31  
AR32  
AR33  
AR34  
J27  
J29  
J31  
E3  
J33  
E4  
J34  
E6  
J35  
U3  
E8  
K2  
U4  
E10  
E12  
E14  
E16  
E17  
E20  
E21  
E23  
E25  
E27  
E29  
E31  
E33  
E34  
E35  
F2  
K3  
U5  
K5  
U32  
U33  
U34  
U35  
W14  
W15  
Y2  
K7  
K9  
K28  
K30  
K32  
K34  
K35  
L2  
Y3  
Y4  
L3  
Y5  
L4  
Y14  
Y15  
Y32  
Y33  
Y34  
Y35  
AA2  
AA3  
AA5  
AA14  
AA15  
AA32  
AA34  
AA35  
AB2  
AB3  
AB4  
AB6  
L6  
AN3  
L8  
AN5  
L29  
L31  
L33  
L34  
L35  
M2  
M3  
M5  
M7  
M30  
M32  
M34  
M35  
N2  
AN7  
AN9  
F3  
AN11  
AN13  
AN15  
AN17  
AN20  
AN22  
AN24  
AN26  
AN28  
AN30  
AN32  
AN34  
AN35  
F5  
F7  
F9  
F11  
F13  
F15  
F22  
F24  
F26  
F28  
F30  
F32  
AJ3  
AJ5  
AJ7  
AJ9  
AJ11  
AJ26  
AJ28  
AJ30  
AJ32  
N3  
REV. A  
–50–  
AD14160/AD14160L  
ORDERING GUIDE  
Case Temperature Range  
Part Number  
Instruction Rate  
Operating Voltage  
AD14160BB-4*  
AD14160/AD14160LBB-4*  
AD14160KB-4  
–40°C to +100°C  
–40°C to +100°C  
0°C to +85°C  
40 MHz  
40 MHz  
40 MHz  
40 MHz  
5 V  
3.3 V  
5 V  
AD14160/AD14160LKB-4  
0°C to +85°C  
3.3 V  
NOTES  
1. Part numbers marked with an * are shipping as x-grade (preproduction) material at the time of this printing.  
2. These parts are packaged in a 452-lead Ceramic Ball Grid Array Package (CBGA).  
3. Military and Industrial temperature SMD parts, in the same package are in development.  
PACKAGE DIMENSIONS  
Dimensions shown in inches and (mm).  
452-Lead Ceramic Ball Grid Array (CBGA)  
(QS-452)  
1.862 (47.295)  
SQ  
1.838 (46.685)  
SOLID COPPER BALL  
SOLDER COATED  
4 PLACES  
1.795 (45.593)  
1.785 (45.339)  
SQ  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
TOP VIEW  
8
7
6
PIN A1  
INDEX  
5
4
3
2
PIN A1  
0.060 (1.524)  
0.040 (1.016)  
1
0.030 (0.762) x 45  
°
0.015 (0.381) x 45  
°
BOTTOM VIEW  
1 PLACE  
0.060 (1.524)  
0.040 (1.016)  
3 PLACES  
0.110 (2.794)  
0.090 (2.286)  
0.170 (4.318)  
MAX  
0.200 (5.08)  
MAX  
0.024 (0.610)  
TYP  
0.033 (0.838)  
TYP  
0.055 (1.397)  
0.045 (1.143)  
REV. A  
–51–  
–52–  

相关型号:

AD142

TRANSISTOR | BJT | PNP | 80V V(BR)CEO | 10A I(C) | TO-3
ETC

AD143

TRANSISTOR | BJT | PNP | 40V V(BR)CEO | 10A I(C) | TO-3
ETC

AD148IV

TRANSISTOR | BJT | PNP | 26V V(BR)CEO | 4A I(C) | TO-66VAR
ETC

AD148V

TRANSISTOR | BJT | PNP | 26V V(BR)CEO | 4A I(C) | TO-66VAR
ETC

AD149IV

TRANSISTOR | BJT | PNP | 30V V(BR)CEO | 4A I(C) | TO-3
ETC

AD149V

TRANSISTOR | BJT | PNP | 30V V(BR)CEO | 4A I(C) | TO-3
ETC

AD14AA025

Logic IC
ETC

AD14AA050

Logic IC
ETC

AD14AA075

Logic IC
ETC

AD14AA100

Logic IC
ETC

AD14AA125

Logic IC
ETC

AD14AA150

Logic IC
ETC