AD1996 [ADI]

Class-D Audio Power Amplifier; D类音频功率放大器
AD1996
型号: AD1996
厂家: ADI    ADI
描述:

Class-D Audio Power Amplifier
D类音频功率放大器

放大器 功率放大器
文件: 总16页 (文件大小:390K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Class-D Audio Power Amplifier  
Preliminary Technical Data  
AD1990/AD1992/AD1994/AD1996  
GENERAL DESCRIPTION  
FEATURES  
The AD199x is a two channel Bridge Tied Load (BTL)  
Integrated Stereo Modulator & Power Stage  
0.005% THD+N  
101.5dB Dynamic Range  
PSRR > 65 dB  
switching audio power amplifier with integrated modulator.  
The modulator accepts a 1Vrms input signal (maximum power)  
and generates a switching waveform to drive speakers directly.  
One of the two modulators can control both output stages  
providing twice the current for single-channel applications. A  
digital, microcontroller-compatible interface provides control of  
reset, mute and PGA gain as well as output signals for thermal  
and over-current error conditions. The output stage can operate  
from supply voltages ranging from 8V to 20V. The analog  
modulator and digital logic operate from a 5V supply.  
RDS-ON < 0.3 (per transistor)  
Efficiency > 80% @ 5W/6 Ω  
EMI Optimized Modulator  
On-Off-Mute Pop Noise Suppression  
Short Circuit Protection  
Over-Temperature Protection  
Low Cost DMOS Process  
APPLICATIONS  
AD1990: 5Wx2 (10Wx1)  
AD1992: 10Wx2 (20Wx1)  
AD1994: 25Wx2 (50Wx1)  
AD1996: 40Wx2 (80Wx1)  
Flat Panel Televisions  
Automotive Amplifiers  
PC Audio Systems  
Mini Components  
62  
63  
60  
53  
50  
51  
32  
31  
LEFT CHANNEL  
RIGHT CHANNEL  
41,42  
PVDD2  
7,8  
PVDD  
PVDD2  
DRIVER  
HIGH SIDE  
43,44,45  
OUTR+  
4,5,6  
OUTL+  
DRIVER  
LOW SIDE  
LEVEL  
SHIFT  
+
DEAD  
TIME  
LEVEL  
SHIFT  
+
DEAD  
TIME  
1,2,3  
PGND1  
9,10  
PVDD1  
46,47,48  
PGND2  
39,40  
PGND2  
PVDD2  
Σ∆  
MODULATOR  
Σ∆  
MODULATOR  
PGA  
PGA  
PVDD2  
CONTROL  
CONTROL  
DRIVER  
DRIVER  
HIGH SIDE  
HIGH SIDE  
11,12,13  
OUTL-  
36,37,38  
OUTR-  
DRIVER  
DRIVER  
LOW SIDE  
LOW SIDE  
14,15,16  
PGND1  
33,34,35  
PGND2  
PGND1  
PGND2  
Ø1  
Ø2  
Ø1  
Ø2  
55  
REF_FILT  
VOLTAGE  
REFERENCE  
57  
AVDD  
MUTE/  
POP  
CONTROL  
56  
AGND  
OSCILLATOR  
MODE CONTROL LOGIC  
TEMPERATURE  
SENSE &  
OVER-CURRENT  
PROTECTION  
24,25  
DVDD  
23,26  
DGND  
27  
CLKI  
28  
CLKO  
30  
29  
19  
18  
17  
49  
22 21 20  
Figure 1. Block Diagram  
Rev. PrA – 1/20/05  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2005 Analog Devices, Inc. All rights reserved.  
AD199x  
Preliminary Technical Data  
TABLE OF CONTENTS  
General Description ........................................................................ 1  
AD199x—Specifications.................................................................. 3  
test conditions unless otherwise noted...................................... 3  
Absolute Maximum Ratings............................................................ 6  
Pin Configurations And Functional Descriptions....................... 7  
Typical Performance Characteristics ............................................. 8  
Functional Description.................................................................. 10  
Device Architecture ................................................................... 10  
Amplifier Gain............................................................................ 10  
System Design............................................................................. 11  
Outline Dimensions....................................................................... 14  
ESD Caution................................................................................ 14  
Rev. PrA – 1/20/05 | Page 2 of 16  
Preliminary Technical Data  
AD199X—SPECIFICATIONS  
AD199x  
TEST CONDITIONS UNLESS OTHERWISE NOTED  
Supply Voltages  
AVDD  
5 V  
DVDD  
5 V  
PVDDX  
12 V  
Ambient Temperature  
Load Impedance  
Clock Frequency  
25 °C  
6  
11.2896 MHz  
Measurement Bandwidth 20 Hz to 20 KHz  
Table 1. Performance of both channels is identical  
Parameter  
Min  
Typ  
Max  
Units  
Test Conditions/Comments  
RL = 6, PVDD = 20 V, 1 kHz (FTC)  
@ <0.01% THD+N  
@ 10% THD+N (FTC)  
@ <0.01% THD+N  
@ 10% THD+N (FTC)  
@ <0.01% THD+N  
@ 10% THD+N (FTC)  
@ <0.01% THD+N  
OUTPUT POWER (PO)  
AD1990  
4
5
8
10  
16  
25  
25  
40  
84  
W
W
W
W
W
W
AD1992  
AD1994  
AD1996  
W
W
@ 10% THD+N (FTC)  
fIN =1 kHz, PO = 5 W, RL = 6Ω  
Efficiency  
%
RON  
per High Side Transistor  
per Low Side Transistor  
Maximum Current Through OUTx  
Thermal Warning Active  
Thermal Shutdown Active  
Overcurrent Shutdown Active  
Nominal Input Level  
0.3  
0.2  
4
@ 1 A  
@ 1 A  
A
°C  
°C  
A
VRMS  
%
135  
150  
4
Die temperature  
Die temperature  
1.0  
PGA gain = 0 dB  
Modulation Factor  
90  
PERFORMANCE SPECIFICATIONS  
Total Harmonic Distortion (THD+N)  
0.005  
0.007  
0.01  
0.02  
102  
%
%
%
PGA = 0 dB, PO = 5 W  
PGA = 6 dB, PO = 5 W  
PGA = 12 dB, PO = 5 W  
PGA = 18 dB, PO = 5 W  
%
Signal/Noise Ratio (SNR)  
Dynamic Range (DNR)  
Crosstalk  
dB  
dB  
dB  
102  
-100  
-60 dB Input  
Measured channel input = 0 VRMS  
,
other channel = 1 kHz at 5W  
20 Hz - 1 kHz  
20 Hz – 20 kHz  
Power supply rejection (PSRR)  
60  
45  
dB  
dB  
DC SPECIFICATIONS  
Input Impedance  
20  
10  
AINL and AINR analog inputs  
kΩ  
mV  
Output DC Offset Voltage  
Rev. PrA – 1/20/05 | Page 3 of 16  
AD199x  
Preliminary Technical Data  
Parameter  
Min  
Typ  
Max  
Units  
Test Conditions/Comments  
POWER SUPPLIES  
Supply Voltage AVDD  
Supply Voltage DVDD  
Supply Voltage PVDDX  
Powerdown Current  
AVDD  
4.5  
4.5  
6.5  
5
5
8-20  
5.5  
5.5  
22.5  
V
V
V
RST/PDN  
held low  
0.1  
0.1  
19  
0.5  
0.5  
25  
µA  
µA  
µA  
DVDD  
PVDDX  
MUTE  
Mute Current  
AVDD  
DVDD  
held low  
19  
2.7  
1.5  
mA  
mA  
mA  
PVDD  
Quiesent Current  
AVDD  
DVDD  
Inputs Grounded, Non-Overlap Time = TBD  
20  
5.2  
3.2  
mA  
mA  
mA  
PVDDX  
Operating Current  
AVDD  
DVDD  
VIN = 1VRMS, PO = 5 W  
per FET  
22  
5.8  
mA  
mA  
A
PVDD  
4
DIGITAL I/O  
Input Voltage High  
Input Voltage Low  
Output Voltage High  
Output Voltage Low  
Leakage Current on Digital Inputs  
2.0  
DVDD  
0.8  
V
V
V
V
µA  
DVDD-0.8  
@ 2 mA  
@ 2 mA  
0.4  
10  
Rev. PrA – 1/20/05 | Page 4 of 16  
Preliminary Technical Data  
AD199x  
Table 2 DIGITAL TIMING (Guaranteed over -40°C to +85°C, AVDD = DVDD = 5.0V 10%, PVDDX =12V 10%, Non Overlap Time  
tNOL = Shortest, See Table 6: Non-Overlap Time Settings)  
Parameter  
Min  
Typ  
Max  
Units  
Comments  
RST/PDN  
tPDRP  
500  
ns  
minimum low pulsewidth  
MUTE  
tMPDL  
5
µs  
asserted to output initial response  
RST/PDN MUTE  
tMUTEDLY  
1
sec  
high to  
high delay  
OUTL+/  
OUTR+  
OUTL-/  
OUTR-  
t
t
NOL  
NOL  
Figure 2. Output Timing  
MUTE  
t
PST  
t
PST  
OUTX  
t
t
MPDL  
MPDL  
Figure 3. Mute Timing  
RESET  
MUTE  
t
MUTEDLY  
Figure 4. Reset to Mute Delay  
Rev. PrA – 1/20/05 | Page 5 of 16  
AD199x  
Preliminary Technical Data  
ABSOLUTE MAXIMUM RATINGS  
Table 3. AD199x Absolute Maximum Ratings1  
1Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only and functional operation of the device at these or  
any other condition s above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability. Only one absolute maximum rating may be  
applied at any one time.  
Parameter  
Rating  
AVDD, DVDD to AGND, DGND  
PVDDX to PGND  
-0.3 V to +6.5 V  
-0.3 V to +30.0 V2  
-0.3 V to +0.3 V  
-0.5 V to +0.5 V  
AGND to AVDD  
–40°C to +85°C  
–65°C to +150°C  
150°C  
AGND to DGND to PGND  
AVDD, to DVDD  
Audio Inputs  
Operating Temperature Range  
Storage Temperature Range  
Maximum Junction Temperature  
2Including any induced voltage due to inductive load  
3°C/W  
θJC Thermal Impedance (LFCSP)  
θJC Thermal Impedance (PSOP)  
Lead Temperature  
1°C/W  
Soldering (10 sec)  
260°C  
215°C  
220°C  
Vapor Phase (60 sec)  
Infrared (15 sec)  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
PGND1  
1
2
48 PGND2  
47 PGND2  
46 PGND2  
45 OUTR+  
44 OUTR+  
43 OUTR+  
PIN 1  
IDENTIFIER  
PGND1  
PGND1  
OUTL+  
OUTL+  
OUTL+  
3
4
5
6
PV  
PV  
PV  
PV  
7
42 PV  
41 PV  
40 PV  
39 PV  
DD1  
DD1  
DD1  
DD1  
DD2  
DD2  
DD2  
DD2  
AD1990/92/94  
TOP VIEW  
(Not to Scale)  
8
9
10  
OUTL- 11  
OUTL- 12  
OUTL- 13  
PGND1 14  
PGND1 15  
PGND1 16  
38 OUTR-  
37 OUTR-  
36 OUTR-  
35 PGND2  
34 PGND2  
33 PGND2  
1990-0002  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
Figure 5. 64 Lead LFCSP Package  
Rev. PrA – 1/20/05 | Page 6 of 16  
Preliminary Technical Data  
AD199x  
PIN CONFIGURATIONS AND FUNCTIONAL DESCRIPTIONS  
Table 4. Pin Function Descriptions  
LFCSP  
Pin No.  
1,2,3  
4,5,6  
7,8,9,10  
11,12,13  
14,15,16  
17  
PSOP  
Pin No.  
3
2
1,36  
35  
Name  
In/Out Description  
PGND1  
OUTL+  
PVDD1  
OUTL-  
PGND1  
ERR2  
Negative power supply for high power transistors A2 and B2  
O
O
Output of high power transistor pair, left channel positive polarity  
Positive power supply for high power transistors, left channel high-side  
Output of high power transistor pair, left channel negative polarity  
Negative power supply for high power transistors, left channel low-side  
Active low thermal shutdown error output  
34  
33  
O
O
O
I
18  
32  
ERR1  
Active low thermal warning error output  
19  
31  
ERR0  
Active low overcurrent error output  
20  
21  
22  
23,26  
24,25  
27  
28  
29  
DCTRL2  
DCTRL1  
DCTRL0  
DGND  
DVDD  
CLKI  
CLKO  
MUTE  
RST/PDN  
PGA1  
PGA0  
PGND2  
OUTR-  
PVDD2  
OUTR+  
PGND2  
AGND  
NFR+  
NFR-  
Non-overlap time setting MSB  
I
Non-overlap time setting  
I
Non-overlap time setting LSB  
29,30  
28  
27  
26  
25  
Negative power supply for low power digital circuitry  
Positive power supply for low power digital circuitry  
Clock input for 256 × fS audio modulator clock  
Inverted version of CLKI for use with external crystal oscillator  
Active low mute input  
I
O
I
30  
24  
I
Active low reset/power-down input  
31  
32  
23  
22  
21  
20  
I
Programmable gain amplifier (PGA) gain MSB  
I
Programmable gain amplifier (PGA) gain LSB  
33,34,35  
36,37,38  
39,40,41,42 18,19  
43,44,45  
46,47,48  
49  
50  
51  
52  
53  
Negative power supply for right channel high power transistors  
Output of high power transistor pair, right channel negative polarity  
Positive power supply for right channel high power transistors  
Output of high power transistor pair, right channel positive polarity  
Negative power supply for right channel high power transistors  
Negative power supply for low power analog circuitry  
Right channel negative feedback – positive input  
Right channel negative feedback – negative input  
Not Connected. This pin is not used and should be left floating  
Analog input for right channel  
O
O
17  
16  
15  
14  
13  
I
I
NC  
AINR  
12  
I
54  
55  
56  
57  
58  
59  
60  
61  
NC  
Not Connected. This pin is not used and should be left floating  
Filter pin for bandgap reference - should be bypassed to AGND  
Negative power supply for low power analog circuitry  
Positive power supply for low power analog circuitry  
Not Connected. This pin is not used and should be left floating  
Not Connected. This pin is not used and should be left floating  
Analog input for left channel  
Not Connected. This pin is not used and should be left floating  
Left channel negative feedback – negative input  
Left channel negative feedback – positive input  
Mono mode (drive left and right output transistors from same modulator)  
11  
10  
9
REF_FILT  
AGND  
AVDD  
NC  
NC  
AINL  
NC  
NFL-  
NFL+  
MONO  
O
8
4
7
6
5
I
62  
63  
64  
I
I
I
Rev. PrA – 1/20/05 | Page 7 of 16  
AD199x  
Preliminary Technical Data  
TYPICAL PERFORMANCE CHARACTERISTICS  
+ 0  
-20  
-40  
-60  
-80  
0
POWER = 5W  
POWER = 100mW  
= 6Ω  
R
= 6Ω  
–20  
L
R
L
–40  
–60  
–80  
- 1 0 0  
- 1 2 0  
–100  
–120  
–140  
–160  
- 1 4 0  
- 1 60  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
2
4
6
8
1 0  
1 2  
1 4  
1 6  
1 8  
20  
Frequency (Hz)  
FRE QU EN C Y ( KH z )  
Figure 6. 1KHz, 100mW into a 6Load  
Figure 8. 1KHz, 5W into a 6Load  
0
0
–20  
POWER = 1W  
= 6Ω  
-20  
-40  
R
L
POWER = 1W  
R
= 6Ω  
–40  
L
–60  
-60  
-80  
–80  
–100  
–120  
–140  
–160  
-100  
-120  
-140  
-160  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
Frequency (KHz)  
FREQUENCY - KHz  
Figure 7. 1KHz, 1W into a 6Load  
Figure 9. 7KHz, 1W into a 6Load  
Rev. PrA – 1/20/05 | Page 8 of 16  
Preliminary Technical Data  
AD199x  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
-20  
-40  
POWER = 1W  
R
= 6Ω  
L
-60  
-80  
-100  
-120  
-140  
-160  
0
1
2
3
4
5
0
2
4
6
8
10  
12  
14  
16  
18  
20  
FREQUENCY - KHz  
Watts Per Channel  
Figure 13. Efficiency vs Power  
Figure 10. 10KHz, 1W into a 6Load  
0
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-20  
-40  
POWER = 1W  
= 6Ω  
R
L
-60  
-80  
-100  
-120  
-140  
-160  
-100  
-110  
-120  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
20  
50  
100  
200 500  
1K  
2K  
5K  
10K 20K  
FREQUENCY - KHz  
FREQUENCY - Hz  
Figure 11. 19KHz, 1W into a 6Load  
Figure 14. THD+N vs Distortion, 1W into a 6Load  
0
-10  
-20  
-30  
-40  
-50  
T
PV  
= 12V  
DD  
R
= 6Ω  
L
AMPLIFIER GAIN (AV) = 2.7  
2
POWER = (V  
× AV × 2) /R  
RMS  
L
-60  
-70  
f
= 1KHz  
f
= 10KHz  
IN  
IN  
-80  
-90  
f
= 100Hz  
IN  
-100  
-110  
-120  
0
0.2  
0.2W  
0.4/  
0.78W  
0.6/  
0.8/  
3W  
1.0/  
5W  
1.2/  
7W  
1.75W  
V
(V)  
RMS  
Figure 12. THD+N vs Input Signal/Power Output  
Rev. PrA – 1/20/05 | Page 9 of 16  
AD199x  
Preliminary Technical Data  
FUNCTIONAL DESCRIPTION  
driving the OUTx pin. The nature of the inductors is to keep  
current flowing. For example the OUTx pin may approach and  
pass the PGND level to achieve this. When the voltage at the  
OUTx pin is 0.7V below PGND the parasitic diode associated  
with the low-side transistor will become forward biased and  
turn on. When the high-side transistor turns on the voltage at  
OUTx will rise to PVDD and will reverse bias the parasitic  
diode. However, by its nature the parasitic diode has a long  
reverse recovery time and current will continue to flow through  
it to PGND thus causing the entire circuit to draw more current  
than necessary. The addition of the schottky diodes prevents  
this happening. When the OUTx pin goes more than 0.3V  
below PGND the schottky diode becomes forward biased.  
When the high-side transistor turns on the schottky diode  
becomes reverse biased. The reverse recovery time of the  
schottky diode is significantly faster than the parasitic diode so  
far less current is wasted. A similar effect happens when the  
inductor induces a current which drives the OUTx pin above  
PVDD. Figure 16 shows how the external components of a  
system are connected to the pins of the AD199x to form the H-  
bridge configuration.  
DEVICE ARCHITECTURE  
The AD199x is an audio quality, switching amplifier with an  
integrated sigma-delta modulator. The power stage of the  
AD199x is arranged internally as four transistor pairs, which  
are used as two H-bridge outputs to provide stereo  
amplification. The transistor pairs are driven by the output of  
the ∑∆ modulator. A user selectable non-overlap time is  
provided between the switching of the high side transistor and  
low side transistor to ensure that both transistors are never on at  
the same time. The AD199x implements turn on pop  
suppression to eliminates any pops or clicks following a reset  
or un-mute.  
Analog Input Section  
The analog input section uses an internal amplifier to bias the  
input signal to the reference level. A DC blocking capacitor  
should be connected as shown in Figure 15 to remove any  
external DC bias contained in the input signal  
1.25V  
+
AINL/  
AINR  
0V  
AMPLIFIER GAIN  
Selecting the Modulator Gain  
The AD199x modulator can be thought of as a switching  
analog amplifier with a voltage gain controlled by two external  
resistors forming a resistor divider between the OUTxx pins  
and PGND. The centre of the resistor divider is connected to  
the appropriate feedback pin NFx. Selecting the gain along  
with the PVDD Voltage will determine how much power can be  
delivered to a load for a fixed input signal. The gain of the  
modulator is controlled by the values of R1 and R2 (see Figure  
16) according to the equation below.  
71046-0007  
Figure 15. Normal Operation  
The Sigma-Delta Modulator  
Detailed description pending on patents pending, as well as  
announcements, conference proceedings and other scheduled  
public disclosures.  
Selecting Stereo or Mono Mode  
Driving the H-Bridge  
Gain = (R1 + R2)/R2  
The gain should be selected such that a 1Vrms input signal  
doesn’t cause the modulator to generate an output signal which  
has a peak to peak value greater than 90% of PVDD. Selecting  
a gain that meets this criteria will ensure that the modulator  
remains in a stable operating condition.  
Each channel of the switching amplifier is controlled by a 4  
transistor H-bridge to give a differential output stage. The  
outputs of the H-bridges, OUTR+, OUTR-, OUTL+ and  
OUTL- will switch between PVDD and PGND as determined  
by the sigma delta modulator. The power supply that is used to  
drive the power stage of the AD199x should be typically in the  
range of +8 V to +20 V and should be capable of supplying  
enough current to drive the load. This power supply is  
connected across the PVDD and PGND pins. The feedback  
pins, NFR+, NFR-, NFL+ and NFL-, are used to supply  
negative feedback to the modulator. The pins are connected to  
the outputs of the H-bridge via a resister divider network as  
shown in Figure 16. See the section on Selecting the Modulator  
Gain for more information.  
PVDD  
PVDD  
EXTERNAL COMPONENTS  
D3  
D4  
OUTx+  
OUTx-  
PGND  
NFx-  
PGND  
NFx+  
71046-0004  
Figure 16. H-Bridge Configuration  
External schottky diodes can be used to reduce power loss  
during the non-overlap time when neither of the high-side or  
low-side transistors is on. During this time neither transistor is  
Rev. PrA – 1/20/05 | Page 10 of 16  
Preliminary Technical Data  
AD199x  
Programmable Gain Amplifier (PGA)  
high as required.  
The AD199x incorporates a single-ended to differential  
converter for each channel in the analog front-end section. Both  
single-ended to differential converters feature a programmable  
gain amplifier with four different gain settings. The gain is set  
using the pins PGA1 and PGA0 as shown in Table 5. The  
PGA1 and PGA0 pins are continuously monitored allow the  
gain to be changed at any time.  
On/Off/Mute Pop Noise Suppression  
The AD199x features pop suppression which is activated when  
the part is reset or taken out of mute. The pop suppression is  
achieved by pulsing the power outputs to bring the outputs of  
the LC filter from 0V to mid-scale in a controlled fashion. This  
feature eliminates unwanted transients on both the outputs and  
the high voltage power supply.  
Thermal Protection  
The AD199x features thermal protection. When the die  
temperature exceeds approximately 135°C the Thermal  
Table 5. PGA Gain Settings  
PGA1  
PGA0  
PGA Gain (dB)  
0
0
1
1
0
1
0
1
0
6
12  
18  
ERR1  
Warning Error output (  
exceeds approximately 150°C the Thermal Shutdown Error  
ERR2  
) is asserted. If the die temperature  
output (  
) is asserted. If this occurs, the part shuts down to  
prevent damage to the part. When the die temperature drops  
below approximately 120°C both error outputs are negated and  
the part returns to normal operation.  
SYSTEM DESIGN  
Over-current Protection  
The AD199x features over current or short circuit protection. If  
the current through any power transistors exceeds 4A the part  
goes into mute and the Over-current error output (  
asserted. This is a latched error and does not clear  
automatically. To clear the error condition and restore normal  
operation, the part must be either reset, or  
asserted and negated.  
Clocking  
The AD199x has two clock pins, CLKI and CLKO which are  
used to configure the clocking scheme for the device. The  
AD199x should be driven by a clock which is 256 × fS where fS  
is the desired sampling rate. If a crystal is to be used as the  
clock source it should be connected across the CLKI and  
CLKO pins as shown in Figure 17. Crystal Connection The  
values and type of capacitors used will be determined by the  
crystal manufacturer. A square-wave clock source may be  
connected directly to the CLKI pin. The logic levels of the  
square wave should be compatible with those defined in the  
Digital I/O section of the specifications page.  
ERR0  
) is  
MUTE  
must be  
Application Considerations  
Good board layout and decoupling are vital for correct  
operation of the AD199x. Due to the fact that the part switches  
high currents there is the potential for large PVDD bounce each  
time a transistor transitions. This can cause unpredictable  
operation of the part. To avoid this potential problem, close  
chip decoupling is essential. It is also recommended that the  
decoupling capacitors are placed on the same side of the board  
as the AD199x, and connected directly to the PVDD and  
PGND pins. By placing the decoupling capacitors on the other  
side of the board and decoupling through vias the effectiveness  
of the decoupling is reduced. This is because vias have  
inductive properties and therefore prevent very fast discharge  
of the decoupling capacitors. Best operation is achieved with at  
least one decoupling capacitor on each side of the AD199x, or  
optionally two capacitors per side can be used to further reduce  
the series resistance of the capacitor. If these decoupling  
recommendations cannot be followed and decoupling through  
vias is the only option, the vias should be made as large as  
possible to increase surface area, thereby reducing inductance  
and resistance.  
XTAL  
22pF  
22pF  
47Ω  
Figure 17. Crystal Connection  
Output Transistor Non-Overlap Time  
Ipsum lorum...  
Power-up Considerations  
Careful power-up is necessary when using the AD199x to  
ensure correct operation and avoid possible latch-up issues. The  
RST/PDN  
MUTE  
and  
AD199x should be powered-up with  
held low until all the power supplies have stabilized. Once the  
supplies have stabilized the AD199x can be brought out of reset  
RST/PDN  
MUTE  
can be brought  
by bringing  
high and then  
Rev. PrA – 1/20/05 | Page 11 of 16  
AD199x  
Preliminary Technical Data  
DVDD  
PVDD  
+
0.1µF  
47µF  
0.1µF  
100µF  
AVDD  
PVDD  
+
0.1µF  
47µF  
0.1µF  
100µF  
PVDD  
100µF  
L
AINL  
AINR  
OUTL+  
C
R1  
R2  
NFL+  
100µF  
R2  
R1  
NFL-  
PVDD  
PVDD  
OUTL-  
L
L
C
C
AD1990  
REF_FILT  
100nF  
47µF  
OUTR+  
NFR+  
R1  
R2  
MUTE  
R2  
R1  
RST/PDN  
NFR-  
PVDD  
OUTR-  
L
C
THERMAL SHUTDOWN  
THERMAL WARNING  
OVERCURRENT  
ERR2  
ERR1  
ERR0  
R1 = 1K47  
R2 = 523Ω  
L = 18µH  
C = 1µF  
CLKI  
CLKO  
Figure 18. Typical Stereo Mode Application Circuit  
Rev. PrA – 1/20/05 | Page 12 of 16  
Preliminary Technical Data  
AD199x  
DVDD  
PVDD  
+
0.1µF  
47µF  
0.1µF  
100µF  
AVDD  
PVDD  
+
0.1µF  
47µF  
0.1µF  
100µF  
PVDD  
100µF  
L
AINL  
AINR  
OUTL+  
C
R1  
R2  
NFL+  
R2  
R1  
NFL-  
PVDD  
OUTL-  
L
C
AD1990  
REF_FILT  
100nF  
47µF  
OUTR+  
NFR+  
MUTE  
RST/PDN  
NFR-  
DVDD  
ST/MO  
OUTR-  
THERMAL SHUTDOWN  
ERR2  
ERR1  
ERR0  
THERMAL WARNING  
OVERCURRENT  
CLKI  
CLKO  
Figure 19. Mono Mode Circuit  
Rev. PrA – 1/20/05 | Page 13 of 16  
AD199x  
Preliminary Technical Data  
OUTLINE DIMENSIONS  
0.30  
0.25  
0.18  
9.00  
BSC SQ  
0.60 MAX  
0.60 MAX  
64  
49  
48  
1
PIN 1  
INDICATOR  
4.85  
4.70  
4.55  
8.75  
BSC SQ  
BOTTOM  
VIEW  
TOP  
VIEW  
SQ*  
0.45  
0.40  
0.35  
33  
32  
1
6
17  
7.50  
REF  
0.80 MAX  
0.65 TYP  
1.00  
0.85  
0.80  
12 MAX  
û
0.05 MAX  
0.02 NOM  
0.50 BSC  
0.20 REF  
SEATING  
PLANE  
*
COMPLIANT TO JEDEC STANDARDS MO-220-VMMD  
EXCEPT FOR EXPOSED PAD DIMENSION  
Figure 20. 64-Lead Frame Chip Scale Package (LFCSP)  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the  
human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Table 6. Ordering Guide  
Products  
Package  
Temperature  
Power  
Rating  
Package Description  
Package Outline  
AD1990ACPZ  
AD1992ACPZ  
AD1994ACPZ  
AD1996ACPZ  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
5W per channel  
10W per channel  
25W per channel  
40W per channel  
Lead Frame Chip Scale Package  
Lead Frame Chip Scale Package  
Lead Frame Chip Scale Package  
Power Small Outline Package  
CP-64  
CP-64  
CP-64  
PSOP-36  
Rev. PrA – 1/20/05 | Page 14 of 16  
Preliminary Technical Data  
NOTES  
AD199x  
Rev. PrA – 1/20/05 | Page 15 of 16  
AD199x  
NOTES  
Preliminary Technical Data  
©
2005 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective companies.  
Printed in the U.S.A. PR05380-0-1/05(PrA)  
Rev. PrA – 1/20/05 | Page 16 of 16  

相关型号:

AD1996ACPZ

Class-D Audio Power Amplifier
ADI

AD1S

SINGLE PHASE 0.8 AMP SURFACE MOUNT BRIDGE RECTIFIERS
GWSEMI

AD1WHD

ADAPTER WECO PLUG TO BNC
ETC

AD2

Circuit Protection Solutions Low Voltage Fuse Links Catalogue
COOPER

AD2-A0-03-630-3A4-C

Magnetic Circuit Breaker,
Carling Techn

AD2-A1-03-630-232-C

Magnetic Circuit Breaker,
Carling Techn

AD2-B0-24-610-531-C

Magnetic Circuit Breaker,
Carling Techn

AD2-B0-24-610-552-D

Magnetic Circuit Breaker,
Carling Techn

AD2-B0-24-625-552-D

Magnetic Circuit Breaker,
Carling Techn