AD5160BRJZ10-RL7 [ADI]

256-Position SPI-Compatible Digital Potentiometer; 256位SPI兼容数字电位计
AD5160BRJZ10-RL7
型号: AD5160BRJZ10-RL7
厂家: ADI    ADI
描述:

256-Position SPI-Compatible Digital Potentiometer
256位SPI兼容数字电位计

转换器 数字电位计 电阻器 光电二极管 PC
文件: 总16页 (文件大小:467K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
256-Position SPI-Compatible  
Digital Potentiometer  
AD5160  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
V
DD  
256-position  
End-to-end resistance: 5 kΩ, 10 kΩ, 50 kΩ, 100 kΩ  
Compact SOT-23-8 (2.9 mm × 3 mm) package  
SPI-compatible interface  
A
CS  
SPI INTERFACE  
SDI  
Power-on preset to midscale  
Single supply: 2.7 V to 5.5 V  
Low temperature coefficient: 45 ppm/°C  
Low power, IDD = 8 μA  
W
B
CLK  
WIPER  
REGISTER  
Wide operating temperature: –40°C to +125°C  
Evaluation board available  
GND  
Figure 1.  
APPLICATIONS  
Mechanical potentiometer replacement in new designs  
Transducer adjustment of pressure, temperature, position,  
chemical, and optical sensors  
RF amplifier biasing  
Automotive electronics adjustment  
Gain control and offset adjustment  
PIN CONFIGURATION  
1
2
3
4
W
8
7
6
5
A
V
AD5160  
B
DD  
GND  
CLK  
CS  
SDI  
TOP VIEW  
(Not to Scale)  
Figure 2.  
GENERAL DESCRIPTION  
The AD5160 provides a compact 2.9 mm × 3 mm packaged  
solution for 256-position adjustment applications. These  
devices perform the same electronic adjustment function as  
mechanical potentiometers1 or variable resistors but with  
enhanced resolution, solid-state reliability, and superior low  
temperature coefficient performance.  
The wiper settings are controllable through an SPI-compatible  
digital interface. The resistance between the wiper and either  
end point of the fixed resistor varies linearly with respect to the  
digital code transferred into the RDAC latch.  
Operating from a 2.7 V to 5.5 V power supply and consuming  
less than 5 μA allows for usage in portable battery-operated  
applications.  
1 The terms digital potentiometer, VR, and RDAC are used interchangeably.  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2003–2009 Analog Devices, Inc. All rights reserved.  
 
AD5160  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Typical Performance Characteristics ..............................................8  
Test Circuits..................................................................................... 12  
SPI Interface .................................................................................... 13  
Theory of Operation ...................................................................... 14  
Programming the Variable Resistor......................................... 14  
Programming the Potentiometer Divider............................... 15  
SPI-Compatible 3-Wire Serial Bus........................................... 15  
ESD Protection ........................................................................... 15  
Power-Up Sequence ................................................................... 15  
Layout and Power Supply Bypassing ....................................... 15  
Outline Dimensions....................................................................... 16  
Ordering Guide .......................................................................... 16  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
Pin Configuration............................................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics—5 kΩ Version.................................. 3  
10 kΩ, 50 kΩ, 100 kΩ Versions .................................................. 4  
Timing Characteristics—All Versions....................................... 5  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
REVISION HISTORY  
5/09—Rev. A to Rev. B  
Changes to Ordering Guide .......................................................... 16  
1/09—Rev. 0 to Rev. A  
Deleted Shutdown Supply Current Parameter and  
Endnote 7, Table 1 ............................................................................ 3  
Changes to Resistor Noise Voltage Density Parameter,  
Table 1 ................................................................................................ 3  
Deleted Shutdown Supply Current Parameter and  
Endnote 7, Table 2 ............................................................................ 4  
Changes to Resistor Noise Voltage Density Parameter,  
Table 2 ................................................................................................ 4  
Added Endnote to Table 3............................................................... 5  
Changes to Table 4............................................................................ 6  
Changes to the Rheostat Operation Section............................... 14  
Deleted Terminal Voltage Operating Range Section and  
Figure 41, Renumbered Figures Sequentially ............................. 13  
Changes to Figure 40 and Figure 41............................................. 15  
Changes to Ordering Guide .......................................................... 16  
5/03—Revision 0: Initial Version  
Rev. B | Page 2 of 16  
 
AD5160  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS—5 kΩ VERSION  
VDD = 5 V ꢀ1%, or 3 V ꢀ1%ꢁ VA = +VDDꢁ VB = 1 Vꢁ –41°C < TA < +ꢀ25°Cꢁ unless otherwise noted.  
Table 1.  
Parameter  
Symbol Conditions  
Min  
Typ1  
Max  
Unit  
DC CHARACTERISTICS  
Rheostat Mode  
Resistor Differential Nonlinearity2  
Resistor Integral Nonlinearity2  
Nominal Resistor Tolerance3  
Resistance Temperature Coefficient  
Wiper Resistance  
R-DNL  
R-INL  
∆RAB  
∆RAB/∆T  
RW  
RWB, VA = no connect  
RWB, VA = no connect  
TA = 25°C  
−1.5 ±±.1  
+1.5  
+2±  
12±  
LSB  
LSB  
%
ppm/°C  
Ω
−4  
±±.ꢀ5 +4  
−2±  
VAB = VDD, wiper = no connect  
45  
5±  
Potentiometer Divider Mode  
Specifications apply to all VRs  
Resolution  
N
8
Bits  
Differential Nonlinearity4  
Integral Nonlinearity4  
Voltage Divider Temperature Coefficient  
Full-Scale Error  
DNL  
INL  
∆VW/∆T  
VWFSE  
VWZSE  
−1.5 ±±.1  
−1.5 ±±.6  
15  
+1.5  
+1.5  
LSB  
LSB  
ppm/°C  
LSB  
LSB  
Code = ±x8±  
Code = ±xFF  
Code = ±x±±  
−6  
±
−2.5  
+2  
±
+6  
Zero-Scale Error  
RESISTOR TERMINALS  
Voltage Range5  
Capacitance A, Capacitance B6  
Capacitance W6  
Common-Mode Leakage  
DIGITAL INPUTS  
VA, VB, VW  
CA,B  
CW  
GND  
VDD  
V
f = 1 MHz, measured to GND, code = ±x8±  
f = 1 MHz, measured to GND, code = ±x8±  
VA = VB = VDD/2  
45  
6±  
1
pF  
pF  
nA  
ICM  
Input Logic High  
Input Logic Low  
Input Logic High  
Input Logic Low  
Input Current  
Input Capacitance6  
VIH  
VIL  
VIH  
VIL  
IIL  
2.4  
2.1  
V
V
V
V
μA  
pF  
±.8  
VDD = 3 V  
VDD = 3 V  
VIN = ± V or 5 V  
±.6  
±1  
CIL  
5
3
POWER SUPPLIES  
Power Supply Range  
Supply Current  
Power Dissipationꢀ  
Power Supply Sensitivity  
DYNAMIC CHARACTERISTICS6, 8  
Bandwidth –3 dB  
Total Harmonic Distortion  
VW Settling Time  
VDD RANGE  
IDD  
PDISS  
2.ꢀ  
5.5  
8
±.2  
V
μA  
mW  
VIH = 5 V or VIL = ± V  
VIH = 5 V or VIL = ± V, VDD = 5 V  
∆VDD = +5 V ± 1±%, code = midscale  
PSS  
±±.±2 ±±.±5 %/%  
BW_5K  
THDW  
tS  
RAB = 5 kΩ, code = ±x8±  
VA = 1 V rms, VB = ± V, f = 1 kHz  
VA = 5 V, VB = ± V, ±1 LSB error band  
RWB = 2.5 kΩ  
1.2  
±.±5  
1
MHz  
%
μs  
Resistor Noise Voltage Density  
eN_WB  
6
nV/√Hz  
1 Typical specifications represent average readings at +25°C and VDD = 5 V.  
2 Resistor position nonlinearity error (R-INL) is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper  
positions. R-DNL measures the relative step change from ideal between successive tap positions. Parts are guaranteed monotonic.  
3 VAB = VDD, wiper (VW) = no connect.  
4 INL and DNL are measured at VW with the RDAC configured as a potentiometer divider similar to a voltage output digital-to-analog converter (DAC). VA = VDD and VB =  
± V. DNL specification limits of ±1 LSB maximum are guaranteed monotonic operating conditions.  
5 Resistor Terminal A, Resistor Terminal B, and Resistor Terminal W have no limitations on polarity with respect to each other.  
6 Guaranteed by design and not subject to production test.  
PDISS is calculated from (IDD × VDD). CMOS logic level inputs result in minimum power dissipation.  
8 All dynamic characteristics use VDD = 5 V.  
Rev. B | Page 3 of 16  
 
 
 
 
 
AD5160  
10 kΩ, 50 kΩ, 100 kΩ VERSIONS  
VDD = 5 V ꢀ1%, or 3 V ꢀ1%ꢁ VA = VDDꢁ VB = 1 Vꢁ −41°C < TA < +ꢀ25°Cꢁ unless otherwise noted.  
Table 2.  
Parameter  
Symbol Conditions  
Min Typ1  
Max  
Unit  
DC CHARACTERISTICS  
Rheostat Mode  
Resistor Differential Nonlinearity2  
Resistor Integral Nonlinearity2  
Nominal Resistor Tolerance3  
Resistance Temperature Coefficient  
R-DNL  
R-INL  
∆RAB  
RWB, VA = no connect  
RWB, VA = no connect  
TA = 25°C  
−1  
−2  
−15  
±±.1  
±±.25  
+1  
+2  
+15  
LSB  
LSB  
%
∆RAB/∆T VAB = VDD  
,
45  
5±  
ppm/°C  
Wiper = no connect  
VDD = 5 V  
Specifications apply to all VRs  
Wiper Resistance  
Potentiometer Divider Mode  
Resolution  
RW  
12±  
Ω
N
8
Bits  
Differential Nonlinearity4  
Integral Nonlinearity4  
Voltage Divider Temperature  
Coefficient  
DNL  
INL  
∆VW/∆T  
−1  
−1  
±±.1  
±±.3  
15  
+1  
+1  
LSB  
LSB  
ppm/°C  
Code = ±x8±  
Full-Scale Error  
Zero-Scale Error  
VWFSE  
VWZSE  
Code = ±xFF  
Code = ±x±±  
−3  
±
−1  
1
±
3
LSB  
LSB  
RESISTOR TERMINALS  
Voltage Range5  
VA,B,W  
CA,B  
GND  
VDD  
V
pF  
Capacitance A, Capacitance B6  
f = 1 MHz, measured to GND, code =  
±x8±  
f = 1 MHz, measured to GND, code =  
±x8±  
45  
6±  
1
Capacitance W6  
CW  
ICM  
pF  
Common-Mode Leakage  
DIGITAL INPUTS  
VA = VB = VDD/2  
nA  
Input Logic High  
Input Logic Low  
Input Logic High  
Input Logic Low  
Input Current  
Input Capacitance6  
VIH  
VIL  
VIH  
VIL  
IIL  
2.4  
2.1  
V
V
V
V
μA  
pF  
±.8  
VDD = 3 V  
VDD = 3 V  
VIN = ± V or 5 V  
±.6  
±1  
CIL  
5
POWER SUPPLIES  
Power Supply Range  
Supply Current  
Power Dissipationꢀ  
Power Supply Sensitivity  
DYNAMIC CHARACTERISTICS6, 8  
Bandwidth –3 dB  
VDD RANGE  
IDD  
PDISS  
2.ꢀ  
5.5  
8
±.2  
V
μA  
mW  
VIH = 5 V or VIL = ± V  
VIH = 5 V or VIL = ± V, VDD = 5 V  
∆VDD = +5 V ± 1±%, code = midscale  
3
PSS  
±±.±2  
±±.±5 %/%  
BW  
THDW  
RAB = 1± kΩ/5± kΩ/1±± kΩ, Code = ±x8±  
VA = 1 V rms, VB = ± V, f = 1 kHz, RAB  
1± kΩ  
6±±/1±±/4±  
±.±5  
kHz  
%
Total Harmonic Distortion  
=
VW Settling Time (1± kΩ/5± kΩ/1±± kΩ)  
Resistor Noise Voltage Density  
tS  
VA = 5 V, VB = ± V,  
±1 LSB error band  
RWB = 5 kΩ  
2
9
μs  
eN_WB  
nV/√Hz  
1 Typical specifications represent average readings at +25°C and VDD = 5 V.  
2 Resistor position nonlinearity error (R-INL) is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper  
positions. R-DNL measures the relative step change from ideal between successive tap positions. Parts are guaranteed monotonic.  
3 VAB = VDD, wiper (VW) = no connect.  
4 INL and DNL are measured at VW with the RDAC configured as a potentiometer divider similar to a voltage output digital-to-analog converter (DAC). VA = VDD and VB =  
± V. DNL specification limits of ±1 LSB maximum are guaranteed monotonic operating conditions.  
5 Resistor Terminal A, Resistor Terminal B, and Resistor Terminal W have no limitations on polarity with respect to each other.  
6 Guaranteed by design and not subject to production test.  
PDISS is calculated from (IDD × VDD). CMOS logic level inputs result in minimum power dissipation.  
8 All dynamic characteristics use VDD = 5 V.  
Rev. B | Page 4 of 16  
 
 
 
 
 
AD5160  
TIMING CHARACTERISTICS—ALL VERSIONS  
VDD = +5V ꢀ1%, or +3V ꢀ1%ꢁ VA = VDDꢁ VB = 1 Vꢁ –41°C < TA < +ꢀ25°Cꢁ unless otherwise noted.  
Table 3.  
Parameter  
SPI INTERFACE TIMING CHARACTERISTICS1, 2  
Symbol  
Conditions  
Min  
Typ1  
Max  
25  
Unit  
Specifications apply to all parts  
Clock Frequency  
Input Clock Pulse Width  
Data Setup Time  
fCLK  
tCH, tCL  
tDS  
MHz  
ns  
ns  
Clock level high or low  
2±  
5
Data Hold Time  
tDH  
5
ns  
CS Setup Time  
tCSS  
15  
4±  
±
ns  
CS High Pulse Width  
CLK Fall to CS Fall Hold Time  
CLK Fall to CS Rise Hold Time  
tCSW  
tCSH±  
tCSH1  
ns  
ns  
±
ns  
1 See the timing diagram, Figure 38, for location of measured values. All input control voltages are specified with tR = tF = 2 ns (1±% to 9±% of 3 V) and timed from a  
voltage level of 1.5 V.  
2 Guaranteed by design and not subject to production test.  
Rev. B | Page 5 of 16  
 
 
AD5160  
ABSOLUTE MAXIMUM RATINGS  
TA = +25°C, unless otherwise noted.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 4.  
Parameter  
Rating  
VDD to GND  
−0.3 V to +7 V  
VDD  
VA, VB, VW to GND  
Maximum Current IMAX  
IWB, IWA Pulsed  
IWB, IWA Continuous  
5 kΩ, 10 kΩ  
1
20 mA  
ESD CAUTION  
4.7 mA  
50 kΩ  
100 kΩ  
0.95 mA  
0.48 mA  
0 V to +7 V  
Digital Inputs and Output Voltage to GND  
Temperature  
Operating Temperature Range  
−40°C to +125°C  
150°C  
−65°C to +150°C  
Maximum Junction Temperature (TJMAX  
Storage Temperature  
Thermal Resistance (SOT-23 Package)2  
)
θJA Thermal Impedance  
θJC Thermal Impedance  
206ºC/W  
91°C/W  
Reflow Soldering (Pb-Free)  
Peak Temperature  
260°C  
Time at Peak Temperature  
10 sec to 40 sec  
1 Maximum terminal current is bounded by the maximum current handling of  
the switches, maximum power dissipation of the package, and applied  
voltage across any two of the A, B, and W terminals at a given resistance.  
2 Package power dissipation = (TJMAX − TA)/θJA  
.
Rev. B | Page 6 of 16  
 
 
 
AD5160  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
W
8
7
6
5
A
V
AD5160  
B
DD  
GND  
CLK  
CS  
SDI  
TOP VIEW  
(Not to Scale)  
Figure 3. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin  
Mnemonic  
Description  
1
W
W Terminal.  
2
3
4
5
VDD  
GND  
CLK  
SDI  
CS  
B
Positive Power Supply.  
Digital Ground.  
Serial Clock Input. Positive edge triggered.  
Serial Data Input.  
6
Chip Select Input, Active Low. When CS returns high, data loads into the DAC register.  
7
8
B Terminal.  
A Terminal.  
A
Rev. B | Page 7 of 16  
 
AD5160  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.0  
1.0  
0.8  
5V  
3V  
–40°C  
+25°C  
+85°C  
+125°C  
0.8  
0.6  
0.6  
0.4  
0.2  
0.4  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
32  
64  
96  
128  
160  
192  
224  
256  
0
0
0
32  
64  
96  
128  
160  
192  
224  
256  
CODE (Decimal)  
CODE (Decimal)  
Figure 4. R-INL vs. Code vs. Supply Voltages  
Figure 7. DNL vs. Code, VDD = 5 V  
1.0  
0.8  
1.0  
0.8  
0.6  
5V  
3V  
5V  
3V  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.8  
–1.0  
32  
64  
96  
128  
160  
192  
224  
256  
0
32  
64  
96  
128  
160  
192  
224  
256  
CODE (Decimal)  
CODE (Decimal)  
Figure 5. R-DNL vs. Code vs. Supply Voltages  
Figure 8. INL vs. Code vs. Supply Voltages  
1.0  
0.8  
1.0  
0.8  
_
40°C  
5V  
3V  
+25°C  
+85°C  
+125°C  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.0  
0
32  
64  
96  
128  
160  
192  
224  
256  
32  
64  
96  
128  
160  
192  
224  
256  
CODE (Decimal)  
CODE (Decimal)  
Figure 6. INL vs. Code, VDD = 5 V  
Figure 9. DNL vs. Code vs. Supply Voltages  
Rev. B | Page 8 of 16  
 
AD5160  
1.0  
0.8  
2.5  
2.0  
1.5  
1.0  
0.5  
–40  
+25°C  
+85°C  
°C  
0.6  
+125°C  
0.4  
V
V
= 5.5V  
= 2.7V  
DD  
0.2  
0
DD  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
–40  
0
40  
80  
120  
0
32  
64  
96  
128  
160  
192  
224  
256  
TEMPERATURE (°C)  
CODE (Decimal)  
Figure 13. Zero-Scale Error vs. Temperature  
Figure 10. R-INL vs. Code, VDD = 5 V  
1.0  
0.8  
10  
_
40°C  
+25°C  
+85°C  
+125°C  
0.6  
0.4  
0.2  
V
= 5.5V  
DD  
0
1
–0.2  
–0.4  
–0.6  
V
= 2.7V  
DD  
–0.8  
–1.0  
0.1  
–40  
0
32  
64  
96  
128  
160  
192  
224  
256  
0
40  
80  
120  
CODE (Decimal)  
TEMPERATURE (°C)  
Figure 11. R-DNL vs. Code, VDD = 5 V  
Figure 14. Supply Current vs. Temperature  
2.5  
2.0  
1.5  
1.0  
70  
60  
50  
40  
30  
20  
10  
0
V
V
= 2.7V  
= 5.5V  
DD  
DD  
V
= 5V  
DD  
0.5  
0
–40  
0
40  
80  
120  
–40  
0
40  
80  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 15. Shutdown Current vs. Temperature  
Figure 12. Full-Scale Error vs. Temperature  
Rev. B | Page 9 of 16  
AD5160  
200  
150  
100  
50  
REF LEVEL  
0.000dB  
0
/DIV  
6.000dB  
MARKER 510 634.725Hz  
MAG (A/R) –9.049dB  
0x80  
–6  
0x40  
–12  
0x20  
0x10  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
0x08  
0x04  
0x02  
0x01  
0
–50  
0
32  
64  
96  
128  
160  
192  
224  
256  
CODE (Decimal)  
1k  
START 1 000.000Hz  
10k  
100k  
1M  
STOP 1 000 000.000Hz  
Figure 16. Rheostat Mode Tempco ∆RWB/∆T vs. Code  
Figure 19. Gain vs. Frequency vs. Code, RAB = 10 kΩ  
160  
140  
120  
100  
80  
REF LEVEL  
0.000dB  
0
/DIV  
6.000dB  
MARKER 100 885.289Hz  
MAG (A/R) –9.014dB  
0x80  
–6  
0x40  
0x20  
0x10  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
60  
0x08  
40  
0x04  
0x02  
0x01  
20  
0
–20  
0
32  
64  
96  
128  
160  
192  
224  
256  
CODE (Decimal)  
1k  
START 1 000.000Hz  
10k  
100k  
1M  
STOP 1 000 000.000Hz  
Figure 17. Potentiometer Mode Tempco ∆VWB/∆T vs. Code  
Figure 20. Gain vs. Frequency vs. Code, RAB = 50 kΩ  
REF LEVEL  
0.000dB  
0
/DIV  
6.000dB  
MARKER 1 000 000.000Hz  
MAG (A/R) –8.918dB  
REF LEVEL  
0.000dB  
0
/DIV  
6.000dB  
MARKER 54 089.173Hz  
MAG (A/R) –9.052dB  
0x80  
0x80  
–6  
–6  
0x40  
0x20  
0x40  
0x20  
–12  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
0x10  
0x08  
0x04  
0x10  
0x08  
0x04  
0x02  
0x01  
0x02  
0x01  
1k  
START 1 000.000Hz  
10k  
100k  
1M  
1k  
START 1 000.000Hz  
10k  
100k  
1M  
STOP 1 000 000.000Hz  
STOP 1 000 000.000Hz  
Figure 18. Gain vs. Frequency vs. Code, RAB = 5 kΩ  
Figure 21. Gain vs. Frequency vs. Code, RAB = 100 kΩ  
Rev. B | Page 10 of 16  
AD5160  
REF LEVEL  
–5.000dB  
/DIV  
0.500dB  
–5.5  
5kΩ – 1.026 MHz  
10kΩ – 511 MHz  
50kΩ – 101 MHz  
100kΩ – 54 MHz  
–6.0  
–6.5  
–7.0  
–7.5  
–8.0  
–8.5  
–9.0  
–9.5  
–10.0  
–10.5  
1
VW  
CLK  
R = 50kΩ  
R = 5kΩ  
2
R = 10kΩ  
R = 100kΩ  
Ch 1 200mV  
B
Ch 2 5.00 V  
B
M 100ns A CH2 3.00 V  
W
W
10k  
100k  
1M  
10M  
START 1 000.000Hz  
STOP 1 000 000.000Hz  
Figure 22. –3 dB Bandwidth @ Code = 0x80  
Figure 25. Digital Feedthrough  
60  
40  
20  
0
CODE = 0x80, V = V , V = 0V  
DD  
A
B
V
V
= 5V  
= 0V  
A
B
1
VW  
CS  
PSRR @ V = 3V DC ± 10% p-p AC  
DD  
2
PSRR @ V = 5V DC ± 10% p-p AC  
Ch 1 100mV  
B
Ch 2 5.00 V  
B
M 200ns A CH1 152mV  
W
DD  
W
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 26. Midscale Glitch, Code 0x80 to Code 0x7F  
Figure 23. PSRR vs. Frequency  
900  
V
= 5V  
DD  
800  
700  
600  
500  
400  
300  
V
V
= 5V  
= 0V  
A
B
1
VW  
CS  
CODE = 0x55  
CODE = 0xFF  
2
200  
100  
0
Ch 1  
5.00V  
B
Ch 2 5.00 V  
B
M 200ns A CH1 3.00 V  
W
W
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
Figure 24. IDD vs. Frequency  
Figure 27. Large Signal Settling Time, Code 0xFF to Code 0x00  
Rev. B | Page 11 of 16  
AD5160  
TEST CIRCUITS  
Figure 28 to Figure 36 illustrate the test circuits that define the test conditions used in the product specification tables.  
5V  
DUT  
A
V+ = V  
DD  
1LSB = V+/2  
OP279  
N
V
OUT  
V
W
IN  
V+  
W
B
OFFSET  
GND  
V
MS  
A
DUT  
B
OFFSET  
BIAS  
Figure 28. Test Circuit for Potentiometer Divider Nonlinearity Error (INL, DNL)  
Figure 33. Test Circuit for Noninverting Gain  
NO CONNECT  
DUT  
A
+15V  
W
I
W
V
IN  
A
DUT  
W
AD8610  
–15V  
V
OUT  
OFFSET  
GND  
B
B
V
2.5V  
MS  
Figure 34. Test Circuit for Gain vs. Frequency  
Figure 29. Test Circuit for Resistor Position Nonlinearity Error  
(Rheostat Operation; R-INL, R-DNL)  
0.1V  
R
=
SW  
I
SW  
DUT  
DUT  
CODE = 0x00  
I
= V /R  
NOMINAL  
DD  
W
A
W
V
W
W
V
MS2  
B
0.1V  
I
SW  
B
V
R
= [V  
– V  
]/I  
MS2  
W
MS1  
W
MS1  
V
TO V  
DD  
SS  
Figure 30. Test Circuit for Wiper Resistance  
Figure 35. Test Circuit for Incremental On Resistance  
NC  
V
A
V+ = V  
10%  
PSRR (dB) = 20 LOG  
DD  
ΔV  
ΔV  
MS  
DD  
I
(
)
V
A
B
CM  
DUT  
GND  
DD  
V
DD  
W
A
B
%
ΔV  
ΔV  
MS  
W
V+  
PSS (%/%) =  
V
%
SS  
DD  
V
CM  
V
MS  
NC NC = NO CONNECT  
Figure 31. Test Circuit for Power Supply Sensitivity (PSS, PSSR)  
Figure 36. Test Circuit for Common-Mode Leakage Current  
A
B
DUT  
5V  
W
V
IN  
OP279  
V
OUT  
OFFSET  
GND  
OFFSET  
BIAS  
Figure 32. Test Circuit for Inverting Gain  
Rev. B | Page 12 of 16  
 
 
 
AD5160  
SPI INTERFACE  
1
0
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Table 6. Serial Data-Word Format  
SDI  
CLK  
CS  
B7  
D7  
MSB  
27  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
D0  
LSB  
20  
0
1
D6  
D5  
D4  
D3  
D2  
D1  
RDAC REGISTER LOAD  
0
1
0
VOUT  
Figure 37. SPI Interface Timing Diagram  
(VA = 5 V, VB = 0 V, VW = VOUT  
)
1
0
1
SDI  
(DATA IN)  
Dx  
Dx  
tDS  
tCH  
tCS1  
tCH  
CLK  
0
tCSH1  
tCL  
tCSHO  
tCSS  
1
0
CS  
tCSW  
tS  
VDD  
VOUT  
±1LSB  
0
Figure 38. SPI Interface Detailed Timing Diagram (VA = 5 V, VB = 0 V, VW = VOUT  
)
Rev. B | Page 13 of 16  
 
 
 
 
AD5160  
THEORY OF OPERATION  
The AD5160 is a 256-position digitally controlled variable  
resistor (VR) device.  
The general equation determining the digitally programmed  
output resistance between W and B is  
An internal power-on preset places the wiper at midscale  
during power-on, which simplifies the fault condition recovery  
at power-up.  
D
256  
R
WB (D) =  
×RAB +RW  
(1)  
where:  
D is the decimal equivalent of the binary code loaded in the  
8-bit RDAC register.  
PROGRAMMING THE VARIABLE RESISTOR  
Rheostat Operation  
R
AB is the end-to-end resistance.  
The nominal resistance of the RDAC between Terminal A and  
Terminal B is available in 5 kΩ, 10 kΩ, 50 kΩ, and 100 kΩ. The  
final two or three digits of the model number as listed in the  
Ordering Guide section determine the nominal resistance value,  
for example, in model AD5160BRJZ10, the 10 represents 10 kΩ;  
and in AD5160BRJZ50, the 50 represents 50 kΩ.  
RW is the wiper resistance contributed by the on resistance of  
the internal switch.  
In summary, if RAB = 10 kΩ and the A terminal is open  
circuited, the following output resistance RWB is set for the  
indicated RDAC latch codes.  
The nominal resistance (RAB) of the VR has 256 contact points  
accessed by the wiper terminal, plus the B terminal contact. The  
8-bit data in the RDAC latch is decoded to select one of the 256  
possible settings.  
Table 7. Codes and Corresponding RWB Resistance  
D (Dec.)  
RWB (Ω)  
9961  
5060  
99  
Output State  
255  
128  
1
Full Scale (RAB − 1 LSB + RW)  
Midscale  
1 LSB  
Assuming a 10 kΩ part is used, the first connection of the wiper  
starts at the B terminal for Data 0x00. Because there is a 60 Ω  
wiper contact resistance, such connection yields a minimum of  
60 Ω resistance between Terminal W and Terminal B.  
0
60  
Zero Scale (Wiper Contact Resistance)  
Note that in the zero-scale condition, a finite wiper resistance of  
60 Ω is present. Take care to limit the current flow between W  
and B in this state to a maximum pulse current of no more than  
20 mA. Otherwise, degradation or possible destruction of the  
internal switch contact can occur.  
The second connection is the first tap point, which corresponds  
to 99 Ω (RWB = RAB/256 + RW = 39 Ω + 60 Ω) for Data 0x01.  
The third connection is the next tap point, representing 138 Ω  
(2 × 39 Ω + 60 Ω) for Data 0x02, and so on. Each LSB data  
value increase moves the wiper up the resistor ladder until the  
last tap point is reached at 9961 Ω (RAB − 1 LSB + RW). Figure 39  
shows a simplified diagram of the equivalent RDAC circuit  
where the last resistor string is not accessed; therefore, there is  
1 LSB less of the nominal resistance at full scale in addition to  
the wiper resistance.  
Similar to the mechanical potentiometer, the resistance of the  
RDAC between the Wiper W and Terminal A also produces a  
digitally controlled complementary resistance (RWA). When  
these terminals are used, the B terminal can be opened. Setting  
the resistance value for RWA starts at a maximum value of  
resistance and decreases as the data loaded in the latch increases  
in value. The general equation for this operation is  
A
256 D  
256  
R
WA (D) =  
×RAB + RW  
(2)  
RS  
For RAB = 10 kΩ and the B terminal is open circuited, the  
following output resistance RWA is set for the indicated RDAC  
latch codes.  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
RS  
RS  
Table 8. Codes and Corresponding RWA Resistance  
W
D (Dec.)  
RWA (Ω)  
Output State  
Full Scale  
Midscale  
1 LSB  
255  
128  
1
99  
RDAC  
5060  
9961  
10,060  
LATCH  
RS  
AND  
B
DECODER  
0
Zero Scale  
Typical device-to-device matching is process lot dependent and  
may vary by up to 30ꢀ. Because the resistance element is  
processed in thin film technology, the change in RAB with  
temperature has a very low 45 ppm/°C temperature coefficient.  
Figure 39. Equivalent RDAC Circuit  
Rev. B | Page 14 of 16  
 
 
AD5160  
PROGRAMMING THE POTENTIOMETER DIVIDER  
ESD PROTECTION  
Voltage Output Operation  
All digital inputs are protected with a series input resistor and  
parallel Zener ESD structures are shown in Figure 40 and  
The digital potentiometer easily generates a voltage divider at  
wiper-to-B and wiper-to-A proportional to the input voltage at  
A-to-B. Unlike the polarity of VDD to GND, which must be  
positive, voltage across A to B, W to A, and W to B can be at  
either polarity.  
CS  
Figure 41. This applies to SDI, CLK, and , which are the  
digital input pins.  
340  
LOGIC  
GND  
If ignoring the effect of the wiper resistance for approximation,  
connecting the A terminal to 5 V and the B terminal to ground  
produces an output voltage at the wiper-to-B starting at 0 V up  
to 1 LSB less than 5 V. Each LSB of voltage is equal to the  
voltage applied across Terminal A and Terminal B divided by  
the 256 positions of the potentiometer divider. The general  
equation defining the output voltage at VW with respect to  
ground for any valid input voltage applied to Terminal A and  
Terminal B is  
Figure 40. ESD Protection of Digital Pins  
A,B,W  
GND  
Figure 41. ESD Protection of Resistor Terminals  
POWER-UP SEQUENCE  
Because the ESD protection diodes limit the voltage compliance  
at the A, B, and W terminals, it is important to power VDD/GND  
before applying any voltage to the A, B, and W terminals;  
otherwise, the diode forward biases such that VDD is powered  
unintentionally and may affect the rest of the users circuit. The  
ideal power-up sequence is in the following order: GND, VDD,  
digital inputs, and then VA/B/W. The relative order of powering  
VA, VB, VW, and the digital inputs is not important as long as  
they are powered after VDD/GND.  
D
256  
256 D  
256  
VW (D) =  
VA  
+
VB  
(3)  
For a more accurate calculation, which includes the effect of  
wiper resistance, VW can be found as  
R
WB (D)  
256  
R
WA (D)  
256  
VW (D) =  
VA  
+
VB  
(4)  
Operation of the digital potentiometer in the divider mode  
results in a more accurate operation over temperature. Unlike  
the rheostat mode, the output voltage is dependent mainly on  
the ratio of the internal resistors (RWA and RWB) and not the  
absolute values. Therefore, the temperature drift reduces to  
15 ppm/°C.  
LAYOUT AND POWER SUPPLY BYPASSING  
It is a good practice to employ compact, minimum lead length  
layout design. Keep the leads to the inputs as direct as possible  
with a minimum conductor length. Ground paths should have  
low resistance and low inductance.  
Similarly, it is also a good practice to bypass the power supplies  
with quality capacitors for optimum stability. Bypass supply  
leads to the device with disc or chip ceramic capacitors of  
0.01 μF to 0.1 μF. To minimize any transient disturbance and  
low frequency ripple, apply low ESR 1 μF to 10 μF tantalum or  
electrolytic capacitors at the supplies (see Figure 42). To  
minimize the ground bounce, join the digital ground remotely  
to the analog ground at a single point.  
SPI-COMPATIBLE 3-WIRE SERIAL BUS  
The AD5160 contains a 3-wire SPI-compatible digital interface  
CS  
(SDI, , and CLK). The 8-bit serial word must be loaded MSB  
first. The format of the word is shown in Table 6.  
The positive-edge sensitive CLK input requires clean transitions  
to avoid clocking incorrect data into the serial input register.  
Standard logic families work well. If mechanical switches are  
used for product evaluation, they should be debounced by a  
CS  
flip-flop or other suitable means. When  
is low, the clock  
loads data into the serial register on each positive clock edge  
(see Figure 37).  
V
V
DD  
DD  
+
C3  
C1  
10μF  
0.1μF  
AD5160  
The data setup and data hold times in the specification table  
determine the valid timing requirements. The AD5160 uses an  
8-bit serial input data register word that is transferred to the  
GND  
CS  
internal RDAC register when the  
Extra MSB bits are ignored.  
line returns to logic high.  
Figure 42. Power Supply Bypassing  
Rev. B | Page 15 of 16  
 
 
 
 
AD5160  
OUTLINE DIMENSIONS  
3.00  
2.90  
2.80  
8
1
7
6
3
5
4
3.00  
2.80  
2.60  
1.70  
1.60  
1.50  
2
PIN 1  
INDICATOR  
0.65 BSC  
1.95  
BSC  
1.30  
1.15  
0.90  
0.22 MAX  
0.08 MIN  
1.45 MAX  
0.95 MIN  
0.60  
0.45  
0.30  
0.15 MAX  
0.05 MIN  
8°  
4°  
0°  
SEATING  
PLANE  
0.60  
BSC  
0.38 MAX  
0.22 MIN  
COMPLIANT TO JEDEC STANDARDS MO-178-BA  
Figure 43. 8-Lead Small Outline Transistor Package [SOT-23]  
(RJ-8)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
RAB (Ω)  
5 k  
5 k  
10 k  
10 k  
50 k  
50 k  
100 k  
100 k  
Temperature  
Package Description  
8-Lead SOT-23  
8-Lead SOT-23  
8-Lead SOT-23  
8-Lead SOT-23  
8-Lead SOT-23  
8-Lead SOT-23  
8-Lead SOT-23  
8-Lead SOT-23  
Evaluation Board  
Package Option  
Branding  
D6Q  
D6Q  
D09  
D09  
D8J  
D8J  
D0B  
D0B  
AD5160BRJZ5-R22  
AD5160BRJZ5-RL72  
AD5160BRJZ10-R22  
AD5160BRJZ10-RL72  
AD5160BRJZ50-R22  
AD5160BRJZ50-RL72  
AD5160BRJZ100-R22  
AD5160BRJZ100-RL72  
AD5160EVAL3  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
RJ-8  
RJ-8  
RJ-8  
RJ-8  
RJ-8  
RJ-8  
RJ-8  
RJ-8  
1 The AD5160 contains 2532 transistors. Die size: 30.7 mil × 76.8 mil = 2358 sq. mil.  
2 Z = RoHS Compliant Part.  
3 The evaluation board is shipped with the 10 kΩ RAB resistor option; however, the board is compatible with all available resistor value options.  
©2003–2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D03434-0-5/09(B)  
Rev. B | Page 16 of 16  
 
 
 

相关型号:

AD5160BRJZ10-RL72

256-Position SPI-Compatible Digital Potentiometer
ADI

AD5160BRJZ100-R2

256-Position SPI-Compatible Digital Potentiometer
ADI

AD5160BRJZ100-R22

256-Position SPI-Compatible Digital Potentiometer
ADI

AD5160BRJZ100-RL7

256-Position SPI-Compatible Digital Potentiometer
ADI

AD5160BRJZ100-RL72

256-Position SPI-Compatible Digital Potentiometer
ADI

AD5160BRJZ5-R2

256-Position SPI-Compatible Digital Potentiometer
ADI

AD5160BRJZ5-R22

256-Position SPI-Compatible Digital Potentiometer
ADI

AD5160BRJZ5-RL7

256-Position SPI-Compatible Digital Potentiometer
ADI

AD5160BRJZ5-RL72

256-Position SPI-Compatible Digital Potentiometer
ADI

AD5160BRJZ50-R2

256-Position SPI-Compatible Digital Potentiometer
ADI

AD5160BRJZ50-R22

256-Position SPI-Compatible Digital Potentiometer
ADI

AD5160BRJZ50-RL7

256-Position SPI-Compatible Digital Potentiometer
ADI