AD5201BRMZ10 [ADI]

256-Position and 33-Position Digital Potentiometers; 256位和33位的数字电位器
AD5201BRMZ10
型号: AD5201BRMZ10
厂家: ADI    ADI
描述:

256-Position and 33-Position Digital Potentiometers
256位和33位的数字电位器

电位器
文件: 总15页 (文件大小:1043K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
256-Position and 33-Position  
Digital Potentiometers  
a
AD5200/AD5201  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
AD5200—256-Position  
AD5201—33-Position  
10 k, 50 kꢀ  
AD5200/AD5201  
V
V
SS  
DD  
A
3-Wire SPI-Compatible Serial Data Input  
Single Supply 2.7 V to 5.5 V or  
Dual Supply 2.7 V for AC or Bipolar Operations  
Internal Power-On Midscale Preset  
CS  
W
B
CLK  
SER  
REG  
8/6 RDAC  
REG  
SDI  
Dx  
APPLICATIONS  
SHDN  
GND  
Mechanical Potentiometer Replacement  
Instrumentation: Gain, Offset Adjustment  
Programmable Voltage-to-Current Conversion  
Programmable Filters, Delays, Time Constants  
Line Impedance Matching  
PWR-ON  
PRESET  
GENERAL DESCRIPTION  
has a nominal temperature coefficient of 500 ppm/°C. The VR  
has a VR latch that holds its programmed resistance value. The  
VR latch is updated from an SPI-compatible serial-to-parallel  
shift register that is loaded from a standard 3-wire serial-input  
digital interface. Eight data bits for the AD5200 and six data  
bits for the AD5201 make up the data word that is clocked into  
the serial input register. The internal preset forces the wiper to  
the midscale position by loading 80H and 10H into AD5200 and  
AD5201 VR latches respectively. The SHDN pin forces the  
resistor to an end-to-end open-circuit condition on the A terminal  
and shorts the wiper to the B terminal, achieving a microwatt  
power shutdown state. When SHDN is returned to logic high,  
the previous latch setting puts the wiper in the same resistance  
setting prior to shutdown. The digital interface is still active dur-  
ing shutdown so that code changes can be made that will produce  
a new wiper position when the device is returned from shutdown.  
The AD5200 and AD5201 are programmable resistor devices,  
with 256 positions and 33 positions respectively, that can be digi-  
tally controlled through a 3-wire SPI serial interface. The terms  
programmable resistor, variable resistor (VR), and RDAC are  
commonly used interchangeably to refer to digital potentiometers.  
These devices perform the same electronic adjustment function  
as a potentiometer or variable resistor. Both AD5200/AD5201  
contain a single variable resistor in the compact  
MSOP  
package. Each device contains a fixed wiper resistance at the  
wiper contact that taps the programmable resistance at a point  
determined by a digital code. The code is loaded in the serial  
input register. The resistance between the wiper and either end  
point of the programmable resistor varies linearly with respect to  
the digital code transferred into the VR latch. Each variable  
resistor offers a completely programmable value of resistance,  
between the A terminal and the wiper, or the B terminal and the  
wiper. The fixed A-to-B terminal resistance of 10 kor 50 kΩ  
All parts are guaranteed to operate over the extended industrial  
temperature range of –40°C to +85°C.  
REV. D  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
781/461-3113  
www.analog.com  
2012  
© Analog Devices, Inc.,  
Fax:  
AD5200/AD5201–SPECIFICATIONS  
(VDD = 5 V 10%, or 3 V 10%, VSS = 0 V, VA = +VDD, VB = 0 V,  
–40C < T < +85C unless otherwise noted.)  
AD5200 ELECTRICAL CHARACTERISTICS  
A
Parameter  
Symbol  
Conditions  
Min Typ1 Max  
Unit  
DCCHARACTERISTICSRHEOSTATMODE  
2
ResistorDifferentialNonlinearity  
R-DNL  
R-INL  
RAB  
RWB, VA = No Connect  
RWB, VA = No Connect  
TA = 25°C  
–1  
–2  
–30  
0.25 +1  
0.5 +2  
LSB  
LSB  
%
2
ResistorIntegralNonlinearity  
3
NominalResistorTolerance  
+30  
ResistanceTemperatureCoefficient  
WiperResistance  
R
RW  
AB/T  
VAB = VDD, Wiper = No Connect  
VDD = 5 V  
500  
50  
ppm/°C  
100  
DCCHARACTERISTICSPOTENTIOMETERDIVIDERMODE(SpecificationsapplytoallVRs.)  
Resolution  
DifferentialNonlinearity  
IntegralNonlinearity  
N
DNL  
INL  
8
–1  
–2  
Bits  
LSB  
LSB  
4
1/4 +1  
1/2 +2  
4
VoltageDividerTemperatureCoefficient  
Full-ScaleError  
Zero-ScaleError  
VW/T  
VWFSE  
VWZSE  
Code = 80 H  
Code = FF H  
Code = 00 H  
5
ppm/°C  
LSB  
LSB  
–1.5 –0.5  
0
0
+0.5 +1.5  
RESISTORTERMINALS  
VoltageRange 5  
VA, B, W  
CA, B  
CW  
IDD_SD  
ICM  
VSS  
VDD  
V
Capacitance 6 A,B  
f = 1 MHz, Measured to GND, Code = 80  
f = 1 MHz, Measured to GND, Code = 80  
VDD = 5.5 V  
45  
60  
0.01  
1
pF  
pF  
µA  
nA  
H
H
Capacitance 6 W  
ShutdownSupplyCurrent  
Common-ModeLeakage  
7
5
VA = VB = VDD/2  
DIGITALINPUTSANDOUTPUTS  
InputLogicHigh  
InputLogicLow  
InputLogicHigh  
InputLogicLow  
VIH  
VIL  
VIH  
VIL  
IIL  
2.4  
2.1  
V
V
V
V
µA  
pF  
0.8  
VDD = 3 V, VSS = 0 V  
VDD = 3 V, VSS = 0 V  
VIN = 0 V or 5 V  
0.6  
1
InputCurrent  
InputCapacitance  
6
CIL  
5
POWERSUPPLIES  
LogicSupply  
VLOGIC  
VDD RANGE  
VDD/SS RANGE  
IDD  
ISS  
PDISS  
2.7  
–0.3  
2.3  
5.5  
5.5  
2.7  
40  
40  
0.2  
V
V
V
µA  
µA  
mW  
PowerSingle-SupplyRange  
PowerDual-SupplyRange  
PositiveSupplyCurrent  
NegativeSupplyCurrent  
PowerDissipation 8  
VSS = 0 V  
VIH = +5 V or VIL = 0 V  
VSS = –5 V  
VIH = +5 V or VIL = 0 V, VDD = +5 V, VSS = 0 V  
15  
15  
PowerSupplySensitivity  
PSS  
VDD = +5 V 10%, Code = Midscale  
–0.01 0.001 +0.01 %/%  
6,9  
DYNAMICCHARACTERISTICS  
Bandwidth3dB  
BW_10 kΩ  
BW_50 kΩ  
THDW  
tS  
RAB = 10 k, Code = 80 H  
RAB = 50 k, Code = 80 H  
VA = 1 V rms, VB = 0 V, f = 1 kHz, R AB = 10 kΩ  
VA = 5 V, VB = 0 V, 1 LSB Error Band  
RWB = 5 k, RS = 0  
600  
100  
0.003  
2/9  
kHz  
kHz  
%
µs  
nVHz  
TotalHarmonicDistortion  
VW Settling Time (10 k/50 k)  
Resistor Noise Voltage Density  
eN_WB  
9
NOTES  
1Typicals represent average readings at 25°C and VDD = 5 V, VSS = 0 V.  
2Resistor position nonlinearity error R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper posi-  
tions. R-DNL measures the relative step change from ideal between successive tap positions. Parts are guaranteed monotonic. I W = VDD/R for both VDD = +2.7 V,  
VSS = –2.7 V.  
3VAB = VDD, Wiper (VW) = No connect.  
4INL and DNL are measured at VW with the RDAC configured as a potentiometer divider similar to a voltage output D/A converter. VA = VDD and VB = 0 V. DNL  
specification limits of 1 LSB maximum are Guaranteed Monotonic operating conditions.  
5Resistor Terminals A, B, W have no limitations on polarity with respect to each other.  
6Guaranteed by design and not subject to production test.  
7Measured at the A terminal. A terminal is open-circuited in shutdown mode.  
8PDISS is calculated from (IDD × VDD). CMOS logic level inputs result in minimum power dissipation.  
9All dynamic characteristics use VDD = 5 V, VSS = 0 V.  
Specifications subject to change without notice.  
REV. D  
–2–  
AD5200/AD5201  
(VDD = 5 V 10%, or 3 V 10%, VSS = 0 V, VA = +VDD, VB = 0 V,  
–40C < T < +85C unless otherwise noted.)  
AD5201 ELECTRICAL CHARACTERISTICS  
A
Parameter  
Symbol  
Conditions  
Min Typ1 Max  
Unit  
DCCHARACTERISTICSRHEOSTATMODE  
2
ResistorDifferentialNonlinearity  
R-DNL  
R-INL  
RAB  
RWB, VA = No Connect  
RWB, VA = No Connect  
TA = 25°C  
–0.5  
–1  
–30  
0.05 +0.5  
0.1 +1  
+30  
LSB  
LSB  
%
2
ResistorIntegralNonlinearity  
3
NominalResistorTolerance  
ResistanceTemperatureCoefficient  
WiperResistance  
R
RW  
AB/T  
VAB = VDD, Wiper = No Connect  
VDD = 5 V  
500  
50  
ppm/°C  
100  
DCCHARACTERISTICSPOTENTIOMETERDIVIDERMODE(SpecificationsapplytoallVRs.)  
Resolution4  
DifferentialNonlinearity  
IntegralNonlinearity  
N
DNL  
INL  
6
–0.5  
–1  
Bits  
LSB  
LSB  
5
0.01 +0.5  
0.02 +1  
5
VoltageDividerTemperatureCoefficient  
Full-ScaleError  
Zero-ScaleError  
VW/T  
VWFSE  
VWZSE  
Code = 10 H  
Code = 20 H  
Code = 00 H  
5
ppm/°C  
LSB  
LSB  
–1/2 –1/4  
0
0
+1/4 +1/2  
RESISTORTERMINALS  
VoltageRange 6  
VA, B, W  
CA, B  
CW  
IDD_SD  
ICM  
VSS  
VDD  
V
Capacitance 7 A,B  
f = 1 MHz, Measured to GND, Code = 10  
f = 1 MHz, Measured to GND, Code = 10  
VDD = 5.5 V  
45  
60  
0.01  
1
pF  
pF  
µA  
nA  
H
H
Capacitance 7 W  
ShutdownSupplyCurrent  
Common-ModeLeakage  
8
5
VA = VB = VDD/2  
DIGITALINPUTSANDOUTPUTS  
InputLogicHigh  
InputLogicLow  
InputLogicHigh  
InputLogicLow  
VIH  
VIL  
VIH  
VIL  
IIL  
2.4  
2.1  
V
V
V
V
µA  
pF  
0.8  
VDD = 3 V, VSS = 0 V  
VDD = 3 V, VSS = 0 V  
VIN = 0 V or 5 V  
0.6  
1
InputCurrent  
InputCapacitance  
7
CIL  
5
POWERSUPPLIES  
LogicSupply  
VLOGIC  
VDD RANGE  
VDD/SS RANGE  
IDD  
ISS  
PDISS  
2.7  
–0.3  
2.3  
5.5  
5.5  
2.7  
40  
40  
0.2  
V
V
V
µA  
µA  
mW  
PowerSingle-SupplyRange  
PowerDual-SupplyRange  
PositiveSupplyCurrent  
NegativeSupplyCurrent  
PowerDissipation 9  
VSS = 0 V  
VIH = +5 V or VIL = 0 V  
VSS = –5 V  
VIH = +5 V or VIL = 0 V, VDD = +5 V, VSS = –5 V  
15  
15  
PowerSupplySensitivity  
PSS  
VDD = +5 V 10%  
–0.01 0.001 +0.01 %/%  
7,10  
DYNAMICCHARACTERISTICS  
Bandwidth3dB  
BW_10 kΩ  
BW_50 kΩ  
THDW  
tS  
RAB = 10 k, Code = 10 H  
RAB = 50 k, Code = 10 H  
VA = 1 V rms, VB = 0 V, f = 1 kHz, RAB = 10 kΩ  
VA = 5 V, VB = 0 V, 1 LSB Error Band  
RWB = 5 k, RS = 0  
600  
100  
0.003  
2/9  
kHz  
kHz  
%
µs  
nVHz  
TotalHarmonicDistortion  
VW Settling Time (10 k/50 k)  
Resistor Noise Voltage Density  
eN_WB  
9
NOTES  
1Typicals represent average readings at 25°C and VDD = 5 V, VSS = 0 V.  
2 Resistor position nonlinearity error R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper posi-  
tions. R-DNL measures the relative step change from ideal between successive tap positions. Parts are guaranteed monotonic. I W = VDD/R for both VDD = +2.7 V,  
VSS = –2.7 V.  
3 VAB = VDD, Wiper (VW) = No connect.  
4 Six bits are needed for 33 positions even though it is not a 64-position device.  
5 INL and DNL are measured at VW with the RDAC configured as a potentiometer divider similar to a voltage output D/A converter. VA = VDD and VB = 0 V. DNL  
specification limits of 1 LSB maximum are Guaranteed Monotonic operating conditions.  
6 Resistor Terminals A, B, W have no limitations on polarity with respect to each other.  
7 Guaranteed by design and not subject to production test.  
8 Measured at the A terminal. A terminal is open-circuited in shutdown mode.  
9 PDISS is calculated from (IDD × VDD). CMOS logic level inputs result in minimum power dissipation.  
10 All dynamic characteristics use VDD = 5 V, VSS = 0 V.  
Specifications subject to change without notice.  
REV. D  
–3–  
AD5200/AD5201–SPECIFICATIONS  
(VDD = 5 V 10%, or 3 V 10%, VSS = 0 V, VA = +VDD, VB = 0 V, –40C < TA < +85C  
unless otherwise noted.)  
ELECTRICAL CHARACTERISTICS  
Parameter  
Symbol  
Conditions  
Min  
Typ1  
Max  
Unit  
INTERFACE TIMING CHARACTERISTICS (Applies to All Parts [Notes 2, 3])  
Input Clock Pulsewidth  
Data Setup Time  
Data Hold Time  
CS Setup Time  
t
tDS  
tDH  
tCSS  
tCSW  
tCSH0  
tCSH1  
tCS1  
CH, tCL  
Clock Level High or Low  
20  
5
5
15  
40  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CS High Pulsewidth  
CLK Fall to CS Fall Hold Time  
CLK Fall to CS Rise Hold Time  
CS Rise to Clock Rise Setup  
0
10  
NOTES  
1Typicals represent average readings at 25°C and VDD = 5 V, VSS = 0 V.  
2Guaranteed by design and not subject to production test.  
3See timing diagram for location of measured values. All input control voltages are specified with tR = tF = 2 ns (10% to 90% of 3 V) and timed from a voltage level of  
1.5 V. Switching characteristics are measured using VLOGIC = 5 V.  
Specifications subject to change without notice.  
1
SDI  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
1
CLK  
0
1
DAC REGISTER LOAD  
CS  
0
1
VOUT  
0
Figure 1a. AD5200 Timing Diagram  
1
SDI  
D5  
D4  
D3  
D2  
D1  
D0  
0
1
CLK  
0
1
DAC REGISTER LOAD  
CS  
0
1
VOUT  
0
Figure 1b. AD5201 Timing Diagram  
1
SDI  
(DATA IN)  
Dx  
Dx  
tDS  
0
1
tDH  
tCH  
tCS1  
CLK  
0
1
0
tCSH0  
tCL  
tCSH1  
tCSS  
tCSW  
tS  
CS  
V
DD  
VOUT  
0
1LSB  
Figure 1c. Detail Timing Diagram  
–4–  
AD5200/AD5201  
PIN FUNCTION DESCRIPTIONS  
ABSOLUTE MAXIMUM RATINGS1  
(TA = 25°C, unless otherwise noted)  
Pin  
Name  
Description  
VDD to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V  
1
2
B
VSS  
B Terminal.  
V
V
DD to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3, +7 V  
SS to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 V, 7 V  
Negative Power Supply, specified for opera-  
tion from 0 V to 2.7 V.  
Ground.  
Chip Select Input, Active Low. When CS  
returns high, data will be loaded into the  
DAC register.  
Serial Data Input.  
Serial Clock Input, positive edge triggered.  
Active Low Input. Terminal A open circuit.  
Shutdown controls Variable Resistors of  
RDAC to temporary infinite.  
Positive Power Supply (Sum of VDD + VSS  
5.5 V).  
Wiper Terminal.  
A Terminal.  
VA, VB, VW to GND . . . . . . . . . . . . . . . . . . . . . . . . . VSS, VDD  
IMAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 mA2  
Digital Inputs and Output Voltage to GND . . . . . . . 0 V, 7 V  
Operating Temperature Range . . . . . . . . . . . 40°C to +85°C  
Maximum Junction Temperature (TJ Max) . . . . . . . . . 150°C  
Storage Temperature . . . . . . . . . . . . . . . . . . 65°C to +150°C  
Lead Temperature (Soldering, 10 sec) . . . . . . . . . . . . 300°C  
3
4
GND  
CS  
5
6
7
SDI  
CLK  
SHDN  
Thermal Resistance θ  
. . . . . . . . . . . . . 200°C/W  
JA, MSOP  
Package Power Dissipation = (TJ Max TA)/θJA  
NOTES  
1Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating; functional operation of the device  
at these or any other conditions above those listed in the operational sections of this  
specification is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability.  
8
VDD  
9
10  
W
A
2Max current is bounded by the maximum current handling of the switches,  
maximum power dissipation of the package, and maximum applied voltage across  
any two of the A, B, and W terminals at a given resistance. Please refer to TPC 31  
and TPC 32 for detail.  
PIN CONFIGURATION  
1
2
3
4
5
10  
9
B
A
W
V
V
SS  
AD5200/  
AD5201  
TOP VIEW  
(Not to Scale)  
8
GND  
DD  
7
CS  
SHDN  
6
SDI  
CLK  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the AD5200/AD5201 features proprietary ESD protection circuitry, permanent damage may occur  
on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions  
are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. D  
–5–  
AD5200/AD5201Typical Performance Characteristics  
0.20  
0.15  
0.10  
0.05  
0.12  
0.10  
0.08  
V
= 2.7V, V = 0V  
SS  
DD  
V
= 5.5V, V = 0V  
SS  
DD  
V
V
= +2.7V  
DD  
SS  
= 2.7V  
0.06  
0.04  
0.00  
0.05  
0.10  
0.02  
0.00  
V
= +2.7V, V = –2.7V  
SS  
DD  
V
= 2.7V, V = 0V  
DD  
SS  
0.15  
0.20  
V
= 5.5V, V = 0V  
SS  
DD  
0.02  
0
32  
64  
96  
128  
160  
192  
224  
256  
0
4
8
12  
16  
20  
24  
28  
32  
CODE – Decimal  
CODE Decimal  
TPC 1. AD5200 10 kRDNL vs. Code  
TPC 4. AD5201 10 kRINL vs. Code  
0.10  
0.05  
0.03  
0.02  
V
= 2.7V, V = 0V  
SS  
DD  
V
= 5.5V, V = 0V  
SS  
DD  
V
= 2.7V, V = 0V  
SS  
DD  
0.00  
0.01  
0.00  
0.05  
0.10  
0.15  
0.20  
0.25  
0.30  
0.01  
0.02  
0.03  
V
= +2.7V, V = 2.7V  
SS  
DD  
V
= 5.5V, V = 0V  
SS  
DD  
V
= +2.7V, V = 2.7V  
SS  
DD  
0
4
8
12  
16  
20  
24  
28  
32  
0
32  
64  
96  
128  
160  
192  
224  
256  
CODE Decimal  
CODE Decimal  
TPC 2. AD5201 10 kRDNL vs. Code  
TPC 5. AD5200 10 kDNL vs. Code  
0.020  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
0.1  
0.015  
0.010  
V
= 2.7V, V = 0V  
SS  
DD  
V
= 5.5V, V = 0V  
SS  
DD  
V
= +2.7V, V = 2.7V  
SS  
DD  
0.005  
V
= 5.5V, V = 0V  
SS  
DD  
0.000  
0.005  
0.010  
V
= 2.7V, V = 0V  
SS  
V
= +2.7V, V = 2.7V  
DD  
DD  
SS  
0
4
8
12  
16  
20  
24  
28  
32  
0
32  
64  
96  
128  
160  
192  
224  
256  
CODE Decimal  
CODE Decimal  
TPC 6. AD5201 10 kDNL vs. Code  
TPC 3. AD5200 10 kRINL vs. Code  
REV. D  
–6–  
AD5200/AD5201  
0.3  
0.2  
20  
18  
V
V
= V  
SS  
IL  
= V  
IH  
DD  
V = 5.5V  
DD  
V
= 5.5V, V = 0V  
DD  
SS  
16  
14  
0.1  
0.0  
12  
10  
8
0.1  
0.2  
0.3  
0.4  
0.5  
V
= 2.7V  
DD  
6
4
2
0
V
= +2.7V, V = 2.7V  
SS  
DD  
V
= 2.7V, V = 0V  
SS  
DD  
0
32  
64  
96  
128  
160  
192  
224  
256  
40  
20  
0
20  
40  
60  
80  
100  
CODE Decimal  
TEMPERATURE C  
TPC 7. AD5200 10 kINL vs. Code  
TPC 10. Supply Current vs. Temperature  
0.020  
0.015  
0.010  
0.005  
0.000  
14  
V
= +2.7V, V = 2.7V  
SS  
V
= 5.5V  
DD  
DD  
12  
10  
8
V
= 5.5V, V = 0V  
SS  
DD  
6
4
2
0.005  
0.010  
0
V
= 2.7V, V = 0V  
SS  
DD  
2
40  
0
4
8
12  
16  
20  
24  
28  
32  
20  
0
20  
40  
60  
80  
100  
CODE Decimal  
TEMPERATURE C  
TPC 8. AD5201 10 kINL vs. Code  
TPC 11. Shutdown Current vs. Temperature  
160  
10  
1.0  
SEE TEST CIRCUIT 13  
A
I
@ V /V = 5V/0V  
T = 25C  
DD  
DD SS  
140  
120  
V
= 2.7V  
DD  
I
@ V /V = 2.5V  
DD SS  
DD  
100  
80  
0.1  
60  
40  
V
= 5.5V  
DD  
I
@ V /V = 2.5V  
DD SS  
SS  
0.01  
0.001  
I
@ V /V = 3V/0V  
DD SS  
DD  
20  
0
0
1
2
3
4
5
6
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
V
V  
V
V  
SUPPLY  
IH  
TPC 12. Wiper ON Resistance vs. V SUPPLY  
TPC 9. Supply Current vs. Logic Input Voltage  
REV. D  
–7–  
AD5200/AD5201  
6
0
500  
450  
400  
350  
300  
CODE FF  
H
80  
H
H
H
H
H
6  
12  
18  
40  
20  
10  
08  
24  
30  
36  
42  
48  
54  
250  
200  
150  
100  
I
@ V /V  
= 2.5V  
= 2.5V  
SS  
DD SS  
I
@ V /V  
04  
DD  
DD SS  
H
H
02  
01  
I
@ V /V = 5V/0V  
DD SS  
DD  
H
I
@ V /V = 3V/0V  
DD SS  
DD  
50  
0
1M  
1k  
10k  
100k  
1M  
10M  
10k  
100k  
FREQUENCY Hz  
FREQUENCY Hz  
TPC 13. AD5200 10 kSupply Current vs. Clock Frequency  
TPC 16. AD5200 10 kGain vs. Frequency vs. Code  
500  
6
0
CODE 55  
H
450  
400  
80  
40  
20  
10  
H
H
H
H
6  
12  
18  
350  
300  
I
@ V /V  
DD SS  
= 2.5V  
= 2.5V  
SS  
250  
200  
150  
24  
30  
36  
42  
48  
54  
I
@ V /V  
DD SS  
DD  
08  
04  
H
H
I
@ V /V = 5V/0V  
DD SS  
DD  
02  
01  
H
100  
50  
I
@ V /V = 3V/0V  
DD SS  
DD  
H
0
1M  
10M  
1M  
10k  
100k  
FREQUENCY Hz  
1k  
10k  
100k  
FREQUENCY Hz  
TPC 14. AD5200 10 kSupply Current vs. Clock Frequency  
TPC 17. AD5200 50 kGain vs. Frequency vs. Code  
80  
6
0
CODE = 80 , V = V , V = 0V  
H
A
DD  
B
10  
H
+PSRR @ V  
DD  
= 5V DC 10% p-p AC  
6  
12  
18  
60  
40  
20  
0
8
4
2
H
H
H
24  
30  
36  
42  
48  
54  
+PSRR @ V  
= 3V DC 10% p-p AC  
= 3V DC 10% p-p AC  
DD  
1
H
PSRR @ V  
DD  
100  
1M  
1k  
10k  
100k  
1M  
1k  
10k  
100k  
FREQUENCY Hz  
FREQUENCY Hz  
TPC 15. Power Supply Rejection Ratio vs. Frequency  
TPC 18. AD5201 10 kGain vs. Frequency vs. Code  
–8–  
AD5200/AD5201  
6
0
12  
6
SEE TEST CIRCUIT 10  
CODE = 80  
H
10  
V
= 5V  
H
DD  
= 25C  
6  
12  
18  
0
T
A
10kꢀ  
8
H
6  
4
50kꢀ  
H
12  
2
H
24  
30  
36  
42  
48  
54  
18  
24  
30  
36  
42  
48  
1
H
1M  
1k  
10k  
100k  
10  
100  
1M  
1k  
10k  
100k  
FREQUENCY Hz  
FREQUENCY Hz  
TPC 19. AD5201 50 kGain vs. Frequency vs. Code  
TPC 22. Normalized Gain Flatness vs. Frequency  
12  
12  
6
SEE TEST CIRCUIT 10  
6
CODE = 10  
H
V
= 5V  
10kꢀ  
DD  
0
0
T = 25C  
A
6  
6  
50kꢀ  
10kꢀ  
12  
12  
50kꢀ  
18  
24  
30  
36  
42  
48  
18  
24  
30  
V
V
R
= 100mV rms  
IN  
36  
42  
48  
= 5V  
DD  
= 1Mꢀ  
L
10  
100  
1M  
1M  
1k  
10k  
100k  
1k  
10k  
100k  
FREQUENCY Hz  
FREQUENCY Hz  
TPC 23. AD5201 Normalized Gain Flatness vs. Frequency  
TPC 20. AD5200 –3 dB Bandwidth  
12  
6
10kꢀ  
0
6  
50kꢀ  
V
W
12  
(20mV/DIV)  
18  
24  
30  
36  
42  
48  
V
V
R
= 100mV rms  
IN  
CS  
(5V/DIV)  
= 5V  
DD  
= 1Mꢀ  
L
1M  
1k  
10k  
100k  
FREQUENCY Hz  
TPC 21. AD5201 –3 dB Bandwidth  
TPC 24. One Position Step Change at Half Scale  
–9–  
AD5200/AD5201  
3500  
3000  
2500  
OUTPUT  
(2V/DIV)  
2000  
1500  
1000  
INPUT  
(5V/DIV)  
500  
0
500  
0
32  
64  
96  
128  
160  
192  
224  
256  
CODE Decimal  
TPC 25. Large Signal Settling Time  
TPC 28. AD5200 RWB/T Rheostat Mode Temperature  
Coefficient  
3000  
2500  
2000  
V
1500  
1000  
OUT  
(20mV/DIV)  
500  
0
500  
0
4
8
12  
16  
20  
24  
28  
32  
CODE Decimal  
TPC 26. Digital Feedthrough vs. Time  
TPC 29. AD5201 Potentiometer Mode Temperature  
Coefficient  
4000  
3500  
3000  
2500  
2000  
50  
40  
30  
20  
1500  
1000  
10  
0
500  
0
10  
500  
0
32  
64  
96  
128  
160  
192  
224  
256  
20  
CODE Decimal  
0
4
8
12  
16  
20  
24  
28  
32  
CODE Decimal  
TPC 27. AD5200 VWB/T Potentiometer Mode  
Temperature Coefficient  
TPC 30. AD5201 VWB/T Potentiometer Mode Tempco  
–10–  
AD5200/AD5201  
100.0  
10.0  
1.0  
Table I. AD5200 Serial-Data Word Format  
B7  
D7  
B6  
D6  
B5  
D5  
B4  
D4  
B3  
D3  
B2  
D2  
B1  
D1  
B0  
D0  
LSB  
20  
MSB  
27  
R
R
= 10kꢀ  
AB  
Table II. AD5201 Serial-Data Word Format  
= 50kꢀ  
AB  
B5*  
D5*  
MSB  
25  
B4  
D4  
B3  
D3  
B2  
D2  
B1  
D1  
B0  
D0  
LSB  
20  
0.1  
0
32  
64  
96  
128  
192  
224  
256  
160  
CODE Decimal  
TPC 31. AD5200 IMAX vs. Code  
100.0  
10.0  
1.0  
*Six data bits are needed for 33 positions.  
PROGRAMMING THE VARIABLE RESISTOR  
Rheostat Operation  
The nominal resistance of the RDAC between Terminals A and  
B are available with values of 10 kand 50 k. The final two  
digits of the part number determine the nominal resistance  
value, e.g., 10 k= 10 and 50 k= 50. The nominal resistance  
(RAB) of AD5200 has 256 contact points accessed by the wiper  
terminal. The 8-bit data word in the RDAC latch of AD5200 is  
decoded to select one of the 256 possible settings. In both parts,  
the wipers first connection starts at the B terminal for data 00H.  
This B-terminal connection has a wiper contact resistance of  
50 as long as valid VDD/VSS is applied, regardless of the nominal  
resistance. For a 10 kpart, the second connection of AD5200 is  
the first tap point with 89 [RWB = RAB/255 + RW = 39 + 50 ]  
for data 01H. The third connection is the next tap point representing  
78 + 50 = 128 for data 02H. Due to its unique internal structure,  
AD5201 has 5-bit + 1 resolution, but needs a 6-bit data word to  
achieve the full 33 steps resolution. The 6-bit data word in the  
RDAC latch is decoded to select one of the 33 possible settings.  
Data 34 to 63 will automatically be equal to Position 33. The  
wiper 00H connection of AD5201 gives 50 . Similarly, for a  
10 kpart, the first tap point of AD5201 yields 363 for  
data 01H, 675 for data 02H. For both AD5200 and AD5201,  
each LSB data value increase moves the wiper up the resistor  
ladder until the last tap point is reached. Figures 2a and 2b show  
the simplified diagrams of the equivalent RDAC circuits.  
R
R
= 10kꢀ  
= 50kꢀ  
AB  
AB  
0.1  
16  
28  
0
4
8
12  
20  
24  
32  
CODE Decimal  
TPC 32. AD5201 IMAX vs. Code  
OPERATION  
The AD5200/AD5201 provide 255 and 33 positions digitally-  
controlled variable resistor (VR) devices. Changing the  
programmed VR settings is accomplished by clocking in an 8-bit  
serial data word for AD5200, and a 6-bit serial data word for  
AD5201, into the SDI (Serial Data Input) pins. Table I provides  
the serial register data word format. The AD5200/AD5201 are  
preset to a midscale internally during power-on condition. In  
addition, the AD5200/AD5201 contain power shutdown  
SHDN pins that place the RDAC in a zero power consump-  
tion state where the immediate switches next to Terminals A and  
B are open-circuited. Meanwhile, the wiper W is connected to B  
terminal, resulting in only leakage current consumption in the VR  
structure. During shutdown, the VR latch contents are maintained  
when the RDAC is inactive. When the part is returned from  
shutdown, the stored VR setting will be applied to the RDAC.  
–11–  
AD5200/AD5201  
A
Note D in AD5200 is between 0 to 255 for 256 positions. On  
the other hand, D in AD5201 is between 0 to 32 so that 33  
positions can be achieved due to the slight internal structure  
difference, Figure 2b.  
SHDN  
SHDN  
SW  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
N
SW  
2
1  
2  
Again if RAB = 10 kand A terminal can be opened or tied to  
W, the following output resistance between W to B will be set  
for the following RDAC latch codes:  
R
N
SW  
2
AD5200 Wiper-to-B Resistance  
W
SW  
SW  
1
R
R
D
(DEC)  
RWB  
()  
R
AB  
R
N
Output State  
0
2
1  
RDAC  
LATCH &  
DECODER  
255  
128  
1
10050  
5070  
89  
Full-Scale (RAB + RW)  
Midscale  
1 LSB  
DIGITAL CIRCUITRY  
OMITTED FOR CLARITY  
B
Figure 2a. AD5200 Equivalent RDAC Circuit. 255 positions  
0
50  
Zero-Scale (Wiper Contact Resistance)  
N
can be achieved up to Switch SW 2  
.
–1  
AD5201 Wiper-to-B Resistance  
A
SHDN  
SW  
SHDN  
D
RWB  
(DEC)  
()  
Output State  
N
SW  
2
32  
16  
1
10050  
5050  
363  
Full-Scale (RAB + RW)  
Midscale  
1 LSB  
N
N
R
R
SW  
2
2
1  
2  
D5  
D4  
D3  
D2  
D1  
D0  
0
50  
Zero-Scale (Wiper Contact Resistance)  
SW  
Note that in the zero-scale condition a finite wiper resistance of  
50 is present. Care should be taken to limit the current flow  
between W and B in this state to no more than 20 mA to avoid  
degradation or possible destruction of the internal switch contact.  
W
SW  
SW  
R
R
1
R
AB  
N
R
0
RDAC  
2
LATCH &  
DECODER  
Like the mechanical potentiometer the RDAC replaces, it is  
totally symmetrical. The resistance between the wiper W and  
Terminal A also produces a digitally controlled resistance RWA  
DIGITAL CIRCUITRY  
OMITTED FOR CLARITY  
B
.
When these terminals are used, the B terminal should be tied to  
the wiper. Setting the resistance value for RWA starts at a maxi-  
mum value of resistance and decreases as the data loaded in  
the latch is increased in value. The general equation for this  
operation is:  
Figure 2b. AD5201 Equivalent RDAC Circuit. Unlike AD5200,  
N
33 positions can be achieved all the way to Switch SW 2  
.
The general equation determining the digitally programmed  
output resistance between W and B is:  
D
255  
255 D  
(
)
for AD5200  
for AD5201  
(1)  
(2)  
RWB D =  
RAB + 50 Ω  
( )  
for AD5200  
(3)  
RWA D =  
RAB + 50Ω  
( )  
255  
D
RWB D =  
RAB + 50 Ω  
( )  
32  
32 D  
(
)
where:  
for AD5201  
(4)  
RWA D =  
RAB + 50Ω  
( )  
32  
D
is the decimal equivalent of the data contained in  
RDAC latch.  
Similarly, D in AD5200 is between 0 to 255, whereas D in  
AD5201 is between 0 to 32.  
RAB is the nominal end-to-end resistance.  
For RAB = 10 kand B terminal is opened or tied to the wiper  
W, the following output resistance between W and A will be set  
for the following RDAC latch codes:  
RW is the wiper resistance contributed by the on-resistance  
of the internal switch.  
–12–  
AD5200/AD5201  
AD5200 Wiper-to-A Resistance  
RWA  
Operation of the digital potentiometer in the divider mode results  
in more accurate operation over temperature. Here the output  
voltage is dependent on the ratio of the internal resistors and not  
the absolute values; therefore, the drift reduces to 15 ppm/°C.  
D
(DEC)  
()  
Output State  
255  
128  
1
50  
Full-Scale (RW)  
Midscale  
1 LSB  
DIGITAL INTERFACING  
5030  
10011  
10050  
The AD5200/AD5201 contain a standard three-wire serial input  
control interface. The three inputs are clock (CLK), CS, and  
serial data input (SDI). The positive-edge-sensitive CLK input  
requires clean transitions to avoid clocking incorrect data into  
the serial input register. Standard logic families work well. If  
mechanical switches are used for product evaluation, they  
should be debounced by a flip-flop or other suitable means.  
Figure 3 shows more detail of the internal digital circuitry. When  
CS is low, the clock loads data into the serial register on each  
positive clock edge (see Table III).  
0
Zero-Scale (RAB + RW)  
AD5201 Wiper-to-A Resistance  
RWA  
D
(DEC)  
()  
Output State  
32  
16  
1
50  
Full-Scale (RW)  
Midscale  
1 LSB  
5050  
9738  
10050  
0
Zero-Scale (RAB + RW)  
V
V
SS  
DD  
AD5200/AD5201  
A
The tolerance of the nominal resistance can be 30% due to  
process lot dependance. If users apply the RDAC in rheostat  
(variable resistance) mode, they should be aware of such specifi-  
cation of tolerance. The change in RAB with temperature has a  
500 ppm/°C temperature coefficient.  
CS  
W
B
CLK  
SER  
REG  
Dx  
RDAC  
REG  
8/6  
SDI  
SHDN  
GND  
PWR-ON  
PRESET  
PROGRAMMING THE POTENTIOMETER DIVIDER  
Voltage Output Operation  
The digital potentiometer easily generates output voltages at  
wiper-to-B and wiper-to-A to be proportional to the input volt-  
age at A to B.  
Figure 3. Block Diagram  
Table III. Input Logic Control Truth Table  
CLK CS SHDN  
Register Activity  
Unlike the polarity of VDD VSS, which must be positive, volt-  
age across AB, WA, and WB can be at either polarity.  
L
P
X
X
X
L
L
P
H
H
H
H
H
H
L
No SR effect.  
Shift one bit in from the SDI pin.  
Load SR data into RDAC latch.  
No operation.  
Open circuit on A terminal and short  
circuit between W to B terminals.  
If ignoring the effects of the wiper resistance for an approxima-  
tion, connecting A terminal to 5 V and B terminal to ground  
produces an output voltage at the wiper which can be any value  
starting at almost zero to almost full scale with the minor devia-  
tion contributed by the wiper resistance. Each LSB of voltage is  
equal to the voltage applied across Terminal AB divided by the  
2N-1 and 2N position resolution of the potentiometer divider for  
AD5200 and AD5201 respectively. The general equation defin-  
ing the output voltage with respect to ground for any valid input  
voltage applied to Terminals A and B is:  
NOTE  
P = positive edge, X = dont care, SR = shift register.  
All digital inputs are protected with a series input resistor and  
parallel Zener ESD structure shown in Figure 4. Applies to  
digital input pins CS, SDI, SHDN, CLK.  
D
255  
340ꢀ  
for AD5200  
for AD5201  
(5)  
(6)  
VW D =  
VAB + VB  
LOGIC  
( )  
D
32  
V
SS  
VW D =  
VAB + VB  
( )  
Figure 4. ESD Protection of Digital Pins  
where D in AD5200 is between 0 to 255 and D in AD5201 is  
between 0 to 32.  
A,B,W  
For more accurate calculation, including the effects of wiper  
resistance, VW can be found as:  
V
SS  
Figure 5. ESD Protection of Resistor Terminals  
RWB  
D
RWA  
D
( )  
( )  
(7)  
VW D =  
VA  
+
VB  
( )  
RAB  
RAB  
where RWB(D) and RWA(D) can be obtained from Equations  
1 to 4.  
–13–  
AD5200/AD5201  
TEST CIRCUITS  
Figures 6 to 14 define the test conditions used in the product  
specification table.  
5V  
OP279  
V
OUT  
V
IN  
DUT  
A
V+ = V  
1 LSB = V+/2  
DD  
W
N
OFFSET  
GND  
W
V+  
A
DUT  
B
B
V
MS  
OFFSET BIAS  
Figure 6. Potentiometer Divider Nonlinearity Error Test  
Circuit (INL, DNL)  
Figure 11. Noninverting Gain Test Circuit  
NO CONNECT  
DUT  
+15V  
A
I
W
W
A
V
IN  
W
OP42  
V
OUT  
B
OFFSET  
GND  
B
2.5V  
V
MS  
15V  
Figure 7. Resistor Position Nonlinearity Error  
(RheostatOperation;R-INL, R-DNL)  
Figure 12. Gain vs. Frequency Test Circuit  
0.1V  
R
=
SW  
DUT  
B
I
SW  
DUT  
CODE = OO  
H
W
I
= V /R  
NOMINAL  
W
DD  
V
A
MS2  
V
+
W
W
I
SW  
0.1V  
B
V
R
MS1  
V
TO V  
DD  
SS  
= [V  
MS1  
V ]/I  
W
MS2  
W
Figure 8. Wiper Resistance Test Circuit  
Figure 13. Incremental ON Resistance Test Circuit  
NC  
V
A
V
DUT  
DD  
I
A
B
CM  
W
V
DD  
A
B
V+ = V 10%  
V+  
DD  
W
V  
V  
V
MS  
DD  
GND  
SS  
V
CM  
PSRR (dB) = 20 LOG  
V
V  
V  
%
MS  
MS  
PSS (%/%) =  
NC  
NC = NO CONNECT  
%
DD  
Figure 9. Power Supply Sensitivity Test Circuit  
(PSS, PSRR)  
Figure 14. Common-Mode Leakage Current Test Circuit  
A
DUT B  
5V  
W
V
IN  
OP279  
V
OUT  
OFFSET  
GND  
OFFSET BIAS  
Figure 10. Inverting Gain Test Circuit  
–14–  
AD5200/AD5201  
OUTLINE DIMENSIONS  
3.10  
3.00  
2.90  
10  
1
6
5
5.15  
4.90  
4.65  
3.10  
3.00  
2.90  
PIN 1  
IDENTIFIER  
0.50 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.70  
0.55  
0.40  
0.15  
0.05  
0.23  
0.13  
6°  
0°  
0.30  
0.15  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-BA  
Figure 15. 10-Lead Mini Small Outline Package [MSOP]  
(RM-10)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Temperature  
Range  
Package  
Option  
Full Reel  
Qty.  
Branding  
Information  
Model1  
RES kΩ  
Package Description  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
AD5200BRMZ10  
256 10  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
50  
1,000  
50  
1,000  
50  
1,000  
50  
DLA  
DLA  
D8T  
AD5200BRMZ10-REEL7 256 10  
AD5200BRMZ50 256 50  
AD5200BRMZ50-REEL7 256 50  
AD5201BRMZ10  
AD5201BRMZ10-REEL7 33  
AD5201BRMZ50 33  
D8T  
33  
10  
10  
50  
50  
DMA  
DMA  
DMB  
DMB  
AD5201BRMZ50-REEL7 33  
1,000  
1 Z = RoHS Compliant Part.  
REVISION HISTORY  
12/12—Rev. C to Rev. D  
Changes to Ordering Guide...........................................................15  
6/12—Rev. B to Rev. C  
Removed Digital Potentiometer Selection Guide .......................15  
Updated Outline Dimensions........................................................15  
Changes to Ordering Guide...........................................................15  
8/01—Rev. A to Rev. B  
Edits to ORDERING GUIDE ..........................................................5  
2/01—Rev. 0 to Rev. A  
Edits to ORDERING GUIDE ..........................................................5  
Edits to ABSOLUTE MAXIMUM RATINGS...............................5  
TPCs 31 and 32 added....................................................................11  
©2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D02188-0-12/12(D)  
REV. D  
–15–  

相关型号:

AD5201BRMZ10-REEL7

256-Position and 33-Position Digital Potentiometers
ADI

AD5201BRMZ50

256-Position and 33-Position Digital Potentiometers
ADI

AD5201BRMZ50-REEL7

256-Position and 33-Position Digital Potentiometers
ADI

AD5201TD

Analog-to-Digital Converter, 12-Bit
ETC

AD5201TD/883B

Analog-to-Digital Converter, 12-Bit
ETC

AD5201_15

256-Position and 33-Position Digital Potentiometers
ADI

AD5202BD

IC 1-CH 12-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL/PARALLEL ACCESS, CDIP24, HERMETIC SEALED, CERAMIC, DIP-24, Analog to Digital Converter
ADI

AD5202TD

Analog-to-Digital Converter, 12-Bit
ETC

AD5202TD/883B

Analog-to-Digital Converter, 12-Bit
ETC

AD5203

4-Channel, 64-Position Digital Potentiometer
ADI

AD5203AN10

4-Channel, 64-Position Digital Potentiometer
ADI

AD5203AN10

10K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 64 POSITIONS, PDIP24, PLASTIC, DIP-24
ROCHESTER