AD4600ACPZ-R7 [ADI]

4.25 Gbps, 8 】 8, Asynchronous Crosspoint Switch; 4.25 Gbps的速率, 8 】 8 ,异步交叉点开关
AD4600ACPZ-R7
型号: AD4600ACPZ-R7
厂家: ADI    ADI
描述:

4.25 Gbps, 8 】 8, Asynchronous Crosspoint Switch
4.25 Gbps的速率, 8 】 8 ,异步交叉点开关

复用器 开关 复用器或开关 信号电路
文件: 总28页 (文件大小:1114K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
4.25 Gbps, 8 × 8,  
Asynchronous Crosspoint Switch  
ADN4600  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Full 8 × 8 crossbar connectivity  
ADN4600  
Fully buffered signal path supports multicast and broadcast  
operation  
RECEIVE  
EQUALIZATION  
CROSSPOINT  
ARRAY  
TRANSMIT  
PRE-EMPHASIS  
IP[7:0]  
IN[7:0]  
OP[7:0]  
ON[7:0]  
Optimized for dc to 4.25 Gbps data  
Programmable receive equalization  
Compensates for up to 30 in. of FR4 @ 4.25 Gbps  
Programmable transmit pre-emphasis/de-emphasis  
Compensates for up to 30 in. of FR4 @ 4.25 Gbps  
Flexible 1.8 V to 3.3 V core supply  
EQ  
PE  
ADDR[1:0]  
SCL  
CONTROL LOGIC  
SDA  
RESETB  
Per lane positive/negative (P/N) pair inversion for routing ease  
Low power: 125 mW/channel at 4.25 Gbps  
DC- or ac-coupled differential CML inputs  
Programmable CML output levels  
Figure 1.  
50 Ω on-chip termination  
−40°C to +85°C temperature range operation  
Supports 8b10b, scrambled or uncoded nonreturn-to-zero  
(NRZ) data  
I2C control interface  
Package: 64-lead LFCSP  
APPLICATIONS  
1×, 2×, 4× FibreChannel  
XAUI  
Gigabit Ethernet over backplane  
10GBase-CX4  
InfiniBand®  
50 Ω cables  
The ADN4600 nonblocking switch core implements an 8 × 8  
crossbar and supports independent channel switching through the  
I2C control interface. Every channel implements an asynchronous  
path supporting NRZ data rates from dc to 4.25 Gbps. Each  
channel is fully independent of other channels. The ADN4600  
has low latency and very low channel-to-channel skew.  
GENERAL DESCRIPTION  
The ADN4600 is an asynchronous, nonblocking crosspoint  
switch with eight differential PECL-/CML-compatible inputs  
with programmable equalization and eight differential CML  
outputs with programmable output levels and pre-emphasis or  
de-emphasis. The operation of this device is optimized for NRZ  
data at rates up to 4.25 Gbps.  
The main application for the ADN4600 is to support switching  
on the backplane, line card, or cable interface sides of serial links.  
The receive inputs provide programmable equalization with  
nine settings to compensate for up to 30 in. of FR4 and  
programmable pre-emphasis with seven settings to compensate  
for up to 30 in. of FR4 at 4.25 Gbps.  
The ADN4600 is packaged in a 9 mm × 9 mm, 64-lead LFCSP  
package and operates from −40°C to +85°C.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2008 Analog Devices, Inc. All rights reserved.  
 
ADN4600  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Typical Performance Characteristics ..............................................8  
Theory of Operation ...................................................................... 13  
Introduction................................................................................ 13  
Receivers...................................................................................... 13  
Switch Core ................................................................................. 15  
Transmitters ................................................................................ 16  
I2C Control Interface.................................................................. 22  
PCB Design Guidelines ............................................................. 24  
Control Register Map..................................................................... 25  
Package Outline Dimensions........................................................ 28  
Ordering Guide .......................................................................... 28  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Specifications............................................................... 3  
Timing Specifications .................................................................. 5  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
REVISION HISTORY  
6/08—Revision 0: Initial Version  
Rev. 0 | Page 2 of 2  
 
ADN4600  
SPECIFICATIONS  
ELECTRICAL SPECIFICATIONS  
VCC = 1.8 V, VEE = 0 V, VTTI = VTTO = VCC, RL = 50 Ω, differential output swing = 800 mV p-p differential, 4.25 Gbps, PRBS 27 − 1,  
TA = 25°C, unless otherwise noted.  
Table 1.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
Maximum Data Rate per Channel  
Deterministic Jitter  
Random Jitter  
Residual Deterministic Jitter with  
Receive Equalization  
In NRZ format  
Data rate < 4.25 Gbps; BER = 1e − 12  
VCC = 1.8 V  
Data rate < 3.25 Gbps; 0 in. to 30 in. FR4  
Data rate < 4.25 Gbps; 0 in. to 30 in. FR4  
Data rate < 3.25 Gbps; 0 in. to 30 in. FR4  
Data rate < 4.25 Gbps; 0 in. to 30 in. FR4  
20% to 80%  
4.25  
Gbps  
ps p-p  
ps rms  
UI  
UI  
UI  
UI  
ps  
ps  
ns  
30  
1.5  
0.16  
0.20  
0.13  
0.18  
75  
Residual Deterministic Jitter with  
Transmit Pre-Emphasis  
Output Rise/Fall Time  
Channel-to-Channel Skew  
Propagation Delay  
50  
1
OUTPUT PRE-EMPHASIS  
Equalization Method  
Maximum Boost  
One-tap programmable pre-emphasis  
800 mV p-p output swing  
200 mV p-p output swing  
Minimum  
6
12  
2
dB  
dB  
mA  
mA  
Pre-Emphasis Tap Range  
Maximum  
12  
INPUT EQUALIZATION  
Minimum Boost  
Maximum Boost  
Number of Equalization Steps  
Gain Step Size  
EQBY = 1  
Maximum boost occurs @ 2.125 GHz  
1.5  
22  
8
dB  
dB  
Steps  
dB  
2.5  
INPUT CHARACTERISTICS  
Input Voltage Swing  
Input Voltage Range  
1
Differential, VICM = VCC − 0.6 V; VCC = 3.3 V  
300  
45  
2000  
55  
mV p-p  
V p-p  
V p-p  
Ω
Single-ended absolute voltage level, VL minimum  
Single-ended absolute voltage level, VH maximum  
Single-ended  
VEE + 0.4  
VCC + 0.5  
50  
Input Resistance  
Input Return Loss  
Measured at 2.5 GHz  
5
dB  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
@ dc, differential, PE = 0, default, VCC = 1.8 V  
@ dc, differential, PE = 0, default, VCC = 3.3 V  
635  
740  
800  
100  
100  
1300  
1800  
VCC − 1.1  
870  
mV p-p  
mV p-p  
mV p-p  
mV p-p  
mV p-p  
mV p-p  
V
@ dc, differential, PE = 0, min output level2, VCC = 1.8 V  
@ dc, differential, PE = 0, min output level2, VCC = 3.3 V  
@ dc, differential, PE = 0, max output level2, VCC = 1.8 V  
@ dc, differential, PE = 0, max output level2, VCC = 3.3 V  
Single-ended absolute voltage level,  
TxHeadroom = 0; VL min  
Output Voltage Range  
Single-ended absolute voltage level,  
TxHeadroom = 0; VH max  
Single-ended absolute voltage level,  
TxHeadroom = 1; VL min  
Single-ended absolute voltage level,  
TxHeadroom = 1; VH max  
VCC + 0.6  
VCC − 1.2  
VCC + 0.6  
V
V
V
Output Current  
Minimum output current per channel  
Maximum output current per channel, VCC = 1.8 V  
Single ended  
2
mA  
21  
50  
5
Output Resistance  
Output Return Loss  
45  
55  
Ω
dB  
Measured at 2.5 GHz  
Rev. 0 | Page 3 of 3  
 
ADN4600  
Parameter  
POWER SUPPLY  
Operating Range  
VCC  
Conditions  
Min  
Typ  
Max  
Unit  
VEE = 0 V  
1.7  
3.0  
1.8  
3.3  
1.8  
3.6  
3.6  
3.6  
V
V
V
DVCC  
VTTI  
VEE = 0 V, DVCC ≤ (VCC + 1.3 V)  
(VEE + 0.4 V + 0.5 × VID) < VTTI < (VCC + 0.5 V)  
VEE  
0.4  
+
VTTO  
(VCC − 1.1 V + 0.5 × VOD) < VTTO < (VCC + 0.5 V)  
VCC  
1.1  
1.8  
3.6  
V
Supply Current3  
ITTO  
ICC  
IEE  
ITTO  
ICC  
IEE  
All outputs enabled  
All outputs enabled  
All outputs enabled  
Single channel enabled  
Single channel enabled  
Single channel enabled  
63  
69  
565  
mA  
mA  
mA  
mA  
mA  
mA  
460  
586  
16  
173  
205  
18  
214  
LOGIC CHARACTERISTICS  
Input High (VIH)  
Input Low (VIL)  
DVCC = 3.3 V  
2.5  
2.5  
V
V
V
V
1.0  
Output High (VOH  
Output Low (VOL  
)
)
1.0  
THERMAL CHARACTERISTICS  
Operating Temperature Range  
θJA  
−40  
+85  
°C  
°C/W  
22  
1 VICM is the input common-mode voltage.  
2 Programmable via I2C.  
3 Assumes dc-coupled outputs. For ac-coupled outputs, ITTO currents will double.  
Rev. 0 | Page 4 of 4  
 
ADN4600  
TIMING SPECIFICATIONS  
Table 2. I2C Timing Parameters  
Parameter  
Min  
Max  
400  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
300  
300  
N/A  
N/A  
7
Unit  
kHz  
μs  
Description  
fSCL  
0
SCL clock frequency  
tHD;STA  
tSU;STA  
tLOW  
0.6  
0.6  
1.3  
0.6  
0
Hold time for a start condition  
Setup time for a repeated start condition  
Low period of the SCL clock  
High period of the SCL clock  
Data hold time  
μs  
μs  
tHIGH  
tHD;DAT  
tSU;DAT  
tr  
μs  
μs  
ns  
ns  
10  
1
1
0.6  
1
5
Data setup time  
Rise time for both SDA and SCL  
Fall time for both SDA and SCL  
Setup time for a stop condition  
Bus-free time between a stop and a start condition  
Capacitance for each I/O pin  
tf  
ns  
tSU;STO  
tBUF  
CIO  
μs  
ns  
Pf  
I2C Timing Specifications  
SDA  
tSU:DAT  
tf  
tf  
tBUF  
tHD:S
tf  
tLOW  
tf  
SCL  
tHD:STA  
tSU:STA  
tSU:STO  
tHIGH  
tHD:DAT  
S
Sr  
P
S
Figure 2. I2C Timing Diagram  
Rev. 0 | Page 5 of 5  
 
ADN4600  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
Parameter  
VCC to VEE  
VTTI  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rating  
3.7 V  
VCC + 0.6 V  
VCC + 0.6 V  
VTTO  
Internal Power Dissipation  
Differential Input Voltage  
Logic Input Voltage  
Storage Temperature Range  
Lead Temperature  
4.26 W  
2.0 V  
VEE − 0.3 V < VIN < VCC + 0.6 V  
−65°C to +125°C  
300°C  
ESD CAUTION  
Rev. 0 | Page 6 of 6  
 
ADN4600  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
PIN 1  
INDICATOR  
RESETB  
VEE  
IN0  
1
2
3
4
5
6
7
8
9
48 SCL  
47 SDA  
46 VEE  
45 IP7  
44 IN7  
43 VCC  
42 IP6  
41 IN6  
40 VTTI  
39 IP5  
38 IN5  
37 VEE  
36 IP4  
35 IN4  
34 VCC  
33 VEE  
IP0  
VCC  
IN1  
IP1  
VTTI  
IN2  
IP2 10  
VEE 11  
IN3 12  
ADN4600  
TOP VIEW  
(Not to Scale)  
IP3 13  
DVCC 14  
VCC 15  
VEE 16  
NOTES  
1. PAD ON BOTTOM OF PACKAGE MUST BE CONNECTED TO VEE.  
Figure 3. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic  
Type  
Description  
1
RESETB  
Control  
Power  
Reset Input (Active Low)  
Negative Supply  
2, 11, 16, 17, 27, VEE  
30, 32, 33, 37,  
46, 53, 62, 64  
3, 6, 9, 12, 35,  
38, 41, 44  
4, 7, 10, 13, 36,  
39, 42, 45  
IN0 to IN7  
IP0 to IP7  
I/O  
High Speed Inputs  
I/O  
High Speed Input Complements  
Positive Supply  
5, 15, 18, 21, 31, VCC  
34, 43, 59, 63  
Power  
8, 40  
14  
19, 22, 25, 28,  
51, 54, 57, 60  
VTTI  
DVCC  
ON7 to ON0  
Power  
Power  
I/O  
Input Termination Supply  
Digital Positive Supply (3.3 V)  
High Speed Outputs  
20, 23, 26, 29,  
52, 55, 58, 61  
OP7 to ON0  
I/O  
High Speed Output Complements  
24, 56  
47  
48  
49  
50  
VTTO  
SDA  
SCL  
ADDR0  
ADDR1  
EPAD  
Power  
Output Termination Supply  
Control  
Control  
Control  
Control  
Power  
I2C Control Interface Data Input/Output  
I2C Control Interface Clock Input  
I2C Control Interface Address LSB  
I2C Control Interface Address MSB  
Connect to VEE  
Rev. 0 | Page 7 of 7  
 
ADN4600  
TYPICAL PERFORMANCE CHARACTERISTICS  
Figure 5 to Figure 8 were obtained using the standard test circuit shown in Figure 4.  
50CABLES  
50CABLES  
2
2
2
2
INPUT  
PIN  
OUTPUT  
PIN  
DATA OUT  
50Ω  
HIGH SPEED  
SAMPLING  
ADN4600  
AC-COUPLED  
EVALUATION  
BOARD  
PATTERN  
GENERATOR  
TP1  
TP2  
OSCILLOSCOPE  
Figure 4. Standard Test Circuit (No Channel)  
50ps/DIV  
50ps/DIV  
Figure 5. 3.25 Gbps Input Eye  
(TP1 from Figure 4)  
Figure 7. 3.25 Gbps Output Eye, No Channel  
(TP2 from Figure 4)  
50ps/DIV  
50ps/DIV  
Figure 6. 4.25 Gbps Input Eye  
(TP1 from Figure 4)  
Figure 8. 4.25 Gbps Output Eye, No Channel  
(TP2 from Figure 4)  
Rev. 0 | Page 8 of 8  
 
 
 
 
ADN4600  
Figure 10 to Figure 13 were obtained using the standard test circuit shown in Figure 9.  
50CABLES  
50CABLES  
50CABLES  
2
2
2
2
2
2
INPUT OUTPUT  
PIN PIN  
DATA OUT  
FR4 TEST BACKPLANE  
50Ω  
DIFFERENTIAL  
STRIPLINE TRACES  
8mils WIDE, 8mils SPACE,  
8mils DIELECTRIC HEIGHT  
ADN4600  
AC-COUPLED  
EVALUATION  
BOARD  
PATTERN  
GENERATOR  
HIGH SPEED  
SAMPLING  
OSCILLOSCOPE  
TP1  
TP2  
TP3  
TRACE LENGTHS = 30''  
Figure 9. Input Equalization Test Circuit, FR4 (See Figure 5 and Figure 6 for the Reference Eye Diagrams at TP1)  
50ps/DIV  
50ps/DIV  
Figure 10. 3.25 Gbps Input Eye, 30 Inch FR4 Input Channel  
(TP2 from Figure 9)  
Figure 12. 3.25 Gbps Output Eye, 30 Inch FR4 Input Channel, Best EQ Setting  
(TP3 from Figure 9)  
50ps/DIV  
50ps/DIV  
Figure 11. 4.25 Gbps Input Eye, 30 Inch FR4 Input Channel  
(TP2 from Figure 9)  
Figure 13. 4.25 Gbps Output Eye, 30 Inch FR4 Input Channel, Best EQ Setting  
(TP3 from Figure 9)  
Rev. 0 | Page 9 of 9  
 
 
 
ADN4600  
Figure 15 to Figure 18 were obtained using the standard test circuit shown in Figure 14.  
50CABLES  
50CABLES  
50CABLES  
2
2
2
2
2
2
INPUT OUTPUT  
PIN PIN  
DATA OUT  
FR4 TEST BACKPLANE  
50Ω  
DIFFERENTIAL  
STRIPLINE TRACES  
8mils WIDE, 8mils SPACE,  
8mils DIELECTRIC HEIGHT  
ADN4600  
AC-COUPLED  
EVALUATION  
BOARD  
PATTERN  
GENERATOR  
HIGH SPEED  
SAMPLING  
TP1  
TP2  
TP3  
OSCILLOSCOPE  
TRACE LENGTHS = 30''  
Figure 14. Output Pre-Emphasis Test Circuit, FR4  
50ps/DIV  
50ps/DIV  
Figure 15. 3.25 Gbps Output Eye, 30 Inch FR4 Output Channel, PE = 0  
(TP3 from Figure 14)  
Figure 17. 3.25 Gbps Output Eye, 30 Inch FR4 Output Channel, PE = Best Setting  
(TP3 from Figure 14)  
50ps/DIV  
50ps/DIV  
Figure 16. 4.25 Gbps Output Eye, 30 Inch FR4 Output Channel, PE = 0  
(TP3 from Figure 14)  
Figure 18. 4.25 Gbps Output Eye, 30 Inch FR4 Output Channel, PE = Best Setting  
(TP3 from Figure 14)  
Rev. 0 | Page 10 of 10  
 
 
 
ADN4600  
Test conditions: VCC = 1.8 V, VEE = 0 V, VTTI = VTTO = VCC, RL = 50 Ω, differential output swing = 800 mV p-p differential, TA = 25°C,  
unless otherwise noted.  
80  
100  
70  
60  
50  
40  
80  
60  
40  
20  
V
= 3.3V  
CC  
30  
20  
10  
V
= 1.8V  
CC  
0
0
0
1.0  
20  
40  
60  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
DATA RATE (Hz)  
INPUT COMMON MODE (V)  
Figure 19. Deterministic Jitter vs. Data Rate  
Figure 22. Deterministic Jitter vs. Input Common Mode  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
80  
60  
40  
20  
0
1.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
1.5  
2.0  
2.5  
(V)  
3.0  
3.5  
4.0  
DIFFERENTIAL INPUT SWING (V)  
V
CC  
Figure 20. Deterministic Jitter vs. Input Swing  
Figure 23. Deterministic Jitter vs. Supply Voltage  
100  
100  
80  
60  
40  
20  
80  
60  
40  
20  
V
= 1.8V  
CC  
V
= 3.3V  
CC  
0
1.0  
0
–60  
1.5  
2.0  
2.5  
(V)  
3.0  
3.5  
4.0  
–40  
–20  
0
20  
40  
60  
80  
100  
V
TEMPERATURE (°C)  
TTO  
Figure 21. Deterministic Jitter vs. Temperature  
Figure 24. Deterministic Jitter vs. Output Termination Voltage  
Rev. 0 | Page 11 of 11  
ADN4600  
450000  
400000  
350000  
300000  
250000  
200000  
150000  
100000  
50000  
100  
90  
80  
70  
60  
t
/t  
F
R
0
–8  
50  
–60  
–6  
–4  
–2  
0
2
4
6
8
10  
–40  
–20  
0
20  
40  
60  
80  
100  
JITTER (ps)  
TEMPERATURE (°C)  
Figure 25. Random Jitter Histogram  
Figure 26. Rise Time/Fall Time vs. Temperature  
Rev. 0 | Page 12 of 12  
ADN4600  
THEORY OF OPERATION  
inversion function, which allows the user to swap the sign of the  
input signal path to eliminate the need for board-level  
crossovers in the receiver channel.  
INTRODUCTION  
The ADN4600 is an 8 × 8, buffered, asynchronous, 8-channel  
crosspoint switch that allows fully nonblocking connectivity  
between its transmitters and receivers. The switch supports  
multicast and broadcast operation, allowing the ADN4600 to  
work in redundancy and port-replication applications.  
Table 5 illustrates some, but not all, possible combinations of  
input supply voltages.  
Equalization Settings  
The ADN4600 receiver incorporates a multizero transfer  
function with a continuous time equalizer, providing up to  
22 dB of high-frequency boost at 2.25 GHz to compensate for  
up to 30 in. of FR4 at 4.25 Gbps. The ADN4600 also allows  
independent control of the equalizer transfer function on each  
channel through the I2C control interface.  
ADN4600  
RECEIVE  
EQUALIZATION  
CROSSPOINT  
ARRAY  
TRANSMIT  
PRE-EMPHASIS  
IP[7:0]  
IN[7:0]  
OP[7:0]  
ON[7:0]  
EQ  
PE  
ADDR[1:0]  
SCL  
In the basic mode of operation, the equalizer transfer function  
allows independent control of the boost in two frequency ranges  
for optimal matching with the loss shape of the channel (for  
example, the shape due primarily to skin effect or to dielectric  
loss). The total equalizer shape space is reduced to two independent  
frequency response groups—one optimized for cable and the  
other optimized for FR4 material. The RX EQ bits of the  
RX[7:0] configuration registers provide eight settings for each  
frequency response group to ease programming for typical  
channels.  
CONTROL LOGIC  
SDA  
RESETB  
Figure 27. Simplified Functional Block Diagram  
The ADN4600 offers extensively programmable output levels  
and pre-emphasis, as well as a squelch function and the ability  
to fully disable the device. The receivers integrate a programmable,  
multizero transfer function that has been optimized to compensate  
either typical backplane or typical cable losses. The ADN4600  
provides a balanced, high speed switch core that maintains low  
channel-to-channel skew and preserves edge rates.  
Table 6 summarizes the high-frequency boost for the frequency  
response grouping optimized for the FR4 material; it lists the basic  
control settings and the typical length of FR4 trace compensated  
for by each setting. All eight channels of the ADN4600 use the  
FR4-optimized frequency response grouping by default. The  
user can override this default by setting the respective RX LUT  
select bit high and then selecting the frequency response grouping  
by setting the RX LUT FR4/CX4 bit high for FR4 and low for  
cable. Setting the RX EQBY bit of the RX[7:0] configuration  
registers high sets the equalization to 1.5 dB of boost, which  
compensates for 0 m to 2 m of CX4 or 0 in. to 10 in. of FR4.  
The I/O on-chip termination resistors are tied to user-settable  
supplies to support dc coupling in various logic styles. The  
ADN4600 supports a wide core supply range; VCC can be set  
from 1.8 V to 3.3 V. These features together with programmable  
transmitter output levels allow for several dc- and ac-coupled  
I/O configurations.  
RECEIVERS  
Input Structure and Input Levels  
SIMPLIFIED RECEIVER INPUT CIRCUIT  
VCC  
In the advanced mode of operation, full control of the equalizer is  
available through the I2C control interface. The user can specify  
the boost in the midfrequency range and the boost in the high  
frequency range independently. This is accomplished by  
circumventing the frequency response groupings shown in  
Table 6 by setting the EQ CTL SRC bit (Bit 6 of the RX[7:0]  
EQ1 control registers) high and writing directly to the equalizer  
control bits on a per channel basis. Therefore, write values to  
Bits[5:0] of the RX[7:0] EQ1 control registers and to Bits[5:0]  
of the RX[7:0] EQ3 control registers for the channel of interest.  
The bits of these registers are ordered such that Bit 5 is a sign  
bit, and midlevel boost is centered around 0x00. Setting Bit 5  
low and increasing the LSBs decreases the boost, whereas  
setting Bit 5 high and increasing the LSBs increases the boost.  
VTTI  
RLN  
RL  
RLP  
RL  
RP  
52  
RN  
52Ω  
R1  
750Ω  
Q1  
IPx  
INx  
R3  
1kΩ  
Q2  
R2  
750Ω  
I1  
VEE  
Figure 28. Simplified Input Structure  
The ADN4600 receiver inputs incorporate 50 Ω termination  
resistors, ESD protection, and a multizero transfer function  
equalizer that can be optimized for backplane and cable operation.  
Each receive channel also provides a positive/negative (P/N)  
Rev. 0 | Page 13 of 13  
 
ADN4600  
Table 5. Common Input Voltage Levels  
Configuration  
VCC (V)  
1.8  
1.8  
VTTI (V)  
1.6  
1.8  
Low VTTI, AC-Coupled Input  
Single 1.8 V Supply  
3.3 V Core  
3.3  
1.8  
Single 3.3 V Supply  
3.3  
3.3  
Table 6. Receive Equalizer Boost vs. Setting  
RX EQ Bit Settings  
Boost (dB)  
Typical FR4 Trace Length (Inches)  
0
1
2
3
4
5
6
7
3.5  
3.9  
4.25  
4.5  
4.75  
5.0  
5 to 10  
10 to 15  
15 to 20  
20 to 25  
25 to 30  
30 to 35  
35 to 40  
35 to 40  
5.3  
5.5  
Table 7. Equalization Control Registers  
Name  
Addr  
Bit 7  
Bit 6  
Bit 5  
RX EQBY  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Default  
RX[7:0] Configuration 0xB8, 0xB0,  
0xA8, 0xA0,  
RX PNSWAP  
RX EN  
RX EQ[2]  
RX EQ[1]  
RX EQ[0]  
0x30  
0x98, 0x90,  
0x88, 0x80  
RX[7:0] EQ1 Control  
RX[7:0] EQ3 Control  
RX[7:0] FR4 Control  
0xBB, 0xB3,  
0xAB, 0xA3,  
0x9B, 0x93,  
0x8B, 0x83  
EQ CTL SRC  
RX EQ1[5] RX EQ1[4] RX EQ1[3] RX EQ1[2] RX EQ1[1] RX EQ1[0] 0x00  
RX EQ3[5] RX EQ3[4] RX EQ3[3] RX EQ3[2] RX EQ3[1] RX EQ3[0] 0x00  
0xBC, 0xB4,  
0xAC, 0xA4,  
0x9C, 0x94,  
0x8C, 0x84  
0xBD, 0xB5,  
0xAD, 0xA5,  
0x9D, 0x95,  
0x8D, 0x85  
RX LUT  
select  
RX LUT  
FR4/CX4  
0x00  
for each of the eight channels and is controlled through the I2C  
control interface.  
Lane Inversion  
The receiver P/N inversion feature is a convenience intended to  
allow the user to implement the equivalent of a board-level  
crossover in a much smaller area and without additional via  
impedance discontinuities that degrade the high-frequency  
integrity of the signal path. The P/N inversion is independent  
Warning  
Using the lane inversion feature to account for signal inversions  
downstream of the receiver requires additional attention when  
switching connectivity.  
Rev. 0 | Page 14 of 14  
 
 
ADN4600  
desired output changes has been preprogrammed. Bit 3 of the  
XPT configuration register (Address 0x40) signals whether a  
broadcast condition is desired. If this bit is set high, the input  
selected by Bits[6:4] is sent to all outputs. All output connections  
can then be programmed simultaneously by passing the data  
from the first rank of latches into the second rank by writing  
0x01 to the XPT update register (Address 0x41). This is a self-  
clearing register and therefore always reads back as 0x00. The  
output connections always reflect the data programmed into the  
second rank of latches and do not change until the first rank of data  
is passed into the second rank by strobing the XPT update register.  
SWITCH CORE  
The ADN4600 switch core is a fully nonblocking 8 × 8 array  
that allows multicast and broadcast configurations. The  
configuration of the switch core is controlled through the I2C  
control interface. The control interface receives and stores the  
desired connection matrix for the eight input and eight output  
signal pairs. The interface consists of eight rows of double-rank  
latches, one for each output. The 2-bit data-word stored in these  
latches indicates to which (if any) of the eight inputs the output  
will be connected.  
One output at a time can be preprogrammed by addressing the  
output and writing the desired connection data into the first rank  
of latches. This is done by writing to the XPT configuration  
register (Address 0x40). The output being addressed is written  
into Bits[2:0], and the input being sent to this output is written  
into Bits[6:4]. This process can be repeated until each of the  
If necessary for system verification, the data in the first rank of  
latches can be read back from the control interface. This is done  
by reading from the XPT Temp[3:0] registers, which show the  
status of the input data programmed in the first rank of latches  
for each output.  
Table 8. Switch Core Control and Status Registers  
Name  
Addr Bit 7 Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Default  
XPT Configuration  
0x40  
IN PORT  
[2]  
IN PORT  
[1]  
IN PORT  
[0]  
Broadcast  
OUT PORT  
[2]  
OUT PORT  
[1]  
OUT PORT  
[0]  
0x00  
XPT Update  
XPT Status 0  
XPT Status 1  
XPT Status 2  
XPT Status 3  
XPT Status 4  
XPT Status 5  
XPT Status 6  
XPT Status 7  
0x41  
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
0x56  
0x57  
Update  
OUT0[0]  
OUT1[0]  
OUT2[0]  
OUT3[0]  
OUT4[0]  
OUT5[0]  
OUT6[0]  
OUT7[0]  
0x00  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
OUT0[2]  
OUT1[2]  
OUT2[2]  
OUT3[2]  
OUT4[2]  
OUT5[2]  
OUT6[2]  
OUT7[2]  
OUT0[1]  
OUT1[1]  
OUT2[1]  
OUT3[1]  
OUT4[1]  
OUT5[1]  
OUT6[1]  
OUT7[1]  
Table 9. Switch Core Temporary Registers  
Name  
Addr Bit 7 Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Default  
N/A  
N/A  
N/A  
N/A  
XPT Temp 0  
XPT Temp 1  
XPT Temp 2  
XPT Temp 3  
0x58  
0x59  
0x5A  
0x5B  
OUT1[2] OUT1[1]  
OUT3[2] OUT3[1]  
OUT5[2] OUT5[1]  
OUT7[2] OUT7[1]  
OUT1[0]  
OUT3[0]  
OUT5[0]  
OUT7[0]  
OUT0[2]  
OUT2[2]  
OUT4[2]  
OUT6[2]  
OUT0[1]  
OUT2[1]  
OUT4[1]  
OUT6[1]  
OUT0[0]  
OUT2[0]  
OUT4[0]  
OUT6[0]  
Rev. 0 | Page 15 of 15  
 
ADN4600  
The output equalization is optimized for less than 2.5 Gbps  
operation, but can be optimized for higher speed applications  
up to 4.25 Gbps through the I2C control interface by writing to  
the TX DATA RATE bit (Bit 4) of the TX[7:0] configuration  
register, with high representing 4.25 Gbps and low representing  
2.5 Gbps. The TX[7:0] CTL SRC bit (Bit 7) in the TX[7:0]  
Output Level Control 1 register determines whether the pre-  
emphasis and output current controls for the channel of interest  
are selected from the optimized map or directly from the  
TX[7:0] Output Level Control[1:0] registers (per channel).  
Setting this bit high selects pre-emphasis control directly from  
the TX[7:0] Output Level Control[1:0] registers, and setting it  
low selects pre-emphasis control from the optimized map.  
TRANSMITTERS  
Output Structure and Output Levels  
The ADN4600 transmitter outputs incorporate 50 Ω termination  
resistors, ESD protection, and output current switch. Each  
channel provides independent control of both the absolute  
output level and the pre-emphasis output level. It should be  
noted that the choice of output level affects the output common-  
mode level. A 600 mV p-p differential output level with full  
pre-emphasis range requires an output termination voltage  
of 2.5 V or greater; therefore, for the VTTO pin, VCC must be  
equal to or greater than 2.5 V.  
Pre-Emphasis  
TX SIMPLIFIED DIAGRAM  
The total output amplitude and pre-emphasis setting space is  
reduced to a single map of basic settings that provides seven  
settings of output equalization to ease programming for typical  
channels. The full resolution of seven settings is available through  
the I2C interface by writing to Bits[2:0] (the TX PE[2:0] bits) of  
the TX[7:0] configuration registers. Table 10 summarizes the  
absolute output level, pre-emphasis level, and high frequency  
boost for each of the control settings and the typical length of  
FR4 trace compensated for by each setting.  
VCC  
ON-CHIP  
TERMINATION  
ESD  
VTTO  
V3  
VC  
RP  
RN  
52  
52Ω  
V2  
VP  
OPx  
ONx  
V1  
VN  
Q1  
Q2  
Full control of the transmit output levels is available through the  
I2C control interface. This full control is achieved by writing to  
the TX[7:0] Output Level Control[1:0] registers for the channel  
of interest. The supported output levels are shown in Table 12.  
The TX[7:0] Output Level Control[1:0] registers must be  
programmed to one of the supported settings listed in this table;  
other settings are not supported.  
IT  
I
+ T  
PE  
DC  
VEE  
Figure 29. Simplified Output Structure  
Table 10. Transmit Pre-Emphasis Boost and Overshoot vs. Setting  
TX PE  
Boost (dB)  
Overshoot  
DC Swing (mV p-p Differential)  
Typical FR4 Trace Length (Inches)  
0
1
2
3
4
5
6
0
2
0%  
25%  
50%  
75%  
100%  
133%  
200%  
800  
800  
800  
800  
800  
600  
400  
0 to 5  
0 to 5  
3.5  
4.9  
6
7.4  
9.5  
10 to 15  
15 to 20  
25 to 30  
30 to 35  
35 to 40  
Table 11. Transmitters Control Registers  
Name  
Addr  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Def.  
TX[7:0]  
Configuration  
0xE0, 0xE8,  
0xF0, 0xF8,  
0xD8, 0xD0,  
0xC8, 0xC0  
TX EN  
TX data  
rate  
TX PE[2]  
TX PE[1]  
TX PE[0]  
0x20  
0x40  
0x40  
TX[7:0] Output  
Level Control 1  
0xE1, 0xE9,  
0xF1, 0xF9,  
0xD9, 0xD1,  
0xC9, 0xC1  
TX[7:0]  
CTL SRC  
TX[7:0]_OLEV1[6:0]  
TX[7:0]_OLEV0[6:0]  
TX[7:0] Output  
Level Control 0  
0xE2, 0xEA,  
0xF2, 0xFA,  
0xDA, 0xD2,  
0xCA, 0xC2  
Rev. 0 | Page 16 of 16  
 
 
ADN4600  
Table 12. Output Level Programming  
VOD (mV)  
VD Peak (mV)  
PE (dB)  
0.00  
9.54  
13.98  
16.90  
19.08  
20.83  
22.28  
0.00  
6.02  
9.54  
12.04  
13.98  
15.56  
16.90  
0.00  
4.44  
7.36  
9.54  
11.29  
12.74  
13.98  
0.00  
3.52  
6.02  
7.96  
9.54  
10.88  
12.04  
0.00  
2.92  
5.11  
6.85  
8.30  
9.54  
10.63  
0.00  
2.50  
4.44  
6.02  
7.36  
8.52  
9.54  
0.00  
2.18  
3.93  
5.38  
6.62  
7.71  
8.67  
0.00  
1.94  
3.52  
ITOT (mA)  
2
6
10  
14  
18  
22  
26  
4
Tx[7:0] Output Level Control 0  
Tx[7:0] Output Level Control 1  
50  
50  
50  
50  
50  
50  
50  
50  
0x00  
0x11  
0x22  
0x33  
0x44  
0x55  
0x66  
0x00  
0x11  
0x22  
0x33  
0x44  
0x55  
0x66  
0x00  
0x11  
0x22  
0x33  
0x44  
0x55  
0x66  
0x00  
0x11  
0x22  
0x33  
0x44  
0x55  
0x66  
0x00  
0x11  
0x22  
0x33  
0x44  
0x55  
0x66  
0x00  
0x11  
0x22  
0x33  
0x44  
0x55  
0x66  
0x00  
0x11  
0x22  
0x33  
0x44  
0x55  
0x66  
0x00  
0x11  
0x22  
0x81  
0x81  
0x81  
0x81  
0x81  
0x81  
0x81  
0x91  
0x91  
0x91  
0x91  
0x91  
0x91  
0x91  
0x92  
0x92  
0x92  
0x92  
0x92  
0x92  
0x92  
0xA2  
0xA2  
0xA2  
0xA2  
0xA2  
0xA2  
0xA2  
0xA3  
0xA3  
0xA3  
0xA3  
0xA3  
0xA3  
0xA3  
0xB3  
0xB3  
0xB3  
0xB3  
0xB3  
0xB3  
0xB3  
0xB4  
0xB4  
0xB4  
0xB4  
0xB4  
0xB4  
0xB4  
0xC4  
0xC4  
0xC4  
150  
250  
350  
450  
550  
650  
100  
200  
300  
400  
500  
600  
700  
150  
250  
350  
450  
550  
650  
750  
200  
300  
400  
500  
600  
700  
800  
250  
350  
450  
550  
650  
750  
850  
300  
400  
500  
600  
700  
800  
900  
350  
450  
550  
650  
750  
850  
950  
400  
500  
600  
100  
100  
100  
100  
100  
100  
100  
150  
150  
150  
150  
150  
150  
150  
200  
200  
200  
200  
200  
200  
200  
250  
250  
250  
250  
250  
250  
250  
300  
300  
300  
300  
300  
300  
300  
350  
350  
350  
350  
350  
350  
350  
400  
400  
400  
8
12  
16  
20  
24  
28  
6
10  
14  
18  
22  
26  
30  
8
12  
16  
20  
24  
28  
32  
10  
14  
18  
22  
26  
30  
34  
12  
16  
20  
24  
28  
32  
36  
14  
18  
22  
26  
30  
34  
38  
16  
20  
24  
Rev. 0 | Page 17 of 17  
 
ADN4600  
VOD (mV)  
400  
400  
400  
400  
450  
450  
450  
450  
450  
450  
450  
500  
500  
500  
500  
500  
500  
500  
550  
550  
550  
550  
550  
550  
550  
600  
600  
600  
600  
600  
600  
600  
650  
650  
650  
650  
650  
650  
700  
700  
700  
700  
700  
750  
750  
750  
750  
800  
800  
800  
850  
850  
900  
VD Peak (mV)  
700  
800  
900  
1000  
450  
550  
650  
750  
850  
950  
1050  
500  
600  
700  
800  
900  
1000  
1100  
550  
650  
750  
850  
950  
1050  
1150  
600  
700  
800  
PE (dB)  
4.86  
6.02  
7.04  
7.96  
0.00  
1.74  
3.19  
4.44  
5.52  
6.49  
7.36  
0.00  
1.58  
2.92  
4.08  
5.11  
6.02  
6.85  
0.00  
1.45  
2.69  
3.78  
4.75  
5.62  
6.41  
0.00  
1.34  
2.50  
3.52  
4.44  
5.26  
6.02  
0.00  
1.24  
2.33  
3.30  
4.17  
4.96  
0.00  
1.16  
2.18  
3.10  
3.93  
0.00  
1.09  
2.05  
2.92  
0.00  
1.02  
1.94  
0.00  
0.97  
0.00  
ITOT (mA)  
28  
32  
36  
40  
18  
22  
26  
30  
34  
38  
42  
20  
24  
28  
32  
36  
40  
44  
22  
26  
30  
34  
38  
42  
46  
24  
28  
32  
36  
40  
44  
48  
26  
30  
34  
38  
42  
46  
28  
32  
36  
40  
44  
30  
34  
38  
42  
32  
36  
40  
34  
38  
36  
Tx[7:0] Output Level Control 0  
Tx[7:0] Output Level Control 1  
0x33  
0x44  
0x55  
0x66  
0x00  
0x11  
0x22  
0x33  
0x44  
0x55  
0x66  
0x00  
0x11  
0x22  
0x33  
0x44  
0x55  
0x66  
0x00  
0x11  
0x22  
0x33  
0x44  
0x55  
0x66  
0x00  
0x11  
0x22  
0x33  
0x44  
0x55  
0x66  
0x01  
0x12  
0x23  
0x34  
0x45  
0x56  
0x02  
0x13  
0x24  
0x35  
0x46  
0x03  
0x14  
0x25  
0x36  
0x04  
0x15  
0x26  
0x05  
0x16  
0x06  
0xC4  
0xC4  
0xC4  
0xC4  
0xC5  
0xC5  
0xC5  
0xC5  
0xC5  
0xC5  
0xC5  
0xD5  
0xD5  
0xD5  
0xD5  
0xD5  
0xD5  
0xD5  
0xD6  
0xD6  
0xD6  
0xD6  
0xD6  
0xD6  
0xD6  
0xE6  
0xE6  
0xE6  
0xE6  
0xE6  
0xE6  
0xE6  
0xE6  
0xE6  
0xE6  
0xE6  
0xE6  
0xE6  
0xE6  
0xE6  
0xE6  
0xE6  
0xE6  
0xE6  
0xE6  
0xE6  
0xE6  
0xE6  
0xE6  
0xE6  
0xE6  
0xE6  
0xE6  
900  
1000  
1100  
1200  
650  
750  
850  
950  
1050  
1150  
700  
800  
900  
1000  
1100  
750  
850  
950  
1050  
800  
900  
1000  
850  
950  
900  
Rev. 0 | Page 18 of 18  
ADN4600  
VTTO  
High Current Setting and Output Level Shift  
dV  
In low voltage applications, users must pay careful attention to  
both the differential and common-mode signal levels (see Figure 30  
and Table 13). Failure to understand the implications of signal  
level and choice of ac or dc coupling will almost certainly lead  
to transistor saturation and poor transmitter performance.  
OCM  
V
H
V
OD  
V
OCM  
V
L
TxHeadroom  
There is a TxHeadroom register (I2C Register Address 0x23)  
that allows configuration of the individual transmitters for  
extra headroom at the output for high current applications. The  
bits in this register are active high (default). There is one bit for  
each transmitter of the device (see Table 17). Setting this bit  
high puts the respective transmitter in a configuration for extra  
headroom, and setting this bit low does not provide extra  
headroom.  
V
= 2 × V  
OD  
ODPP  
VEE  
Figure 30. Simplified Output Voltage Levels Diagram  
Signal Levels and Common-Mode Shift for DC- and AC-Coupled Outputs  
Table 13. Signal Levels and Common-Mode Shift for DC- and AC-Coupled Outputs  
Output Levels and Output Compliance  
AC-Coupled Transmitter  
VH VL  
Peak Peak dVOCM VH  
DC-Coupled Transmitter  
VH VL Min Max  
Peak Peak VL  
TxHeadroom = 0  
TxHeadroom = 1  
VD  
Min  
VCC − VL VCC  
Min  
VL  
Max  
VCC − VL Min  
VOD ITOT Peak PE  
PE  
dVOCM VH  
VL  
VL  
(mV) (V) (V) (V)  
(mV) (mA) (mV) Boost (dB) (mV) (V) (V) (V)  
(V)  
(V)  
(V)  
(V)  
(V)  
(V)  
(V)  
V
CC (V)  
VTTO and VCC = 3.3 V  
200  
8
200 1.00 0.00 200  
300 1.50 3.52 300  
400 2.00 6.02 400  
500 2.50 7.96 500  
600 3.00 9.54 600  
700 3.50 10.88 700  
800 4.00 12.04 800  
300 1.00 0.00 300  
400 1.33 2.50 400  
500 1.67 4.44 500  
600 2.00 6.02 600  
700 2.33 7.36 700  
800 2.67 8.52 800  
900 3.00 9.54 900  
400 1.00 0.00 400  
500 1.25 1.94 500  
600 1.50 3.52 600  
700 1.75 4.86 700  
800 2.00 6.02 800  
900 2.25 7.04 900  
3.2  
3
3.2  
3
100  
3.3 3.1 3.3  
3.25 3.05 3.3  
3.1  
3
2.225 1.1  
2.225 1.1  
2.225 1.1  
2.225 1.1  
2.225 1.1  
2.225 1.1  
2.225 1.1  
2.225 1.1  
2.225 1.1  
2.225 1.1  
2.225 1.1  
2.225 1.1  
2.225 1.1  
2.225 1.1  
2.225 1.1  
2.225 1.1  
2.225 1.1  
2.225 1.1  
2.225 1.1  
2.225 1.1  
2.225 1.1  
1.8  
1.8  
1.8  
1.8  
1.8  
1.9  
1.9  
1.8  
1.8  
1.8  
1.8  
1.8  
1.9  
1.9  
1.8  
1.8  
1.8  
1.8  
1.8  
1.9  
1.9  
1.9  
1.9  
1.9  
1.9  
1.9  
1.9  
1.9  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
2
2
2
2
2
2.2  
2.2  
2
2
2
2
2
2.2  
2.2  
2
2
2
200 12  
200 16  
200 20  
200 24  
200 28  
200 32  
300 12  
300 16  
300 20  
300 24  
300 28  
300 32  
300 36  
400 16  
400 20  
400 24  
400 28  
400 32  
400 36  
400 40  
600 24  
600 28  
600 32  
600 36  
600 40  
600 44  
600 48  
3.1 2.9 3.15 2.85 150  
2.8 3.1 2.7 200  
2.9 2.7 3.05 2.55 250  
2.8 2.6 2.4 300  
2.7 2.5 2.95 2.25 350  
2.6 2.4 2.9 2.1 400  
3.15 2.85 3.15 2.85 150  
3.05 2.75 3.1 2.7 200  
2.95 2.65 3.05 2.55 250  
2.85 2.55 3 2.4 300  
2.75 2.45 2.95 2.25 350  
2.65 2.35 2.9 2.1 400  
2.55 2.25 2.85 1.95 450  
3.1 2.7 3.1 2.7 200  
2.6 3.05 2.55 250  
2.9 2.5 2.4 300  
2.8 2.4 2.95 2.25 350  
2.7 2.3 2.9 2.1 400  
2.6 2.2 2.85 1.95 450  
3
3.2  
3
3.3  
2.9  
2.8  
2.7  
2.6  
2.5  
3
3.15 2.95 3.3  
3.1 2.9 3.3  
3.05 2.85 3.3  
3
3
2.8 3.3  
3.3  
3.3  
3
3.25 2.95 3.3  
3.2 2.9 3.3  
3.15 2.85 3.3  
3.1 2.8 3.3  
3.05 2.75 3.3  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
3
2.7 3.3  
3.3 2.9 3.3  
3.25 2.85 3.3  
3.2 2.8 3.3  
3.15 2.75 3.3  
3.1 2.7 3.3  
3.05 2.65 3.3  
3
3
2
2
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
1000 2.50 7.96 1000 2.5 2.1 2.8  
1.8  
2.4  
500  
300  
3
2.6 3.3  
600 1.00 0.00 600  
700 1.17 1.34 700  
800 1.33 2.50 800  
900 1.50 3.52 900  
3
2.4  
3
3.3 2.7 3.3  
3.25 2.65 3.3  
3.2 2.6 3.3  
3.15 2.55 3.3  
3.1 2.5 3.3  
3.05 2.45 3.3  
2.1  
1.1  
2.9 2.3 2.95 2.25 350  
2.8 2.2 2.9 2.1 400  
2.7 2.1 2.85 1.95 450  
2.8 1.8 500  
1200 1.83 5.26 1100 2.5 1.9 2.75 1.65 550  
1400 2.00 6.02 1200 2.4 1.8 2.7 1.5 600  
2.225 1.1  
2.225 1.1  
2.225 1.1  
2.225 1.1  
1000 1.67 4.44 1000 2.6  
2
2.1  
2.1  
1.1  
1.1  
3
2.4 3.3  
Rev. 0 | Page 19 of 19  
 
 
ADN4600  
Output Levels and Output Compliance  
VD  
AC-Coupled Transmitter  
VH VL  
Peak Peak dVOCM VH  
DC-Coupled Transmitter  
VH VL Min Max  
Peak Peak VL  
TxHeadroom = 0  
TxHeadroom = 1  
Min  
VCC − VL VCC  
Min  
VL  
Max  
VCC − VL Min  
VOD ITOT Peak PE  
PE  
dVOCM VH  
VL  
VL  
(mV) (V) (V) (V)  
(mV) (mA) (mV) Boost (dB) (mV) (V) (V) (V)  
VTTO and VCC = 1.8 V1  
(V)  
(V)  
(V)  
(V)  
(V)  
(V)  
(V)  
VCC (V)  
200  
8
200 1.00 0.00 200  
300 1.50 3.52 300  
400 2.00 6.02 400  
500 2.50 7.96 500  
600 3.00 9.54 600  
300 1.00 0.00 300  
400 1.33 2.50 400  
500 1.67 4.44 500  
600 2.00 6.02 600  
700 2.33 7.36 700  
400 1.00 0.00 400  
500 1.25 1.94 500  
600 1.50 3.52 600  
700 1.75 4.86 700  
800 2.00 6.02 800  
600 1.00 0.00 600  
1.7 1.5 1.7  
1.5  
100  
1.8 1.6 1.8  
1.75 1.55 1.8  
1.7 1.5 1.8  
1.65 1.45 1.8  
1.6 1.4 1.8  
1.8 1.5 1.8  
1.75 1.45 1.8  
1.7 1.4 1.8  
1.65 1.35 1.8  
1.6 1.3 1.8  
1.8 1.4 1.8  
1.75 1.35 1.8  
1.7 1.3 1.8  
1.65 1.25 1.8  
1.6 1.2 1.8  
1.8 1.2 1.8  
1.6  
1.5  
1.4  
1.3  
1.2  
1.5  
1.4  
1.3  
1.2  
1.1  
1.4  
1.3  
1.2  
1.1  
1
0.725 1.1  
0.725 1.1  
0.725 1.1  
0.725 1.1  
0.725 1.1  
0.725 1.1  
0.725 1.1  
0.725 1.1  
0.725 1.1  
0.725 1.1  
0.725 1.1  
0.725 1.1  
0.725 1.1  
0.725 1.1  
0.725 1.1  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.9  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
200 12  
200 16  
200 20  
200 24  
300 12  
300 16  
300 20  
300 24  
300 28  
400 16  
400 20  
400 24  
400 28  
400 32  
600 24  
1.6 1.4 1.65 1.35 150  
1.5 1.3 1.6 1.2 200  
1.4 1.2 1.55 1.05 250  
1.3 1.1 1.5 0.9 300  
1.65 1.35 1.65 1.35 150  
1.55 1.25 1.6 1.2 200  
1.45 1.15 1.55 1.05 250  
1.35 1.05 1.5 0.9 300  
1.25 0.95 1.45 0.75 350  
1.6 1.2 1.6 1.2 200  
1.5 1.1 1.55 1.05 250  
1.4 1.5 0.9 300  
1.3 0.9 1.45 0.75 350  
1
1.2 0.8 1.4  
1.5 0.9 1.5  
0.6  
0.9  
400  
300  
1.2  
0.6  
1.1  
1
TxHeadroom = 1 is not an option at VTTO and VCC = 1.8 V.  
Table 14. Symbol Definitions for Output Levels vs. Setting  
Symbol  
Formula  
Definition  
Peak differential output voltage  
VOD  
25 Ω × IDC  
VODPP  
25 Ω × IDC × 2 = 2 × VOD  
25 Ω × ITX/2 = VODPP/4 + (IPE/2 × 25)  
50 Ω × ITX/2 = VODPP/2 + (IPE/2 × 50)  
VOD/RTERM  
Peak-to-peak differential output voltage  
Output common-mode shift  
dVOCM_DC-COUPLED  
dVOCM_AC-COUPLED  
Output common-mode shift  
IDC  
IPE  
ITX  
VH  
VL  
Output current that sets output level  
Output current used for PE  
IDC + IPE  
Total transmitter output current  
Maximum single-ended output voltage  
Minimum single-ended output voltage  
VTTO − dVOCM + VOD/2  
VTTO − dVOCM − VOD/2  
Rev. 0 | Page 20 of 20  
ADN4600  
Selective Squelch and Disable  
the output termination resistors. The transmitter recovers from  
squelch in less than 100 ns.  
Each transmitter is equipped with disable and squelch controls.  
Disable is a full power-down state: all transmitter current,  
including output current, is reduced to 0 mA and the output  
pins are pulled up to VTTO, but there is a delay of  
approximately 1 μs associated with re-enabling the transmitter.  
The output disable control is accessed through the TX EN bit  
(Bit 5) of the TX[7:0] configuration registers through the I2C  
control interface.  
The output squelch and the output disable control can both be  
accessed through the TX[7:0] squelch control registers, with the  
top nibble representing the squelch control and the bottom nibble  
representing the output disable for one channel. The channels  
are disabled or squelched by writing 0s to the corresponding  
nibbles. The channels are enabled by writing all 1s, which is the  
default setting. For example, to squelch channel TX0, Register  
0xC3 must be set to 0x0F. The entire nibble must be written to  
all 0s for this functionality.  
Squelch simply reduces the output current to submicroamp  
levels, allowing both output pins to pull up to VTTO through  
Table 15. Transmitters Squelch Control Registers  
Name  
Addr  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Default  
TX[7:0] Squelch Control 0xE3, 0xEB,  
0xF3, 0xFB,  
SQUELCHb[3:0]  
DISABLEb[3:0]  
0xFF  
0xDB, 0xD3,  
0xCB, 0xC3  
Rev. 0 | Page 21 of 21  
ADN4600  
I2C CONTROL INTERFACE  
Serial Interface General Functionality  
7. Send the data (eight bits) to be written to the register  
whose address was set in Step 5. This transfer should be  
MSB first.  
The ADN4600 register set is controlled through a 2-wire I2C  
interface. The ADN4600 acts only as an I2C slave device. Therefore,  
the I2C bus in the system needs to include an I2C master to  
configure the ADN4600 and other I2C devices that may be on  
the bus. Data transfers are controlled by the two I2C wires: the  
SCL input clock pin and the SDA bidirectional data pin.  
The ADN4600 I2C interface can be run in the standard (100 kHz)  
and fast (400 kHz) modes. The SDA line only changes value  
when the SCL pin is low, with two exceptions: the SDA pin is  
driven low while the SCL pin is high to indicate the beginning  
or continuation of a transfer, and the SDA line is driven high  
while the SCL line is high to indicate the end of a transfer.  
Therefore, it is important to control the SCL clock to toggle  
only when the SDA line is stable, unless indicating a start,  
repeated start, or stop condition.  
8. Wait for the ADN4600 to acknowledge the request.  
9. Send a stop condition (that is, while holding the SCL line  
high, pull the SDA line high) and release control of the bus.  
10. Send a repeated start condition (that is, while holding the  
SCL line high, pull the SDA line low) and continue with  
Step 2 in this procedure to perform another write.  
11. Send a repeated start condition (that is, while holding the  
SCL line high, pull the SDA line low) and continue with  
Step 2 of the read procedure (see the I2C Interface Data  
Transfers: Data Read section) to perform a read from  
another address.  
12. Send a repeated start condition (that is, while holding the  
SCL line high, pull the SDA line low) and continue with  
Step 8 of the read procedure (in the I2C Interface Data  
Transfers: Data Read section) to perform a read from the  
same address set in Step 5 of the write procedure.  
I2C Interface Data Transfers: Data Write  
To write data to the ADN4600 register set, a microcontroller  
(or any other I2C master) needs to send the appropriate control  
signals to the ADN4600 slave device. Use the following steps,  
where the signals are controlled by the I2C master unless otherwise  
specified. A diagram of the procedure is shown in Figure 31.  
In Figure 31, the ADN4600 write process is shown. The SCL  
signal is shown, along with a general write operation and a  
specific example. In the example, Data 0x92 is written to Register  
Address 0x6D of an ADN4600 part with a slave address of 0x4B.  
The slave address is seven bits wide. The upper five bits of the  
slave address are internally set to b10010. The lower two bits  
are controlled by the ADDR[1:0] pins. In this example, the bits  
controlled by the ADDR[1:0] pins are set to b11. In the figure,  
the corresponding step number is visible in the circle under the  
waveform. The SCL line is driven by the I2C master, not by the  
ADN4600 slave. As for the SDA line, the data in the shaded  
polygons of Figure 31 is driven by the ADN4600, whereas the  
data in the nonshaded polygons is driven by the I2C master. The  
end phase case shown corresponds with Step 9.  
1. Send a start condition (that is, while holding the SCL line  
high, pull the SDA line low).  
2. Send the ADN4600 part address (seven bits), whose upper  
five bits are the static value b10010 and whose lower two  
bits are controlled by the ADDR1 and ADDR0 input pins.  
This transfer should be MSB first.  
3. Send the write indicator bit (0).  
4. Wait for the ADN4600 to acknowledge the request.  
5. Send the register address (eight bits) to which data is to be  
written. This transfer should be MSB first.  
It is important to note that the SDA line only changes when  
the SCL line is low, except when a start, stop, or repeated start  
condition is being sent, as is the case in Step 1 and Step 9.  
6. Wait for the ADN4600 to acknowledge the request.  
SCL  
GENERAL CASE  
ADDR  
[1:0]  
START  
FIXED PART ADDR  
REGISTER ADDR  
DATA  
STOP  
SDA  
R/W ACK  
ACK  
ACK  
EXAMPLE  
SDA  
1
2
2
3
4
5
6
7
8
9
Figure 31. I2C Write Diagram  
Rev. 0 | Page 22 of 22  
 
 
 
ADN4600  
I2C Interface Data Transfers: Data Read  
14. Send a repeated start condition (that is, while holding the  
SCL line high, pull the SDA line low) and continue with  
Step 2 of the write procedure (see the I2C Interface Data  
Transfers: Data Write section) to perform a write.  
15. Send a repeated start condition (that is, while holding the  
SCL line high, pull the SDA line low) and continue with  
Step 2 of the read procedure to perform a read from a  
another address.  
16. Send a repeated start condition (that is, while holding the  
SCL line high, pull the SDA line low) and continue with  
Step 8 of the read procedure to perform a read from the  
same address.  
To read data from the ADN4600 register set, a microcontroller  
(or any other I2C master) needs to send the appropriate control  
signals to the ADN4600 slave device. Use the following steps,  
where the signals are controlled by the I2C master unless otherwise  
specified. A diagram of the procedure is shown in Figure 32.  
1. Send a start condition (that is, while holding the SCL line  
high, pull the SDA line low).  
2. Send the ADN4600 part address (seven bits), whose upper  
five bits are the static value b10010 and whose lower two  
bits are controlled by the ADDR1 and ADDR0 input pins.  
This transfer should be MSB first.  
In Figure 32, the ADN4600 read process is shown. The SCL  
signal is shown, along with a general read operation and a  
specific example. In the example, Data 0x49 is read from Register  
Address 0x6D of an ADN4600 part with a slave address of 0x4B.  
The part address is seven bits wide. The upper five bits of the  
slave address are internally set to b10010. The lower two bits  
are controlled by the ADDR[1:0] pins. In this example, the bits  
controlled by the ADDR[1:0] pins are set to b11. In Figure 32,  
the corresponding step number is visible in the circle under the  
waveform. The SCL line is driven by the I2C master, not by the  
ADN4600 slave. As for the SDA line, the data in the shaded  
polygons of Figure 32 is driven by the ADN4600, whereas the  
data in the nonshaded polygons is driven by the I2C master. The  
end phase case shown corresponds with Step 13.  
3. Send the write indicator bit (0).  
4. Wait for the ADN4600 to acknowledge the request.  
5. Send the register address (eight bits) from which data is to  
be read. This transfer should be MSB first. The register  
address is kept in the ADN4600 memory until the part is  
reset or the register address is written over with the same  
procedure (Step 1 to Step 6 of the write procedure; see the  
I2C Interface Data Transfers: Data Write section).  
6. Wait for the ADN4600 to acknowledge the request.  
7. Send a repeated start condition (that is, while holding the  
SCL line high, pull the SDA line low).  
8. Send the ADN4600 part address (seven bits), whose upper  
five bits are the static value b10010 and whose lower two  
bits are controlled by the ADDR1 and ADDR0 input pins.  
This transfer should be MSB first.  
It is important to note that the SDA line only changes when  
the SCL line is low, except when a start, stop, or repeated start  
condition is being sent, as is the case in Step 1, Step 7, and Step 13.  
In Figure 32, Sr represents a repeated start where the SDA line  
is brought high before SCL is raised. SDA is then dropped while  
SCL is still high.  
9. Send the read indicator bit (1).  
10. Wait for the ADN4600 to acknowledge the request.  
11. The ADN4600 then serially transfers the data (eight bits) held  
in the register indicated by the address set in Step 5.  
12. Acknowledge the data.  
13. Send a stop condition (that is, while holding the SCL line  
high, pull the SDA line high) and release control of the bus.  
SCL  
GENERAL CASE  
ADDR R/  
ADDR R/  
FIXED PART  
ADDR  
FIXED PART  
ADDR  
START  
REGISTER ADDR  
DATA  
STOP  
SDA  
A
A
6
Sr  
A
A
[1:0]  
[1:0]  
W
W
EXAMPLE  
SDA  
1
2
2
3
4
5
7
8
8
9
10  
11  
12  
13  
NOTES  
1. A = ACK.  
2. Sr = A REPEATED START WHERE THE SDA LINE IS BROUGHT HIGH BEFORE SCL IS RAISED.  
Figure 32. I2C Read Diagram  
Rev. 0 | Page 23 of 23  
 
 
ADN4600  
Transmission Lines  
PCB DESIGN GUIDELINES  
Use of 50 ꢀ transmission lines is required for all high frequency  
input and output signals to minimize reflections. It is also necessary  
for the high speed pairs of differential input traces, as well as the  
high speed pairs of differential output traces, to be matched in  
length to avoid skew between the differential traces.  
Proper RF PCB design techniques must be used for optimal  
performance.  
Power Supply Connections and Ground Planes  
Use of one low impedance ground plane is recommended. The  
VEE pins should be soldered directly to the ground plane to  
reduce series inductance. If the ground plane is an internal  
plane and connections to the ground plane are made through  
vias, multiple vias can be used in parallel to reduce the series  
inductance. The exposed pad should be connected to the VEE  
plane using plugged vias so that solder does not leak through  
the vias during reflow.  
Soldering Guidelines for Chip Scale Package  
The lands on the LFCSP are rectangular. The printed circuit  
board pad for these should be 0.1 mm longer than the package  
land length and 0.05 mm wider than the package land width.  
The land should be centered on the pad. This ensures that the  
solder joint size is maximized. The bottom of the chip scale  
package has a central exposed pad. The pad on the printed  
circuit board should be at least as large as this exposed pad. The  
user must connect the exposed pad to VEE using plugged vias  
so that solder does not leak through the vias during reflow. This  
ensures a solid connection from the exposed pad to VEE.  
Use of a 10 μF electrolytic capacitor between VCC and VEE is  
recommended at the location where the 3.3 V supply enters the  
PCB. It is recommended that 0.1 μF and 1 nF ceramic chip  
capacitors be placed in parallel at each supply pin for high  
frequency power supply decoupling. When using 0.1 μF and 1 nF  
ceramic chip capacitors, they should be placed between the IC  
power supply pins (VCC, VTTI, VTTO) and VEE, as close as  
possible to the supply pins.  
By using adjacent power supply and GND planes, excellent high  
frequency decoupling can be attained by using close spacing  
between the planes. This capacitance is given by  
C
PLANE = 0.88εr A/d (pF)  
where:  
εr is the dielectric constant of the PCB material.  
A is the area of the overlap of power and GND planes (cm2).  
d is the separation between planes (mm).  
For FR4, εr = 4.4 and 0.25 mm spacing, C ~15 pF/cm2.  
Rev. 0 | Page 24 of 24  
 
ADN4600  
CONTROL REGISTER MAP  
Table 16. Basic Mode I2C Register Definitions  
Addr  
(Hex) Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Default  
0x00  
0x40  
Reset  
Reset  
XPT  
Configuration  
IN PORT[2]  
IN PORT[1]  
IN PORT[0]  
Broadcast  
OUT PORT[2]  
OUT PORT[1]  
OUT PORT[0]  
0x00  
0x00  
0x41  
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
0x56  
0x57  
0x58  
0x59  
0x5A  
0x5B  
0x80  
XPT Update  
XPT Status 0  
XPT Status 1  
XPT Status 2  
XPT Status 3  
XPT Status 4  
XPT Status 5  
XPT Status 6  
XPT Status 7  
XPT Temp 0  
XPT Temp 1  
XPT Temp 2  
XPT Temp 3  
Update  
OUT0[2]  
OUT1[2]  
OUT2[2]  
OUT3[2]  
OUT4[2]  
OUT5[2]  
OUT6[2]  
OUT7[2]  
OUT0[2]  
OUT2[2]  
OUT4[2]  
OUT6[2]  
RX EQ[2]  
OUT0[1]  
OUT1[1]  
OUT2[1]  
OUT3[1]  
OUT4[1]  
OUT5[1]  
OUT6[1]  
OUT7[1]  
OUT0[1]  
OUT2[1]  
OUT4[1]  
OUT6[1]  
RX EQ[1]  
OUT0[0]  
OUT1[0]  
OUT2[0]  
OUT3[0]  
OUT4[0]  
OUT5[0]  
OUT6[0]  
OUT7[0]  
OUT0[0]  
OUT2[0]  
OUT4[0]  
OUT6[0]  
RX EQ[0]  
OUT1[2]  
OUT3[2]  
OUT5[2]  
OUT7[2]  
OUT1[1]  
OUT3[1]  
OUT5[1]  
OUT7[1]  
RX EQBY  
OUT1[0]  
OUT3[0]  
OUT5[0]  
OUT7[0]  
RX EN  
RX0  
RX  
0x30  
0x30  
0x30  
0x30  
0x30  
0x30  
0x30  
0x30  
0x20  
0x20  
0x20  
0x20  
0x20  
0x20  
0x20  
0x20  
Configuration  
PNSWAP  
0x88  
0x90  
0x98  
0xA0  
0xA8  
0xB0  
0xB8  
0xC0  
0xC8  
0xD0  
0xD8  
0xE0  
0xE8  
0xF0  
0xF8  
RX1  
Configuration  
RX  
PNSWAP  
RX EQBY  
RX EQBY  
RX EQBY  
RX EQBY  
RX EQBY  
RX EQBY  
RX EQBY  
TX EN  
RX EN  
RX EQ[2]  
RX EQ[2]  
RX EQ[2]  
RX EQ[2]  
RX EQ[2]  
RX EQ[2]  
RX EQ[2]  
TX PE[2]  
TX PE[2]  
TX PE[2]  
TX PE[2]  
TX PE[2]  
TX PE[2]  
TX PE[2]  
TX PE[2]  
RX EQ[1]  
RX EQ[1]  
RX EQ[1]  
RX EQ[1]  
RX EQ[1]  
RX EQ[1]  
RX EQ[1]  
TX PE[1]  
TX PE[1]  
TX PE[1]  
TX PE[1]  
TX PE[1]  
TX PE[1]  
TX PE[1]  
TX PE[1]  
RX EQ[0]  
RX EQ[0]  
RX EQ[0]  
RX EQ[0]  
RX EQ[0]  
RX EQ[0]  
RX EQ[0]  
TX PE[0]  
TX PE[0]  
TX PE[0]  
TX PE[0]  
TX PE[0]  
TX PE[0]  
TX PE[0]  
TX PE[0]  
RX2  
Configuration  
RX  
PNSWAP  
RX EN  
RX3  
Configuration  
RX  
PNSWAP  
RX EN  
RX4  
Configuration  
RX  
PNSWAP  
RX EN  
RX5  
Configuration  
RX  
PNSWAP  
RX EN  
RX6  
Configuration  
RX  
PNSWAP  
RX EN  
RX7  
Configuration  
RX  
PNSWAP  
RX EN  
TX0  
Configuration  
TX data rate  
TX data rate  
TX data rate  
TX data rate  
TX data rate  
TX data rate  
TX data rate  
TX data rate  
TX1  
Configuration  
TX EN  
TX2  
Configuration  
TX EN  
TX3  
Configuration  
TX EN  
TX7  
Configuration  
TX EN  
TX6  
Configuration  
TX EN  
TX5  
Configuration  
TX EN  
TX4  
TX EN  
Configuration  
Rev. 0 | Page 25 of 25  
 
ADN4600  
Table 17. Advanced Mode I2C Register Definitions  
Addr  
(Hex) Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Default  
0x00  
0x23  
0x83  
TxHeadroom  
TxH_B3  
TxH_B2  
EQ CTL SRC  
TxH_B1  
RX EQ1[5]  
TxH_B0  
RX EQ1[4]  
TxH_A3  
RX EQ1[3]  
TxH_A2  
RX EQ1[2]  
TxH_A1  
RX EQ1[1]  
TxH_A0  
RX EQ1[0]  
RX0 EQ1  
Control  
0x00  
0x84  
0x85  
0x8B  
0x8C  
0x8D  
0x93  
0x94  
0x95  
0x9B  
0x9C  
0x9D  
0xA3  
0xA4  
0xA5  
0xAB  
0xAC  
RX0 EQ3  
Control  
RX EQ3[5]  
RX EQ3[4]  
RX EQ3[3]  
RX EQ3[2]  
RX EQ3[1]  
RX EQ3[0]  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x40  
0x40  
0xFF  
0x40  
0x40  
0xFF  
RX0 FR4  
Control  
RX LUT  
select  
RX LUT  
FR4/CX4  
RX1 EQ1  
Control  
EQ CTL SRC  
EQ CTL SRC  
EQ CTL SRC  
EQ CTL SRC  
EQ CTL SRC  
EQ CTL SRC  
EQ CTL SRC  
RX EQ1[5]  
RX EQ3[5]  
RX EQ1[4]  
RX EQ3[4]  
RX EQ1[3]  
RX EQ3[3]  
RX EQ1[2]  
RX EQ3[2]  
RX EQ1[1]  
RX EQ1[0]  
RX EQ3[0]  
RX1 EQ3  
Control  
RX EQ3[1]  
RX1 FR4  
Control  
RX LUT  
select  
RX LUT  
FR4/CX4  
RX2 EQ1  
Control  
RX EQ1[5]  
RX EQ3[5]  
RX EQ1[4]  
RX EQ3[4]  
RX EQ1[3]  
RX EQ3[3]  
RX EQ1[2]  
RX EQ3[2]  
RX EQ1[1]  
RX EQ1[0]  
RX2 EQ3  
Control  
RX EQ3[1]  
RX EQ3[0]  
RX2 FR4  
Control  
RX LUT  
select  
RX LUT  
FR4/CX4  
RX3 EQ1  
Control  
RX EQ1[5]  
RX EQ3[5]  
RX EQ1[4]  
RX EQ3[4]  
RX EQ1[3]  
RX EQ3[3]  
RX EQ1[2]  
RX EQ3[2]  
RX EQ1[1]  
RX EQ1[0]  
RX EQ3[0]  
RX3 EQ3  
Control  
RX EQ3[1]  
RX3 FR4  
Control  
RX LUT  
select  
RX LUT  
FR4/CX4  
RX4 EQ1  
Control  
RX EQ1[5]  
RX EQ3[5]  
RX EQ1[4]  
RX EQ3[4]  
RX EQ1[3]  
RX EQ3[3]  
RX EQ1[2]  
RX EQ3[2]  
RX EQ1[1]  
RX EQ1[0]  
RX4 EQ3  
Control  
RX EQ3[1]  
RX EQ3[0]  
RX4 FR4  
Control  
RX LUT  
select  
RX LUT  
FR4/CX4  
RX5 EQ1  
Control  
RX EQ1[5]  
RX EQ3[5]  
RX EQ1[4]  
RX EQ3[4]  
RX EQ1[3]  
RX EQ3[3]  
RX EQ1[2]  
RX EQ3[2]  
RX EQ1[1]  
RX EQ1[0]  
RX EQ3[0]  
RX5 EQ3  
Control  
RX EQ3[1]  
0xAD RX5 FR4  
Control  
RX LUT  
select  
RX LUT  
FR4/CX4  
0xB3  
0xB4  
0xB5  
0xBB  
0xBC  
0xBD  
0xC1  
0xC2  
0xC3  
0xC9  
0xCA  
0xCB  
RX6 EQ1  
Control  
RX EQ1[5]  
RX EQ3[5]  
RX EQ1[4]  
RX EQ3[4]  
RX EQ1[3]  
RX EQ3[3]  
RX EQ1[2]  
RX EQ3[2]  
RX EQ1[1]  
RX EQ1[0]  
RX EQ3[0]  
RX6 EQ3  
Control  
RX EQ3[1]  
RX6 FR4  
Control  
RX LUT  
select  
RX LUT  
FR4/CX4  
RX7 EQ1  
Control  
RX EQ1[5]  
RX EQ3[5]  
RX EQ1[4]  
RX EQ3[4]  
RX EQ1[3]  
RX EQ3[3]  
RX EQ1[2]  
RX EQ3[2]  
RX EQ1[1]  
RX EQ1[0]  
RX7 EQ3  
Control  
RX EQ3[1]  
RX EQ3[0]  
RX7 FR4  
Control  
RX LUT  
select  
RX LUT  
FR4/CX4  
TX0 Output  
Level Control 1 SRC  
TX0 CTL  
TX0_OLEV1[6:0]  
TX0_OLEV0[6:0]  
TX0 Output  
Level Control 0  
TX0 Squelch  
Control  
SQUELCHb[3:0]  
DISABLEb[3:0]  
TX1 Output  
Level Control 1 SRC  
TX1 CTL  
TX1_OLEV1[6:0]  
TX1_OLEV0[6:0]  
TX1 Output  
Level Control 0  
TX1 Squelch  
Control  
SQUELCHb[3:0]  
DISABLEb[3:0]  
Rev. 0 | Page 26 of 26  
 
ADN4600  
Addr  
(Hex) Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Default  
0xD1  
0xD2  
0xD3  
0xD9  
TX2 Output  
Level Control 1 SRC  
TX2 CTL  
TX2_OLEV1[6:0]  
0x40  
TX2 Output  
Level Control 0  
TX2_OLEV0[6:0]  
0x40  
0xFF  
0x40  
0x40  
0xFF  
0x40  
0x40  
0xFF  
0x40  
0x40  
0xFF  
0x40  
0x40  
0xFF  
0x40  
0x40  
0xFF  
TX2 Squelch  
Control  
SQUELCHb[3:0]  
DISABLEb[3:0]  
TX3 Output  
Level Control 1 SRC  
TX3 CTL  
TX3_OLEV1[6:0]  
TX3_OLEV0[6:0]  
0xDA TX3 Output  
Level Control 0  
0xDB  
0xE1  
0xE2  
0xE3  
0xE9  
0xEA  
0xEB  
0xF1  
0xF2  
0xF3  
0xF9  
0xFA  
0xFB  
TX3 Squelch  
Control  
SQUELCHb[3:0]  
SQUELCHb[3:0]  
SQUELCHb[3:0]  
SQUELCHb[3:0]  
SQUELCHb[3:0]  
DISABLEb[3:0]  
DISABLEb[3:0]  
DISABLEb[3:0]  
DISABLEb[3:0]  
DISABLEb[3:0]  
TX7 Output  
Level Control 1 SRC  
TX7 CTL  
TX7_OLEV1[6:0]  
TX7_OLEV0[6:0]  
TX7 Output  
Level Control 0  
TX7 Squelch  
Control  
TX6 Output  
Level Control 1 SRC  
TX6 CTL  
TX6_OLEV1[6:0]  
TX6_OLEV0[6:0]  
TX6 Output  
Level Control 0  
TX6 Squelch  
Control  
TX5 Output  
Level Control 1 SRC  
TX5 CTL  
TX5_OLEV1[6:0]  
TX5_OLEV0[6:0]  
TX5 Output  
Level Control 0  
TX5 Squelch  
Control  
TX4 Output  
Level Control 1 SRC  
TX4 CTL  
TX4_OLEV1[6:0]  
TX4_OLEV0[6:0]  
TX4 Output  
Level Control 0  
TX4 Squelch  
Control  
Rev. 0 | Page 27 of 27  
ADN4600  
PACKAGE OUTLINE DIMENSIONS  
0.30  
0.25  
0.18  
9.00  
0.60 MAX  
BSC SQ  
0.60 MAX  
PIN 1  
INDICATOR  
64  
49  
48  
1
PIN 1  
INDICATOR  
*
6.15  
6.00 SQ  
5.85  
8.75  
BSC SQ  
TOP  
VIEW  
EXPOSED PAD  
(BOTTOM VIEW)  
0.50  
0.40  
0.30  
33  
32  
16  
17  
7.50  
REF  
0.80 MAX  
0.65 TYP  
12° MAX  
1.00  
0.85  
0.80  
0.05 MAX  
0.02 NOM  
SEATING  
PLANE  
0.50 BSC  
0.20 REF  
*
COMPLIANT TO JEDEC STANDARDS MO-220-VMMD-4  
EXCEPT FOR EXPOSED PAD DIMENSION  
Figure 33. 64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
9 mm × 9 mm Body, Very Thin Quad  
(CP-64-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
ADN4600ACPZ1  
Temperature Range  
Package Description  
Package Option  
CP-64-2  
CP-64-2  
−40°C to +85°C  
64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
Evaluation Board  
AD4600ACPZ-R71 −40oC to +85oC  
ADN4600-EVALZ1  
1 Z = RoHS Compliant Part.  
©2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07061-0-6/08(0)  
Rev. 0 | Page 28 of 28  
 
 

相关型号:

AD4630-24

24-Bit, 2 MSPS, Dual Channel SAR ADC
ADI

AD4630-24BBCZ

24-Bit, 2 MSPS, Dual Channel SAR ADC
ADI

AD4630-24BBCZ-RL

24-Bit, 2 MSPS, Dual Channel SAR ADC
ADI

AD4632-24

24位、500 kSPS、双通道SAR ADC
ADI

AD4680

Differential Inputs, 1 MSPS/500 kSPS, Dual Simultaneous Sampling SAR ADCs
ADI

AD4680BCPZ-RL

Differential Inputs, 1 MSPS/500 kSPS, Dual Simultaneous Sampling SAR ADCs
ADI

AD4680BCPZ-RL7

Differential Inputs, 1 MSPS/500 kSPS, Dual Simultaneous Sampling SAR ADCs
ADI

AD4681

Differential Inputs, 1 MSPS/500 kSPS, Dual Simultaneous Sampling SAR ADCs
ADI

AD4681BCPZ-RL

Differential Inputs, 1 MSPS/500 kSPS, Dual Simultaneous Sampling SAR ADCs
ADI

AD4681BCPZ-RL7

Differential Inputs, 1 MSPS/500 kSPS, Dual Simultaneous Sampling SAR ADCs
ADI

AD4682

Pseudo Differential Input, 1 MSPS/500 kSPS, Dual, Simultaneous Sampling, 16-Bit, SAR ADCs
ADI

AD4682BCPZ-RL

Pseudo Differential Input, 1 MSPS/500 kSPS, Dual, Simultaneous Sampling, 16-Bit, SAR ADCs
ADI