AD5206BRUZ50-REEL7 [ADI]

4-/6-Channel Digital Potentiometers; 4- / 6通道数字电位器
AD5206BRUZ50-REEL7
型号: AD5206BRUZ50-REEL7
厂家: ADI    ADI
描述:

4-/6-Channel Digital Potentiometers
4- / 6通道数字电位器

电位器
文件: 总20页 (文件大小:371K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
4-/6-Channel  
Digital Potentiometers  
AD5204/AD5206  
FUNCTIONAL BLOCK DIAGRAMS  
FEATURES  
256 positions  
AD5204  
V
DD  
CS  
Multiple independently programmable channels  
AD5204—4-channel  
AD5206—6-channel  
A1  
W1  
B1  
CLK  
D7  
D0  
EN  
RDAC  
LATCH  
1
ADDR  
DEC  
A2  
A1  
A0  
Potentiometer replacement  
DO  
SDO  
R
Terminal resistance of 10 kΩ, 50 kΩ, 100 kΩ  
3-wire SPI-compatible serial data input  
+2.7 V to +5.5 V single-supply operation; 2.7 V dual-supply  
operation  
D7  
SER  
REG  
A4  
D7  
D0  
Power-on midscale preset  
W4  
RDAC  
LATCH  
4
DI  
D0  
SDI  
B4  
APPLICATIONS  
SHDN  
8
Mechanical potentiometer replacement  
Instrumentation: gain, offset adjustment  
Programmable voltage-to-current conversion  
Programmable filters, delays, time constants  
Line impedance matching  
V
R
SS  
POWER-ON  
PRESET  
PR  
GND  
Figure 1.  
AD5206  
V
CS  
DD  
GENERAL DESCRIPTION  
A1  
W1  
B1  
CLK  
D7  
D0  
The AD5204/AD5206 provide 4-/6-channel, 256-position  
digitally controlled variable resistor (VR) devices. These  
devices perform the same electronic adjustment function as a  
potentiometer or variable resistor. Each channel of the AD5204/  
AD5206 contains a fixed resistor with a wiper contact that taps  
the fixed resistor value at a point determined by a digital code  
loaded into the SPI-compatible serial-input register. The  
resistance between the wiper and either endpoint of the fixed  
resistor varies linearly with respect to the digital code transferred  
into the VR latch. The variable resistor offers a completely  
programmable value of resistance between the A terminal and  
the wiper or the B terminal and the wiper. The fixed A-to-B  
terminal resistance of 10 kΩ, 50 kΩ, or 100 kΩ has a nominal  
temperature coefficient of 700 ppm/°C.  
EN  
RDAC  
LATCH  
1
ADDR  
DEC  
A2  
A1  
A0  
R
D7  
SER  
REG  
A6  
W6  
B6  
D7  
D0  
RDAC  
LATCH  
6
DI  
D0  
SDI  
8
R
POWER-ON  
PRESET  
GND  
V
SS  
Figure 2.  
PR  
An optional reset ( ) pin forces all the AD5204 wipers to the  
midscale position by loading 0x80 into the VR latch.  
Each VR has its own VR latch that holds its programmed  
resistance value. These VR latches are updated from an internal  
serial-to-parallel shift register that is loaded from a standard  
3-wire serial-input digital interface. Eleven data bits make up  
the data-word clocked into the serial input register. The first  
three bits are decoded to determine which VR latch is loaded  
The AD5204/AD5206 are available in the 24-lead surface-  
mount SOIC, TSSOP, and PDIP packages. The AD5204 is also  
available in a 32-lead, 5 mm × 5 mm LFCSP package. All parts are  
guaranteed to operate over the extended industrial temperature  
range of −40°C to +85°C. For additional single-, dual-, and quad-  
channel devices, see the AD8400/AD8402/AD8403 data sheets.  
CS  
with the last eight bits of the data-word when the  
strobe is  
returned to logic high. A serial data output pin at the opposite  
end of the serial register (AD5204 only) allows simple daisy  
chaining in multiple VR applications without requiring  
additional external decoding logic.  
Rev. C  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©1999–2010 Analog Devices, Inc. All rights reserved.  
 
AD5204/AD5206  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Typical Performance Characteristics ........................................... 10  
Operation......................................................................................... 12  
Programming the Variable Resistor............................................. 13  
Rheostat Operation.................................................................... 13  
Programming the Potentiometer Divider................................... 14  
Voltage Output Operation......................................................... 14  
Digital Interfacing .......................................................................... 15  
Test Circuits..................................................................................... 16  
Outline Dimensions....................................................................... 17  
Ordering Guide .......................................................................... 18  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagrams............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics............................................................. 3  
Timing Diagrams.............................................................................. 5  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configurations and Function Descriptions ........................... 7  
REVISION HISTORY  
7/10—Rev. B to Rev. C  
11/07—Rev. 0 to Rev. A  
Changes to Digital Input and Output Voltage to GND  
Parameter, Table 2............................................................................. 6  
Changes to Ordering Guide .......................................................... 18  
Updated Format..................................................................Universal  
Added 32-Lead LFCSP Package .......................................Universal  
Changed RBA to RAB ............................................................Universal  
Changes to Absolute Maximum Ratings........................................6  
Changes to Operation Section...................................................... 12  
Updated Outline Dimensions....................................................... 17  
Changes to Ordering Guide.......................................................... 18  
5/09—Rev. A to Rev. B  
Changes to Table 1............................................................................ 3  
Changes to Absolute Maximum Ratings....................................... 6  
Changes to Figure 7.......................................................................... 8  
Changes to Table 4............................................................................ 8  
9/99—Revision 0: Initial Version  
Rev. C | Page 2 of 20  
 
AD5204/AD5206  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
VDD = 5 V 10% or 3 V 10%, VSS = 0 V, VA = VDD, VB = 0 V, 40°C < TA < +85°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Conditions  
Min  
Typ1  
Max  
Unit  
DC CHARACTERISTICS RHEOSTAT MODE2  
Resistor Differential NL3  
Resistor Nonlinearity Error3  
Nominal Resistor Tolerance4  
Resistance Temperature Coefficient  
Nominal Resistance Match  
R-DNL  
R-INL  
ΔRAB  
ΔRAB/ΔT  
ΔR/RAB  
RWB, VA = no connect  
RWB, VA = no connect  
TA = 2ꢀ°C  
−1  
−2  
−30  
0.2ꢀ  
0.ꢀ  
+1  
+2  
+30  
LSB  
LSB  
%
ppm/°C  
%
VAB = VDD, wiper = no connect  
700  
0.2ꢀ  
Channel 1 to Channel 2, Channel 3, and  
Channel 4, or to Channel ꢀ and Channel 6;  
VAB = VDD  
1.ꢀ  
Wiper Resistance  
RW  
IW = 1 V/R, VDD = ꢀ V  
ꢀ0  
100  
Ω
DC CHARACTERISTICS POTENTIOMETER  
DIVIDER MODE2  
Resolution  
N
8
Bits  
Differential Nonlinearityꢀ  
Integral Nonlinearityꢀ  
Voltage Divider Temperature Coefficient  
Full-Scale Error  
DNL  
INL  
ΔVW/ΔT  
VWFSE  
VWZSE  
−1  
−2  
0.2ꢀ  
0.ꢀ  
1ꢀ  
−1  
1
+1  
+2  
LSB  
LSB  
ppm/°C  
LSB  
LSB  
Code = 0x40  
Code = 0x7F  
Code = 0x00  
−2  
0
0
2
Zero-Scale Error  
RESISTOR TERMINALS  
Voltage Range6  
Capacitance7 Ax, Bx  
Capacitance7 Wx  
Shutdown Current8  
Common-Mode Leakage  
DIGITAL INPUTS AND OUTPUTS  
Input Logic High  
Input Logic Low  
Output Logic High  
Output Logic Low  
Input Current  
Input Capacitance7  
VA, VB, VW  
CA, CB  
CW  
IA_SD  
ICM  
VSS  
VDD  
V
f = 1 MHz, measured to GND, code = 0x40  
f = 1 MHz, measured to GND, code = 0x40  
4ꢀ  
60  
0.01  
1
pF  
pF  
μA  
nA  
VA = VB = VW = 0, VDD = +2.7 V, VSS = −2.ꢀ V  
VIH  
VIL  
VOH  
VOL  
IIL  
VDD = ꢀ V/3 V  
VDD = ꢀ V/3 V  
RPULL–UP = 1 kΩ to ꢀ V  
IOL = 1.6 mA, VLOGIC = ꢀ V  
VIN = 0 V or ꢀ V  
2.4/2.1  
4.9  
V
V
V
V
μA  
pF  
0.8/0.6  
0.4  
1
CIL  
POWER SUPPLIES  
Power Single-Supply Range  
Power Dual-Supply Range  
Positive Supply Current  
Negative Supply Current  
Power Dissipation9  
Power Supply Sensitivity  
DYNAMIC CHARACTERISTICS7, 10  
Bandwidth −3 dB  
VDD range  
VDD/VSS range  
IDD  
ISS  
PDISS  
PSS  
VSS = 0 V  
2.7  
2.3  
ꢀ.ꢀ  
2.7  
60  
60  
0.3  
V
V
μA  
μA  
mW  
%/%  
VIH = ꢀ V or VIL = 0 V  
VSS = −2.ꢀ V, VDD = +2.7 V  
VIH = ꢀ V or VIL = 0 V  
ΔVDD = ꢀ V 10%  
12  
12  
0.0002 0.00ꢀ  
BW_10K  
BW_ꢀ0K  
BW_100K  
THDW  
tS  
eN_WB  
RAB = 10 kΩ  
RAB = ꢀ0 kΩ  
RAB = 100 kΩ  
VA = 1.414 V rms, VB = 0 V dc, f = 1 kHz  
VA = ꢀ V, VB = 0 V, 1 LSB error band  
RWB = ꢀ kΩ, f = 1 kHz, PR = 0  
721  
137  
69  
0.004  
2/9/18  
9
kHz  
kHz  
kHz  
%
μs  
nV/√Hz  
Total Harmonic Distortion  
VW Settling Time (10 kΩ/ꢀ0 kΩ/100 kΩ)  
Resistor Noise Voltage  
Rev. C | Page 3 of 20  
 
 
 
 
 
AD5204/AD5206  
Parameter  
Symbol  
Conditions  
Min  
Typ1  
Max  
Unit  
INTERFACE TIMING CHARACTERISTICS7, 11, 12  
Input Clock Pulse Width  
Data Setup Time  
Data Hold Time  
CLK-to-SDO Propagation Delay13  
tCH, tCL  
tDS  
tDH  
tPD  
tCSS  
Clock level high or low  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RL = 2 kΩ , CL < 20 pF  
1
1ꢀ0  
CS Setup Time  
1ꢀ  
40  
90  
0
CS High Pulse Width  
tCSW  
tRS  
tCSH0  
tCSH1  
tCS1  
Reset Pulse Width  
CLK Fall to CS Fall Setup  
CLK Fall to CS Rise Hold Time  
CS Rise to Clock Rise Setup  
0
10  
1 Typicals represent average readings at 2ꢀ°C and VDD = ꢀ V.  
2 Applies to all VRs.  
3 Resistor position nonlinearity error (R-INL) is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper positions.  
R-DNL measures the relative step change from the ideal position between successive tap positions. Parts are guaranteed monotonic. See the test circuit in Figure 28.  
I
W = VDD/R for both VDD = 3 V and VDD = ꢀ V.  
4 VAB = VDD, wiper (VW) = no connect.  
INL and DNL are measured at VW with the RDAC configured as a potentiometer divider similar to a voltage output DAC. VA = VDD and VB = 0 V. DNL specification limits  
of 1 LSB maximum are guaranteed monotonic at operating conditions. See the test circuit in Figure 27.  
6 Resistor Terminal A, Terminal B, and Wiper W have no limitations on polarity with respect to each other.  
7 Guaranteed by design and not subject to production test.  
8 Measured at the Ax terminals. All Ax terminals are open circuited in shutdown mode.  
9 PDISS is calculated from (IDD × VDD). CMOS logic level inputs result in minimum power dissipation.  
10 All dynamic characteristics use VDD = ꢀ V.  
11 Applies to all parts.  
12 See the timing diagrams (Figure 3 to Figure ꢀ) for the location of the measured values. All input control voltages are specified with tR = tF = 2.ꢀ ns (10% to 90% of 3 V)  
and timed from a voltage level of 1.ꢀ V. Switching characteristics are measured using both VDD = 3 V and VDD = ꢀ V.  
13 The propagation delay depends on the values of VDD, RL, and CL (see the Operation section).  
Rev. C | Page 4 of 20  
 
AD5204/AD5206  
TIMING DIAGRAMS  
1
0
1
0
1
0
SDI  
A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0  
CLK  
RDAC LATCH LOAD  
CS  
V
DD  
0V  
V
OUT  
Figure 3. Timing Diagram  
1
0
SDI  
(DATA IN)  
Ax OR Dx  
Ax OR Dx  
tDS  
tDH  
1
0
SDO  
(DATA OUT)  
Ax OR Dx  
Ax OR Dx  
tPD_MAX  
tCS1  
tCH  
1
0
CLK  
CS  
tCSH0  
tCSH1  
tCL  
tCSS  
1
0
tCSW  
tS  
V
±1 LSB  
DD  
V
OUT  
±1 LSB ERROR BAND  
0V  
Figure 4. Detailed Timing Diagram  
tRS  
1
PR  
0
tS  
V
DD  
V
OUT  
±1 LSB  
0V  
±1 LSB ERROR BAND  
Figure 5. AD5204 Preset Timing Diagram  
Rev. C | Page ꢀ of 20  
 
 
 
AD5204/AD5206  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 2.  
Parameter  
VDD to GND  
VSS to GND  
VDD to VSS  
Rating  
−0.3 V to +7 V  
0 V to −7 V  
7 V  
VA, VB, VW to GND  
IA, IB, IW  
Pulsed1  
VSS, VDD  
ESD CAUTION  
20 mA  
Continuous  
10 kΩ End-to-End Resistance  
ꢀ0 kΩ and 100 kΩ End-to-End  
Resistance  
11 mA  
2.ꢀ mA  
Digital Input and Output Voltage  
to GND  
−0.3 V to (VDD + 0.3 V) or 7 V  
(whichever is less)  
Operating Temperature Range  
Maximum Junction Temperature  
(TJ max)  
−40°C to +8ꢀ°C  
1ꢀ0°C  
Storage Temperature  
Reflow Soldering  
−6ꢀ°C to +1ꢀ0°C  
Peak Temperature  
260°C  
Time at Peak Temperature  
Package Power Dissipation  
Thermal Resistance, θJA  
20 sec to 40 sec  
(TJ max − TA)/θJA  
2
PDIP (N-24-1)  
SOIC (RW-24)  
TSSOP (RU-24)  
LFCSP (CP-32-3)  
63°C/W  
ꢀ2°C/W  
ꢀ0°C/W  
32.ꢀ°C/W  
1 Maximum terminal current is bounded by the maximum current handling of  
the switches, maximum power dissipation of the package, and maximum  
applied voltage across any two of the A, B, and W terminals at a given  
resistance.  
2 Thermal resistance (JEDEC 4-layer (2S2P) board). Paddle soldered to board.  
Rev. C | Page 6 of 20  
 
 
AD5204/AD5206  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
NC  
1
2
3
4
5
6
7
8
9
24 B4  
23 W4  
22 A4  
21 B2  
20 W2  
19 A2  
NC  
GND  
CS  
AD5204  
TOP VIEW  
(Not to Scale)  
PR  
V
DD  
18  
A1  
SHDN  
SDI  
17 W1  
16 B1  
15 A3  
14 W3  
13 B3  
CLK  
SDO 10  
11  
V
SS  
NC 12  
NC = NO CONNECT  
Figure 6. AD5204 SOIC/TSSOP/PDIP Pin Configuration  
Table 3. AD5204 SOIC/TSSOP/PDIP Pin Function Descriptions  
Pin No. Name Description  
1, 2, 12  
3
4
NC  
GND  
CS  
Not Connected.  
Ground.  
Chip Select Input (Active Low). When CS returns high, data in the serial input register is decoded based on the address  
bits, and then it is loaded into the target RDAC latch.  
PR  
Preset to Midscale (Active Low). This pin sets the RDAC registers to 0x80.  
6
7
VDD  
SHDN  
SDI  
CLK  
SDO  
VSS  
B3  
W3  
A3  
Positive Power Supply. This pin is specified for operation at both 3 V and ꢀ V. It is the sum of |VDD| + |VSS| < ꢀ.ꢀ V.  
Terminal A Open-Circuit Shutdown (Active Low Input). This pin controls VR 1 through VR 4.  
8
Serial Data Input. Data is input MSB first.  
9
Serial Clock Input. This pin is positive edge triggered.  
10  
11  
13  
14  
1ꢀ  
16  
17  
18  
19  
20  
21  
22  
23  
24  
Serial Data Output. This pin is an open-drain transistor and requires a pull-up resistor.  
Negative Power Supply. This pin is specified for operation at both 0 V and −2.7 V. It is the sum of |VDD| + |VSS| < ꢀ.ꢀ V.  
Terminal B RDAC 3.  
Wiper RDAC 3. Address = 0102.  
Terminal A RDAC 3.  
Terminal B RDAC 1.  
Wiper RDAC 1. Address = 0002.  
Terminal A RDAC 1.  
B1  
W1  
A1  
A2  
Terminal A RDAC 2.  
W2  
B2  
A4  
W4  
B4  
Wiper RDAC 2. Address = 0012.  
Terminal B RDAC 2.  
Terminal A RDAC 4.  
Wiper RDAC 4. Address = 0112.  
Terminal B RDAC 4.  
Rev. C | Page 7 of 20  
 
AD5204/AD5206  
32 31 30 29 28 27 26 25  
1
2
3
4
5
6
7
8
24  
NC  
PIN 1  
INDICATOR  
23 NC  
22 NC  
21 NC  
20 B4  
19 W4  
18 A4  
NC  
NC  
NC  
NC  
B3  
AD5204  
TOP VIEW  
(Not to Scale)  
W3  
A3  
NC  
17  
9
10 11 12 13 14 15 16  
NOTES  
1. NC = NO CONNECT.  
2. THE LFCSP PACKAGE HAS AN EXPOSED  
PADDLE THAT SHOULD BE CONNECTED TO  
GND AND THE ASSOCIATED PCB  
GROUND PLATE.  
Figure 7. AD5204 LFCSP Pin Configuration  
Table 4. AD5204 LFCSP Pin Function Descriptions  
Pin No. Name Description  
1
VSS  
Negative Power Supply. This pin is specified for operation at both 0 V and −2.7 V. It is the sum of |VDD| + |VSS| < ꢀ.ꢀ V.  
Not Connected.  
2 to ꢀ, 9, NC  
16, 17,  
21 to 24  
6
B3  
Terminal B RDAC 3.  
7
8
W3  
A3  
B1  
W1  
A1  
A2  
W2  
B2  
A4  
W4  
B4  
GND  
CS  
Wiper RDAC 3. Address = 0102.  
Terminal A RDAC 3.  
Terminal B RDAC 1.  
Wiper RDAC 1. Address = 0002.  
Terminal A RDAC 1.  
Terminal A RDAC 2.  
Wiper RDAC 2. Address = 0012.  
Terminal B RDAC 2.  
Terminal A RDAC 4.  
Wiper RDAC 4. Address = 0112.  
Terminal B RDAC 4.  
Ground.  
Chip Select Input (Active Low). When CS returns high, data in the serial input register is decoded based on the address  
bits, and then it is loaded into the target RDAC latch.  
10  
11  
12  
13  
14  
1ꢀ  
18  
19  
20  
2ꢀ  
26  
27  
28  
29  
30  
31  
32  
PR  
Preset to Midscale (Active Low). This pin sets the RDAC registers to 0x80.  
VDD  
SHDN  
SDI  
CLK  
SDO  
Positive Power Supply. This pin is specified for operation at both 3 V and ꢀ V. It is the sum of |VDD| + |VSS| < ꢀ.ꢀ V.  
Terminal A Open-Circuit Shutdown (Active Low Input). This pin controlsVR 1 through VR 4.  
Serial Data Input. Data is input MSB first.  
Serial Clock Input. This pin is positive edge triggered.  
Serial Data Output. This pin is an open-drain transistor and requires a pull-up resistor.  
Rev. C | Page 8 of 20  
AD5204/AD5206  
A6  
W6  
1
2
3
4
5
6
7
8
9
24 B4  
23 W4  
22 A4  
21 B2  
20 W2  
19 A2  
B6  
GND  
CS  
AD5206  
TOP VIEW  
(Not to Scale)  
V
DD  
18  
A1  
SDI  
17 W1  
16 B1  
15 A3  
14 W3  
13 B3  
CLK  
V
SS  
B5 10  
W5 11  
A5 12  
NC = NO CONNECT  
Figure 8. AD5206 SOIC/TSSOP/PDIP Pin Configuration  
Table 5. AD5206 Pin Function Descriptions  
Pin No.  
Name  
Description  
1
2
3
4
A6  
W6  
B6  
GND  
CS  
Terminal A RDAC 6.  
Wiper RDAC 6. Address = 1012.  
Terminal B RDAC 6.  
Ground.  
Chip Select Input (Active Low). When CS returns high, data in the serial input register is decoded based on the  
address bits, and then it is loaded into the target RDAC latch.  
6
7
8
9
VDD  
SDI  
CLK  
VSS  
Bꢀ  
Wꢀ  
Aꢀ  
B3  
W3  
A3  
B1  
W1  
A1  
A2  
W2  
B2  
Positive Power Supply. This pin is specified for operation at both 3 V and ꢀ V. It is the sum of |VDD| + |VSS| < ꢀ.ꢀ V.  
Serial Data Input. Data is input MSB first.  
Serial Clock Input. This pin is positive edge triggered.  
Negative Power Supply. This pin is specified for operation at both 0 V and −2.7 V. It is the sum of |VDD| + |VSS| < ꢀ.ꢀ V.  
Terminal B RDAC ꢀ.  
Wiper RDAC ꢀ. Address = 1002.  
Terminal A RDAC ꢀ.  
Terminal B RDAC 3.  
Wiper RDAC 3. Address = 0102.  
Terminal A RDAC 3.  
Terminal B RDAC 1.  
Wiper RDAC 1. Address = 0002.  
Terminal A RDAC 1.  
Terminal A RDAC 2.  
Wiper RDAC 2. Address = 0012.  
Terminal B RDAC 2.  
Terminal A RDAC 4.  
Wiper RDAC 4. Address = 0112.  
Terminal B RDAC 4.  
10  
11  
12  
13  
14  
1ꢀ  
16  
17  
18  
19  
20  
21  
22  
23  
24  
A4  
W4  
B4  
Rev. C | Page 9 of 20  
AD5204/AD5206  
TYPICAL PERFORMANCE CHARACTERISTICS  
120  
110  
V
/V = 2.7V/0V  
DD SS  
100  
90  
80  
70  
60  
50  
40  
30  
10k  
0
V
V
V
= ±2.7V  
= –2.7V  
= 100mV rms  
–2  
DD  
SS  
A
–4  
DATA = 0x80  
50kΩ  
V
A
V
/V = 5.5V/0V  
DD SS  
100kΩ  
V
/V = ±2.7V  
DD SS  
OP42  
–3.0 –2.0 –1.0  
0
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
COMMON MODE (V)  
Figure 9. Incremental On Resistance of the Wiper vs. Voltage  
Figure 12. −3 dB Bandwidth vs. Terminal Resistance,  
2.7 V Dual-Supply Operation  
–5.99  
0
DATA = 0x80  
DATA = 0x40  
–6.00  
–6.01  
–6.02  
–6.03  
–6.04  
–6.05  
–6.06  
–6.07  
–6  
–12  
–18  
DATA = 0x20  
DATA = 0x10  
DATA = 0x08  
DATA = 0x04  
10k  
–24  
–30  
–36  
–42  
–48  
50kΩ  
V
V
V
= +2.7V  
= –2.7V  
= 100mV rms  
DATA = 0x80  
= 25°C  
DD  
SS  
100kΩ  
A
DATA = 0x02  
DATA = 0x01  
T
A
V
A
V
A
V
V
V
= +2.7V  
= –2.7V  
DD  
SS  
OP42  
OP42  
–54  
–60  
–6.08  
–6.09  
= 100mV rms  
= 25°C  
A
A
V
= 0V  
B
T
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
Figure 10. Gain Flatness vs. Frequency  
Figure 13. Bandwidth vs. Code, 10 kΩ Version  
0
DATA = 0x80  
DATA = 0x40  
–6  
–12  
–18  
DATA = 0x20  
DATA = 0x10  
DATA = 0x08  
DATA = 0x04  
DATA = 0x02  
10k  
0
–2  
–4  
V
V
V
= 2.7V  
= 0V  
= 100mV rms  
–24  
–30  
–36  
–42  
–48  
DD  
SS  
A
DATA = 0x80  
= 25°C  
50kΩ  
T
A
2.7V  
100kΩ  
DATA = 0x01  
V
OP42  
V
V
V
= +2.7V  
= –2.7V  
A
DD  
SS  
+1.5V  
OP42  
–54  
–60  
= 100mV rms  
A
A
T
= 25°C  
1k  
10k  
100k  
1M  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
FREQUENCY (Hz)  
Figure 11. −3 dB Bandwidth vs. Terminal Resistance,  
2.7 V Single-Supply Operation  
Figure 14. Bandwidth vs. Code, 50 kΩ Version  
Rev. C | Page 10 of 20  
 
AD5204/AD5206  
0
–6  
8
7
6
5
4
3
2
1
0
T
= 25°C  
A
DATA = 0x80  
DATA = 0x40  
–12  
–18  
–24  
–30  
DATA = 0x20  
DATA = 0x10  
DATA = 0x08  
DATA = 0x04  
DATA = 0x02  
DATA = 0x01  
I
, V /V = 5.5V/0V, DATA = 0x55  
DD DD SS  
I
, V /V = ±2.7V, DATA = 0x55  
SS DD SS  
I
, V /V = 5V/0V, DATA = 0xFF  
DD DD SS  
–36  
–42  
I
, V /V = ±2.7V, DATA = 0xFF  
SS DD SS  
I
, V /V = 2.7V/0V, DATA = 0xFF  
DD DD SS  
–48  
–54  
–60  
V
V
V
V
= +2.7V  
= –2.7V  
A
DD  
SS  
I
, V /V = ±2.7V/0V, DATA = 0x55  
DD DD SS  
OP42  
= 100mV rms  
A
A
T
= 25°C  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
100k  
100k  
Figure 15. Bandwidth vs. Code, 100 kΩ Version  
Figure 18. Supply Current vs. Clock Frequency  
2.5  
2.0  
1.5  
1.0  
0.5  
0
60  
50  
40  
30  
20  
10  
0
T
= 25°C  
A
V
= –3.0V ± 10%  
SS  
V
= 5.0V ± 10%  
DD  
SINGLE SUPPLY  
V
= V  
DD  
SS  
DUAL SUPPLY  
= 0V  
V
SS  
V
DD  
= 3.0V ± 10%  
1
2
3
4
5
6
10  
100  
1k  
FREQUENCY (Hz)  
10k  
SUPPLY VOLTAGE V (V)  
DD  
Figure 16. Digital Input Trip Point vs. Supply Voltage  
Figure 19. Power Supply Rejection vs. Frequency  
100  
10  
1
0.1  
I
AT V /V = ±2.7V  
DD SS  
SS  
T
= 25°C  
A
V
V
= +2.7V  
= –2.7V  
DD  
SS  
T
= 25°C  
A
R
= 10kΩ  
AB  
I
AT V /V = 5.5V/0V  
DD SS  
DD  
1
0.01  
I
AT V /V = ±2.7V  
DD SS  
NONINVERTING TEST CIRCUIT  
INVERTING TEST CIRCUIT  
DD  
0.1  
0.001  
0.01  
0.001  
I
AT V /V = 2.7V/0V  
DD SS  
DD  
0.0001  
0
1
2
3
4
5
6
10  
100  
1k  
10k  
INCREMENTAL INPUT LOGIC VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 17. Supply Current vs. Input Logic Voltage  
Figure 20. Total Harmonic Distortion Plus Noise vs. Frequency  
Rev. C | Page 11 of 20  
AD5204/AD5206  
OPERATION  
connected to terminals Bx, resulting in only leakage currents  
being consumed in the VR structure. In shutdown mode, the  
VR latch settings are maintained so that the VR settings return  
to their previous resistance values when the device is returned  
to operational mode from power shutdown.  
The AD5204 provides a 4-channel, 256-position digitally  
controlled VR device, and the AD5206 provides a 6-channel,  
256-position digitally controlled VR device. Changing the pro-  
grammed VR settings is accomplished by clocking an 11-bit  
serial data-word into the SDI pin. The format of this data-word  
is three address bits, MSB first, followed by eight data bits, MSB  
first. Table 6 provides the serial register data-word format.  
Ax  
R
S
SHDN  
R
S
Table 6. Serial Data-Word Format  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Address  
Data  
R
S
B10 B9 B8  
B7  
B6 B5 B4 B3 B2 B1 B0  
A2  
A1 A0  
D7  
D6 Dꢀ D4 D3 D2 D1 D0  
MSB  
210  
LSB MSB  
28 27  
LSB  
20  
Wx  
See Table 10 for the AD5204/AD5206 address assignments to  
decode the location of the VR latch receiving the serial register  
data in Bit B7 through Bit B0. The VR outputs can be changed  
one at a time in random sequence. The AD5204 presets to  
RDAC  
LATCH  
AND  
R
S
Bx  
DECODER  
PR  
midscale by asserting the  
pin, simplifying fault condition  
recovery at power up. Both parts have an internal power-on  
preset that places the wiper in a preset midscale condition at  
power on. In addition, the AD5204 contains a power shutdown pin  
Figure 21. AD5204/AD5206 Equivalent RDAC Circuit  
SHDN  
(
) that places the RDAC in a zero power consumption  
state, where terminals Ax are open circuited and wipers Wx are  
Rev. C | Page 12 of 20  
 
 
 
 
AD5204/AD5206  
PROGRAMMING THE VARIABLE RESISTOR  
In the zero-scale condition, a finite total wiper resistance of 45 Ω  
is present. Regardless of which setting the part is operating in,  
care should be taken to limit the current between Terminal A to  
Terminal B, Wiper W to Terminal A, and Wiper W to Terminal  
B, to the maximum continuous current of 5.65 mA(10 kΩ) or  
1.35 mA(50 kΩ and 100 kΩ) or pulse current of 20 mA.  
Otherwise, degradation or possible destruction of the internal  
switch contact, can occur.  
RHEOSTAT OPERATION  
The nominal resistance of the RDAC between Terminal A and  
Terminal B is available with values of 10 kΩ, 50 kΩ, and 100 kΩ.  
The last digits of the part number determine the nominal  
resistance value; for example, 10 kΩ = 10 and 100 kΩ = 100.  
The nominal resistance (RAB) of the VR has 256 contact points  
accessed by the wiper terminal, plus Terminal B contact. The  
8-bit data-word in the RDAC latch is decoded to select one of  
the 256 possible settings. The first connection of the wiper starts  
at Terminal B for the 0x00 data. This Terminal B connection has a  
wiper contact resistance of 45 Ω. The second connection (for a  
10 kΩ part) is the first tap point, located at 84 Ω [= RAB (nominal  
resistance)/256 + RW = 84 Ω + 45 Ω] for the 0x01 data. The  
third connection is the next tap point, representing 78 + 45 =  
123 Ω for the 0x02 data. Each LSB data value increase moves  
the wiper up the resistor ladder until the last tap point is  
reached at 10,006 Ω. The wiper does not directly connect to  
Terminal A. See Figure 21 for a simplified diagram of the  
equivalent RDAC circuit.  
Like the mechanical potentiometer that the RDAC replaces,  
the RDAC is completely symmetrical. The resistance between  
Wiper W and Terminal A produces a digitally controlled  
resistance, RWA. When these terminals are used, Terminal B  
should be tied to the wiper. Setting the resistance value for RWA  
starts at a maximum value of resistance and decreases as the  
data loaded to the latch is increased in value. The general  
transfer equation for this operation is  
R
WA (Dx) = (256 − Dx)/256 × RAB + RW  
where Dx is the data contained in the 8-bit RDACx latch, and  
AB is the nominal end-to-end resistance.  
(2)  
R
The general transfer equation determining the digitally  
programmed output resistance between the Wx and Bx  
terminals is  
For example, when VA = 0 V and Terminal B is tied to Wiper W,  
the output resistance values outlined in Table 8 are set for the  
RDAC latch codes.  
R
WB (Dx) = (Dx)/256 × RAB + RW  
where Dx is the data contained in the 8-bit RDACx latch, and  
AB is the nominal end-to-end resistance.  
(1)  
Table 8. Output Resistance Values for the RDAC Latch Codes—  
VA = 0 V and Terminal B Tied to Wiper W  
R
D (DEC)  
RWA (Ω)  
Output State  
For example, when VB = 0 V and Terminal A is open circuited, the  
output resistance values are set as outlined in Table 7 for the  
RDAC latch codes (applies to the 10 kꢀ potentiometer).  
2ꢀꢀ  
128  
1
84  
Full scale  
Midscale (PR = 0 condition)  
1 LSB  
ꢀ04ꢀ  
10006  
1004ꢀ  
0
Zero scale  
Table 7. Output Resistance Values for the RDAC Latch Codes—  
VB = 0 V and Terminal A = Open Circuited  
The typical distribution of RAB from channel to channel matches  
to within 1%. However, device-to-device matching is process  
lot dependent, having a 30% variation. The change in RAB in  
terms of temperature has a 700 ppm/°C temperature coefficient.  
D (Dec)  
RWB (Ω)  
10006  
ꢀ04ꢀ  
84  
Output State  
2ꢀꢀ  
128  
1
Full scale  
Midscale (PR = 0 condition)  
1 LSB  
0
4ꢀ  
Zero scale (wiper contact resistance)  
Rev. C | Page 13 of 20  
 
 
 
AD5204/AD5206  
PROGRAMMING THE POTENTIOMETER DIVIDER  
V
VOLTAGE OUTPUT OPERATION  
CS  
DD  
A1  
W1  
B1  
The digital potentiometer easily generates an output voltage  
proportional to the input voltage applied to a given terminal.  
For example, connecting Terminal A to 5 V and Terminal B to  
ground produces an output voltage at the wiper that can be any  
value from 0 V up to 1 LSB less than +5 V. Each LSB of voltage  
is equal to the voltage applied across Terminal A and Terminal B  
divided by the 256-position resolution of the potentiometer  
divider. The general equation defining the output voltage with  
respect to ground for any given input voltage applied to  
Terminal A and Terminal B is  
CLK  
D7  
D0  
EN  
RDAC  
LATCH  
1
A2  
A1  
A0  
D7  
ADDR  
DEC  
DO  
SDO*  
R
AD5204/AD5206  
SER  
REG  
A4/A6  
W4/W6  
B4/B6  
D7  
SDI  
DI  
D0  
RDAC  
LATCH  
4/6  
V
W (Dx) = Dx/256 × VAB + VB  
(3)  
8
D0  
Operation of the digital potentiometer in the divider mode  
results in more accurate operation over temperature. In this  
mode, the output voltage is dependent on the ratio of the  
internal resistors, not the absolute value; therefore, the drift  
improves to 15 ppm/°C.  
R
SHDN*  
*AD5204 ONLY  
DGND  
PR  
Figure 22. Block Diagram  
Rev. C | Page 14 of 20  
 
 
AD5204/AD5206  
DIGITAL INTERFACING  
The AD5204/AD5206 each contain a standard 3-wire serial  
input control interface. The three inputs are clock (CLK), chip  
Table 10. Address Decode Table  
A2  
A1  
A0  
Latch Decoded  
CS  
select input ( ), and serial data input (SDI). The positive-  
0
0
0
RDAC 1  
edge-sensitive CLK input requires clean transitions to avoid  
clocking incorrect data into the serial input register. Standard  
logic families work well. If mechanical switches are used for  
product evaluation, they should be debounced by a flip-flop or  
by other suitable means. Figure 22 shows more detail of the  
0
0
1
RDAC 2  
0
1
0
RDAC 3  
0
1
1
RDAC 4  
1
1
0
0
0
1
RDAC ꢀ ADꢀ206 only  
RDAC 6 ADꢀ206 only  
CS  
internal digital circuitry. When  
is taken active low, the clock  
The data setup and data hold times in the specification table  
determine the data valid time requirements. The last 11 bits of  
loads data into the serial register on each positive clock edge  
(see Table 9). When using a positive (VDD) and negative (VSS)  
supply voltage, the logic levels are still referenced to digital  
ground (GND).  
CS  
the data-word entered into the serial register are held when  
CS  
returns high. When  
goes high, the address decoder is gated,  
enabling one of four or six positive-edge-triggered RDAC  
latches (see Figure 23 for details).  
The serial data output (SDO) pin contains an open-drain  
n-channel FET. This output requires a pull-up resistor to transfer  
data to the SDI pin of the next package. The pull-up resistor  
termination voltage can be larger than the VDD supply of the  
AD5204. For example, the AD5204 can operate at VDD = 3.3 V,  
and the pull-up for the interface to the next device can be set at  
5 V. This allows for daisy chaining several RDACs from a  
single-processor serial data line.  
AD5204/AD5206  
RDAC 1  
RDAC 2  
CS  
ADDR  
DECODE  
RDAC 4/  
RDAC 6  
CLK  
SERIAL  
REGISTER  
SDI  
Figure 23. Equivalent Input Control Logic  
If a pull-up resistor is used to connect the SDI pin of the  
next device in the series, the clock period must be increased.  
Capacitive loading at the daisy-chain node (where SDO and  
SDI are connected) between the devices must be accounted for  
to successfully transfer data. When daisy chaining is used, the  
The target RDAC latch is loaded with the last eight bits of the  
serial data-word, completing one DAC update. Four separate  
8-bit data-words must be clocked in to change all four VR  
settings.  
SHDN  
CS  
should be kept low until all the bits of every package are  
CS  
SDO  
clocked into their respective serial registers, ensuring that the  
address bits and data bits are in the proper decoding locations.  
This requires 22 bits of address and data complying to the data-  
word format outlined in Table 6 if two AD5204 4-channel RDACs  
SERIAL  
REGISTER  
D
Q
SDI  
GND  
CK RS  
CLK  
PR  
SHDN  
are daisy-chained. During shutdown (  
), the SDO output  
Figure 24. Detail SDO Output Schematic of the AD5204  
pin is forced to the off (logic high state) position to disable power  
dissipation in the pull-up resistor. See Figure 24 for the equivalent  
SDO output circuit schematic.  
CS  
All digital pins ( , SDI, SDO,  
protected with a series input resistor and a parallel Zener ESD  
structure (see Figure 25).  
PR SHDN  
, , and CLK) are  
Table 9. Input Logic Control Truth Table1  
CS PR SHDN  
CLK  
Register Activity  
L
L
L
H
H
H
H
No SR effect; enables SDO pin.  
P
Shift one bit in from the SDI pin. The  
11th bit entered is shifted out of the  
SDO pin.  
X
P
H
H
Load SR data into the RDAC latch  
based on A2, A1, A0 decode (Table 10).  
X
X
H
X
H
L
H
H
No operation.  
Sets all RDAC latches to midscale;  
wiper centered and SDO latch  
cleared.  
X
X
H
H
P
H
H
L
Latches all RDAC latches to 0x80.  
Open circuits all A resistor terminals,  
connects Wiper W to Terminal B, and  
turns off the SDO output transistor.  
1 P = positive edge, X = don’t care, SR = shift register.  
Rev. C | Page 1ꢀ of 20  
 
 
 
 
 
AD5204/AD5206  
TEST CIRCUITS  
V
A
A
V
340k  
DD  
V+ = V ± 10%  
DD  
V+  
W
LOGIC  
~
V  
V  
MS  
PSRR (dB) = 20 log  
(
)
B
DD  
V
MS  
V  
V  
%
MS  
V
PSS (%/%) =  
SS  
%
DD  
Figure 25. ESD Protection of Digital Pins  
Figure 30. Power Supply Sensitivity Test Circuit (PSS, PSRR)  
A
B
DUT  
IN  
5V  
OP279  
W
A, B, W  
V
V
OUT  
OFFSET  
GND  
OFFSET BIAS  
V
SS  
Figure 26. ESD Protection of Resistor Terminals  
Figure 31. Inverting Programmable Gain Test Circuit  
5V  
V
OUT  
OP279  
B
DUT  
V+ = V  
DD  
1LSB = V+/256  
V
IN  
W
A
W
V+  
A
OFFSET  
GND  
B
V
DUT  
OFFSET BIAS  
MS  
Figure 27. Potentiometer Divider Nonlinearity Error Test Circuit (INL, DNL)  
Figure 32. Noninverting Programmable Gain Test Circuit  
NO CONNECT  
DUT  
A
+15V  
I
W
W
A
V
IN  
W
DUT  
V
OP42  
OUT  
B
B
OFFSET  
GND  
V
MS  
2.5V  
–15V  
Figure 28. Resistor Position Nonlinearity Error  
(Rheostat Operation; R-INL, R-DNL)  
Figure 33. Gain vs. Frequency Test Circuit  
0.1V  
R
=
SW  
DUT  
I
SW  
I
MS  
CODE = 0x00  
I
=
1V/R  
W
W
NOMINAL  
V+  
V
DD  
W
DUT  
A
W
V
– [V  
+ I (R II R )]  
AW BW  
W2  
W1  
W
+
V
B
R
=
W
0.1V  
V+  
I
I
SW  
W
WHERE V = V  
W1 MS  
WHEN I = 0  
W
B
AND V  
= V WHEN I = 1/R  
W2  
MS  
W
V
MS  
V
TO V  
DD  
SS  
Figure 29. Wiper Resistance Test Circuit  
Figure 34. Incremental On-Resistance Test Circuit  
Rev. C | Page 16 of 20  
 
 
 
 
AD5204/AD5206  
OUTLINE DIMENSIONS  
1.280 (32.51)  
1.250 (31.75)  
1.230 (31.24)  
24  
1
13  
12  
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54)  
BSC  
0.060 (1.52)  
MAX  
0.195 (4.95)  
0.130 (3.30)  
0.115 (2.92)  
0.210 (5.33)  
MAX  
0.015  
(0.38)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.115 (2.92)  
0.015 (0.38)  
GAUGE  
0.014 (0.36)  
0.010 (0.25)  
0.008 (0.20)  
PLANE  
SEATING  
PLANE  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.430 (10.92)  
MAX  
0.005 (0.13)  
MIN  
0.070 (1.78)  
0.060 (1.52)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MS-001  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
Figure 35. 24-Lead Plastic Dual In-Line Package [PDIP]  
Narrow Body  
(N-24-1)  
Dimensions shown in inches and (millimeters)  
15.60 (0.6142)  
15.20 (0.5984)  
24  
1
13  
12  
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10.00 (0.3937)  
0.75 (0.0295)  
0.2  
5 (0.0098)  
45°  
2.65 (0.1043)  
2.35 (0.0925)  
0.30 (0.0118)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.51 (0.0201)  
0.31 (0.0122)  
1.27 (0.0500)  
BSC  
1.27 (0.0500)  
0.40 (0.0157)  
0.33 (0.0130)  
0.20 (0.0079)  
COMPLIANT TO JEDEC STANDARDS MS-013-AD  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 36. 24-Lead Standard Small Outline Package [SOIC_W]  
Wide Body  
(RW-24)  
Dimensions shown in millimeters and (inches)  
Rev. C | Page 17 of 20  
 
AD5204/AD5206  
7.90  
7.80  
7.70  
24  
13  
12  
4.50  
4.40  
4.30  
6.40 BSC  
1
PIN 1  
0.65  
BSC  
1.20  
MAX  
0.15  
0.05  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
0.20  
0.09  
SEATING  
PLANE  
0.10 COPLANARITY  
COMPLIANT TO JEDEC STANDARDS MO-153-AD  
Figure 37. 24-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-24)  
Dimensions shown in millimeters  
5.00  
BSC SQ  
0.60 MAX  
0.60 MAX  
PIN 1  
INDICATOR  
25  
24  
32  
1
PIN 1  
INDICATOR  
0.50  
BSC  
EXPOSED  
PAD  
(BOTTOM VIEW)  
3.45  
3.30 SQ  
3.15  
TOP  
VIEW  
4.75  
BSC SQ  
0.50  
0.40  
0.30  
17  
16  
8
9
0.25 MIN  
0.80 MAX  
0.65 TYP  
3.50 REF  
12° MAX  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
1.00  
0.85  
0.80  
0.30  
0.23  
0.18  
SECTION OF THIS DATA SHEET.  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VHHD-2  
Figure 38. 32-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
5 mm × 5 mm Body, Very Thin Quad  
(CP-32-3)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1, 2  
AD5204BN10  
AD5204BR10  
AD5204BR10-REEL  
AD5204BRZ10  
kΩ  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
50  
50  
50  
50  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
N-24-1  
RW-24  
RW-24  
RW-24  
24-Lead Plastic Dual In-Line Package [PDIP]  
24-Lead Standard Small Outline Package [SOIC_W]  
24-Lead Standard Small Outline Package [SOIC_W]  
24-Lead Standard Small Outline Package [SOIC_W]  
24-Lead Standard Small Outline Package [SOIC_W]  
24-Lead Thin Shrink Small Outline Package [TSSOP] RU-24  
24-Lead Thin Shrink Small Outline Package [TSSOP] RU-24  
24-Lead Thin Shrink Small Outline Package [TSSOP] RU-24  
24-Lead Thin Shrink Small Outline Package [TSSOP] RU-24  
32-Lead Frame Chip Scale Package [LFCSP_VQ]  
32-Lead Frame Chip Scale Package [LFCSP_VQ]  
24-Lead Plastic Dual In-Line Package [PDIP]  
24-Lead Standard Small Outline Package [SOIC_W]  
24-Lead Standard Small Outline Package [SOIC_W]  
24-Lead Standard Small Outline Package [SOIC_W]  
AD5204BRZ10-REEL  
AD5204BRU10  
RW-24  
AD5204BRU10-REEL7  
AD5204BRUZ10  
AD5204BRUZ10-REEL7  
AD5204BCPZ10-REEL  
AD5204BCPZ10-REEL7  
AD5204BN50  
AD5204BR50  
AD5204BR50-REEL  
AD5204BRZ50  
CP-32-3  
CP-32-3  
N-24-1  
RW-24  
RW-24  
RW-24  
Rev. C | Page 18 of 20  
 
AD5204/AD5206  
Model1, 2  
kΩ  
50  
50  
50  
50  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
AD5204BRZ50-REEL  
AD5204BRU50  
24-Lead Standard Small Outline Package [SOIC_W]  
RW-24  
24-Lead Thin Shrink Small Outline Package [TSSOP] RU-24  
24-Lead Thin Shrink Small Outline Package [TSSOP] RU-24  
24-Lead Thin Shrink Small Outline Package [TSSOP] RU-24  
24-Lead Thin Shrink Small Outline Package [TSSOP] RU-24  
24-Lead Thin Shrink Small Outline Package [TSSOP] RU-24  
AD5204BRU50-REEL  
AD5204BRU50-REEL7  
AD5204BRUZ50  
AD5204BRUZ50-REEL7  
AD5204BN100  
AD5204BR100  
AD5204BR100-REEL  
AD5204BRZ100  
AD5204BRZ100-REEL  
AD5204BRU100  
AD5204BRU100-REEL7  
AD5204BRUZ100  
AD5204BRUZ100-R7  
AD5206BN10  
AD5206BR10  
AD5206BR10-REEL  
AD5206BRZ10  
AD5206BRZ10-REEL  
AD5206BRU10  
AD5206BRU10-REEL7  
AD5206BRUZ10  
AD5206BRUZ10-RL7  
AD5206BN50  
AD5206BR50  
AD5206BR50-REEL  
AD5206BRZ50  
50  
50  
100  
100  
100  
100  
100  
100  
100  
100  
100  
10  
10  
10  
10  
10  
10  
10  
10  
10  
50  
50  
50  
50  
50  
50  
50  
50  
24-Lead Plastic Dual In-Line Package [PDIP]  
N-24-1  
RW-24  
RW-24  
RW-24  
RW-24  
24-Lead Standard Small Outline Package [SOIC_W]  
24-Lead Standard Small Outline Package [SOIC_W]  
24-Lead Standard Small Outline Package [SOIC_W]  
24-Lead Standard Small Outline Package [SOIC_W]  
24-Lead Thin Shrink Small Outline Package [TSSOP] RU-24  
24-Lead Thin Shrink Small Outline Package [TSSOP] RU-24  
24-Lead Thin Shrink Small Outline Package [TSSOP] RU-24  
24-Lead Thin Shrink Small Outline Package [TSSOP] RU-24  
24-Lead Plastic Dual In-Line Package [PDIP]  
N-24-1  
RW-24  
RW-24  
RW-24  
RW-24  
24-Lead Standard Small Outline Package [SOIC_W]  
24-Lead Standard Small Outline Package [SOIC_W]  
24-Lead Standard Small Outline Package [SOIC_W]  
24-Lead Standard Small Outline Package [SOIC_W]  
24-Lead Thin Shrink Small Outline Package [TSSOP] RU-24  
24-Lead Thin Shrink Small Outline Package [TSSOP] RU-24  
24-Lead Thin Shrink Small Outline Package [TSSOP] RU-24  
24-Lead Thin Shrink Small Outline Package [TSSOP] RU-24  
24-Lead Plastic Dual In-Line Package [PDIP]  
N-24-1  
RW-24  
RW-24  
RW-24  
RW-24  
RW-24  
RW-24  
RW-24  
RW-24  
N-24-1  
RW-24  
RW-24  
RW-24  
24-Lead Standard Small Outline Package [SOIC_W]  
24-Lead Standard Small Outline Package [SOIC_W]  
24-Lead Standard Small Outline Package [SOIC_W]  
24-Lead Standard Small Outline Package [SOIC_W]  
24-Lead Standard Small Outline Package [SOIC_W]  
24-Lead Standard Small Outline Package [SOIC_W]  
24-Lead Standard Small Outline Package [SOIC_W]  
24-Lead Standard Small Outline Package [SOIC_W]  
24-Lead Plastic Dual In-Line Package [PDIP]  
24-Lead Standard Small Outline Package [SOIC_W]  
24-Lead Standard Small Outline Package [SOIC_W]  
24-Lead Standard Small Outline Package [SOIC_W]  
24-Lead Thin Shrink Small Outline Package [TSSOP] RU-24  
24-Lead Thin Shrink Small Outline Package [TSSOP] RU-24  
24-Lead Thin Shrink Small Outline Package [TSSOP] RU-24  
24-Lead Thin Shrink Small Outline Package [TSSOP] RU-24  
AD5206BRU50  
AD5206BRU50-REEL  
AD5206BRU50-REEL7  
AD5206BRUZ50  
AD5206BRUZ50-REEL7  
AD5206BN100  
AD5206BR100  
AD5206BR100-REEL  
AD5206BRZ100  
AD5206BRU100  
AD5206BRU100-REEL7  
AD5206BRUZ100  
AD5206BRUZ100-RL7  
50  
100  
100  
100  
100  
100  
100  
100  
100  
1 The AD5204/AD5206 each contains 5,925 transistors. Die size is 92 mil × 114 mil, or 10,488 sq. mil.  
2 Z = RoHS Compliant Part.  
Rev. C | Page 19 of 20  
AD5204/AD5206  
NOTES  
©1999–2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06884-0-7/10(C)  
Rev. C | Page 20 of 20  
 
 

相关型号:

AD5206BRZ10

4-/6-Channel Digital Potentiometers
ADI

AD5206BRZ10-REEL

4-/6-Channel Digital Potentiometers
ADI

AD5206BRZ10-RL7

AD5206BRZ10-RL7
ADI

AD5206BRZ100

4-/6-Channel Digital Potentiometers
ADI

AD5206BRZ102

IC,DIGITAL POTENTIOMETER,SOP,24PIN,PLASTIC
ADI

AD5206BRZ50

4-/6-Channel Digital Potentiometers
ADI

AD5206_15

4-/6-Channel Digital Potentiometers
ADI

AD5207

2-Channel, 256-Position Digital Potentiometer
ADI

AD5207BRU10-REEL7

2-Channel, 256-Position Digital Potentiometer
ADI

AD5207BRU10-REEL7

DUAL 10K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 256 POSITIONS, PDSO14, 1.10 MM HEIGHT, TSSOP-14
ROCHESTER

AD5207BRU100-REEL7

2-Channel, 256-Position Digital Potentiometer
ADI

AD5207BRU100-REEL7

DUAL 100K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 256 POSITIONS, PDSO14, 1.10 MM HEIGHT, TSSOP-14
ROCHESTER