AD5165 [ADI]

256-Position, Ultralow Power 1.8 V Logic-Level Digital Potentiometer; 256位,超低功耗1.8 V逻辑电平数字电位计
AD5165
型号: AD5165
厂家: ADI    ADI
描述:

256-Position, Ultralow Power 1.8 V Logic-Level Digital Potentiometer
256位,超低功耗1.8 V逻辑电平数字电位计

数字电位计
文件: 总16页 (文件大小:674K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
256-Position, Ultralow Power  
1.8 V Logic-Level Digital Potentiometer  
AD5165  
FEATURES  
Ultralow standby power IDD = 50 nA typical  
FUNCTIONAL BLOCK DIAGRAM  
V
DD  
256-position  
End-to-end resistance 100 kΩ  
Logic high voltage 1.8 V  
Power supply 2.7 V to 5.5 V  
Low temperature coefficient 35 ppm/°C  
Compact thin 8-lead TSOT-8 (2.9 mm × 2.8 mm) package  
Simple 3-wire digital interface  
A
CS  
3-WIRE  
INTERFACE  
SDI  
W
B
CLK  
WIPER  
REGISTER  
Wide operating temperature −40°C to +125°C  
Pin-to-pin compatible to AD5160 with CS inverted  
GND  
APPLICATIONS  
Figure 1.  
Battery-operated electronics adjustment  
Remote utilities meter adjustment  
Mechanical potentiometer replacement  
Transducer circuit adjustment  
Automotive electronics adjustment  
Gain control and offset adjustment  
System calibration  
PIN CONFIGURATION  
1
2
3
4
W
8
7
6
5
A
V
AD5165  
TOP VIEW  
(Not to Scale)  
B
DD  
CS  
GND  
CLK  
SDI  
VCXO adjustment  
Figure 2.  
GENERAL OVERVIEW  
The AD5165 provides a compact 2.9 mm × 2.8 mm packaged  
solution for 256-position adjustment applications. These devices  
perform the same electronic adjustment function as mechanical  
potentiometers or variable resistors, with enhanced resolution,  
solid-state reliability, and superior low temperature coefficient  
performance. The AD5165s supply voltage requirement is 2.7 V  
to 5.5 V, but its logic voltage requirement is 1.8 V to VDD. The  
AD5165 consumes very low quiescent power during standby  
mode and is ideal for battery-operated applications.  
TYPICAL APPLICATION  
5V  
V
= 1.8V MIN  
OH  
V
DD  
3.3V  
V
A
AD5165  
WIDE TERMINAL  
V
W
VOLTAGE RANGE:  
DIGITAL  
CONTROL  
LOGIC OR  
MICRO  
CS  
V
B
0V < V ,V ,V < 5V  
A B W  
CLK  
SDI  
Wiper settings are controlled through a simple 3-wire interface.  
The interface is similar to the SPI® digital interface except for the  
inverted chip-select function that minimizes logic power con-  
sumption in the idling state. The resistance between the wiper  
and either endpoint of the fixed resistor varies linearly with  
respect to the digital code transferred into the wiper register.  
GND  
Figure 3.  
Note:  
Operating from a 2.7 V to 5.5 V power supply and consuming  
less than 50 nA typical standby power allows use in battery-  
operated portable or remote utility device applications.  
The terms digital potentiometer, RDAC, and VR are used interchangeably.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
AD5165  
TABLE OF CONTENTS  
3-Wire Serial Bus Digital Interface .......................................... 14  
ESD Protection ........................................................................... 14  
Terminal Voltage Operating Range.......................................... 14  
Power-Up Sequence ................................................................... 14  
Layout and Power Supply Bypassing ....................................... 15  
Evaluation Board........................................................................ 15  
Outline Dimensions....................................................................... 16  
Ordering Guide .......................................................................... 16  
Electrical Characteristics—100 kVersion .................................. 3  
Absolute Maximum Ratings............................................................ 5  
Pin Configuration and Functional Descriptions.......................... 6  
Typical Performance Characteristics ............................................. 7  
Test Circuits ..................................................................................... 11  
3-Wire Digital Interface................................................................. 12  
Theory of Operation ...................................................................... 13  
Programming the Variable Resistor ......................................... 13  
Programming the Potentiometer Divider............................... 14  
REVISION HISTORY  
4/04—Revision 0: Initial Version  
Rev. 0 | Page 2 of 16  
AD5165  
ELECTRICAL CHARACTERISTICS—100 kVERSION  
VDD = 5 V 10ꢀ, or 3 V 10ꢀ% VA = VDD% VB = 0 V% –40°C < TA < +125°C% unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Conditions  
Min  
Typ1  
Max  
Unit  
DC CHARACTERISTICS—RHEOSTAT MODE  
Resistor Differential Nonlinearity2  
Resistor Integral Nonlinearity2  
Nominal Resistor Tolerance3  
Resistance Temperature Coefficient  
Wiper Resistance  
R-DNL  
R-INL  
∆RAB/RAB  
(∆RAB/RAB)/∆Tx106  
RW  
RWB, VA = no connect  
RWB, VA = no connect  
TA = 2ꢀ°C  
−1  
−2  
−20  
0.1  
0.2ꢀ  
+1  
+2  
+20  
LSB  
LSB  
%
ppm/°C  
V
AB = VDD, wiper = no connect  
3ꢀ  
8ꢀ/ꢀ0  
VDD = 2.7 V/ꢀ.ꢀ V  
1ꢀ0/120  
DC CHARACTERISTICS—POTENTIOMETER DIVIDER MODE  
Resolution  
N
8
Bits  
Differential Nonlinearity4  
Integral Nonlinearity4  
Voltage Divider Temperature  
DNL  
INL  
(∆VW/VW )/∆Tx106  
−1  
−1  
0.1  
0.3  
1ꢀ  
+1  
+1  
LSB  
LSB  
ppm/°C  
Code = 0x80  
Coefficient  
Full-Scale Error  
Zero-Scale Error  
VWFSE  
VWZSE  
Code = 0xFF  
Code = 0x00  
−0.ꢀ  
0
−0.3  
0.1  
0
0.ꢀ  
LSB  
LSB  
RESISTOR TERMINALS  
Voltage Rangeꢀ  
VA,B,W  
CA,B  
GND  
VDD  
V
pF  
Capacitance6 A, B  
f = 1 MHz, measured to GND,  
Code = 0x80  
f = 1 MHz, measured to GND,  
Code = 0x80  
90  
9ꢀ  
1
Capacitance6 W  
CW  
ICM  
pF  
Common-Mode Leakage  
DIGITAL INPUTS AND OUTPUTS  
Input Logic High  
VA = VB = VDD/2  
nA  
VIH  
VIL  
CIL  
VDD = 2.7 V to ꢀ.ꢀ V  
VDD = 2.7 V to ꢀ.ꢀ V  
1.8  
2.7  
V
V
pF  
Input Logic Low  
Input Capacitance6  
0.6  
POWER SUPPLIES  
Power Supply Range  
Supply Current  
VDD RANGE  
IDD  
ꢀ.ꢀ  
1
V
Digital inputs = 0 V or VDD  
0.0ꢀ  
10  
ꢀ00  
µA  
µA  
µA  
µW  
%/%  
VDD = 2.7 V, digital inputs = 1.8 V  
VDD = ꢀ V, digital inputs = 1.8 V  
Digital inputs = 0 V or VDD  
VDD = +ꢀ V 10%,  
Code = Midscale  
Power Dissipation7  
Power Supply Sensitivity  
PDISS  
PSS  
ꢀ.ꢀ  
0.00ꢀ  
0.001  
DYNAMIC CHARACTERISTICS6, 8  
Bandwidth −3 dB  
BW  
THDW  
tS  
Code = 0x80  
VA =1 V rms, VB = 0 V, f = 1 kHz,  
VA = ꢀ V, VB = 0 V,  
1 LSB error band  
ꢀꢀ  
0.0ꢀ  
2
kHz  
%
µs  
Total Harmonic Distortion  
VW Settling Time  
Resistor Noise Voltage Density  
eN_WB  
RWB = ꢀ0 kΩ  
28  
nV/√Hz  
1 Typical specifications represent average readings at +2ꢀ°C and VDD = ꢀ V.  
2 Resistor position nonlinearity error R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper  
positions. R-DNL measures the relative step change from ideal between successive tap positions. Parts are guaranteed monotonic.  
3 VAB = VDD, wiper (VW) = no connect.  
4 INL and DNL are measured at VW with the RDAC configured as a potentiometer divider similar to a voltage output D/A converter. VA = VDD and VB = 0 V.  
Resistor terminals A, B, and W have no limitations on polarity with respect to each other.  
6 Guaranteed by design and not subject to production test.  
7 PDISS is calculated from (IDD × VDD). CMOS logic level inputs result in minimum power dissipation.  
8 All dynamic characteristics use VDD = ꢀ V.  
Rev. 0 | Page 3 of 16  
 
 
 
 
 
 
 
 
 
 
 
AD5165  
TIMING CHARACTERISTICS—100 kΩ VERSION  
VDD = +5 V 10ꢀ, or +3 V 10ꢀ% VA = VDD% VB = 0 V% −40°C < TA < +125°C% unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Conditions  
Min  
Typ1  
Max  
Unit  
3-WIRE INTERFACE TIMING CHARACTERISTICS2, 3, 4 (specifications apply to all parts)  
Clock Frequency  
Input Clock Pulse Width  
Data Setup Time  
fCLK= 1/( tCH+ tCL)  
tCH, tCL  
tDS  
2ꢀ  
MHz  
ns  
ns  
Clock level high or low  
20  
Data Hold Time  
tDH  
ns  
CS Setup Time  
tCSS  
1ꢀ  
40  
0
0
10  
ns  
ns  
ns  
ns  
CS Low Pulse Width  
CLK Fall to CS Rise Hold Time  
CLK Fall to CS Fall Hold Time  
CS Fall to Clock Rise Setup  
tCSW  
tCSH0  
tCSH1  
tCS1  
ns  
1 Typical specifications represent average readings at +2ꢀ°C and VDD = ꢀ V.  
2 Guaranteed by design and not subject to production test.  
3 All dynamic characteristics use VDD = ꢀ V.  
4 See Figure 34 and Figure 3ꢀ for location of measured values. All input control voltages are specified with tR = tF = 2 ns (10% to 90% of 3 V) and timed from a voltage  
level of 1.ꢀ V.  
Rev. 0 | Page 4 of 16  
AD5165  
ABSOLUTE MAXIMUM RATINGS  
TA = +25°C, unless otherwise noted.1, 2  
Table 3.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only% functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Value  
VDD to GND  
VA, VB, VW to GND  
Maximum Current  
–0.3 V to +7 V  
VDD  
I
WB, IWA Pulsed  
20 mA  
IWB Continuous (RWB ≤ 1 kΩ, A open)2  
IWA Continuous (RWA ≤ 1 kΩ, B open)2  
Digital Inputs and Output Voltage to GND  
Operating Temperature Range  
ꢀ mA  
ꢀ mA  
0 V to +7 V  
–40°C to +12ꢀ°C  
1ꢀ0°C  
Maximum Junction Temperature (TJMAX  
)
Storage Temperature  
Lead Temperature (Soldering, 10 – 30 sec)  
Thermal Resistance2 θJA: TSOT-8  
–6ꢀ°C to +1ꢀ0°C  
24ꢀ°C  
200°C/W  
1 Maximum terminal current is bounded by the maximum current handling  
of the switches, maximum power dissipation of the package, and maximum  
applied voltage across any two of the A, B, and W terminals at a given  
resistance.  
2 Package power dissipation = (TJMAX TA)/θJA  
.
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. 0 | Page ꢀ of 16  
 
 
 
 
AD5165  
PIN CONFIGURATION AND FUNCTIONAL DESCRIPTIONS  
1
2
3
4
W
8
7
6
5
A
V
AD5165  
TOP VIEW  
(Not to Scale)  
B
DD  
CS  
GND  
CLK  
SDI  
Figure 4.  
Table 4.  
Pin  
Name  
Description  
1
2
3
4
6
7
W
Wiper terminal. GND ≤ VA ≤ VDD.  
Positive Power Supply.  
Digital Ground.  
Serial Clock Input. Positive-edge triggered.  
Serial Data Input (data loads MSB first).  
VDD  
GND  
CLK  
SDI  
CS  
Chip Select Input, active high. When CS returns low, data is loaded into the wiper register.  
B terminal. GND ≤ VA ≤ VDD.  
B
8
A
A terminal. GND ≤ VA ≤ VDD.  
Rev. 0 | Page 6 of 16  
 
AD5165  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.5  
0.5  
0.4  
–40°C  
+25°C  
+85°C  
+125°C  
5.5V  
2.7V  
0.4  
0.3  
0.3  
0.2  
0.2  
0.1  
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0
0
0
32  
64  
96  
128  
160  
192  
224  
256  
256  
256  
0
0
0
32  
64  
96  
128  
160  
192  
224  
256  
256  
256  
CODE (Decimal)  
CODE (Decimal)  
Figure 5. R-INL vs. Code vs. Supply Voltages  
Figure 8. DNL vs. Code vs. Temperature, VDD = 5 V  
0.5  
0.4  
0.5  
0.4  
5.5V  
2.7V  
5.5V  
2.7V  
0.3  
0.3  
0.2  
0.2  
0.1  
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
32  
64  
96  
128  
160  
192  
224  
32  
64  
96  
128  
160  
192  
224  
CODE (Decimal)  
CODE (Decimal)  
Figure 6. R-DNL vs. Code vs. Supply Voltages  
Figure 9. INL vs. Code vs. Supply Voltages  
0.5  
0.4  
0.5  
0.4  
5.5V  
2.7V  
–40°C  
+25°C  
+85°C  
+125°C  
0.3  
0.3  
0.2  
0.2  
0.1  
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
32  
64  
96  
128  
160  
192  
224  
32  
64  
96  
128  
160  
192  
224  
CODE (Decimal)  
CODE (Decimal)  
Figure 7. INL vs. Code vs. Temperature , VDD = 5 V  
Figure 10. DNL vs. Code vs. Supply Voltages  
Rev. 0 | Page 7 of 16  
 
AD5165  
0.5  
0.4  
0.5  
0.4  
–40°C  
+25°C  
+85°C  
+125°C  
0.3  
0.3  
0.2  
0.2  
ZSE @ V = 5.5V  
DD  
0.1  
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
ZSE @ V = 2.7V  
DD  
–0.5  
0
32  
64  
96  
128  
160  
192  
224  
256  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
CODE (Decimal)  
TEMPERATURE (°C)  
Figure 11. R-INL vs. Code vs. Temperature, VDD = 5 V  
Figure 14. Zero-Scale Error vs. Temperature  
0.5  
0.4  
0.5  
0.4  
–40°C  
+25°C  
+85°C  
+125°C  
0.3  
0.3  
0.2  
0.2  
I
@ V = 5.5V  
DD  
DD  
0.1  
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
I
@ V = 2.7V  
DD  
DD  
0
32  
64  
96  
128  
160  
192  
224  
256  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
CODE (Decimal)  
TEMPERATURE (°C)  
Figure 12. R-DNL vs. Code vs. Temperature, VDD = 5 V  
Figure 15. Supply Current vs. Temperature  
0.5  
0.4  
10000  
1000  
100  
10  
0.3  
0.2  
FSE @ V = 5.5V  
DD  
0.1  
V
= V = 5V  
A
DD  
0
V
= V = 2.7V  
A
DD  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
FSE @ V = 2.7V  
DD  
1
0.1  
0.01  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
0
1
2
3
4
5
TEMPERATURE (°C)  
V
(0) (V)  
IH  
Figure 13. Full-Scale Error vs. Temperature  
Figure 16. Supply Current vs. Digital Input Voltage  
Rev. 0 | Page 8 of 16  
AD5165  
1000  
100  
10  
REF LEVEL  
0.000dB  
0
/DIV  
6.000dB  
MARKER 54 089.173Hz  
MAG (A/R) –9.052dB  
0x80  
–6  
V
= V = 5V  
A
DD  
0x40  
0x20  
–12  
V
= V = 2.7V  
A
DD  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
0x10  
0x08  
0x04  
0x02  
0x01  
1
0.1  
0.01  
0
1
2
3
4
5
V
(1MHz) (V)  
IH  
1k  
START 1 000.000Hz  
10k  
100k  
1M  
STOP 1 000 000.000Hz  
Figure 17. Supply Current vs. Digital Input Voltage  
Figure 20. Gain vs. Frequency vs. Code, RAB = 100 kΩ  
REF LEVEL  
–5.000dB  
/DIV  
0.500dB  
20  
15  
–5.5  
100k– 54kHz  
–6.0  
–6.5  
–7.0  
–7.5  
–8.0  
–8.5  
–9.0  
–9.5  
–10.0  
–10.5  
10  
5
0
–5  
–10  
–15  
–20  
R = 100k  
0
32  
64  
96  
128  
160  
192  
224  
256  
CODE (Decimal)  
10k  
10M  
STOP 1 000 000.000Hz  
START 1 000.000Hz  
Figure 21. –3 dB Bandwidth @ Code = 0x80  
Figure 18. Rheostat Mode Tempco ∆RWB/∆T vs. Code  
80  
8
6
CODE = 80 , V = V , V = 0V  
DD  
H
A
B
60  
40  
20  
0
4
PSRR @ V = 5V DC ± 10% p-p AC  
DD  
PSRR @ V = 3V DC ± 10% p-p AC  
DD  
2
0
–2  
–4  
–6  
–8  
100  
1k  
10k  
100k  
1M  
0
32  
64  
96  
128  
160  
192  
224  
256  
FREQUENCY (Hz)  
CODE (Decimal)  
Figure 22. PSRR vs. Frequency  
Figure 19. Potentiometer Mode Tempco ∆VWB/∆T vs. Code  
Rev. 0 | Page 9 of 16  
AD5165  
800  
700  
600  
500  
400  
300  
200  
100  
V
= 5V  
V
V
= 5V  
= 0V  
DD  
A
B
1
2
VW  
CS  
CODE 55  
H
H
Ch 1 100mV  
B
Ch 2 5.00 V  
B
M 200ns A CH1 152mV  
W
W
CODE FF  
Figure 26. Midscale Glitch, Code 0x80–0x7F  
0
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 23. IDD vs. Frequency  
1
2
VW  
CS  
Ch 1 200mV  
B
Ch 2 5.00 V  
B
M 100ns A CH2 3.00 V  
W
W
Figure 24. Large Signal Settling Time, Code 0xFF–0x00  
1
VW  
CLK  
2
Ch 1 200mV  
B
Ch 2 5.00 V  
B
M 100ns A CH2 3.00 V  
W
W
Figure 25. Digital Feedthrough  
Rev. 0 | Page 10 of 16  
AD5165  
TEST CIRCUITS  
Figure 27 to Figure 33 illustrate the test circuits that define the test conditions used in the product specification tables.  
V+ = V  
DUT  
W
DUT  
W
DD  
1LSB = V+/2  
+15V  
N
A
B
A
B
V
IN  
V+  
AD8610  
–15V  
V
OUT  
OFFSET  
GND  
V
MS  
2.5V  
Figure 27. Test Circuit for Potentiometer Divider Nonlinearity Error  
(INL, DNL)  
Figure 31. Test Circuit for Gain vs. Frequency  
0.1V  
NO CONNECT  
DUT  
R
=
SW  
I
SW  
CODE = 0x00  
DUT  
I
W
A
W
W
B
0.1V  
I
SW  
B
V
MS  
GND TO V  
DD  
Figure 32. Test Circuit for Incremental ON Resistance  
Figure 28. Test Circuit for Resistor Position Nonlinearity Error  
(Rheostat Operation; R-INL, R-DNL)  
NC  
DUT  
I
= V /R  
DD NOMINAL  
W
A
B
DUT  
V
W
W
A
B
I
CM  
V
MS2  
V
DD  
W
R
= [V  
– V ]/I  
MS2  
W
MS1  
W
GND  
V
MS1  
V
CM  
NC NC = NO CONNECT  
Figure 33. Test Circuit for Common-Mode Leakage Current  
Figure 29. Test Circuit for Wiper Resistance  
V
A
V+ = V  
10%  
PSRR (dB) = 20 LOG  
DD  
V
MS  
DD  
(
)
V  
V
DD  
A
B
%
%
V  
MS  
DD  
W
V+  
PSS (%/%) =  
V  
V
MS  
Figure 30. Test Circuit for Power Supply Sensitivity (PSS, PSSR)  
Rev. 0 | Page 11 of 16  
 
 
 
 
AD5165  
3-WIRE DIGITAL INTERFACE  
Note that in the AD5165 data is loaded MSB first.  
Table 5. AD5165 Serial Data-Word Format  
B7  
D7  
MSB  
27  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
D0  
LSB  
20  
D6  
Dꢀ  
D4  
D3  
D2  
D1  
1
0
1
D7 D6  
D5 D4 D3 D2  
D1 D0  
SDI  
CLK  
CS  
0
1
RDAC REGISTER LOAD  
0
1
0
VOUT  
Figure 34. 3-Wire Digital Interface Timing Diagram  
(VA = 5 V, VB = 0 V, VW = VOUT  
)
1
0
1
SDI  
(DATA IN)  
Dx  
Dx  
tDS  
tDH  
tCS1  
tCH  
CLK  
0
tCSH1  
tCL  
tCSHO  
tCSS  
1
0
CS  
tCSW  
tS  
V
DD  
0
VOUT  
±1LSB  
Figure 35. 3-Wire Digital Interface Detailed Timing Diagram (VA = 5 V, VB = 0 V, VW = VOUT  
)
Rev. 0 | Page 12 of 16  
 
 
 
AD5165  
THEORY OF OPERATION  
The AD5165 is a 256-position digitally controlled variable  
resistor (VR) device.  
where:  
D is the decimal equivalent of the binary code loaded in the  
8-bit RDAC register.  
AB is the end-to-end resistance.  
W is the wiper resistance contributed by the on resistance of  
the internal switch.  
PROGRAMMING THE VARIABLE RESISTOR  
R
R
Rheostat Operation  
The nominal resistance of the RDAC between terminals A and  
B is available in 100 kΩ. The nominal resistance (RAB) of the VR  
has 256 contact points accessed by the wiper terminal, plus the  
B terminal contact. The 8-bit data in the RDAC latch is decoded  
to select one of the 256 possible settings.  
In summary, if RAB = 100 kΩ and the A terminal is open  
circuited, the following output resistance RWB is set for the  
indicated RDAC latch codes.  
Table 6. Codes and Corresponding RWB Resistance  
A
A
A
D (Dec.)  
RWB (Ω)  
99,710  
ꢀ0,100  
490  
Output State  
W
W
W
2ꢀꢀ  
128  
1
Full scale (RAB – 1 LSB + RW)  
Midscale  
1 LSB  
B
B
B
0
100  
Zero scale (wiper contact resistance)  
Figure 36. Rheostat Mode Configuration  
Note that, in the zero-scale condition, a finite wiper resistance  
of 100 Ω is present. Care should be taken to limit the current  
flow between W and B in this state to a maximum pulse current  
of no more than 20 mA. Otherwise, degradation or possible  
destruction of the internal switch contact can occur.  
Assuming that a 100 kΩ part is used, the wiper’s first connec-  
tion starts at the B terminal for data 0x00. Because there is a  
50 Ω wiper contact resistance, such a connection yields a mini-  
mum of 100 Ω (2 × 50 Ω) resistance between terminals W and  
B. The second connection is the first tap point, which corres-  
ponds to 490 Ω (RWB = RAB/256 + 2 × RW = 390 Ω + 2 × 50 Ω)  
for data 0x01. The third connection is the next tap point,  
representing 880 Ω (2 × 390 Ω + 2 × 50 Ω) for data 0x02, and  
so on. Each LSB data value increase moves the wiper up the  
resistor ladder until the last tap point is reached at 100,100 Ω  
(RAB + 2 × RW).  
Similar to the mechanical potentiometer, the resistance of the  
RDAC between the wiper W and terminal A also produces a  
digitally controlled complementary resistance, RWA. When these  
terminals are used, the B terminal can be opened. Setting the  
resistance value for RWA starts at a maximum value of resistance  
and decreases as the data loaded in the latch increases in value.  
The general equation for this operation is  
A
R
S
256 D  
256  
RWA(D) =  
× RAB + 2× RW  
(2)  
R
R
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
S
For RAB = 100 kΩ with the B terminal open circuited, the  
following output resistance RWA is set for the indicated RDAC  
latch codes.  
S
W
Table 7. Codes and Corresponding RWA Resistance  
D (Dec.)  
RWA (Ω)  
Output State  
Full scale  
Midscale  
1 LSB  
2ꢀꢀ  
128  
1
490  
ꢀ0,100  
99, 710  
100,100  
R
RDAC  
S
LATCH  
AND  
DECODER  
B
0
Zero scale  
Typical device-to-device matching is process-lot dependent  
and may vary by up to 20ꢀ. Because the resistance element  
is processed in thin film technology, the change in RAB with  
temperature has a very low 35 ppm/°C temperature coefficient.  
Figure 37. AD5165 Equivalent RDAC Circuit  
The general equation determining the digitally programmed  
output resistance between W and B is  
D
256  
RWB (D) =  
× RAB + 2× RW  
(1)  
Rev. 0 | Page 13 of 16  
 
AD5165  
The data setup and data hold times in the specifications table  
determine the valid timing requirements. The AD5165 uses an  
8-bit serial input data register word that is transferred to the  
internal RDAC register when the CS line returns to logic low.  
Extra MSB bits are ignored.  
PROGRAMMING THE POTENTIOMETER DIVIDER  
Voltage Output Operation  
The digital potentiometer easily generates a voltage divider at  
wiper-to-B and wiper-to-A proportional to the input voltage at  
A to B. Unlike the polarity of VDD to GND, which must be  
positive, voltage across A to B, W to A, and W to B can be at  
either polarity.  
ESD PROTECTION  
All digital inputs are protected with a series of input resistors  
and parallel Zener ESD structures, shown in Figure 39 and  
Figure 40. This applies to the digital input pins SDI, CLK,  
and CS.  
V
I
A
W
V
O
340  
B
LOGIC  
Figure 38. Potentiometer Mode Configuration  
GND  
If ignoring the effect of the wiper resistance for approximation,  
connecting the A terminal to 5 V and the B terminal to ground  
produces an output voltage at the wiper-to-B starting at 0 V  
up to 1 LSB less than 5 V. Each LSB of voltage is equal to the  
voltage applied across terminals A and B divided by the 256  
positions of the potentiometer divider. The general equation  
defining the output voltage at VW with respect to ground for any  
valid input voltage applied to terminals A and B is  
Figure 39. ESD Protection of Digital Pins  
A, B, W  
GND  
Figure 40. ESD Protection of Resistor Terminals  
D
256  
256 D  
256  
VW (D) =  
VA +  
VB  
(3)  
TERMINAL VOLTAGE OPERATING RANGE  
A more accurate calculation, which includes the effect of wiper  
resistance, VW, is  
The AD5165 VDD and GND power supply defines the boundary  
conditions for proper 3-terminal digital potentiometer oper-  
ation. Supply signals present on terminals A, B, and W that  
exceed VDD or GND are clamped by the internal forward-biased  
diodes, as shown in Figure 41.  
R
WB (D)  
RAB  
RWA(D)  
RAB  
(4)  
VW (D) =  
VA +  
VB  
V
DD  
Operation of the digital potentiometer in the divider mode  
results in a more accurate operation over temperature. Unlike  
the rheostat mode, the output voltage is dependent mainly on  
the ratio of the internal resistors RWA and RWB and not the  
absolute values. Therefore, the temperature drift reduces to  
15 ppm/°C.  
A
W
B
GND  
3-WIRE SERIAL BUS DIGITAL INTERFACE  
Figure 41. Maximum Terminal Voltages Set by VDD and GND  
The AD5165 contains a 3-wire digital interface (SDI, CS, and  
CLK). The 8-bit serial word must be loaded MSB first. The  
format of the word is shown in Table 5.  
POWER-UP SEQUENCE  
Because the ESD protection diodes limit the voltage compliance  
at terminals A, B, and W (see Figure 41), it is important to  
power VDD/GND before applying any voltage to terminals A, B,  
and W% otherwise, the diode is forward biased such that VDD is  
powered unintentionally and may affect the rest of the users  
circuit. The ideal power-up sequence is in the following order:  
GND, VDD, digital inputs, and then VA, VB, and VW. The relative  
order of powering VA, VB, VW, and the digital inputs is not  
important as long as they are powered after VDD/GND.  
The positive-edge sensitive CLK input requires clean transitions  
to avoid clocking incorrect data into the serial input register.  
Standard logic families work well. If mechanical switches are  
used for product evaluation, they should be debounced by a  
flip-flop or other suitable means. When CS is high, the clock  
loads data into the serial register on each positive clock edge,  
as shown in Figure 34.  
Rev. 0 | Page 14 of 16  
 
 
 
 
AD5165  
EVALUATION BOARD  
LAYOUT AND POWER SUPPLY BYPASSING  
An evaluation board, along with all necessary software, is  
available to program the AD5165 from any PC running  
Windows® 98/2000/XP. The graphical user interface, as shown  
in Figure 43, is straightforward and easy to use. More detailed  
information is available in the user manual, which comes with  
the board.  
It is good practice to employ compact, minimum lead length  
layout design. The leads to the inputs should be as direct as  
possible with a minimum conductor length. Ground paths  
should have low resistance and low inductance.  
Similarly, it is also good practice to bypass the power supplies  
with quality capacitors for optimum stability. Supply leads to  
the device should be bypassed with disk or chip ceramic  
capacitors of 0.01 µF to 0.1 µF. Low ESR 1 µF to 10 µF tantalum  
or electrolytic capacitors should also be applied at the supplies  
to minimize any transient disturbance and low frequency ripple  
(see Figure 42). Note that the digital ground should also be  
joined remotely to the analog ground at one point to minimize  
the ground bounce.  
V
V
DD  
DD  
+
C3  
10  
C1  
0.1µF  
Figure 43. AD5165 Evaluation Board Software  
µ
F
AD5165  
The AD5165 starts at midscale upon power-up. To increment  
or decrement the resistance, the user may move the scroll bars  
on the left. To write any specific value, the user should use the  
bit pattern in the upper screen and click the Run button. The  
format of writing data to the device is shown in Figure 32.  
GND  
Figure 42. Power Supply Bypassing  
Rev. 0 | Page 1ꢀ of 16  
 
 
 
AD5165  
OUTLINE DIMENSIONS  
2.90 BSC  
8
1
7
2
6
3
5
4
1.60 BSC  
2.80 BSC  
PIN 1  
INDICATOR  
0.65 BSC  
1.95  
BSC  
0.90  
0.87  
0.84  
1.00 MAX  
0.20  
0.08  
0.60  
0.45  
0.30  
8°  
4°  
0°  
0.38  
0.22  
0.10 MAX  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-193BA  
Figure 44. 8-Lead Thin Small Outline Transistor Package [Thin SOT-23]  
(UJ-8)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
AD5165BUJZ100-R21  
AD5165BUJZ100-R71  
AD5165EVAL  
RAB (Ω)  
100 k  
Temperature  
Package Description  
Thin SOT-23  
Package Option  
Quantity on Reel  
Branding  
D3N  
–40°C to +125°C  
–40°C to +125°C  
UJ-8  
UJ-8  
250  
100 k  
Thin SOT-23  
3,000  
D3N  
Evaluation Board  
1 Z = Pb-free part.  
© 2004 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D04749–0–4/04(0)  
Rev. 0 | Page 16 of 16  
 
 
 

相关型号:

AD5165A

Audio Amplifier, 2.5W, 1 Channel(s), 1 Func, 3 X 3 M, LEAD FREE, DFN-8
ESMT

AD5165BUJZ100

256-Position, Ultralow Power 1.8 V Logic-Level Digital Potentiometer
ADI

AD5165BUJZ100-R2

256-Position, Ultralow Power 1.8 V Logic-Level Digital Potentiometer
ADI

AD5165BUJZ100-R7

256-Position, Ultralow Power 1.8 V Logic-Level Digital Potentiometer
ADI

AD5165EVAL

256-Position, Ultralow Power 1.8 V Logic-Level Digital Potentiometer
ADI

AD516J

IC OP-AMP, 1 MHz BAND WIDTH, BCY8, TO-99, 8 PIN, Operational Amplifier
ADI

AD516K

IC OP-AMP, 1 MHz BAND WIDTH, BCY8, TO-99, 8 PIN, Operational Amplifier
ADI

AD516S

IC OP-AMP, 1 MHz BAND WIDTH, BCY8, TO-99, 8 PIN, Operational Amplifier
ADI

AD517

Low Cost, Laser Trimmed, Precision IC Op Amp
ADI

AD5170

256-Position Two-Time Programmable I2C Digital Potentiometer
ADI

AD5170BRM10

256-Position Two-Time Programmable I2C Digital Potentiometer
ADI

AD5170BRM10-R2

IC 10K DIGITAL POTENTIOMETER, 2-WIRE SERIAL CONTROL INTERFACE, 256 POSITIONS, PDSO10, 3 X 4.9 MM, MO-187BA, MSOP-10, Digital Potentiometer
ADI