AD5144BRUZ100 [ADI]

The AD5124/AD5144/AD5144A potentiometers provide a nonvolatile solution for 128-/256-position adjustment applications, offering guaranteed low resistor tolerance errors of ±8% and up to ±6 mA current density in the Ax, Bx, and Wx pins.; 在AD5124 / AD5144 / AD5144A电位为128 / 256位调整应用的非易失性解决方案,提供的保证低电阻容差误差为±8 %,最高至±6 mA的电流密度在AX, BX,和WX销。
AD5144BRUZ100
型号: AD5144BRUZ100
厂家: ADI    ADI
描述:

The AD5124/AD5144/AD5144A potentiometers provide a nonvolatile solution for 128-/256-position adjustment applications, offering guaranteed low resistor tolerance errors of ±8% and up to ±6 mA current density in the Ax, Bx, and Wx pins.
在AD5124 / AD5144 / AD5144A电位为128 / 256位调整应用的非易失性解决方案,提供的保证低电阻容差误差为±8 %,最高至±6 mA的电流密度在AX, BX,和WX销。

文件: 总36页 (文件大小:784K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Quad Channel, 128-/256-Position, I2C/SPI,  
Nonvolatile Digital Potentiometer  
Data Sheet  
AD5124/AD5144/AD5144A  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
V
V
DD  
LOGIC  
LRDAC  
10 kΩ and 100 kΩ resistance options  
Resistor tolerance: 8% maximum  
Wiper current: 6 mA  
Low temperature coefficient: 35 ppm/°C  
Wide bandwidth: 3 MHz  
AD5124/AD5144  
POWER-ON  
RESET  
RDAC1  
A1  
W1  
B1  
A2  
W2  
B2  
A3  
W3  
B3  
A4  
W4  
B4  
INPUT  
REGISTER 1  
Fast start-up time < 75 μs  
Linear gain setting mode  
RESET  
DIS  
RDAC2  
INPUT  
REGISTER 2  
Single- and dual-supply operation  
Independent logic supply: 1.8 V to 5.5 V  
Wide operating temperature: −40°C to +125°C  
4 mm × 4 mm package option  
4 kV ESD protection  
SCLK/SCL  
SDI/SDA  
SERIAL  
INTERFACE  
RDAC3  
7/8  
INPUT  
REGISTER 3  
SYNC/ADDR0  
SDO/ADDR1  
RDAC4  
INPUT  
REGISTER 4  
APPLICATIONS  
EEPROM  
MEMORY  
Portable electronics level adjustment  
LCD panel brightness and contrast controls  
Programmable filters, delays, and time constants  
Programmable power supplies  
GND  
V
SS  
WP  
Figure 1. AD5124/AD5144 24-Lead LFCSP  
GENERAL DESCRIPTION  
The AD5124/AD5144/AD5144A potentiometers provide a  
nonvolatile solution for 128-/256-position adjustment applications,  
offering guaranteed low resistor tolerance errors of 8ꢀ and up to  
6 mA current density in the Ax, Bx, and Wx pins.  
The AD5124/AD5144/AD5144A are available in a compact,  
24-lead, 4 mm × 4 mm LFCSP and a 20-lead TSSOP. The parts  
are guaranteed to operate over the extended industrial temperature  
range of −40°C to +125°C.  
The low resistor tolerance and low nominal temperature coefficient  
simplify open-loop applications as well as applications requiring  
tolerance matching.  
Table 1. Family Models  
Model  
Channel Position Interface Package  
AD51231  
AD5124  
AD5124  
AD51431  
AD5144  
AD5144  
Quad  
Quad  
Quad  
Quad  
Quad  
Quad  
128  
128  
128  
256  
256  
256  
256  
128  
128  
256  
256  
128  
256  
I2C  
LFCSP  
LFCSP  
TSSOP  
LFCSP  
LFCSP  
TSSOP  
TSSOP  
LFCSP/TSSOP  
LFCSP/TSSOP  
LFCSP/TSSOP  
LFCSP/TSSOP  
LFCSP  
SPI/I2C  
The linear gain setting mode allows independent programming  
of the resistance between the digital potentiometer terminals,  
through the RAW and RWB string resistors, allowing very accurate  
resistor matching.  
SPI  
I2C  
SPI/I2C  
SPI  
I2C  
SPI  
I2C  
SPI  
I2C  
SPI/I2C  
SPI/I2C  
The high bandwidth and low total harmonic distortion (THD)  
ensure optimal performance for ac signals, making these devices  
suitable for filter design.  
AD5144A Quad  
AD5122 Dual  
AD5122A Dual  
AD5142 Dual  
AD5142A Dual  
The low wiper resistance of only 40 Ω at the ends of the resistor  
array allow for pin-to-pin connection.  
The wiper values can be set through an SPI-/I2C-compatible digital  
interface that is also used to read back the wiper register and  
EEPROM contents.  
AD5121  
AD5141  
Single  
Single  
LFCSP  
1 Two potentiometers and two rheostats.  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2012 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
 
AD5124/AD5144/AD5144A  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
RDAC Register and EEPROM.................................................. 23  
Input Shift Register .................................................................... 23  
Serial Data Digital Interface Selection, DIS............................ 23  
SPI Serial Data Interface............................................................ 23  
I2C Serial Data Interface............................................................ 25  
I2C Address.................................................................................. 25  
Advanced Control Modes ......................................................... 27  
EEPROM or RDAC Register Protection................................. 28  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Functional Block Diagrams—TSSOP............................................ 3  
Specifications..................................................................................... 4  
Electrical Characteristics—AD5124 .......................................... 4  
Electrical Characteristics—AD5144 and AD5144A................ 7  
Interface Timing Specifications................................................ 10  
Shift Register and Timing Diagrams ....................................... 11  
Absolute Maximum Ratings.......................................................... 13  
Thermal Resistance .................................................................... 13  
ESD Caution................................................................................ 13  
Pin Configurations and Function Descriptions ......................... 14  
Typical Performance Characteristics ........................................... 17  
Test Circuits..................................................................................... 22  
Theory of Operation ...................................................................... 23  
LRDAC  
Load RDAC Input Register (  
)..................................... 28  
RDAC Architecture.................................................................... 31  
Programming the Variable Resistor......................................... 31  
Programming the Potentiometer Divider............................... 32  
Terminal Voltage Operating Range ......................................... 32  
Power-Up Sequence ................................................................... 32  
Layout and Power Supply Biasing............................................ 32  
Outline Dimensions....................................................................... 33  
Ordering Guide .......................................................................... 34  
REVISION HISTORY  
12/12—Rev. 0 to Rev. A  
Changes to Table 12 and Table 13 ................................................ 25  
10/12—Revision 0: Initial Version  
Rev. A | Page 2 of 36  
 
Data Sheet  
AD5124/AD5144/AD5144A  
FUNCTIONAL BLOCK DIAGRAMS—TSSOP  
V
V
V
V
DD  
LOGIC  
DD  
LOGIC  
AD5124/AD5144  
AD5144A  
POWER-ON  
RESET  
POWER-ON  
RESET  
RDAC 1  
RDAC 1  
A1  
W1  
B1  
A1  
W1  
B1  
INPUT  
REGISTER 1  
INPUT  
REGISTER 1  
RDAC 2  
RDAC 2  
SYNC  
SCLK  
SDI  
RESET  
SCL  
A2  
W2  
B2  
A3  
W3  
B3  
A4  
W4  
B4  
A2  
W2  
B2  
A3  
W3  
B3  
A4  
W4  
B4  
INPUT  
REGISTER 2  
INPUT  
REGISTER 2  
2
SPI  
I C  
SERIAL  
SERIAL  
INTERFACE  
RDAC 3  
RDAC 3  
SDA  
INTERFACE  
7/8  
8
INPUT  
REGISTER 3  
INPUT  
REGISTER 3  
SDO  
ADDR  
RDAC 4  
RDAC 4  
INPUT  
REGISTER 4  
INPUT  
REGISTER 4  
EEPROM  
MEMORY  
EEPROM  
MEMORY  
GND  
V
GND  
V
SS  
SS  
Figure 2. AD5124/AD5144 20-Lead TSSOP  
Figure 3. AD5144A 20-Lead TSSOP  
Rev. A | Page 3 of 36  
 
AD5124/AD5144/AD5144A  
Data Sheet  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICSAD5124  
VDD = 2.3 V to 5.5 V, VSS = 0 V; VDD = 2.25 V to 2.75 V, VSS = −2.25 V to −2.75 V; VLOGIC = 1.8 V to 5.5 V, 40°C < TA < +125°C, unless  
otherwise noted.  
Table 2.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ 1  
Max  
Unit  
DC CHARACTERISTICS—RHEOSTAT  
MODE (ALL RDACs)  
Resolution  
Resistor Integral Nonlinearity2  
N
R-INL  
7
Bits  
RAB = 10 kΩ  
VDD ≥ 2.7 V  
VDD < 2.7 V  
RAB = 100 kΩ  
VDD ≥ 2.7 V  
VDD < 2.7 V  
−1  
−2.5  
0.1  
1
+1  
+2.5  
LSB  
LSB  
−0.5  
−1  
0.1  
0.25 +1  
+0.5  
LSB  
LSB  
Resistor Differential Nonlinearity2  
Nominal Resistor Tolerance  
Resistance Temperature Coefficient3  
Wiper Resistance3  
R-DNL  
−0.5  
−8  
0.1  
1
35  
+0.5  
+8  
LSB  
%
ppm/°C  
ΔRAB/RAB  
(ΔRAB/RAB)/ΔT × 106  
RW  
Code = full scale  
Code = zero scale  
RAB = 10 kΩ  
55  
130  
125  
400  
RAB = 100 kΩ  
Bottom Scale or Top Scale  
RBS or RTS  
RAB = 10 kΩ  
RAB = 100 kΩ  
Code = 0xFF  
40  
60  
0.2  
80  
230  
+1  
%
Nominal Resistance Match  
RAB1/RAB2  
−1  
DC CHARACTERISTICS—POTENTIOMETER  
DIVIDER MODE (ALL RDACs)  
Integral Nonlinearity4  
INL  
RAB = 10 kΩ  
RAB = 100 kΩ  
−0.5  
−0.25  
−0.25  
0.1  
0.1  
0.1  
+0.5  
+0.25  
+0.25  
LSB  
LSB  
LSB  
Differential Nonlinearity4  
Full-Scale Error  
DNL  
VWFSE  
RAB = 10 kΩ  
RAB = 100 kΩ  
−1.5  
−0.5  
−0.1  
0.1  
LSB  
LSB  
+0.5  
Zero-Scale Error  
VWZSE  
RAB = 10 kΩ  
RAB = 100 kΩ  
(ΔVW/VW)/ΔT × 106 Code = half scale  
1
0.25  
5
1.5  
0.5  
LSB  
LSB  
ppm/°C  
Voltage Divider Temperature  
Coefficient3  
Rev. A | Page 4 of 36  
 
 
Data Sheet  
AD5124/AD5144/AD5144A  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ 1  
Max  
Unit  
RESISTOR TERMINALS  
Maximum Continuous Current  
IA, IB, and IW  
RAB = 10 kΩ  
RAB = 100 kΩ  
−6  
−1.5  
VSS  
+6  
+1.5  
VDD  
mA  
mA  
V
Terminal Voltage Range5  
Capacitance A, Capacitance B3  
CA, CB  
f = 1 MHz, measured to GND,  
code = half scale  
RAB = 10 kΩ  
RAB = 100 kΩ  
25  
12  
pF  
pF  
Capacitance W3  
CW  
f = 1 MHz, measured to GND,  
code = half scale  
RAB = 10 kΩ  
RAB = 100 kΩ  
VA = VW = VB  
12  
5
15  
pF  
pF  
nA  
Common-Mode Leakage Current3  
−500  
+500  
DIGITAL INPUTS  
Input Logic3  
High  
VINH  
VLOGIC = 1.8 V to 2.3 V  
VLOGIC = 2.3 V to 5.5 V  
0.8 × VLOGIC  
0.7 × VLOGIC  
V
V
Low  
VINL  
VHYST  
IIN  
0.2 × VLOGIC  
1
V
V
µA  
pF  
Input Hysteresis3  
Input Current3  
0.1 × VLOGIC  
Input Capacitance3  
DIGITAL OUTPUTS  
Output High Voltage3  
Output Low Voltage3  
CIN  
5
VOH  
VOL  
RPULL-UP = 2.2 kΩ to VLOGIC  
ISINK = 3 mA  
ISINK = 6 mA, VLOGIC > 2.3 V  
VLOGIC  
V
V
V
µA  
pF  
0.4  
0.6  
+1  
Three-State Leakage Current  
Three-State Output Capacitance  
POWER SUPPLIES  
−1  
2
Single-Supply Power Range  
Dual-Supply Power Range  
Logic Supply Range  
VSS = GND  
2.3  
2.25  
1.8  
5.5  
V
V
V
V
2.75  
VDD  
VDD  
Single supply, VSS = GND  
Dual supply, VSS < GND  
VIH = VLOGIC or VIL = GND  
VDD = 5.5 V  
2.25  
Positive Supply Current  
IDD  
0.7  
400  
−0.7  
2
320  
1
5.5  
µA  
nA  
µA  
mA  
µA  
nA  
µW  
dB  
VDD = 2.3 V  
Negative Supply Current  
EEPROM Store Current3, 6  
EEPROM Read Current3, 7  
Logic Supply Current  
Power Dissipation8  
Power Supply Rejection Ratio  
ISS  
VIH = VLOGIC or VIL = GND  
VIH = VLOGIC or VIL = GND  
VIH = VLOGIC or VIL = GND  
VIH = VLOGIC or VIL = GND  
VIH = VLOGIC or VIL = GND  
−5.5  
IDD_EEPROM_STORE  
IDD_EEPROM_READ  
ILOGIC  
PDISS  
PSRR  
120  
−60  
3.5  
−66  
∆VDD/∆VSS = VDD 10%,  
code = full scale  
Rev. A | Page 5 of 36  
AD5124/AD5144/AD5144A  
Data Sheet  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ 1  
Max  
Unit  
DYNAMIC CHARACTERISTICS9  
Bandwidth  
BW  
−3 dB  
RAB = 10 kΩ  
RAB = 100 kΩ  
3
0.43  
MHz  
MHz  
Total Harmonic Distortion  
Resistor Noise Density  
VW Settling Time  
THD  
eN_WB  
tS  
VDD/VSS = 2.5 V, VA = 1 V rms,  
VB = 0 V, f = 1 kHz  
RAB = 10 kΩ  
RAB = 100 kΩ  
Code = half scale, TA = 25°C,  
f = 10 kHz  
RAB = 10 kΩ  
RAB = 100 kΩ  
VA = 5 V, VB = 0 V, from  
zero scale to full scale,  
0.5 LSB error band  
−80  
−90  
dB  
dB  
7
20  
nV/√Hz  
nV/√Hz  
RAB = 10 kΩ  
RAB = 100 kΩ  
RAB = 10 kΩ  
RAB = 100 kΩ  
2
µs  
µs  
12  
10  
25  
−90  
1
Crosstalk (CW1/CW2)  
CT  
nV-sec  
nV-sec  
dB  
Mcycles  
kcycles  
Years  
Analog Crosstalk  
Endurance10  
CTA  
TA = 25°C  
100  
Data Retention11  
50  
1 Typical values represent average readings at 25°C, VDD = 5 V, VSS = 0 V, and VLOGIC = 5 V.  
2 Resistor integral nonlinearity error (R-INL) is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper  
positions. R-DNL measures the relative step change from ideal between successive tap positions. The maximum wiper current is limited to (0.7 × VDD)/RAB.  
3 Guaranteed by design and characterization, not subject to production test.  
4 INL and DNL are measured at VWB with the RDAC configured as a potentiometer divider similar to a voltage output DAC. VA = VDD and VB = 0 V. DNL specification limits  
of 1 LSB maximum are guaranteed monotonic operating conditions.  
5 Resistor Terminal A, Resistor Terminal B, and Resistor Terminal W have no limitations on polarity with respect to each other. Dual-supply operation enables ground  
referenced bipolar signal adjustment.  
6 Different from operating current; supply current for EEPROM program lasts approximately 30 ms.  
7 Different from operating current; supply current for EEPROM read lasts approximately 20 µs.  
8 PDISS is calculated from (IDD × VDD) + (ILOGIC × VLOGIC).  
9 All dynamic characteristics use VDD/VSS  
= 2.5 V, and VLOGIC = 2.5 V.  
10 Endurance is qualified to 100,000 cycles per JEDEC Standard 22, Method A117 and measured at −40°C to +125°C.  
11 Retention lifetime equivalent at junction temperature (TJ) = 125°C per JEDEC Standard 22, Method A117. Retention lifetime, based on an activation energy of 1 eV,  
derates with junction temperature in the Flash/EE memory.  
Rev. A | Page 6 of 36  
 
Data Sheet  
AD5124/AD5144/AD5144A  
ELECTRICAL CHARACTERISTICSAD5144 AND AD5144A  
VDD = 2.3 V to 5.5 V, VSS = 0 V; VDD = 2.25 V to 2.75 V, VSS = −2.25 V to −2.75 V; VLOGIC = 1.8 V to 5.5 V, 40°C < TA < +125°C, unless  
otherwise noted.  
Table 3.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ 1 Max  
Unit  
DC CHARACTERISTICS—RHEOSTAT  
MODE (ALL RDACs)  
Resolution  
N
R-INL  
8
Bits  
Resistor Integral Nonlinearity2  
RAB = 10 kΩ  
VDD ≥ 2.7 V  
VDD < 2.7 V  
RAB = 100 kΩ  
VDD ≥ 2.7 V  
VDD < 2.7 V  
−2  
−5  
0.2  
1.5  
+2  
+5  
LSB  
LSB  
−1  
−2  
−0.5  
−8  
0.1  
0.5  
0.2  
1
+1  
+2  
+0.5  
+8  
LSB  
LSB  
LSB  
%
Resistor Differential Nonlinearity2  
Nominal Resistor Tolerance  
Resistance Temperature Coefficient3  
Wiper Resistance3  
R-DNL  
ΔRAB/RAB  
(ΔRAB/RAB)/ΔT × 106  
RW  
Code = full scale  
Code = zero scale  
RAB = 10 kΩ  
35  
ppm/°C  
55  
130  
125  
400  
RAB = 100 kΩ  
Bottom Scale or Top Scale  
RBS or RTS  
RAB = 10 kΩ  
RAB = 100 kΩ  
Code = 0xFF  
40  
60  
0.2  
80  
230  
+1  
%
Nominal Resistance Match  
RAB1/RAB2  
−1  
DC CHARACTERISTICS—POTENTIOMETER  
DIVIDER MODE (ALL RDACs)  
Integral Nonlinearity4  
INL  
RAB = 10 kΩ  
RAB = 100 kΩ  
−1  
−0.5  
−0.5  
0.2  
0.1  
0.2  
+1  
+0.5  
+0.5  
LSB  
LSB  
LSB  
Differential Nonlinearity4  
Full-Scale Error  
DNL  
VWFSE  
RAB = 10 kΩ  
RAB = 100 kΩ  
−2.5  
−1  
−0.1  
0.2  
LSB  
LSB  
+1  
Zero-Scale Error  
VWZSE  
RAB = 10 kΩ  
RAB = 100 kΩ  
(ΔVW/VW)/ΔT × 106 Code = half scale  
1.2  
0.5  
5
3
1
LSB  
LSB  
ppm/°C  
Voltage Divider Temperature  
Coefficient3  
Rev. A | Page 7 of 36  
 
AD5124/AD5144/AD5144A  
Data Sheet  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ 1 Max  
Unit  
RESISTOR TERMINALS  
Maximum Continuous Current  
IA, IB, and IW  
RAB = 10 kΩ  
RAB = 100 kΩ  
−6  
−1.5  
VSS  
+6  
+1.5  
VDD  
mA  
mA  
V
Terminal Voltage Range5  
Capacitance A, Capacitance B3  
CA, CB  
f = 1 MHz, measured to GND,  
code = half scale  
RAB = 10 kΩ  
RAB = 100 kΩ  
25  
12  
pF  
pF  
Capacitance W3  
CW  
f = 1 MHz, measured to GND,  
code = half scale  
RAB = 10 kΩ  
RAB = 100 kΩ  
VA = VW = VB  
12  
5
15  
pF  
pF  
nA  
Common-Mode Leakage Current3  
−500  
+500  
DIGITAL INPUTS  
Input Logic3  
High  
VINH  
VLOGIC = 1.8 V to 2.3 V  
VLOGIC = 2.3 V to 5.5 V  
0.8 × VLOGIC  
0.7 × VLOGIC  
V
V
Low  
VINL  
VHYST  
IIN  
0.2 × VLOGIC  
1
V
V
µA  
pF  
Input Hysteresis3  
Input Current3  
0.1 × VLOGIC  
Input Capacitance3  
DIGITAL OUTPUTS  
Output High Voltage3  
Output Low Voltage3  
CIN  
5
VOH  
VOL  
RPULL-UP = 2.2 kΩ to VLOGIC  
ISINK = 3 mA  
ISINK = 6 mA, VLOGIC > 2.3 V  
VLOGIC  
V
V
V
µA  
pF  
0.4  
0.6  
+1  
Three-State Leakage Current  
Three-State Output Capacitance  
POWER SUPPLIES  
−1  
2
Single-Supply Power Range  
Dual-Supply Power Range  
Logic Supply Range  
VSS = GND  
2.3  
2.25  
1.8  
5.5  
V
V
V
V
2.75  
VDD  
VDD  
Single supply, VSS = GND  
Dual supply, VSS < GND  
VIH = VLOGIC or VIL = GND  
VDD = 5.5 V  
2.25  
Positive Supply Current  
IDD  
0.7  
400  
−0.7  
2
320  
1
5.5  
µA  
nA  
µA  
mA  
µA  
nA  
µW  
dB  
VDD = 2.3 V  
Negative Supply Current  
EEPROM Store Current3, 6  
EEPROM Read Current3, 7  
Logic Supply Current  
Power Dissipation8  
Power Supply Rejection Ratio  
ISS  
VIH = VLOGIC or VIL = GND  
VIH = VLOGIC or VIL = GND  
VIH = VLOGIC or VIL = GND  
VIH = VLOGIC or VIL = GND  
VIH = VLOGIC or VIL = GND  
−5.5  
IDD_EEPROM_STORE  
IDD_EEPROM_READ  
ILOGIC  
PDISS  
PSRR  
120  
−60  
3.5  
−66  
∆VDD/∆VSS = VDD 10%,  
code = full scale  
Rev. A | Page 8 of 36  
Data Sheet  
AD5124/AD5144/AD5144A  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ 1 Max  
Unit  
DYNAMIC CHARACTERISTICS9  
Bandwidth  
BW  
−3 dB  
RAB = 10 kΩ  
RAB = 100 kΩ  
3
0.43  
MHz  
MHz  
Total Harmonic Distortion  
Resistor Noise Density  
VW Settling Time  
THD  
eN_WB  
tS  
VDD/VSS = 2.5 V, VA = 1 V rms,  
VB = 0 V, f = 1 kHz  
RAB = 10 kΩ  
RAB = 100 kΩ  
Code = half scale, TA = 25°C,  
f = 10 kHz  
RAB = 10 kΩ  
RAB = 100 kΩ  
VA = 5 V, VB = 0 V, from  
zero scale to full scale,  
0.5 LSB error band  
−80  
−90  
dB  
dB  
7
20  
nV/√Hz  
nV/√Hz  
RAB = 10 kΩ  
RAB = 100 kΩ  
RAB = 10 kΩ  
RAB = 100 kΩ  
2
µs  
µs  
12  
10  
25  
−90  
1
Crosstalk (CW1/CW2)  
CT  
nV-sec  
nV-sec  
dB  
Mcycles  
kcycles  
Years  
Analog Crosstalk  
Endurance10  
CTA  
TA = 25°C  
100  
Data Retention11  
50  
1 Typical values represent average readings at 25°C, VDD = 5 V, VSS = 0 V, and VLOGIC = 5 V.  
2 Resistor integral nonlinearity error (R-INL) is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper  
positions. R-DNL measures the relative step change from ideal between successive tap positions. The maximum wiper current is limited to (0.7 × VDD)/RAB.  
3 Guaranteed by design and characterization, not subject to production test.  
4 INL and DNL are measured at VWB with the RDAC configured as a potentiometer divider similar to a voltage output DAC. VA = VDD and VB = 0 V. DNL specification limits  
of 1 LSB maximum are guaranteed monotonic operating conditions.  
5 Resistor Terminal A, Resistor Terminal B, and Resistor Terminal W have no limitations on polarity with respect to each other. Dual-supply operation enables ground  
referenced bipolar signal adjustment.  
6 Different from operating current; supply current for EEPROM program lasts approximately 30 ms.  
7 Different from operating current; supply current for EEPROM read lasts approximately 20 µs.  
8 PDISS is calculated from (IDD × VDD) + (ILOGIC × VLOGIC).  
9 All dynamic characteristics use VDD/VSS  
= 2.5 V, and VLOGIC = 2.5 V.  
10 Endurance is qualified to 100,000 cycles per JEDEC Standard 22, Method A117 and measured at −40°C to +125°C.  
11 Retention lifetime equivalent at junction temperature (TJ) = 125°C per JEDEC Standard 22, Method A117. Retention lifetime, based on an activation energy of 1 eV,  
derates with junction temperature in the Flash/EE memory.  
Rev. A | Page 9 of 36  
 
AD5124/AD5144/AD5144A  
Data Sheet  
INTERFACE TIMING SPECIFICATIONS  
VLOGIC = 1.8 V to 5.5 V; all specifications TMIN to TMAX, unless otherwise noted.  
Table 4. SPI Interface  
Parameter1  
Test Conditions/Comments  
Min  
20  
30  
10  
15  
10  
15  
10  
5
Typ  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Description  
t1  
VLOGIC > 1.8 V  
VLOGIC = 1.8 V  
VLOGIC > 1.8 V  
VLOGIC = 1.8 V  
VLOGIC > 1.8 V  
VLOGIC = 1.8 V  
SCLK cycle time  
t2  
t3  
SCLK high time  
SCLK low time  
t4  
t5  
t6  
t7  
SYNC-to-SCLK falling edge setup time  
Data setup time  
Data hold time  
SYNC rising edge to next SCLK fall ignored  
Minimum SYNC high time  
5
10  
20  
2
t8  
3
t9  
50  
SCLK rising edge to SDO valid  
SYNC rising edge to SDO pin disable  
t10  
500  
1 All input signals are specified with tr = tf = 1 ns/V (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2.  
2 Refer to t  
t
for memory commands operations (see Table 6).  
EEPROM_PROGRAM and  
EEPROM_READBACK  
3 RPULL_UP = 2.2 kΩ to VDD with a capacitance load of 168 pF.  
Table 5. I2C Interface  
Parameter1 Test Conditions/Comments  
Min  
Typ Max Unit Description  
2
fSCL  
t1  
Standard mode  
Fast mode  
Standard mode  
Fast mode  
100  
400  
kHz  
kHz  
µs  
µs  
µs  
µs  
ns  
ns  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
Serial clock frequency  
4.0  
0.6  
4.7  
1.3  
250  
100  
0
SCL high time, tHIGH  
t2  
Standard mode  
Fast mode  
SCL low time, tLOW  
t3  
Standard mode  
Fast mode  
Data setup time, tSU; DAT  
t4  
Standard mode  
Fast mode  
3.45  
0.9  
Data hold time, tHD; DAT  
0
t5  
Standard mode  
Fast mode  
4.7  
0.6  
4
0.6  
4.7  
1.3  
4
Setup time for a repeated start condition, tSU; STA  
Hold time (repeated) for a start condition, tHD; STA  
Bus free time between a stop and a start condition, tBUF  
Setup time for a stop condition, tSU; STO  
Rise time of SDA signal, tRDA  
t6  
Standard mode  
Fast mode  
t7  
Standard mode  
Fast mode  
t8  
Standard mode  
Fast mode  
0.6  
t9  
Standard mode  
Fast mode  
1000 ns  
20 + 0.1 CL  
20 + 0.1 CL  
20 + 0.1 CL  
300  
300  
300  
ns  
ns  
ns  
t10  
t11  
t11A  
Standard mode  
Fast mode  
Standard mode  
Fast mode  
Fall time of SDA signal, tFDA  
1000 ns  
300 ns  
1000 ns  
Rise time of SCL signal, tRCL  
Standard mode  
Rise time of SCL signal after a repeated start condition  
and after an acknowledge bit, tRCL1 (not shown in Figure 5)  
Fast mode  
20 + 0.1 CL  
300  
ns  
Rev. A | Page 10 of 36  
 
 
Data Sheet  
AD5124/AD5144/AD5144A  
Parameter1 Test Conditions/Comments  
Min  
Typ Max Unit Description  
t12  
Standard mode  
Fast mode  
Fast mode  
300  
300  
50  
ns  
ns  
ns  
Fall time of SCL signal, tFCL  
20 + 0.1 CL  
0
3
tSP  
Pulse width of suppressed spike  
1 Maximum bus capacitance is limited to 400 pF.  
2 The SDA and SCL timing is measured with the input filters enabled. Switching off the input filters improves the transfer rate; however, it has a negative effect on the  
EMC behavior of the part.  
3 Input filtering on the SCL and SDA inputs suppresses noise spikes that are less than 50 ns for fast mode.  
Table 6. Control Pins  
Parameter  
Min  
1
Typ  
Max  
Unit  
μs  
Description  
t1  
End command to LRDAC falling edge  
Minimum LRDAC low time  
t2  
50  
0.1  
ns  
t3  
10  
50  
30  
75  
μs  
RESET low time  
1
tEEPROM_PROGRAM  
15  
7
ms  
μs  
Memory program time (not shown in Figure 8)  
Memory readback time (not shown in Figure 8)  
Start-up time (not shown in Figure 8)  
Reset EEPROM restore time (not shown in Figure 8)  
tEEPROM_READBACK  
2
tPOWER_UP  
μs  
μs  
tRESET  
30  
1 EEPROM program time depends on the temperature and EEPROM write cycles. Higher timing is expected at lower temperatures and higher write cycles.  
2 Maximum time after VDD − VSS is equal to 2.3 V.  
SHIFT REGISTER AND TIMING DIAGRAMS  
DB15 (MSB)  
DB8  
A0  
DB7  
D7  
DB0 (LSB)  
D0  
D1  
A1  
D6  
D5  
D4  
D3  
C3  
C2  
C1  
C0  
A3  
A2  
D2  
DATA BITS  
CONTROL BITS  
ADDRESS BITS  
Figure 4. Input Shift Register Contents  
t11  
t12  
t6  
t8  
t2  
SCL  
SDA  
t5  
t1  
t6  
t10  
t9  
t4  
t3  
t7  
P
S
S
P
Figure 5. I2C Serial Interface Timing Diagram (Typical Write Sequence)  
Rev. A | Page 11 of 36  
 
 
 
 
 
 
AD5124/AD5144/AD5144A  
Data Sheet  
t4  
t1  
t2  
t7  
SCLK  
t3  
t8  
SYNC  
SDI  
t5  
t6  
C3  
C2  
C1  
C0  
D7  
D6  
D5  
D2  
D1  
D0  
t9  
t10  
SDO  
C3*  
C2*  
C1*  
C0*  
D7*  
D6*  
D5*  
D2*  
D1*  
D0*  
*PREVIOUS COMMAND RECEIVED.  
Figure 6. SPI Serial Interface Timing Diagram, CPOL = 0, CPHA = 1  
t1  
t2  
t7  
t4  
SCLK  
t3  
t8  
SYNC  
t5  
t6  
SDI  
C3  
C2  
C1  
C0  
D7  
D6  
D5  
D2  
D1  
D0  
t9  
t10  
SDO  
C3*  
C2*  
C1*  
C0*  
D7*  
D6*  
D5*  
D2*  
D1*  
D0*  
*PREVIOUS COMMAND RECEIVED.  
Figure 7. SPI Serial Interface Timing Diagram, CPOL = 1, CPHA = 0  
SCLK  
SPI INTERFACE  
SYNC  
SCL  
2
I C INTERFACE  
SDA  
P
t2  
t1  
LRDAC  
RESET  
t3  
Figure 8. Control Pins Timing Diagram  
Rev. A | Page 12 of 36  
 
 
 
Data Sheet  
AD5124/AD5144/AD5144A  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 7.  
Parameter  
VDD to GND  
VSS to GND  
VDD to VSS  
Rating  
−0.3 V to +7.0 V  
+0.3 V to −7.0 V  
7 V  
VLOGIC to GND  
−0.3 V to VDD + 0.3 V or  
THERMAL RESISTANCE  
+7.0 V (whichever is less)  
VA, VW, VB to GND  
IA, IW, IB  
VSS − 0.3 V, VDD + 0.3 V  
θJA is defined by the JEDEC JESD51 standard, and the value is  
dependent on the test board and test environment.  
Pulsed1  
Table 8. Thermal Resistance  
Frequency > 10 kHz  
RAW = 10 kΩ  
RAW = 100 kΩ  
Frequency ≤ 10 kHz  
RAW = 10 kΩ  
RAW = 100 kΩ  
6 mA/d2  
1.5 mA/d2  
Package Type  
24-Lead LFCSP  
20-Lead TSSOP  
θJA  
θJC  
3
45  
Unit  
°C/W  
°C/W  
351  
1431  
6 mA/√d2  
1.5 mA/√d2  
1 JEDEC 2S2P test board, still air (0 m/sec airflow).  
Digital Inputs  
−0.3 V to VLOGIC + 0.3 V or  
+7 V (whichever is less)  
−40°C to +125°C  
150°C  
ESD CAUTION  
3
Operating Temperature Range, TA  
Maximum Junction Temperature,  
TJ Maximum  
Storage Temperature Range  
Reflow Soldering  
Peak Temperature  
Time at Peak Temperature  
Package Power Dissipation  
ESD4  
−65°C to +150°C  
260°C  
20 sec to 40 sec  
(TJ max − TA)/θJA  
4 kV  
FICDM  
1.5 kV  
1 Maximum terminal current is bounded by the maximum current handling of  
the switches, maximum power dissipation of the package, and maximum  
applied voltage across any two of the A, B, and W terminals at a given  
resistance.  
2 d = pulse duty factor.  
3 Includes programming of EEPROM memory.  
4 Human body model (HBM) classification.  
Rev. A | Page 13 of 36  
 
 
 
 
 
 
 
 
 
AD5124/AD5144/AD5144A  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
SYNC  
GND  
A1  
SDO  
SDI  
3
SCLK  
4
W1  
B1  
V
LOGIC  
DD  
AD5124/  
AD5144  
5
V
TOP VIEW  
6
A3  
B4  
W4  
A4  
B2  
W2  
(Not to Scale)  
7
W3  
B3  
8
9
V
SS  
10  
A2  
Figure 9. 20-Lead TSSOP, SPI Interface Pin Configuration (AD5124/AD5144)  
Table 9. 20-Lead TSSOP, SPI Interface Pin Function Descriptions (AD5124/AD5144)  
Pin No. Mnemonic  
Description  
1
SYNC  
GND  
A1  
Synchronization Data Input, Active Low. When SYNC returns high, data is loaded into the input shift register.  
Ground Pin, Logic Ground Reference.  
Terminal A of RDAC1. VSS ≤ VA ≤ VDD.  
2
3
4
5
W1  
B1  
Wiper Terminal of RDAC1. VSS ≤ VW ≤ VDD.  
Terminal B of RDAC1. VSS ≤ VB ≤ VDD.  
6
A3  
Terminal A of RDAC3. VSS ≤ VA ≤ VDD.  
7
8
W3  
B3  
Wiper Terminal of RDAC3. VSS ≤ VW ≤ VDD.  
Terminal B of RDAC3. VSS ≤ VB ≤ VDD.  
9
VSS  
A2  
W2  
B2  
A4  
Negative Power Supply. Decouple this pin with 0.1 µF ceramic capacitors and 10 µF capacitors.  
Terminal A of RDAC2. VSS ≤ VA ≤ VDD.  
Wiper Terminal of RDAC2. VSS ≤ VW ≤ VDD.  
Terminal B of RDAC2. VSS ≤ VB ≤ VDD.  
Terminal A of RDAC4. VSS ≤ VA ≤ VDD.  
Wiper Terminal of RDAC4. VSS ≤ VW ≤ VDD.  
Terminal B of RDAC4. VSS ≤ VB ≤ VDD.  
Positive Power Supply. Decouple this pin with 0.1 µF ceramic capacitors and 10 µF capacitors.  
Logic Power Supply; 1.8 V to VDD. Decouple this pin with 0.1 µF ceramic capacitors and 10 µF capacitors.  
Serial Clock Line. Data is clocked in at the logic low transition.  
Serial Data Input.  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
W4  
B4  
VDD  
VLOGIC  
SCLK  
SDI  
SDO  
Serial Data Output. This is an open-drain output pin, and it needs an external pull-up resistor.  
Rev. A | Page 14 of 36  
 
Data Sheet  
AD5124/AD5144/AD5144A  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
RESET  
GND  
A1  
ADDR  
SDA  
SCL  
3
4
W1  
V
LOGIC  
DD  
AD5144A  
5
B1  
V
TOP VIEW  
(Not to Scale)  
6
A3  
B4  
W4  
A4  
B2  
W2  
7
W3  
8
B3  
9
V
SS  
10  
A2  
Figure 10. 20-Lead TSSOP, I2C Interface Pin Configuration (AD5144A)  
Table 10. 20-Lead TSSOP, I2C Interface Pin Function Descriptions (AD5144A)  
Pin No. Mnemonic Description  
1
RESET  
Hardware Reset Pin. Refresh the RDAC registers from EEPROM. RESET is activated at the logic low. If this pin is not  
used, tie RESET to VLOGIC  
.
2
3
GND  
A1  
Ground Pin, Logic Ground Reference.  
Terminal A of RDAC1. VSS ≤ VA ≤ VDD.  
4
5
W1  
B1  
Wiper Terminal of RDAC1. VSS ≤ VW ≤ VDD.  
Terminal B of RDAC1. VSS ≤ VB ≤ VDD.  
6
A3  
Terminal A of RDAC3. VSS ≤ VA ≤ VDD.  
7
8
W3  
B3  
Wiper Terminal of RDAC3. VSS ≤ VW ≤ VDD.  
Terminal B of RDAC3. VSS ≤ VB ≤ VDD.  
9
VSS  
A2  
W2  
B2  
A4  
Negative Power Supply. Decouple this pin with 0.1 µF ceramic capacitors and 10 µF capacitors.  
Terminal A of RDAC2. VSS ≤ VA ≤ VDD.  
Wiper Terminal of RDAC2. VSS ≤ VW ≤ VDD.  
Terminal B of RDAC2. VSS ≤ VB ≤ VDD.  
Terminal A of RDAC4. VSS ≤ VA ≤ VDD.  
Wiper Terminal of RDAC4. VSS ≤ VW ≤ VDD.  
Terminal B of RDAC4. VSS ≤ VB ≤ VDD.  
Positive Power Supply. Decouple this pin with 0.1 µF ceramic capacitors and 10 µF capacitors.  
Logic Power Supply; 1.8 V to VDD. Decouple this pin with 0.1 µF ceramic capacitors and 10 µF capacitors.  
Serial Clock Line. Data is clocked in at the logic low transition.  
Serial Data Input/Output.  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
W4  
B4  
VDD  
VLOGIC  
SCL  
SDA  
ADDR  
Programmable Address for Multiple Package Decoding.  
Rev. A | Page 15 of 36  
AD5124/AD5144/AD5144A  
Data Sheet  
PIN 1  
INDICATOR  
GND  
A1  
W1  
B1  
A3  
W3  
1
2
3
4
5
6
18 DIS  
17 SCL/SCLK  
AD5124/  
AD5144  
16 V  
LOGIC  
15 V  
DD  
TOP VIEW  
14 B4  
13 W4  
(Not to Scale)  
NOTES  
1. INTERNALLY CONNECT THE  
EXPOSED PAD TO V  
.
SS  
Figure 11. 24-Lead LFCSP Pin Configuration (AD5124/AD5144)  
Table 11. 24-Lead LFCSP Pin Function Descriptions (AD5124/AD5144)  
Pin No. Mnemonic  
Description  
1
2
GND  
A1  
Ground Pin, Logic Ground Reference.  
Terminal A of RDAC1. VSS ≤ VA ≤ VDD.  
3
4
W1  
B1  
Wiper Terminal of RDAC1. VSS ≤ VW ≤ VDD.  
Terminal B of RDAC1. VSS ≤ VB ≤ VDD.  
5
A3  
Terminal A of RDAC3. VSS ≤ VA ≤ VDD.  
6
7
W3  
B3  
Wiper Terminal of RDAC3. VSS ≤ VW ≤ VDD.  
Terminal B of RDAC3. VSS ≤ VB ≤ VDD.  
8
9
VSS  
A2  
Negative Power Supply. Decouple this pin with 0.1 µF ceramic capacitors and 10 µF capacitors.  
Terminal A of RDAC2. VSS ≤ VA ≤ VDD.  
10  
11  
12  
13  
14  
15  
16  
17  
W2  
B2  
A4  
W4  
B4  
VDD  
VLOGIC  
SCL/SCLK  
Wiper Terminal of RDAC2. VSS ≤ VW ≤ VDD.  
Terminal B of RDAC2. VSS ≤ VB ≤ VDD.  
Terminal A of RDAC4. VSS ≤ VA ≤ VDD.  
Wiper Terminal of RDAC4. VSS ≤ VW ≤ VDD.  
Terminal B of RDAC4. VSS ≤ VB ≤ VDD.  
Positive Power Supply. Decouple this pin with 0.1 µF ceramic capacitors and 10 µF capacitors.  
Logic Power Supply; 1.8 V to VDD. Decouple this pin with 0.1 µF ceramic capacitors and 10 µF capacitors.  
I2C Serial Clock Line (SCL). Data is clocked in at the logic low transition.  
SPI Serial Clock Line (SCLK). Data is clocked in at the logic low transition.  
18  
19  
DIS  
Digital Interface Select (SPI/I2C Select). SPI when DIS = 0 (GND), and I2C when DIS = 1 (VLOGIC). This pin cannot be  
left floating.  
Serial Data Input/Output (SDA), When DIS = 1.  
Serial Data Input (SDI), When DIS = 0.  
SDA/SDI  
20  
WP  
Optional Write Protect. This pin prevents any changes to the present RDAC and EEPROM content, except when  
reloading the content of the EEPROM into the RDAC register. WP is activated at logic low. If this pin is not used,  
tie WP to VLOGIC  
.
21  
22  
ADDR1/SDO  
ADDR0/SYNC  
Programmable Address (ADDR1) for Multiple Package Decoding, When DIS = 1.  
Serial Data Output (SDO). Open-drain output, needs an external pull-up resistor, when DIS = 0.  
Programmable Address (ADDR0) for Multiple Package Decoding, When DIS = 1.  
Synchronization Data Input, When DIS = 0. This pin is active low. When SYNC returns high, data is loaded into  
the input shift register.  
23  
24  
LRDAC  
Load RDAC. Transfers the contents of the input registers to their respective RDAC registers when their  
associated input registers were previously loaded using Command 2 (see Table 20). This allows simultaneous  
update of all RDAC registers. LRDAC is activated at the high-to-low transition. If not used, tie LRDAC to VLOGIC  
Hardware Reset Pin. Refresh the RDAC registers from EEPROM. RESET is activated at the logic low. If not used,  
tie RESET to VLOGIC  
Internally Connect the Exposed Pad to VSS.  
.
RESET  
EPAD  
.
Rev. A | Page 16 of 36  
Data Sheet  
AD5124/AD5144/AD5144A  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.5  
0.2  
0.1  
10kΩ, +125°C  
10kΩ, +25°C  
0.4  
10kΩ, –40°C  
100kΩ, +125°C  
100kΩ, +25°C  
0.3  
0
100kΩ, –40°C  
0.2  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
10kΩ, +125°C  
10kΩ, +25°C  
10kΩ, –40°C  
100kΩ, +125°C  
100kΩ, +25°C  
100kΩ, –40°C  
0
100  
200  
0
100  
200  
CODE (Decimal)  
CODE (Decimal)  
Figure 12. R-INL vs. Code (AD5144/AD5144A)  
Figure 15. R-DNL vs. Code (AD5144/AD5144A)  
0.20  
0.10  
0.05  
0.15  
0.10  
0
0.05  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.30  
0
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
10kΩ, +125°C  
10kΩ, +25°C  
10kΩ, –40°C  
100kΩ, +125°C  
100kΩ, +25°C  
100kΩ, –40°C  
10kΩ, +125°C  
10kΩ, +25°C  
10kΩ, –40°C  
100kΩ, +125°C  
100kΩ, +25°C  
100kΩ, –40°C  
0
50  
100  
0
50  
100  
CODE (Decimal)  
CODE (Decimal)  
Figure 13. R-INL vs. Code (AD5124)  
Figure 16. R-DNL vs. Code (AD5124)  
0.3  
0.2  
0.1  
0
0.10  
0.05  
10kΩ, –40°C  
10kΩ, +25°C  
10kΩ, +125°C  
100kΩ, –40°C  
100kΩ, +25°C  
100kΩ, +125°C  
0
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.30  
–0.1  
–0.2  
10kΩ, –40°C  
10kΩ, +25°C  
10kΩ, +125°C  
100kΩ, –40°C  
100kΩ, +25°C  
100kΩ, +125°C  
–0.3  
0
0
100  
200  
100  
200  
CODE (Decimal)  
CODE (Decimal)  
Figure 17. DNL vs. Code (AD5144/AD5144A)  
Figure 14. INL vs. Code (AD5144/AD5144A)  
Rev. A | Page 17 of 36  
 
AD5124/AD5144/AD5144A  
Data Sheet  
0.15  
0.10  
0.05  
0
0.06  
0.04  
10kΩ, –40°C  
10kΩ, +25°C  
10kΩ, +125°C  
100kΩ, –40°C  
100kΩ, +25°C  
100kΩ, +125°C  
10kΩ, –40°C  
10kΩ, +25°C  
10kΩ, +125°C  
100kΩ, –40°C  
100kΩ, +25°C  
100kΩ, +125°C  
0.02  
0
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–0.12  
–0.14  
–0.05  
–0.10  
–0.15  
0
50  
100  
0
50  
100  
CODE (Decimal)  
CODE (Decimal)  
Figure 18. INL vs. Code (AD5124)  
Figure 21. DNL vs. Code (AD5124)  
450  
400  
350  
300  
250  
200  
150  
100  
50  
450  
100kΩ  
10kΩ  
10kΩ  
100kΩ  
400  
350  
300  
250  
200  
150  
100  
50  
0
0
–50  
–50  
AD5144/  
AD5144/  
0
0
50  
25  
100  
50  
150  
75  
200  
100  
255  
127  
AD5144A  
0
0
50  
25  
100  
50  
150  
75  
200  
100  
255  
127  
AD5144A  
AD5124  
AD5124  
CODE (Decimal)  
CODE (Decimal)  
Figure 19. Potentiometer Mode Temperature Coefficient ((ΔVW/VW)/ΔT × 106)  
vs. Code  
Figure 22. Rheostat Mode Temperature Coefficient ((ΔRWB/RWB)/ΔT × 106)  
vs. Code  
800  
1200  
I
I
I
, V = 2.3V  
I
I
I
, V  
= 2.3V  
= 3.3V  
= 5V  
V
V
= V  
LOGIC  
= GND  
2
DD DD  
LOGIC LOGIC  
DD  
SS  
I C, V  
= 1.8V  
= 2.3V  
= 3.3V  
= 5V  
LOGIC  
LOGIC  
LOGIC  
LOGIC  
LOGIC  
LOGIC  
LOGIC  
LOGIC  
LOGIC  
LOGIC  
2
, V = 3.3V  
, V  
I C, V  
DD DD  
LOGIC LOGIC  
2
700  
600  
500  
400  
300  
200  
100  
0
, V = 5V  
, V  
I C, V  
DD DD  
LOGIC LOGIC  
2
I C, V  
1000  
800  
600  
400  
200  
0
2
I C, V  
= 5.5V  
= 1.8V  
= 2.3V  
= 3.3V  
= 5V  
SPI, V  
SPI, V  
SPI, V  
SPI, V  
SPI, V  
= 5.5V  
–40  
10  
60  
TEMPERATURE (°C)  
110 125  
0
1
2
3
4
5
INPUT VOLATGE (V)  
Figure 20. Supply Current vs. Temperature  
Figure 23. ILOGIC Current vs. Digital Input Voltage  
Rev. A | Page 18 of 36  
Data Sheet  
AD5124/AD5144/AD5144A  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
0
0x80 (0x40)  
0x40 (0x20)  
0x20 (0x10)  
0x10 (0x08)  
0x8 (0x04)  
0x80 (0x40)  
0x40 (0x20)  
–10  
0x20 (0x10)  
–20  
0x4 (0x02)  
0x2 (0x01)  
0x1 (0x00)  
0x10 (0x08)  
0x8 (0x04)  
–30  
0x4 (0x02)  
0x00  
0x2 (0x01)  
0x1 (0x00)  
–40  
0x00  
–50  
AD5144/AD5144A (AD5124)  
AD5144/AD5144A (AD5124)  
–60  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 24. 10 kΩ Gain vs. Frequency vs. Code  
Figure 27. 100 kΩ Gain vs. Frequency vs. Code  
–40  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
10kΩ  
100kΩ  
10kΩ  
V
/V = ±2.5V  
= 1V rms  
= GND  
DD SS  
100kΩ  
V
V
A
B
–50  
–60  
CODE = HALF SCALE  
NOISE FILTER = 22kHz  
–70  
–80  
V
f
/V = ±2.5V  
DD SS  
–90  
= 1kHz  
CODE = HALF SCALE  
NOISE FILTER = 22kHz  
IN  
–100  
20  
200  
2k  
FREQUENCY (Hz)  
20k  
200k  
0.001  
0.01  
0.1  
1
VOLTAGE (V rms)  
Figure 25. Total Harmonic Distortion Plus Noise (THD + N) vs. Frequency  
Figure 28. Total Harmonic Distortion Plus Noise (THD + N) vs. Amplitude  
20  
10  
0
V
R
/V = ±2.5V  
DD SS  
= 10kΩ  
AB  
0
–20  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–40  
–60  
–80  
QUARTER SCALE  
–80  
QUARTER SCALE  
MIDSCALE  
V
R
/V = ±2.5V  
MIDSCALE  
DD SS  
FULL-SCALE  
= 100kΩ  
FULL-SCALE  
AB  
–100  
–90  
10  
10  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 26. Normalized Phase Flatness vs. Frequency, RAB = 10 kΩ  
Figure 29. Normalized Phase Flatness vs. Frequency, RAB = 100 kΩ  
Rev. A | Page 19 of 36  
AD5124/AD5144/AD5144A  
Data Sheet  
600  
500  
400  
300  
200  
100  
0
0.0025  
0.0020  
0.0015  
0.0010  
0.0005  
0
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
100kΩ, V  
100kΩ, V  
100kΩ, V  
100kΩ, V  
100kΩ, V  
100kΩ, V  
= 2.3V  
= 2.7V  
= 3V  
DD  
DD  
DD  
DD  
DD  
DD  
= 3.6V  
= 5V  
= 5.5V  
10kΩ, V  
10kΩ, V  
10kΩ, V  
10kΩ, V  
10kΩ, V  
10kΩ, V  
= 2.3V  
= 2.7V  
= 3V  
DD  
DD  
DD  
DD  
DD  
DD  
= 3.6V  
= 5V  
= 5.5V  
–600 –500 –400 –300 –200 –100  
0
100 200 300 400 500 600  
0
1
2
3
4
5
RESISTOR DRIFT (ppm)  
VOLTAGE (V)  
Figure 33. Resistor Lifetime Drift  
Figure 30. Incremental Wiper On Resistance vs. Positive Power Supply (VDD  
)
0
10  
10kΩ  
V
V
= 5V ±10% AC  
10k+ 0pF  
DD  
SS  
100kΩ  
= GND, V = 4V, V = GND  
10k+ 75pF  
A
B
9
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
10k+ 150pF  
10k+ 250pF  
100k+ 0pF  
100k+ 75pF  
100k+ 150pF  
100k+ 250pF  
CODE = MIDSCALE  
8
7
6
5
4
3
2
1
0
AD5144/  
AD5144A  
10  
100  
1k  
10k  
100k  
1M  
10M  
0
0
20  
10  
40  
20  
60  
30  
80  
40  
100  
50  
120  
FREQUENCY (Hz)  
60 AD5124  
CODE (Decimal)  
Figure 34. Power Supply Rejection Ratio (PSRR) vs. Frequency  
Figure 31. Maximum Bandwidth vs. Code vs. Net Capacitance  
0.8  
0.020  
0x80 TO 0x7F, 100kΩ  
V
V
V
/V = ±2.5V  
DD SS  
0x80 TO 0x7F, 10kΩ  
= V  
A
B
DD  
SS  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.015  
0.010  
0.005  
0
= V  
–0.005  
–0.010  
–0.015  
–0.020  
V
V
V
/V = ±2.5V  
DD SS  
= V  
= V  
A
DD  
B
SS  
CODE = HALF SCALE  
–0.1  
0
5
10  
15  
0
500  
1000  
1500  
2000  
TIME (µs)  
TIME (ns)  
Figure 32. Maximum Transition Glitch  
Figure 35. Digital Feedthrough  
Rev. A | Page 20 of 36  
Data Sheet  
AD5124/AD5144/AD5144A  
0
7
6
5
4
3
2
1
0
10kΩ  
SHUTDOWN MODE ENABLED  
100kΩ  
–20  
–40  
–60  
–80  
10kΩ  
–100  
100kΩ  
–120  
AD5144/  
10  
100  
1k  
10k  
100k  
1M  
10M  
0
0
50  
25  
100  
50  
150  
75  
200  
100  
250  
125  
AD5144A  
AD5124  
FREQUENCY (Hz)  
CODE (Decimal)  
Figure 36. Shutdown Isolation vs. Frequency  
Figure 37. Theoretical Maximum Current vs. Code  
Rev. A | Page 21 of 36  
AD5124/AD5144/AD5144A  
Data Sheet  
TEST CIRCUITS  
Figure 38 to Figure 42 define the test conditions used in the Specifications section.  
NC  
DUT  
A
V
I
A
W
V+ = V ±10%  
DD  
W
V
MS  
V
A
B
PSRR (dB) = 20 LOG  
DD  
)
(
V  
B
W
DD  
V+  
~
V
V  
%
MS  
MS  
PSS (%/%) =  
V
MS  
V  
%
DD  
NC = NO CONNECT  
Figure 41. Power Supply Sensitivity and  
Figure 38. Resistor Integral Nonlinearity Error (Rheostat Operation; R-INL, R-DNL)  
Power Supply Rejection Ratio (PSS and PSRR)  
0.1V  
R
=
SW  
I
DUT  
B
SW  
CODE = 0x00  
W
+
DUT  
V+ = V  
DD  
1LSB = V+/2  
0.1V  
I
SW  
N
A
W
V+  
V
SS  
TO V  
DD  
B
A = NC  
V
MS  
Figure 39. Potentiometer Divider Nonlinearity Error (INL, DNL)  
Figure 42. Incremental On Resistance  
NC  
DUT  
A
W
I
= V /R  
W DD NOMINAL  
V
W
B
V
R
= V  
/I  
MS1  
W
MS1 W  
NC = NO CONNECT  
Figure 40. Wiper Resistance  
Rev. A | Page 22 of 36  
 
 
 
Data Sheet  
AD5124/AD5144/AD5144A  
THEORY OF OPERATION  
The AD5124/AD5144/AD5144A digital programmable  
potentiometers are designed to operate as true variable resistors  
SERIAL DATA DIGITAL INTERFACE SELECTION, DIS  
The AD5124/AD5144 LFSCP provides the flexibility of a selectable  
interface. When the digital interface select (DIS) pin is tied low,  
the SPI mode is engaged. When the DIS pin is tied high, the I2C  
mode is engaged.  
for analog signals within the terminal voltage range of VSS < VTERM  
VDD. The resistor wiper position is determined by the RDAC  
register contents. The RDAC register acts as a scratchpad register  
that allows unlimited changes of resistance settings. A secondary  
register (the input register) can be used to preload the RDAC  
register data.  
<
SPI SERIAL DATA INTERFACE  
The AD5124/AD5144 contain a 4-wire, SPI-compatible digital  
SYNC  
begins by bringing the  
held low until the complete data-word is loaded from the SDI  
pin. Data is loaded in at the SCLK falling edge transition, as  
shown in Figure 6. When  
interface (SDI,  
, SDO, and SCLK). The write sequence  
SYNC SYNC  
The RDAC register can be programmed with any position setting  
using the I2C or SPI interface (depending on the model). When  
a desirable wiper position is found, this value can be stored in  
the EEPROM memory. Thereafter, the wiper position is always  
restored to that position for subsequent power-ups. The storing  
of the EEPROM data takes approximately 15 ms; during this  
time, the device is locked and does not acknowledge any new  
command, preventing any changes from taking place.  
line low. The  
pin must be  
SYNC  
returns high, the serial data-  
word is decoded according to the instructions in Table 20.  
To minimize power consumption in the digital input buffers  
when the part is enabled, operate all serial interface pins close  
to the VLOGIC supply rails.  
RDAC REGISTER AND EEPROM  
SYNC  
The RDAC register directly controls the position of the digital  
potentiometer wiper. For example, when the RDAC register is  
loaded with 0x80 (AD5144/AD5144A, 256 taps), the wiper is  
connected to half scale of the variable resistor. The RDAC register  
is a standard logic register; there is no restriction on the number  
of changes allowed.  
Interruption  
In a standalone write sequence for the AD5124/AD5144,  
SYNC  
the  
instruction is decoded when  
SYNC  
line is kept low for 16 falling edges of SCLK, and the  
SYNC  
is pulled high. However, if  
line is kept low for less than 16 falling edges of SCLK,  
the  
the input shift register content is ignored, and the write sequence is  
considered invalid.  
It is possible to both write to and read from the RDAC register  
using the digital interface (see Table 14).  
SDO Pin  
The contents of the RDAC register can be stored to the EEPROM  
using Command 9 (see Table 14). Thereafter, the RDAC register  
always sets at that position for any future on-off-on power  
supply sequence. It is possible to read back data saved into the  
EEPROM with Command 3 (see Table 14).  
The serial data output pin (SDO) serves two purposes: to read back  
the contents of the control, EEPROM, RDAC, and input registers  
using Command 3 (see Table 14 and Table 20), and to connect the  
AD5124/AD5144 in daisy-chain mode.  
The SDO pin contains an internal open-drain output that needs an  
Alternatively, the EEPROM can be written to independently  
using Command 11 (see Table 20).  
SYNC  
external pull-up resistor. The SDO pin is enabled when  
is  
pulled low, and the data is clocked out of SDO on the rising  
edge of SCLK, as shown in Figure 6 and Figure 7.  
INPUT SHIFT REGISTER  
For the AD5124/AD5144/AD5144A, the input shift register is  
16 bits wide, as shown in Figure 4. The 16-bit word consists of  
four control bits, followed by four address bits and by eight  
data bits.  
If the AD5124 RDAC or EEPROM registers are read from or  
written to, the lowest data bit (Bit 0) is ignored.  
Data is loaded MSB first (Bit 15). The four control bits determine  
the function of the software command, as listed in Table 14 and  
Table 20.  
Rev. A | Page 23 of 36  
 
 
 
 
 
AD5124/AD5144/AD5144A  
Data Sheet  
Daisy-Chain Connection  
To prevent data from mislocking (for example, due to noise) the  
part includes an internal counter, if the SCLK falling edges count is  
not a multiple of 8, the part ignores the command. A valid clock  
Daisy chaining minimizes the number of port pins required from  
the controlling IC. As shown in Figure 43, the SDO pin of one  
package must be tied to the SDI pin of the next package. The clock  
period may need to be increased because of the propagation  
delay of the line between subsequent devices. When two AD5124/  
AD5144 devices are daisy chained, 32 bits of data are required.  
The first 16 bits are assigned to U2, and the second 16 bits are  
SYNC  
count is 16, 24, 32, 40, and so on. The counter resets when  
returns high.  
SYNC  
assigned to U1, as shown in Figure 44. Keep the  
until all 32 bits are clocked into their respective serial registers.  
SYNC  
pin low  
The  
pin is then pulled high to complete the operation.  
V
V
LOGIC  
R
LOGIC  
R
AD5124/  
AD5144  
AD5124/  
AD5144  
P
P
2.2k  
2.2kΩ  
SDI  
SDO  
U2  
MOSI  
SDI  
U1  
SDO  
MICROCONTROLLER  
MISO  
SCLK  
SS  
SYNC  
SCLK  
SYNC  
SCLK  
Figure 43. Daisy-Chain Configuration  
18  
SCLK  
1
2
16  
17  
32  
SYNC  
MOSI  
DB15  
DB0  
DB0  
DB15  
DB15  
DB0  
INPUT WORD FOR U2  
INPUT WORD FOR U1  
INPUT WORD FOR U2  
SDO_U1  
DB0  
DB15  
UNDEFINED  
Figure 44. Daisy-Chain Diagram  
Rev. A | Page 24 of 36  
 
 
Data Sheet  
AD5124/AD5144/AD5144A  
I2C SERIAL DATA INTERFACE  
I2C ADDRESS  
The AD5144/AD5144A have 2-wire, I2C-compatible serial  
interfaces. These devices can be connected to an I2C bus as a  
slave device, under the control of a master device. See Figure 5  
for a timing diagram of a typical write sequence.  
The AD5144/AD5144A each have two different device address  
options available (see Table 12 and Table 13).  
Table 12. 20-Lead TSSOP Device Address Selection  
ADDR  
7-Bit I2C Device Address  
0101000  
The AD5144/AD5144A support standard (100 kHz) and fast  
(400 kHz) data transfer modes. Support is not provided for  
10-bit addressing and general call addressing.  
VLOGIC  
No connect1  
0101010  
GND  
0101011  
The 2-wire serial bus protocol operates as follows:  
1 Not available in bipolar mode (VSS < 0 V) or in low voltage mode (VLOGIC = 1.8 V).  
1. The master initiates a data transfer by establishing a start  
condition, which is when a high-to-low transition on the  
SDA line occurs while SCL is high. The following byte is  
the address byte, which consists of the 7-bit slave address  
Table 13. 24-Lead LFCSP Device Address Selection  
ADDR0 Pin  
ADDR1 Pin  
7-Bit I2C Device Address  
0100000  
VLOGIC  
VLOGIC  
No connect1  
GND  
VLOGIC  
No connect1  
GND  
VLOGIC  
VLOGIC  
No connect1  
No connect1  
No connect1  
GND  
0100010  
0100011  
0101000  
0101010  
0101011  
0101100  
0101110  
W
and an R/ bit. The slave device corresponding to the  
transmitted address responds by pulling SDA low during  
the ninth clock pulse (this is called the acknowledge bit).  
At this stage, all other devices on the bus remain idle while  
the selected device waits for data to be written to, or read  
from, its shift register.  
VLOGIC  
No connect1  
GND  
W
If the R/ bit is set high, the master reads from the slave  
GND  
GND  
0101111  
W
device. However, if the R/ bit is set low, the master writes  
1 Not available in bipolar mode (VSS < 0 V) or in low voltage mode (VLOGIC = 1.8 V).  
to the slave device.  
2. Data is transmitted over the serial bus in sequences of nine  
clock pulses (eight data bits followed by an acknowledge bit).  
The transitions on the SDA line must occur during the low  
period of SCL and remain stable during the high period of SCL.  
3. When all data bits have been read from or written to, a stop  
condition is established. In write mode, the master pulls the  
SDA line high during the tenth clock pulse to establish a stop  
condition. In read mode, the master issues a no acknowledge  
for the ninth clock pulse (that is, the SDA line remains high).  
The master then brings the SDA line low before the tenth  
clock pulse, and then high again during the tenth clock pulse  
to establish a stop condition.  
Rev. A | Page 25 of 36  
 
 
 
 
 
 
AD5124/AD5144/AD5144A  
Data Sheet  
Table 14. Reduced Commands Operation Truth Table  
Control  
Bits[DB15:DB12]  
Address  
Bits[DB11:DB8]1  
Data Bits[DB7:DB0] 1  
Command  
Number  
C3 C2 C1 C0 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 Operation  
0
1
0
0
0
0
0
0
0
1
X
0
X
0
X
X
X
X
X
X
X
X
X
X
NOP: do nothing.  
A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 Write contents of serial register  
data to RDAC  
2
3
0
0
0
0
1
1
0
1
0
0
0
A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 Write contents of serial register  
data to input register  
X
A1 A0  
X
X
X
X
X
X
D1 D0 Read back contents  
D1  
0
1
D0  
1
1
Data  
EEPROM  
RDAC  
9
0
0
1
1
1
1
0
1
1
1
1
0
1
1
1
0
0
0
0
X
0
A1 A0  
A1 A0  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
1
0
X
Copy RDAC register to EEPROM  
Copy EEPROM into RDAC  
Software reset  
10  
14  
15  
0
X
X
X
A3  
A1 A0  
D0 Software shutdown  
D0  
0
1
Condition  
Normal mode  
Shutdown mode  
1 X = don’t care.  
Table 15. Reduced Address Bits Table  
A3  
A2  
A1  
X1  
0
A0  
X1  
0
Channel  
Stored Channel Memory  
Not applicable  
RDAC1  
1
0
0
0
All channels  
RDAC1  
0
0
0
1
RDAC2  
RDAC2  
0
0
1
0
RDAC3  
RDAC3  
0
0
1
1
RDAC4  
RDAC4  
1 X = don’t care.  
Rev. A | Page 26 of 36  
 
 
 
Data Sheet  
AD5124/AD5144/AD5144A  
Low Wiper Resistance Feature  
ADVANCED CONTROL MODES  
The AD5124/AD5144/AD5144A include two commands to  
reduce the wiper resistance between the terminals when the  
devices achieve full scale or zero scale. These extra positions are  
called bottom scale, BS, and top scale, TS. The resistance between  
Terminal A and Terminal W at top scale is specified as RTS.  
Similarly, the bottom scale resistance between Terminal B and  
Terminal W is specified as RBS.  
The AD5124/AD5144/AD5144A digital potentiometers include  
a set of user programming features to address the wide number of  
applications for these universal adjustment devices (see Table 20  
and Table 22).  
Key programming features include the following:  
Input register  
Linear gain setting mode  
Low wiper resistance feature  
Linear increment and decrement instructions  
6 dB increment and decrement instructions  
Burst mode (I2C only)  
The contents of the RDAC registers are unchanged by entering  
into these positions. There are three ways to exit from top scale  
and bottom scale: by using Command 12 or Command 13  
(see Table 20); by loading new data in an RDAC register, which  
includes increment/decrement operations; or by entering  
shutdown mode, Command 15 (see Table 20).  
Reset  
Shutdown mode  
Table 16 and Table 17 show the truth tables for the top scale  
position and the bottom scale position, respectively, when the  
potentiometer or linear gain setting mode is enabled.  
Input Register  
The AD5124/AD5144/AD5144A include one input register per  
RDAC register. These registers allow preloading of the value for  
the associated RDAC register. These registers can be written to  
using Command 2 and read back from using Command 3 (see  
Table 20).  
Table 16. Top Scale Truth Table  
Linear Gain Setting Mode  
Potentiometer Mode  
RAW  
RAB  
RWB  
RAW  
RWB  
RAB  
RTS  
RAB  
This feature allows a synchronous and asynchronous update of  
one or all of the RDAC registers at the same time.  
Table 17. Bottom Scale Truth Table  
Linear Gain Setting Mode  
Potentiometer Mode  
The transfer from the input register to the RDAC register is  
RAW  
RWB  
RAW  
RWB  
done asynchronously by the  
pin or synchronously by  
LRDAC  
RTS  
RBS  
RAB  
RBS  
Command 8 (see Table 20).  
Linear Increment and Decrement Instructions  
If new data is loaded into an RDAC register, this RDAC register  
automatically overwrites the associated input register.  
The increment and decrement commands (Command 4 and  
Command 5 in Table 20) are useful for linear step adjustment  
applications. These commands simplify microcontroller software  
coding by allowing the controller to send an increment or  
decrement command to the device. The adjustment can be  
individual or in a ganged potentiometer arrangement, where  
all wiper positions are changed at the same time.  
Linear Gain Setting Mode  
The patented architecture of the AD5124/AD5144/AD5144A  
allows the independent control of each string resistor, RAW, and  
RWB. To enable this feature, use Command 16 (see Table 20) to set  
Bit D2 of the control register (see Table 22).  
This mode of operation can control the potentiometer as two  
independent rheostats connected at a single point, the W terminal.  
For an increment command, executing Command 4 automatically  
moves the wiper to the next RDAC position. This command  
can be executed in a single channel or multiple channels.  
This feature enables a second input and an RDAC register per  
channel, as shown in Table 21, but the actual RDAC contents remain  
unchanged. The same operations are valid for potentiometer and  
linear gain setting modes. The EEPROM commands affect the  
R
WB resistance only. The parts restores in potentiometer mode  
after a reset or power-up.  
Rev. A | Page 27 of 36  
 
 
 
AD5124/AD5144/AD5144A  
Data Sheet  
±± dB Increment and Decrement Instructions  
Shutdown Mode  
Two programming instructions produce logarithmic taper  
increment or decrement of the wiper position control by  
an individual potentiometer or by a ganged potentiometer  
arrangement where all RDAC register positions are changed  
simultaneously. The +6 dB increment is activated by Command 6,  
and the −6 dB decrement is activated by Command 7 (see Table 20).  
For example, starting with the zero-scale position and executing  
Command 6 ten times moves the wiper in 6 dB steps to the full-  
scale position. When the wiper position is near the maximum  
setting, the last 6 dB increment instruction causes the wiper to go  
to the full-scale position (see Table 18).  
The AD5124/AD5144/AD5144A can be placed in shutdown mode  
by executing the software shutdown command, Command 15  
(see Table 20), and setting the LSB (D0) to 1. This feature places  
the RDAC in a zero power consumption state where the device  
operates in potentiometer mode, Terminal A is open circuited,  
and the wiper, Terminal W, is connected to Terminal B; however, a  
finite wiper resistance of 40 Ω is present. When the device is  
configured in linear gain setting mode, the resistor addressed,  
R
AW or RWB, is internally place at high impedance. Table 19 shows a  
truth table depending on the device operating mode. The contents  
of the RDAC register are unchanged by entering shutdown mode.  
However, all commands listed in Table 20 are supported while  
in shutdown mode. Execute Command 15 (see Table 20) and set  
the LSB (D0) to 0 to exit shutdown mode.  
Incrementing the wiper position by +6 dB essentially doubles the  
RDAC register value, whereas decrementing the wiper position  
by −6 dB halves the register value. Internally, the AD5124/  
AD5144/AD5144A use shift registers to shift the bits left and  
right to achieve a 6 dB increment or decrement. These functions  
are useful for various audio/video level adjustments, especially  
for white LED brightness settings in which human visual responses  
are more sensitive to large adjustments than to small adjustments.  
Table 19. Shutdown Mode Truth Table  
Linear Gain Setting Mode  
Potentiometer Mode  
RAW  
RWB  
RAW RWB  
High impedance High impedance High impedance RBS  
EEPROM OR RDAC REGISTER PROTECTION  
Table 18. Detailed Left Shift and Right Shift Functions for  
the 6 dB Step Increment and Decrement  
The EEPROM and RDAC registers can be protected by disabling  
any update to these registers. This can be done by using software or  
by using hardware. If these registers are protected by software,  
set Bit D0 and/or Bit D1 (see Table 22), which protects the RDAC  
and EEPROM registers independently.  
Left Shift (+6 dB/Step)  
Right Shift (−6 dB/Step)  
0000 0000  
1111 1111  
0000 0001  
0111 1111  
0000 0010  
0011 1111  
If the registers are protected by hardware, pull the  
pin low  
WP  
pin is pulled  
0000 0100  
0000 1000  
0001 0000  
0010 0000  
0100 0000  
1000 0000  
1111 1111  
0001 1111  
0000 1111  
0000 0111  
0000 0011  
0000 0001  
0000 0000  
0000 0000  
(only available in the LFCSP package). If the  
WP  
low when the part is executing a command, the protection is not  
enabled until the command is completed (only available in the  
LFCSP package).  
When RDAC is protected, the only operation allowed is to copy  
the EEPROM into the RDAC register.  
Burst Mode (I2C Only)  
LOAD RDAC INPUT REGISTER (LRDAC)  
By enabling the burst mode, multiple data bytes can be sent to  
the part consecutively. After the command byte, the part interprets  
the following consecutive bytes as data bytes for the command.  
LRDAC  
software or hardware transfers data from the input  
register to the RDAC register (and therefore updates the wiper  
position). By default, the input register has the same value as the  
RDAC register; therefore, only the input register that has been  
updated using Command 2 is updated.  
A new command can be sent by generating a repeat start or by a  
stop and start condition.  
The burst mode is activated by setting Bit D3 of the control  
register (see Table 22).  
LRDAC  
, Command 8, allows updating of a single RDAC  
register or all of the channels at once (see Table 20). This is a  
synchronous update.  
Software  
Reset  
The AD5124/AD5144/AD5144A can be reset through software  
by executing Command 14 (see Table 20) or through hardware  
LRDAC  
The hardware  
is completely asynchronous and copies  
the content of all the input registers into the associated RDAC  
registers. If a command is being executed, any transition in  
RESET  
on the low pulse of the  
pin. The reset command loads the  
RDAC register with the contents of the EEPROM and takes  
approximately 30 µs. The EEPROM is preloaded to midscale at  
the factory, and initial power-up is, accordingly, at midscale.  
LRDAC  
the  
pin is ignored by the part to avoid data corruption.  
RESET  
RESET  
Tie  
to VDD if the  
pin is not used.  
Rev. A | Page 28 of 36  
 
 
 
 
Data Sheet  
AD5124/AD5144/AD5144A  
Table 20. Advance Commands Operation Truth Table  
Control  
Bits[DB15:DB12]  
Address  
Bits[DB11:DB8]1  
Data Bits[DB7:DB0]1  
Command  
Number  
C3  
0
C2  
0
C1  
0
C0  
0
A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 Operation  
NOP: do nothing  
0
1
X
X
X
X
X
X
X
X
X
X
X
X
0
0
0
1
A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 Write contents of serial  
register data to RDAC  
2
3
0
0
0
0
1
1
0
1
A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 Write contents of serial  
register data to input  
register  
X
A2 A1 A0  
X
X
X
X
X
X
D1 D0 Read back contents  
D1  
0
0
D0  
0
1
Data  
Input register  
EEPROM  
1
0
Control  
register  
1
1
RDAC  
4
5
6
7
8
0
0
0
0
0
1
1
1
1
1
0
0
0
0
1
0
0
1
1
0
A3 A2 A1 A0  
A3 A2 A1 A0  
A3 A2 A1 A0  
A3 A2 A1 A0  
A3 A2 A1 A0  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
1
0
1
0
X
Linear RDAC increment  
Linear RDAC decrement  
+6 dB RDAC increment  
−6 dB RDAC decrement  
Copy input register to RDAC  
(software LRDAC)  
9
0
1
1
1
0
0
A1 A0  
A1 A0  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
1
0
Copy RDAC register to  
EEPROM  
10  
11  
0
1
1
0
1
0
1
0
0
0
0
0
Copy EEPROM into RDAC  
A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 Write contents of serial  
register data to EEPROM  
12  
1
0
0
1
A3 A2 A1 A0  
1
0
X
X
X
X
X
X
X
X
X
X
X
X
D0 Top scale  
D0 = 0; normal mode  
D0 = 1; shutdown mode  
D0 Bottom scale  
13  
1
0
0
1
A3 A2 A1 A0  
D0 = 1; enter  
D0 = 0; exit  
14  
15  
1
1
0
1
1
0
1
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Software reset  
A3 A2 A1 A0  
D0 Software shutdown  
D0 = 0; normal mode  
D0 = 1; device placed in  
shutdown mode  
16  
1
1
0
1
X
X
X
X
X
X
X
X
D3 D2 D1 D0 Copy serial register data to  
control register  
1 X = don’t care.  
Rev. A | Page 29 of 36  
 
 
AD5124/AD5144/AD5144A  
Data Sheet  
Table 21. Address Bits  
Potentiometer Mode  
Input Register RDAC Register  
Linear Gain Setting Mode  
Stored RDAC  
Memory  
A3  
1
0
A2  
X1  
0
A1  
X1  
0
A0  
X1  
0
Input Register  
RDAC Register  
All channels  
RDAC1  
All channels  
RDAC1  
All channels  
RWB1  
All channels  
RWB1  
Not applicable  
RDAC1  
0
0
1
0
0
0
0
1
Not applicable  
RDAC2  
Not applicable  
RDAC2  
RAW1  
RWB2  
RAW1  
RWB2  
Not applicable  
RDAC2  
0
0
1
0
0
1
1
0
Not applicable  
RDAC3  
Not applicable  
RDAC3  
RAW2  
RWB3  
RAW2  
RWB3  
Not applicable  
RDAC3  
0
0
1
0
1
1
0
1
Not applicable  
RDAC4  
Not applicable  
RDAC4  
RAW3  
RWB4  
RAW3  
RWB4  
Not applicable  
RDAC4  
0
1
1
1
Not applicable  
Not applicable  
RAW4  
RAW4  
Not applicable  
1 X = don’t care.  
Table 22. Control Register Bit Descriptions  
Bit Name  
Description  
D0  
RDAC register write protect  
0 = wiper position frozen to value in EEPROM memory  
1 = allows update of wiper position through digital interface (default)  
EEPROM program enable  
D1  
D2  
D3  
0 = EEPROM program disabled  
1 = enables device for EEPROM program (default)  
Linear setting mode/potentiometer mode  
0 = potentiometer mode (default)  
1 = linear gain setting mode  
Burst mode (I2C only)  
0 = disabled (default)  
1 = enabled (no disable after stop or repeat start condition)  
Rev. A | Page 30 of 36  
 
 
 
Data Sheet  
AD5124/AD5144/AD5144A  
RDAC ARCHITECTURE  
PROGRAMMING THE VARIABLE RESISTOR  
Rheostat Operation— 8% Resistor Tolerance  
To achieve optimum performance, Analog Devices, Inc., has  
patented the RDAC segmentation architecture for all the digital  
potentiometers. In particular, the AD5124/AD5144 employ a  
three-stage segmentation approach, as shown in Figure 45. The  
AD5124/AD5144/AD5144A wiper switch is designed with the  
transmission gate CMOS topology and with the gate voltage  
derived from VDD and VSS.  
The AD5124/AD5144/AD5144A operate in rheostat mode when  
only two terminals are used as a variable resistor. The unused  
terminal can be floating, or it can be tied to Terminal W, as shown  
in Figure 46.  
A
A
A
W
W
W
A
S
TS  
B
B
B
R
R
H
H
Figure 46. Rheostat Mode Configuration  
The nominal resistance between Terminal A and Terminal B,  
RAB, is 10 kꢀ or 100 kꢀ, and has 128/256 tap points accessed by  
the wiper terminal. The 7-bit/8-bit data in the RDAC latch is  
decoded to select one of the 128/256 possible wiper settings. The  
general equations for determining the digitally programmed  
output resistance between Terminal W and Terminal B are  
R
M
R
M
R
L
W
R
L
AD5124:  
7-BIT/8-BIT  
ADDRESS  
DECODER  
R
R
M
D
128  
From 0x00 to 0x7F (1)  
From 0x00 to 0xFF (2)  
R
WB (D)   
RAB RW  
RAB RW  
R
H
M
AD5144/AD5144A:  
R
H
S
BS  
D
256  
RWB (D)   
B
where:  
D is the decimal equivalent of the binary code in the 7-bit/8-bit  
RDAC register.  
Figure 45. AD5124/AD5144/AD5144A Simplified RDAC Circuit  
R
AB is the end-to-end resistance.  
RW is the wiper resistance.  
Top Scale/Bottom Scale Architecture  
In potentiometer mode, similar to the mechanical potentiometer,  
the resistance between Terminal W and Terminal A also produces  
a digitally controlled complementary resistance, RWA. RWA also  
gives a maximum of 8% absolute resistance error. RWA starts at the  
maximum resistance value and decreases as the data loaded into  
the latch increases. The general equations for this operation are  
In addition, the AD5124/AD5144/AD5144A include new  
positions to reduce the resistance between terminals. These  
positions are called bottom scale and top scale. At bottom scale,  
the typical wiper resistance decreases from 130 Ω to 60 Ω (RAB =  
100 kΩ). At top scale, the resistance between Terminal A and  
Terminal W is decreased by 1 LSB, and the total resistance is  
reduced to 60 Ω (RAB = 100 kΩ).  
AD5124:  
128 D  
128  
R
AW (D)   
RAB RW  
RAB RW  
From 0x00 to 0x7F (3)  
From 0x00 to 0xFF (4)  
AD5144/AD5144A:  
256 D  
256  
R
AW (D)   
where:  
D is the decimal equivalent of the binary code in the 7-bit/8-bit  
RDAC register.  
R
AB is the end-to-end resistance.  
RW is the wiper resistance.  
Rev. A | Page 31 of 36  
 
 
 
 
AD5124/AD5144/AD5144A  
Data Sheet  
If the part is configured in linear gain setting mode, the resistance  
between Terminal W and Terminal A is directly proportional  
to the code loaded in the associate RDAC register. The general  
equations for this operation are  
TERMINAL VOLTAGE OPERATING RANGE  
The AD5124/AD5144/AD5144A are designed with internal ESD  
diodes for protection. These diodes also set the voltage boundary  
of the terminal operating voltages. Positive signals present on  
Terminal A, Terminal B, or Terminal W that exceed VDD are  
clamped by the forward-biased diode. There is no polarity  
constraint between VA, VW, and VB, but they cannot be higher  
than VDD or lower than VSS.  
AD5124:  
D
128  
From 0x00 to 0x7F (5)  
From 0x00 to 0xFF (6)  
R
WB (D)   
RAB RW  
RAB RW  
AD5144/AD5144A:  
V
DD  
D
256  
RWB (D)   
A
where:  
W
B
D is the decimal equivalent of the binary code in the 7-bit/8-bit  
RDAC register.  
R
AB is the end-to-end resistance.  
RW is the wiper resistance.  
V
SS  
In the bottom scale condition or top scale condition, a finite  
total wiper resistance of 40 Ω is present. Regardless of which  
setting the part is operating in, limit the current between  
Terminal A to Terminal B, Terminal W to Terminal A, and  
Terminal W to Terminal B to the maximum continuous  
current of 6 mA or to the pulse current specified in Table 7.  
Otherwise, degradation or possible destruction of the internal  
switch contact can occur.  
Figure 48. Maximum Terminal Voltages Set by VDD and VSS  
POWER-UP SEQUENCE  
Because there are diodes to limit the voltage compliance at  
Terminal A, Terminal B, and Terminal W (see Figure 48), it is  
important to power up VDD first before applying any voltage to  
Terminal A, Terminal B, and Terminal W. Otherwise, the diode  
is forward-biased such that VDD is powered unintentionally. The  
ideal power-up sequence is VSS, VDD, VLOGIC, digital inputs, and  
VA, VB, and VW. The order of powering VA, VB, VW, and digital  
inputs is not important as long as they are powered after VSS,  
VDD, and VLOGIC. Regardless of the power-up sequence and the  
ramp rates of the power supplies, once VDD is powered, the  
power-on preset activates, which restores EEPROM values to  
the RDAC registers.  
PROGRAMMING THE POTENTIOMETER DIVIDER  
Voltage Output Operation  
The digital potentiometer easily generates a voltage divider at  
wiper-to-B and wiper-to-A that is proportional to the input voltage  
at A to B, as shown in Figure 47.  
V
A
A
LAYOUT AND POWER SUPPLY BIASING  
W
V
OUT  
It is always a good practice to use a compact, minimum lead  
length layout design. Ensure that the leads to the input are as  
direct as possible with a minimum conductor length. Ground  
paths should have low resistance and low inductance. It is also  
good practice to bypass the power supplies with quality capacitors.  
Apply low equivalent series resistance (ESR) 1 μF to 10 μF  
tantalum or electrolytic capacitors at the supplies to minimize  
any transient disturbance and to filter low frequency ripple.  
Figure 49 illustrates the basic supply bypassing configuration  
for the AD5124/AD5144/AD5144A.  
B
V
B
Figure 47. Potentiometer Mode Configuration  
Connecting Terminal A to 5 V and Terminal B to ground  
produces an output voltage at the Wiper W to Terminal B  
ranging from 0 V to 5 V. The general equation defining the  
output voltage at VW with respect to ground for any valid  
input voltage applied to Terminal A and Terminal B is  
RWB(D)  
R
AW (D)  
RAB  
VW (D)   
VA   
VB  
(7)  
RAB  
V
V
V
V
LOGIC  
DD  
DD  
LOGIC  
+
+
+
C3  
C1  
C5  
0.1µF  
C6  
10µF  
where:  
10µF  
0.1µF  
AD5124/  
AD5144/  
AD5144A  
RWB(D) can be obtained from Equation 1 and Equation 2.  
RAW(D) can be obtained from Equation 3 and Equation 4.  
C4  
10µF  
C2  
0.1µF  
V
V
SS  
SS  
Operation of the digital potentiometer in the divider mode results  
in a more accurate operation over temperature. Unlike the  
rheostat mode, the output voltage is dependent mainly on the  
ratio of the internal resistors, RAW and RWB, and not the absolute  
values. Therefore, the temperature drift reduces to 5 ppm/°C.  
GND  
Figure 49. Power Supply Bypassing  
Rev. A | Page 32 of 36  
 
 
 
 
 
 
 
Data Sheet  
AD5124/AD5144/AD5144A  
OUTLINE DIMENSIONS  
4.10  
4.00 SQ  
3.90  
0.30  
0.25  
0.20  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
24  
19  
18  
0.50  
BSC  
1
6
EXPOSED  
PAD  
2.20  
2.10 SQ  
2.00  
13  
12  
7
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-WGGD-8.  
Figure 50. 24-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
4 mm × 4 mm Body, Very Very Thin Quad  
(CP-24-10)  
Dimensions shown in millimeters  
6.60  
6.50  
6.40  
20  
11  
10  
4.50  
4.40  
4.30  
6.40 BSC  
1
PIN 1  
0.65  
BSC  
1.20 MAX  
0.15  
0.05  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
COPLANARITY  
0.10  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-153-AC  
Figure 51. 20-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-20)  
Dimensions shown in millimeters  
Rev. A | Page 33 of 36  
 
AD5124/AD5144/AD5144A  
Data Sheet  
ORDERING GUIDE  
Model1, 2  
RAB (kΩ)  
10  
100  
10  
100  
10  
100  
10  
100  
10  
100  
10  
Resolution  
128  
128  
128  
128  
Interface  
SPI/I2C  
SPI/I2C  
SPI  
SPI  
SPI  
Temperature Range Package Description  
Package Option  
CP-24-10  
CP-24-10  
RU-20  
RU-20  
RU-20  
AD5124BCPZ10-RL7  
AD5124BCPZ100-RL7  
AD5124BRUZ10  
AD5124BRUZ100  
AD5124BRUZ10-RL7  
AD5124BRUZ100-RL7  
AD5144BCPZ10-RL7  
AD5144BCPZ100-RL7  
AD5144BRUZ10  
AD5144BRUZ100  
AD5144BRUZ10-RL7  
AD5144BRUZ100-RL7  
EVAL-AD5144DBZ  
AD5144ABRUZ10  
AD5144ABRUZ100  
AD5144ABRUZ10-RL7  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
24-Lead LFCSP_WQ  
24-Lead LFCSP_WQ  
20-lead TSSOP  
20-lead TSSOP  
20-lead TSSOP  
20-lead TSSOP  
24-Lead LFCSP_WQ  
24-Lead LFCSP_WQ  
20-lead TSSOP  
20-lead TSSOP  
20-lead TSSOP  
20-lead TSSOP  
Evaluation Board  
20-lead TSSOP  
20-lead TSSOP  
20-lead TSSOP  
20-lead TSSOP  
128  
128  
SPI  
RU-20  
256  
256  
256  
256  
256  
256  
SPI/I2C  
SPI/I2C  
SPI  
CP-24-10  
CP-24-10  
RU-20  
RU-20  
RU-20  
SPI  
SPI  
SPI  
100  
RU-20  
10  
100  
10  
256  
256  
256  
256  
I2C  
I2C  
I2C  
I2C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
RU-20  
RU-20  
RU-20  
RU-20  
AD5144ABRUZ100-RL7 100  
1 Z = RoHS Compliant Part.  
2 The evaluation board is shipped with the 10 kΩ RAB resistor option; however, the board is compatible with both of the available resistor value options.  
Rev. A | Page 34 of 36  
 
 
Data Sheet  
NOTES  
AD5124/AD5144/AD5144A  
Rev. A | Page 35 of 36  
AD5124/AD5144/AD5144A  
NOTES  
Data Sheet  
I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).  
©2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D10877-0-12/12(A)  
Rev. A | Page 36 of 36  

相关型号:

AD5144BRUZ100-RL7

The AD5124/AD5144/AD5144A potentiometers provide a nonvolatile solution for 128-/256-position adjustment applications, offering guaranteed low resistor tolerance errors of ±8% and up to ±6 mA current density in the Ax, Bx, and Wx pins.
ADI

AD515

Monolithic Precision, Low Power FET-Input Electrometer Op Amp
ADI

AD515A

Monolithic Precision, Low Power FET-Input Electrometer Op Amp
ADI

AD515AJ

Monolithic Precision, Low Power FET-Input Electrometer Op Amp
ADI

AD515AJH

Monolithic Precision, Low Power FET-Input Electrometer Op Amp
ADI

AD515AJH/+

Voltage-Feedback Operational Amplifier
ETC

AD515AK

Monolithic Precision, Low Power FET-Input Electrometer Op Amp
ADI

AD515AKH

Monolithic Precision, Low Power FET-Input Electrometer Op Amp
ADI

AD515AKH/+

Voltage-Feedback Operational Amplifier
ETC

AD515AL

Monolithic Precision, Low Power FET-Input Electrometer Op Amp
ADI

AD515ALH

Monolithic Precision, Low Power FET-Input Electrometer Op Amp
ADI

AD515JH

AD515JH
ADI