AD5161BRMZ10-RL7 [ADI]

256-Position SPI/I2C Selectable Digital Potentiometer; 256位SPI / I2C可选的数字电位计
AD5161BRMZ10-RL7
型号: AD5161BRMZ10-RL7
厂家: ADI    ADI
描述:

256-Position SPI/I2C Selectable Digital Potentiometer
256位SPI / I2C可选的数字电位计

转换器 数字电位计 电阻器 光电二极管
文件: 总20页 (文件大小:503K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
256-Position SPI/I2C Selectable  
Digital Potentiometer  
Data Sheet  
AD5161  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
V
SDO/NC  
DD  
256-position  
End-to-end resistance 5 kΩ, 10 kΩ, 50 kΩ, 100 kΩ  
Compact MSOP-10 (3 mm × 4.9 mm) package  
Pin selectable SPI/I2C compatible interface  
Extra package address decode pin AD0  
Full read/write of wiper register  
SDI/SDA  
CLK/SCL  
A
2
SPI OR I C  
INTERFACE  
DIS  
W
B
CS/AD0  
Power-on preset to midscale  
Single supply 2.7 V to 5.5 V  
WIPER  
REGISTER  
Low temperature coefficient 45 ppm/°C  
Low power, IDD = 8 µA  
GND  
Wide operating temperature −40°C to +125°C  
SDO output allows multiple device daisy-chaining  
Evaluation board available  
Figure 1.  
APPLICATIONS  
PIN CONFIGURATION  
Mechanical potentiometer replacement in new designs  
Transducer adjustment of pressure, temperature, position,  
chemical, and optical sensors  
RF amplifier biasing  
Gain control and offset adjustment  
1
2
3
4
5
10  
9
A
B
W
V
AD5161  
DD  
8
CS/ADO  
SDO/NC  
SDI/SDA  
DIS  
TOP VIEW  
(Not to Scale)  
7
GND  
6
CLK/SCL  
Figure 2.  
GENERAL DESCRIPTION  
The AD5161 provides a compact 3 mm × 4.9 mm packaged  
solution for 256-position adjustment applications. These  
devices perform the same electronic adjustment function as  
mechanical potentiometers or variable resistors, with enhanced  
resolution, solid-state reliability, and superior low temperature  
coefficient performance.  
The wiper settings are controllable through a pin selectable SPI  
or I2C compatible digital interface, which can also be used to  
read back the wiper register content. When the SPI mode is  
used, the device can be daisy-chained (SDO to SDI), allowing  
several parts to share the same control lines. In the I2C mode,  
address pin AD0 can be used to place up to two devices on the  
same bus. In this same mode, command bits are available to  
reset the wiper position to midscale or to shut down the device  
into a state of zero power consumption.  
Operating from a 2.7 V to 5.5 V power supply and consuming  
less than 5 µA allows for usage in portable battery-operated  
applications.  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibilityis assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 www.analog.com  
Fax: 781.461.3113 ©2003–2012 Analog Devices, Inc. All rights reserved.  
 
 
 
 
 
AD5161  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
SPI Interface .................................................................................... 13  
I2C Interface .................................................................................... 14  
Theory of Operation ...................................................................... 15  
Programming the Variable Resistor......................................... 15  
Programming the Potentiometer Divider............................... 16  
Pin Selectable Digital Interface................................................. 16  
Level Shifting for Bidirectional Interface................................ 18  
ESD Protection ........................................................................... 18  
Terminal Voltage Operating Range ......................................... 18  
Power-Up Sequence ................................................................... 18  
Layout and Power Supply Bypassing ....................................... 18  
Outline Dimensions....................................................................... 19  
Ordering Guide .......................................................................... 19  
Applications....................................................................................... 1  
General Description ......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Pin Configuration............................................................................. 1  
Revision History ............................................................................... 2  
Electrical Characteristics—5 kΩ Version...................................... 3  
Electrical Characteristics—10 kΩ, 50 kΩ, 100 kΩ Versions....... 4  
Timing Characteristics—5 kΩ, 10 kΩ, 50 kΩ, 100 kΩ Versions 5  
Absolute Maximum Ratings1 .......................................................... 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 8  
Test Circuits..................................................................................... 12  
REVISION HISTORY  
8/12—Rev. A to Rev. B  
Changes to Applications Section .................................................... 1  
Updated Outline Dimensions....................................................... 19  
4/09—Rev. 0 to Rev. A  
Changes to Ordering Guide .......................................................... 19  
5/03—Revision 0: Initial Version  
Rev. B | Page 2 of 20  
 
Data Sheet  
AD5161  
ELECTRICAL CHARACTERISTICS—5 kΩ VERSION  
VDD = 5 V 10%, or 3 V 10%; VA = +VDD; VB = 0 V; –40°C < TA < +125°C; unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Conditions  
Min  
Typ 1  
Max  
Unit  
DC CHARACTERISTICS—RHEOSTAT MODE  
Resistor Differential Nonlinearity2  
Resistor Integral Nonlinearity2  
Nominal Resistor Tolerance3  
Resistance Temperature Coefficient  
Wiper Resistance  
R-DNL  
R-INL  
∆RAB  
∆RAB/∆T  
RW  
RWB, VA = no connect  
RWB, VA = no connect  
TA = 25°C  
−1.5  
–4  
–30  
0.1  
0.75  
+1.5  
+4  
+30  
LSB  
LSB  
%
ppm/°C  
VAB = VDD, Wiper = no connect  
45  
50  
120  
DC CHARACTERISTICS—POTENTIOMETER DIVIDER MODE (Specifications apply to all VRs)  
Resolution  
N
8
Bits  
Differential Nonlinearity4  
Integral Nonlinearity4  
Voltage Divider Temperature Coefficient  
Full-Scale Error  
DNL  
INL  
∆VW/∆T  
VWFSE  
VWZSE  
–1.5  
–1.5  
0.1  
0.6  
15  
–2.5  
+2  
+1.5  
+1.5  
LSB  
LSB  
ppm/°C  
LSB  
LSB  
Code = 0x80  
Code = 0xFF  
Code = 0x00  
–6  
0
0
+6  
Zero-Scale Error  
RESISTOR TERMINALS  
Voltage Range5  
VA,B,W  
CA,B  
GND  
VDD  
V
pF  
Capacitance6 A, B  
f = 1 MHz, measured to GND,  
Code = 0x80  
f = 1 MHz, measured to GND,  
Code = 0x80  
45  
60  
Capacitance6 W  
CW  
pF  
Shutdown Supply Current7  
Common-Mode Leakage  
DIGITAL INPUTS AND OUTPUTS  
Input Logic High  
Input Logic Low  
Input Logic High  
Input Logic Low  
Input Current  
Input Capacitance6  
POWER SUPPLIES  
IDD_SD  
ICM  
VDD = 5.5 V  
VA = VB = VDD/2  
0.01  
1
1
µA  
nA  
VIH  
VIL  
VIH  
VIL  
IIL  
2.4  
2.1  
V
V
V
V
µA  
pF  
0.8  
VDD = 3 V  
VDD = 3 V  
VIN = 0 V or 5 V  
0.6  
1
CIL  
5
Power Supply Range  
Supply Current  
Power Dissipation8  
Power Supply Sensitivity  
VDD RANGE  
IDD  
PDISS  
2.7  
5.5  
8
0.2  
V
µA  
mW  
%/%  
VIH = 5 V or VIL = 0 V  
VIH = 5 V or VIL = 0 V, VDD = 5 V  
∆VDD = +5 V 10%,  
Code = Midscale  
3
PSS  
0.02  
0.05  
DYNAMIC CHARACTERISTICS6, 9  
Bandwidth –3dB  
Total Harmonic Distortion  
VW Settling Time  
BW_5K  
THDW  
tS  
RAB = 5 kΩ, Code = 0x80  
1.2  
0.05  
1
MHz  
%
µs  
VA = 1 V rms, VB = 0 V, f = 1 kHz  
VA= 5 V, VB = 0 V, 1 LSB error band  
RWB = 2.5 kΩ, RS = 0  
Resistor Noise Voltage Density  
eN_WB  
6
nV/√Hz  
Rev. B | Page 3 of 20  
 
AD5161  
Data Sheet  
ELECTRICAL CHARACTERISTICS—10 kΩ, 50 kΩ, 100 kΩ VERSIONS  
VDD = 5 V 10%, or 3 V 10%; VA = VDD; VB = 0 V; –40°C < TA < +125°C; unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Conditions  
Min  
Typ1  
Max  
Unit  
DC CHARACTERISTICS—RHEOSTAT MODE  
Resistor Differential Nonlinearity2  
Resistor Integral Nonlinearity2  
Nominal Resistor Tolerance3  
Resistance Temperature Coefficient  
R-DNL  
R-INL  
∆RAB  
RWB, VA = no connect  
RWB, VA = no connect  
TA = 25°C  
VAB = VDD,  
Wiper = no connect  
–1  
–2  
–30  
0.1  
0.25  
+1  
+2  
+30  
LSB  
LSB  
%
∆RAB/∆T  
45  
50  
ppm/°C  
Wiper Resistance  
RW  
VDD = 5 V  
120  
DC CHARACTERISTICS—POTENTIOMETER DIVIDER MODE (Specifications apply to all VRs)  
Resolution  
N
8
Bits  
Differential Nonlinearity4  
Integral Nonlinearity4  
Voltage Divider Temperature Coefficient  
Full-Scale Error  
DNL  
INL  
∆VW/∆T  
VWFSE  
VWZSE  
–1  
–1  
0.1  
0.3  
15  
–1  
1
+1  
+1  
LSB  
LSB  
ppm/°C  
LSB  
LSB  
Code = 0x80  
Code = 0xFF  
Code = 0x00  
–3  
0
0
3
Zero-Scale Error  
RESISTOR TERMINALS  
Voltage Range5  
VA,B,W  
CA,B  
GND  
VDD  
V
pF  
Capacitance6 A, B  
f = 1 MHz, measured to  
GND, Code = 0x80  
f = 1 MHz, measured to  
GND, Code = 0x80  
45  
60  
Capacitance6 W  
CW  
pF  
Shutdown Supply Current7  
Common-Mode Leakage  
DIGITAL INPUTS AND OUTPUTS  
Input Logic High  
Input Logic Low  
Input Logic High  
Input Logic Low  
Input Current  
Input Capacitance6  
POWER SUPPLIES  
IDD_SD  
ICM  
VDD = 5.5 V  
VA = VB = VDD/2  
0.01  
1
1
µA  
nA  
VIH  
VIL  
VIH  
VIL  
IIL  
2.4  
2.1  
V
V
V
V
µA  
pF  
0.8  
VDD = 3 V  
VDD = 3 V  
VIN = 0 V or 5 V  
0.6  
1
CIL  
5
Power Supply Range  
Supply Current  
Power Dissipation8  
VDD RANGE  
IDD  
PDISS  
2.7  
5.5  
8
0.2  
V
µA  
mW  
VIH = 5 V or VIL = 0 V  
VIH = 5 V or VIL = 0 V,  
3
V
DD = 5 V  
Power Supply Sensitivity  
PSS  
∆VDD = +5 V 10%,  
Code = Midscale  
0.02  
0.05 %/%  
DYNAMIC CHARACTERISTICS6, 9  
Bandwidth –3dB  
BW  
RAB = 10 kΩ/50 kΩ/100 kΩ,  
Code = 0x80  
VA =1 V rms, VB = 0 V,  
f = 1 kHz, RAB = 10 kΩ  
VA = 5 V, VB = 0 V,  
1 LSB error band  
RWB = 5 kΩ, RS = 0  
600/100/40  
kHz  
%
Total Harmonic Distortion  
THDW  
tS  
0.05  
2
VW Settling Time (10 kΩ/50 kΩ/100 kΩ)  
Resistor Noise Voltage Density  
µs  
eN_WB  
9
nV/√Hz  
Rev. B | Page 4 of 20  
 
Data Sheet  
AD5161  
TIMING CHARACTERISTICS—5 kΩ, 10 kΩ, 50 kΩ, 100 kΩ VERSIONS  
VDD = +5V 10%, or +3V 10%; VA = VDD; VB = 0 V; –40°C < TA < +125°C; unless otherwise noted.  
Table 3.  
Parameter  
Symbol  
Conditions  
Min Typ1 Max Unit  
SPI INTERFACE TIMING CHARACTERISTICS6, 10 (Specifications Apply to All Parts)  
Clock Frequency  
Input Clock Pulsewidth  
Data Setup Time  
Data Hold Time  
fCLK  
tCH, tCL  
tDS  
25  
MHz  
ns  
ns  
Clock level high or low  
20  
5
5
tDH  
ns  
CS  
CS  
tCSS  
15  
40  
0
ns  
Setup Time  
tCSW  
tCSH0  
tCSH1  
tCS1  
ns  
High Pulsewidth  
CS  
CLK Fall to Fall Hold Time  
CS  
CLK Fall to Rise Hold Time  
CS  
ns  
0
ns  
10  
ns  
Rise to Clock Rise Setup  
I2C INTERFACE TIMING CHARACTERISTICS6, 11 (Specifications Apply to All Parts)  
SCL Clock Frequency  
tBUF Bus Free Time between STOP and START  
tHD;STA Hold Time (Repeated START )  
fSCL  
t1  
t2  
400  
kHz  
µs  
µs  
1.3  
0.6  
After this period, the first clock pulse is  
generated.  
tLOW Low Period of SCL Clock  
tHIGH High Period of SCL Clock  
tSU;STA Setup Time for Repeated START Condition  
tHD;DAT Data Hold Time  
tSU;DAT Data Setup Time  
tF Fall Time of Both SDA and SCL Signals  
tR Rise Time of Both SDA and SCL Signals  
tSU;STO Setup Time for STOP Condition  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
t10  
1.3  
0.6  
0.6  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
50  
0.9  
100  
0.6  
300  
300  
NOTES  
1 Typical specifications represent average readings at +25°C and VDD = 5 V.  
2 Resistor position nonlinearity error R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper  
positions. R-DNL measures the relative step change from ideal between successive tap positions. Parts are guaranteed monotonic.  
3 VAB = VDD, Wiper (VW) = no connect.  
4 INL and DNL are measured at VW with the RDAC configured as a potentiometer divider similar to a voltage output D/A converter. VA = VDD and VB = 0 V.  
DNL specification limits of 1 LSB maximum are guaranteed monotonic operating conditions.  
5 Resistor terminals A, B, W have no limitations on polarity with respect to each other.  
6 Guaranteed by design and not subject to production test.  
7 Measured at the A terminal. The A terminal is open circuited in shutdown mode.  
8 PDISS is calculated from (IDD × VDD). CMOS logic level inputs result in minimum power dissipation.  
9 All dynamic characteristics use VDD = 5 V.  
10 See timing diagram for location of measured values. All input control voltages are specified with tR = tF = 2 ns (10% to 90% of 3 V) and timed from a voltage  
level of 1.5 V.  
11 See timing diagrams for locations of measured values.  
Rev. B | Page 5 of 20  
 
AD5161  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS1  
TA = 25°C, unless otherwise noted.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 4.  
Parameter  
Value  
VDD to GND  
–0.3 V to +7 V  
VDD  
20 mA  
VA, VB, VW to GND  
1
IMAX  
Digital Inputs and Output Voltage to GND 0 V to +7 V  
Operating Temperature Range  
Maximum Junction Temperature (TJMAX  
Storage Temperature Range  
Lead Temperature (Soldering, 10 sec)  
Thermal Resistance2  
–40°C to +125°C  
150°C  
–65°C to +150°C  
300°C  
)
ESD CAUTION  
θJA (10-Lead MSOP)  
NOTES  
200°C/W  
1 Maximum terminal current is bounded by the maximum current handling of  
the switches, maximum power dissipation of the package, and maximum  
applied voltage across any two of the A, B, and W terminals at a given  
resistance.  
2 Package power dissipation = (TJMAX – TA)/θJA  
.
Rev. B | Page 6 of 20  
 
 
Data Sheet  
AD5161  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
10  
9
A
B
W
V
AD5161  
DD  
8
CS/ADO  
SDO/NC  
SDI/SDA  
DIS  
TOP VIEW  
(Not to Scale)  
7
GND  
6
CLK/SCL  
Figure 3. Pin Configuration  
Table 5. Pin Function Description  
Pin No.  
Mnemonic  
Description  
A Terminal.  
B Terminal.  
1
2
3
A
B
CS  
/AD0  
CS  
CS  
Chip Select ( ) Input, Active Low. When returns high, data will be loaded into the DAC register.  
Programmable address bit 0 (AD0) for multiple package decoding.  
Serial Data Output (SDO). Open-drain transistor requires pull-up resistor.  
No Connect (NC).  
4
5
SDO/NC  
SDI/SDA  
Serial Data Input (SDI).  
Serial Data Input/Output (SDA).  
6
7
8
9
CLK/SCL  
GND  
DIS  
Serial Clock Input. Positive edge triggered.  
Digital Ground.  
Digital Interface Select (SPI/I2C Select). SPI when DIS = 0, I2C when DIS = 1.  
Positive Power Supply.  
VDD  
10  
W
W Terminal.  
Rev. B | Page 7 of 20  
 
AD5161  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.0  
1.0  
0.8  
5V  
3V  
–40°C  
+25°C  
+85°C  
+125°C  
0.8  
0.6  
0.6  
0.4  
0.2  
0.4  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
32  
64  
96  
128  
160  
192  
224  
256  
0
32  
64  
96  
128  
160  
192  
224  
256  
CODE (Decimal)  
CODE (Decimal)  
Figure 7. DNL vs. Code, VDD = 5 V  
Figure 4. R-INL vs. Code vs. Supply Voltages  
1.0  
0.8  
1.0  
0.8  
5V  
3V  
5V  
3V  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
32  
64  
96  
128  
160  
192  
224  
256  
0
32  
64  
96  
128  
160  
192  
224  
256  
CODE (Decimal)  
CODE (Decimal)  
Figure 8. INL vs. Code vs. Supply Voltages  
Figure 5. R-DNL vs. Code vs. Supply Voltages  
1.0  
0.8  
1.0  
0.8  
_
5V  
3V  
40°C  
+25°C  
+85°C  
+125°C  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.0  
0
32  
64  
96  
128  
160  
192  
224  
256  
0
32  
64  
96  
128  
160  
192  
224  
256  
CODE (Decimal)  
CODE (Decimal)  
Figure 9. DNL vs. Code vs. Supply Voltages  
Figure 6. INL vs. Code, VDD = 5 V  
Rev. B | Page 8 of 20  
 
Data Sheet  
AD5161  
1.0  
0.8  
2.5  
2.0  
1.5  
1.0  
0.5  
–40  
+25°C  
+85°C  
°C  
0.6  
+125°C  
0.4  
V
V
= 5.5V  
= 2.7V  
DD  
0.2  
0
DD  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
–40  
0
40  
80  
120  
0
32  
64  
96  
128  
160  
192  
224  
256  
TEMPERATURE (°C)  
CODE (Decimal)  
Figure 13. Zero-Scale Error vs. Temperature  
Figure 10. R-INL vs. Code, VDD = 5 V  
10  
1.0  
0.8  
_
40°C  
+25°C  
+85°C  
+125°C  
0.6  
0.4  
V
= 5.5V  
0.2  
DD  
1
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
V
= 2.7V  
DD  
0.1  
–40  
0
40  
80  
120  
0
32  
64  
96  
128  
160  
192  
224  
256  
TEMPERATURE (°C)  
CODE (Decimal)  
Figure 14. Supply Current vs. Temperature  
Figure 11. R-DNL vs. Code, VDD = 5 V  
2.5  
2.0  
1.5  
1.0  
70  
60  
50  
40  
30  
20  
10  
0
V
V
= 2.7V  
DD  
= 5.5V  
DD  
V
= 5V  
DD  
0.5  
0
–40  
0
40  
80  
120  
–40  
0
40  
80  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 12. Full-Scale Error vs. Temperature  
Figure 15. Shutdown Current vs. Temperature  
Rev. B | Page 9 of 20  
AD5161  
Data Sheet  
200  
150  
100  
50  
REF LEVEL  
0.000dB  
0
/DIV  
6.000dB  
MARKER 510 634.725Hz  
MAG (A/R) –9.049dB  
0x80  
–6  
0x40  
0x20  
0x10  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
0x08  
0x04  
0x02  
0x01  
0
–50  
0
32  
64  
96  
128  
160  
192  
224  
256  
CODE (Decimal)  
1k  
START 1 000.000Hz  
10k  
100k  
1M  
STOP 1 000 000.000Hz  
Figure 19. Gain vs. Frequency vs. Code, RAB = 10 kΩ  
Figure 16. Rheostat Mode Tempco ∆RWB/∆T vs. Code  
REF LEVEL  
0.000dB  
0
/DIV  
6.000dB  
MARKER 100 885.289Hz  
MAG (A/R) –9.014dB  
160  
140  
120  
100  
80  
0x80  
–6  
0x40  
0x20  
0x10  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
60  
0x08  
40  
0x04  
0x02  
0x01  
20  
0
–20  
0
32  
64  
96  
128  
160  
192  
224  
256  
CODE (Decimal)  
1k  
START 1 000.000Hz  
10k  
100k  
1M  
STOP 1 000 000.000Hz  
Figure 17. Potentiometer Mode Tempco ∆VWB/∆T vs. Code  
Figure 20. Gain vs. Frequency vs. Code, RAB = 50 kΩ  
REF LEVEL  
0.000dB  
0
/DIV  
6.000dB  
MARKER 1 000 000.000Hz  
MAG (A/R) –8.918dB  
REF LEVEL  
0.000dB  
0
/DIV  
6.000dB  
MARKER 54 089.173Hz  
MAG (A/R) –9.052dB  
0x80  
0x80  
–6  
–6  
0x40  
0x20  
0x40  
0x20  
–12  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
0x10  
0x08  
0x04  
0x10  
0x08  
0x04  
0x02  
0x01  
0x02  
0x01  
1k  
START 1 000.000Hz  
10k  
100k  
1M  
1k  
START 1 000.000Hz  
10k  
100k  
1M  
STOP 1 000 000.000Hz  
STOP 1 000 000.000Hz  
Figure 18. Gain vs. Frequency vs. Code, RAB = 5 kΩ  
Figure 21. Gain vs. Frequency vs. Code, RAB = 100 kΩ  
Rev. B | Page 10 of 20  
Data Sheet  
AD5161  
REF LEVEL  
–5.000dB  
/DIV  
0.500dB  
–5.5  
–6.0  
–6.5  
–7.0  
–7.5  
–8.0  
–8.5  
–9.0  
5k– 1.026 MHz  
10k– 511 MHz  
50k– 101 MHz  
100k– 54 MHz  
1
VW  
CLK  
R = 50k  
R = 5kΩ  
2
R = 10kΩ  
R = 100kΩ  
Ch 1 200mV  
B
Ch 2 5.00 V  
B
M 100ns A CH2 3.00 V  
W
W
–9.5  
–10.0  
–10.5  
10k  
100k  
1M  
10M  
START 1 000.000Hz  
STOP 1 000 000.000Hz  
Figure 25. Digital Feedthrough  
Figure 22. –3 dB Bandwidth @ Code = 0x80  
60  
40  
20  
0
CODE = 0x80, V = V , V = 0V  
DD  
A
B
V
V
= 5V  
= 0V  
A
B
1
VW  
CS  
PSRR @ V = 3V DC ± 10% p-p AC  
DD  
2
Ch 1 100mV  
B
Ch 2 5.00 V  
B
M 200ns A CH1 152mV  
PSRR @ V = 5V DC ± 10% p-p AC  
W
W
DD  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 23. PSRR vs. Frequency  
Figure 26. Midscale Glitch, Code 0x80–0x7F  
900  
V
= 5V  
DD  
800  
700  
600  
500  
400  
300  
V
V
= 5V  
= 0V  
A
B
1
VW  
CS  
CODE = 0x55  
CODE = 0xFF  
2
200  
100  
0
Ch 1  
5.00V  
B
Ch 2 5.00 V  
B
M 200ns A CH1 3.00 V  
W
W
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
Figure 27. Large Signal Settling Time, Code 0xFF–0x00  
Figure 24. IDD vs. Frequency  
Rev. B | Page 11 of 20  
AD5161  
Data Sheet  
TEST CIRCUITS  
Figure 28 to Figure 36 illustrate the test circuits that define the test conditions used in the product specification tables.  
5V  
OP279  
V
OUT  
DUT  
A
V+ = V  
DD  
1LSB = V+/2  
V
IN  
N
W
W
OFFSET  
GND  
V+  
A
DUT  
B
B
V
MS  
OFFSET  
BIAS  
Figure 28. Test Circuit for Potentiometer Divider Nonlinearity Error (INL, DNL)  
Figure 33. Test Circuit for Noninverting Gain  
NO CONNECT  
DUT  
A
+15V  
I
W
W
A
W
V
DUT  
IN  
AD8610  
–15V  
V
OUT  
OFFSET  
GND  
B
V
B
MS  
2.5V  
Figure 29. Test Circuit for Resistor Position Nonlinearity Error  
(Rheostat Operation; R-INL, R-DNL)  
Figure 34. Test Circuit for Gain vs. Frequency  
0.1V  
R
=
SW  
I
SW  
CODE = 0x00  
DUT  
DUT  
W
I
= V /R  
NOMINAL  
DD  
W
A
V
B
W
0.1V  
W
I
V
SW  
MS2  
B
V
R
= [V  
– V  
]/I  
W
V
TO V  
DD  
MS1  
W
MS1  
MS2  
SS  
Figure 35. Test Circuit for Incremental ON Resistance  
Figure 30. Test Circuit for Wiper Resistance  
V
A
NC  
V+= V  
10%  
PSRR (dB) = 20 LOG  
DD  
V  
V  
MS  
DD  
(
)
I
V
A
B
CM  
DUT  
GND  
V
DD  
DD  
A
B
W
%
V  
V  
MS  
W
V+  
PSS (%/%) =  
%
DD  
V
SS  
V
CM  
V
MS  
NC NC = NO CONNECT  
Figure 36. Test Circuit for Common-Mode Leakage Current  
Figure 31. Test Circuit for Power Supply Sensitivity (PSS, PSSR)  
A
B
DUT  
5V  
W
V
IN  
OP279  
V
OUT  
OFFSET  
GND  
OFFSET  
BIAS  
Figure 32. Test Circuit for Inverting Gain  
Rev. B | Page 12 of 20  
 
 
Data Sheet  
AD5161  
SPI INTERFACE  
Table 6. AD5161 Serial Data-Word Format  
1
0
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDI  
CLK  
CS  
B7  
D7  
MSB  
27  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
D0  
LSB  
20  
0
1
RDAC REGISTER LOAD  
D6  
D5  
D4  
D3  
D2  
D1  
0
1
0
VOUT  
Figure 37. SPI Interface Timing Diagram (VA = 5 V, VB = 0 V, VW = VOUT  
)
1
0
1
SDI  
(DATA IN)  
Dx  
Dx  
tDS  
tCH  
tCS1  
tCH  
CLK  
0
tCSH1  
tCL  
tCSHO  
tCSS  
1
0
CS  
tCSW  
tS  
VDD  
VOUT  
±1LSB  
0
Figure 38. SPI Interface Detailed Timing Diagram (VA = 5 V, VB = 0 V, VW = VOUT  
)
Rev. B | Page 13 of 20  
 
 
 
AD5161  
Data Sheet  
I2C INTERFACE  
Table 7. Write Mode  
S
0
1
0
1
1
0
AD0  
W
A
X
RS SD  
X
X
X
X
X
A
D7 D6 D5 D4 D3 D2 D1 D0  
Data Byte  
A P  
Slave Address Byte  
Instruction Byte  
Table 8. Read Mode  
S
0
1
0
1
1
0
AD0  
R
A
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
A
P
Slave Address Byte  
Data Byte  
S = Start Condition  
P = Stop Condition  
A = Acknowledge  
X = Don’t Care  
R = Read  
RS = Reset wiper to Midscale 80H  
SD = Shutdown connects wiper to B terminal and open circuits  
A terminal. It does not change contents of wiper register.  
D7, D6, D5, D4, D3, D2, D1, D0 = Data Bits.  
W
= Write  
t2  
t8  
t9  
SCL  
t6  
t7  
t5  
t10  
t2  
t3  
t4  
t9  
t8  
SDA  
t1  
P
S
S
P
Figure 39. I2C Interface Detailed Timing Diagram  
1
9
1
9
1
9
SCL  
X
RS  
SD  
X
X
X
X
X
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
1
0
1
1
0
AD0 R/W  
SDA  
ACK BY  
AD5161  
ACK BY  
AD5161  
ACK BY  
AD5161  
FRAME 1  
SLAVE ADDRESS BYTE  
FRAME 2  
INSTRUCTION BYTE  
FRAME 3  
DATA BYTE  
STOP BY  
MASTER  
START BY  
MASTER  
Figure 40. Writing to the RDAC Register  
1
9
1
9
SCL  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
1
0
1
1
0
AD0 R/W  
SDA  
ACK BY  
AD5161  
NO ACK  
BY MASTER  
FRAME 1  
SLAVE ADDRESS BYTE  
FRAME 2  
RDAC REGISTER  
START BY  
MASTER  
STOP BY  
MASTER  
Figure 41. Reading Data from a Previously Selected RDAC Register in Write Mode  
Rev. B | Page 14 of 20  
 
 
 
 
 
Data Sheet  
AD5161  
THEORY OF OPERATION  
The AD5161 is a 256-position digitally controlled variable  
resistor (VR)1 device.  
The general equation determining the digitally programmed  
output resistance between W and B is  
An internal power-on preset places the wiper at midscale during  
power-on, which simplifies the fault condition recovery at power-up.  
D
256  
R
WB (D)   
RAB RW  
(1)  
where D is the decimal equivalent of the binary code loaded in  
the 8-bit RDAC register, RAB is the end-to-end resistance, and  
RW is the wiper resistance contributed by the on resistance of  
the internal switch.  
PROGRAMMING THE VARIABLE RESISTOR  
Rheostat Operation  
The nominal resistance of the RDAC between terminals A and  
B is available in 5 kΩ, 10 kΩ, 50 kΩ, and 100 kΩ. The final two  
or three digits of the part number determine the nominal resistance  
value, e.g., 10 kΩ = 10; 50 kΩ = 50. The nominal resistance (RAB) of  
the VR has 256 contact points accessed by the wiper terminal,  
plus the B terminal contact. The 8-bit data in the RDAC latch is  
decoded to select one of the 256 possible settings. Assume a 10 kΩ  
part is used, the wipers first connection starts at the B terminal  
for data 0x00. Since there is a 60 Ω wiper contact resistance, such  
connection yields a minimum of 60 Ω resistance between  
Terminals W and B. The second connection is the first tap point,  
which corresponds to 99 Ω (RWB = RAB/256 + RW = 39 Ω + 60 Ω)  
for data 0x01. The third connection is the next tap point,  
representing 177 Ω (2 × 39 Ω + 60 Ω) for data 0x02 and so on. Each  
LSB data value increase moves the wiper up the resistor ladder  
until the last tap point is reached at 9961 Ω (RAB – 1 LSB + RW).  
Figure 42 shows a simplified diagram of the equivalent RDAC  
circuit where the last resistor string will not be accessed;  
therefore, there is 1 LSB less of the nominal resistance at full  
scale in addition to the wiper resistance.  
In summary, if RAB = 10 kΩ and the A terminal is open circuited,  
the following output resistance RWB will be set for the indicated  
RDAC latch codes.  
Table 9. Codes and Corresponding RWB Resistance  
D (Dec.)  
RWB (Ω)  
9,961  
5,060  
99  
Output State  
255  
128  
1
Full Scale (RAB – 1 LSB + RW)  
Midscale  
1 LSB  
0
60  
Zero Scale (Wiper Contact Resistance)  
Note that in the zero-scale condition a finite wiper resistance of  
60 Ω is present. Care should be taken to limit the current flow  
between W and B in this state to a maximum pulse current of  
no more than 20 mA. Otherwise, degradation or possible  
destruction of the internal switch contact can occur.  
Similar to the mechanical potentiometer, the resistance of the  
RDAC between the wiper W and terminal A also produces a  
digitally controlled complementary resistance RWA. When these  
terminals are used, the B terminal can be opened. Setting the  
resistance value for RWA starts at a maximum value of resistance  
and decreases as the data loaded in the latch increases in value.  
The general equation for this operation is  
A
SD BIT  
RS  
D7  
D6  
D5  
RS  
D4  
256 D  
256  
D3  
R
WA (D)   
RAB RW  
(2)  
D2  
D1  
RS  
D0  
W
For RAB = 10 kΩ and the B terminal open circuited, the  
following output resistance RWA will be set for the indicated  
RDAC latch codes.  
RDAC  
LATCH  
RS  
AND  
B
Table 10. Codes and Corresponding RWA Resistance  
DECODER  
D (Dec.)  
RWA (Ω)  
Output State  
Full Scale  
Midscale  
1 LSB  
255  
128  
1
99  
5,060  
9,961  
10,060  
Figure 42. AD5161 Equivalent RDAC Circuit  
1 The terms digital potentiometer, VR, and RDAC are used interchangeably.  
0
Zero Scale  
Typical device to device matching is process lot dependent and  
may vary by up to 30ꢀ. Since the resistance element is processed  
in thin film technology, the change in RAB with temperature has  
a very low 45 ppm/°C temperature coefficient.  
Rev. B | Page 15 of 20  
 
 
 
 
AD5161  
Data Sheet  
Daisy-Chain Operation  
PROGRAMMING THE POTENTIOMETER DIVIDER  
Voltage Output Operation  
The serial data output (SDO) pin contains an open-drain  
N-channel FET. This output requires a pull-up resistor in order  
to transfer data to the next packages SDI pin. This allows for  
daisy-chaining several RDACs from a single processor serial  
data line. The pull-up resistor termination voltage can be larger  
than the VDD supply voltage. It is recommended to increase the  
clock period when using a pull-up resistor to the SDI pin of the  
following device because capacitive loading at the daisy-chain  
node SDO-SDI between devices may induce time delay to  
subsequent devices. Users should be aware of this potential  
problem to achieve data transfer successfully (see Figure 43). If  
two AD5161s are daisy-chained, a total of at least 16 bits of data  
is required. The first eight bits, complying with the format  
shown in Table 6, go to U2 and the second eight bits with the  
The digital potentiometer easily generates a voltage divider at  
wiper-to-B and wiper-to-A proportional to the input voltage at  
A-to-B. Unlike the polarity of VDD to GND, which must be  
positive, voltage across A-B, W-A, and W-B can be at either  
polarity.  
If ignoring the effect of the wiper resistance for approximation,  
connecting the A terminal to 5 V and the B terminal to ground  
produces an output voltage at the wiper-to-B starting at 0 V up  
to 1 LSB less than 5 V. Each LSB of voltage is equal to the  
voltage applied across terminal AB divided by the 256 positions  
of the potentiometer divider. The general equation defining the  
output voltage at VW with respect to ground for any valid input  
voltage applied to terminals A and B is  
CS  
same format go to U1.  
clocked into their respective serial registers. After this,  
pulled high to complete the operation and load the RDAC latch.  
CS  
should be kept low until all 16 bits are  
D
256  
256 D  
256  
CS  
is  
VW (D) =  
VA  
+
VB  
(3)  
For a more accurate calculation, which includes the effect of  
wiper resistance, VW, can be found as  
If the data word during the  
low period is greater than 16  
bits, any additional MSBs will be discarded.  
VDD  
R
WB (D)  
256  
R
WA (D)  
256  
VW (D) =  
VA  
+
VB  
(4)  
AD5161  
RP  
AD5161  
Operation of the digital potentiometer in the divider mode  
results in a more accurate operation over temperature. Unlike  
the rheostat mode, the output voltage is dependent mainly on  
the ratio of the internal resistors RWA and RWB and not the  
absolute values. Therefore, the temperature drift reduces to  
15 ppm/°C.  
µC  
MOSI  
CLK SC  
U1  
U2  
2.2k  
SDI  
CS  
SDO  
CLK  
SDI  
SDO  
CLK  
CS  
Figure 43. Daisy-Chain Configuration  
PIN SELECTABLE DIGITAL INTERFACE  
I2C Compatible 2-Wire Serial Bus (DIS = 1)  
The AD5161 provides the flexibility of a selectable interface.  
When the digital interface select (DIS) pin is tied low, the SPI  
The AD5161 can also be controlled via an I2C compatible serial  
bus with DIS tied high. The RDACs are connected to this bus as  
slave devices.  
mode is engaged. When the DIS pin is tied high, the I2C mode  
is engaged.  
The first byte of the AD5161 is a slave address byte (see Table 7  
SPI Compatible 3-Wire Serial Bus (DIS = 0)  
W
and Table 8). It has a 7-bit slave address and a R/ bit. The six  
The AD5161 contains a 3-wire SPI compatible digital interface  
MSBs of the slave address are 010110, and the following bit is  
determined by the state of the AD0 pin of the device. AD0  
allows the user to place up to two of the I2C compatible devices  
on one bus.  
CS  
(SDI, , and CLK). The 8-bit serial word must be loaded MSB  
first. The format of the word is shown in Table 6.  
The positive-edge sensitive CLK input requires clean transitions  
to avoid clocking incorrect data into the serial input register.  
Standard logic families work well. If mechanical switches are  
used for product evaluation, they should be debounced by a  
The 2-wire I2C serial bus protocol operates as follows:  
1. The master initiates data transfer by establishing a START  
condition, which is when a high-to-low transition on the  
SDA line occurs while SCL is high (see Figure 40). The  
following byte is the slave address byte, which consists of  
CS  
flip-flop or other suitable means. When  
is low, the clock  
loads data into the serial register on each positive clock edge  
(see Figure 37).  
W
the 7-bit slave address followed by an R/ bit (this bit  
determines whether data will be read from or written to  
the slave device).  
The data setup and data hold times in the specification table  
determine the valid timing requirements. The AD5161 uses an  
8-bit serial input data register word that is transferred to the  
CS  
internal RDAC register when the  
Extra MSB bits are ignored.  
line returns to logic high.  
Rev. B | Page 16 of 20  
 
 
 
Data Sheet  
AD5161  
5. When all data bits have been read or written, a STOP  
The slave whose address corresponds to the transmitted  
condition is established by the master. A STOP condition is  
defined as a low-to-high transition on the SDA line while  
SCL is high. In write mode, the master will pull the SDA  
line high during the tenth clock pulse to establish a STOP  
condition (see Figure 40). In read mode, the master will  
issue a No Acknowledge for the ninth clock pulse (i.e., the  
SDA line remains high). The master will then bring the  
SDA line low before the tenth clock pulse which goes high  
to establish a STOP condition (see Figure 41).  
address responds by pulling the SDA line low during the  
ninth clock pulse (this is termed the acknowledge bit). At  
this stage, all other devices on the bus remain idle while the  
selected device waits for data to be written to or read from  
W
its serial register. If the R/ bit is high, the master will read  
W
from the slave device. On the other hand, if the R/ bit is  
low, the master will write to the slave device.  
2. A write operation contains an extra instruction byte that a  
read operation does not contain. Such an instruction byte  
in write mode follows the slave address byte. The first bit  
(MSB) of the instruction byte is a don’t care.  
A repeated write function gives the user flexibility to update the  
RDAC output a number of times after addressing and instructing  
the part only once. During the write cycle, each data byte will  
update the RDAC output. For example, after the RDAC has  
acknowledged its slave address and instruction bytes, the RDAC  
output will update after these two bytes. If another byte is written to  
the RDAC while it is still addressed to a specific slave device  
with the same instruction, this byte will update the output of  
the selected slave device. If different instructions are needed, the  
write mode has to start again with a new slave address, instruction,  
and data byte. Similarly, a repeated read function of the RDAC  
is also allowed.  
The second MSB, RS, is the midscale reset. A logic high on  
this bit moves the wiper to the center tap where RWA = RWB  
This feature effectively writes over the contents of the  
register, and thus, when taken out of reset mode, the  
RDAC will remain at midscale.  
.
The third MSB, SD, is a shutdown bit. A logic high causes  
an open circuit at terminal A while shorting the wiper to  
terminal B. This operation yields almost 0 Ω in rheostat  
mode or 0 V in potentiometer mode. It is important to  
note that the shutdown operation does not disturb the  
contents of the register. When brought out of shutdown,  
the previous setting will be applied to the RDAC. Also,  
during shutdown, new settings can be programmed. When  
the part is returned from shutdown, the corresponding VR  
setting will be applied to the RDAC.  
Readback RDAC Value  
The AD5161 allows the user to read back the RDAC values in the  
read mode. Refer to Table 7 and Table 8 for the programming format.  
Multiple Devices on One Bus  
Figure 44 shows two AD5161 devices on the same serial bus.  
Each has a different slave address since the states of their AD0  
pins are different. This allows each RDAC within each device to  
be written to or read from independently. The master device  
output bus line drivers are open-drain pull-downs in a fully I2C  
compatible interface.  
The remainder of the bits in the instruction byte are don’t  
cares (see Table 7).  
+5V  
3. After acknowledging the instruction byte, the last byte in  
write mode is the data byte. Data is transmitted over the  
serial bus in sequences of nine clock pulses (eight data bits  
followed by an acknowledge bit). The transitions on the  
SDA line must occur during the low period of SCL and  
remain stable during the high period of SCL (see Table 7).  
RP  
RP  
SDA  
SCL  
MASTER  
+5V  
SDA SCL  
SDA SCL  
4. In the read mode, the data byte follows immediately after  
the acknowledgment of the slave address byte. Data is  
transmitted over the serial bus in sequences of nine clock  
pulses (a slight difference with the write mode, where there  
are eight data bits followed by an acknowledge bit).  
Similarly, the transitions on the SDA line must occur  
during the low period of SCL and remain stable during the  
high period of SCL (see Figure 41).  
AD0  
AD0  
AD5161  
AD5161  
Figure 44. Multiple AD5161 Devices on One I2C Bus  
Rev. B | Page 17 of 20  
 
AD5161  
Data Sheet  
LEVEL SHIFTING FOR BIDIRECTIONAL INTERFACE  
TERMINAL VOLTAGE OPERATING RANGE  
While most legacy systems may be operated at one voltage, a  
new component may be optimized at another. When two systems  
operate the same signal at two different voltages, proper level  
shifting is needed. For instance, one can use a 3.3 V E2PROM to  
interface with a 5 V digital potentiometer. A level shifting scheme is  
needed to enable a bidirectional communication so that the setting  
of the digital potentiometer can be stored to and retrieved from  
the E2PROM. Figure 45 shows one of the implementations. M1  
and M2 can be any N-channel signal FETs, or if VDD falls below  
2.5 V, low threshold FETs such as the FDV301N.  
The AD5161 VDD and GND power supply defines the boundary  
conditions for proper 3-terminal digital potentiometer  
operation. Supply signals present on terminals A, B, and W that  
exceed VDD or GND will be clamped by the internal forward  
biased diodes (see Figure 48).  
V
DD  
A
W
B
V
= 3.3V  
V
= 5V  
DD1  
DD2  
R
R
R
R
P
P
P
P
V
SS  
G
S
D
SDA2  
SDA1  
SCL1  
Figure 48. Maximum Terminal Voltages Set by VDD and VSS  
G
M1  
S
D
SCL2  
M2  
POWER-UP SEQUENCE  
3.3V  
5V  
Since the ESD protection diodes limit the voltage compliance at  
terminals A, B, and W (see Figure 48), it is important to power  
E2PROM  
AD5161  
V
DD/GND before applying any voltage to terminals A, B, and W;  
Figure 45. Level Shifting for Operation at Different Potentials  
otherwise, the diode will be forward biased such that VDD will  
be powered unintentionally and may affect the rest of the users  
circuit. The ideal power-up sequence is in the following order:  
GND, VDD, digital inputs, and then VA/B/W. The relative order of  
powering VA, VB, VW, and the digital inputs is not important as  
long as they are powered after VDD/GND.  
ESD PROTECTION  
All digital inputs are protected with a series input resistor and  
parallel Zener ESD structures shown in Figure 46 and Figure 47.  
This applies to the digital input pins SDI/SDA, CLK/SCL, and  
LAYOUT AND POWER SUPPLY BYPASSING  
CS  
/AD0.  
It is a good practice to employ compact, minimum lead length  
layout design. The leads to the inputs should be as direct as  
possible with a minimum conductor length. Ground paths  
should have low resistance and low inductance.  
340  
LOGIC  
V
ss  
Similarly, it is also a good practice to bypass the power supplies  
with quality capacitors for optimum stability. Supply leads to  
the device should be bypassed with disc or chip ceramic  
capacitors of 0.01 µF to 0.1 µF. Low ESR 1 µF to 10 µF tantalum  
or electrolytic capacitors should also be applied at the supplies  
to minimize any transient disturbance and low frequency ripple  
(see Figure 49). Note that the digital ground should also be  
joined remotely to the analog ground at one point to minimize  
the ground bounce.  
Figure 46. ESD Protection of Digital Pins  
A,B,W  
VSS  
Figure 47. ESD Protection of Resistor Terminals  
V
DD  
V
DD  
+
C3  
C1  
10µF  
0.1µF  
AD5161  
GND  
Figure 49. Power Supply Bypassing  
Rev. B | Page 18 of 20  
 
 
 
 
 
 
 
 
 
 
Data Sheet  
AD5161  
OUTLINE DIMENSIONS  
3.10  
3.00  
2.90  
10  
1
6
5
5.15  
4.90  
4.65  
3.10  
3.00  
2.90  
PIN 1  
IDENTIFIER  
0.50 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.70  
0.55  
0.40  
0.15  
0.05  
0.23  
0.13  
6°  
0°  
0.30  
0.15  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-BA  
Figure 50. 10-Lead Mini Small Outline Package [MSOP]  
(RM-10)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1, 2  
RAB (Ω)  
Temperature  
Package Description  
Package Option  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
Branding  
AD5161BRM5  
AD5161BRM5-RL7  
AD5161BRMZ5  
AD5161BRMZ5-RL7  
AD5161BRM10  
AD5161BRM10-RL7  
AD5161BRMZ10  
AD5161BRMZ10-RL7  
AD5161BRM50  
AD5161BRM50-RL7  
AD5161BRMZ50  
AD5161BRMZ50-RL7  
AD5161BRM100  
AD5161BRM100-RL7  
AD5161BRMZ100  
AD5161BRMZ100-RL7  
EVAL-AD5161EBZ  
5k  
5k  
5k  
5k  
10k  
10k  
10k  
10k  
50k  
50k  
50k  
50k  
100k  
100k  
100k  
100k  
See Note 2  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
Evaluation Board  
D0C  
D0C  
D0C#  
D0C#  
D0D  
D0D  
D0D#  
D0D#  
D0E  
D0E  
D0E#  
D0E#  
D0F  
D0F  
D0F#  
D0F#  
1 Z = RoHS Compliant Part, # denotes RoHS compliant part may be top or bottom marked.  
2 The EVAL-AD5161EBZ evaluation board is shipped with the 10 kΩ RAB resistor option; however, the board is compatible with all available resistor value options.  
The AD5161 contains 2532 transistors. Die size: 30.7 mil × 76.8 mil = 2358 sq. mil.  
Rev. B | Page 19 of 20  
 
 
AD5161  
NOTES  
Data Sheet  
Purchase of licensed I2C components of Analog Devices or one of its sublicensed Associated Companies conveys a license for the purchaser under the Philips I2C Patent  
Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips.  
©2003–2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D03435-0-8/12(B)  
Rev. B | Page 20 of 20  

相关型号:

AD5161BRMZ100

256-Position SPI/I2C Selectable Digital Potentiometer
ADI

AD5161BRMZ100-RL7

256-Position SPI/I2C Selectable Digital Potentiometer
ADI

AD5161BRMZ5

256-Position SPI/I2C Selectable Digital Potentiometer
ADI

AD5161BRMZ5-RL7

256-Position SPI/I2C Selectable Digital Potentiometer
ADI

AD5161BRMZ50

256-Position SPI/I2C Selectable Digital Potentiometer
ADI

AD5161BRMZ50-RL7

256-Position SPI/I2C Selectable Digital Potentiometer
ADI

AD5162

Dual 256-Position SPI Digital Potentiometer
ADI

AD5162BRM10

Dual 256-Position SPI Digital Potentiometer
ADI

AD5162BRM10-RL7

Dual 256-Position SPI Digital Potentiometer
ADI

AD5162BRM100

Dual 256-Position SPI Digital Potentiometer
ADI

AD5162BRM100-RL7

Dual 256-Position SPI Digital Potentiometer
ADI

AD5162BRM2.5

Dual 256-Position SPI Digital Potentiometer
ADI