AD5243BRM100-R2 [ADI]

IC 100K DIGITAL POTENTIOMETER, 2-WIRE SERIAL CONTROL INTERFACE, 256 POSITIONS, PDSO10, 3 X 4.90 MM, MO-187BA, MSOP-10, Digital Potentiometer;
AD5243BRM100-R2
型号: AD5243BRM100-R2
厂家: ADI    ADI
描述:

IC 100K DIGITAL POTENTIOMETER, 2-WIRE SERIAL CONTROL INTERFACE, 256 POSITIONS, PDSO10, 3 X 4.90 MM, MO-187BA, MSOP-10, Digital Potentiometer

光电二极管 转换器 电阻器
文件: 总16页 (文件大小:327K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual 256-Position I2C  
Digital Potentiometer  
Preliminary Technical Data  
AD5243/AD5248  
applications.  
FEATURES  
2-Channel, 256-position  
All parts are guaranteed to operate over the extended  
automotive temperature range of -40°C to +125°C.  
End-to-end resistance 2.5 kΩ, 10 kΩ, 50 kΩ, 100 kΩ  
Compact MSOP-10 (3 mm × 4.9 mm) Package  
Full read/write of wiper register  
FUNCTIONAL BLOCK DIAGRAMS  
Power-on preset to midscale  
VDD  
Extra package address decode pins AD0 and AD1(AD5248)  
Single supply +2.7 V to +5.5 V  
Low temperature coefficient 35 ppm/°C  
Low power, IDD = 5 µA  
A1  
SCL  
SDA  
I2C INTERFACE  
W1  
Wide operating temperature –40°C to +125°C  
Evaluation board available  
B1  
WIPER  
REGISTER  
1
A2  
APPLICATIONS  
WIPER  
REGISTER  
2
Mechanical potentiometer replacement in new designs  
Transducer adjustment of pressure, temperature, position,  
chemical, and optical sensors  
W2  
B2  
RF amplifier biasing  
GND  
Automotive electronics adjustment  
Gain control and offset adjustment  
Figure 1. AD5243  
W1  
B1  
W2  
B2  
GENERAL OVERVIEW  
The AD5243 & AD5248 provide a compact 3x4.9mm packaged  
solution for dual 256 position adjustment applications. These  
devices perform the same electronic adjustment function as a 3-  
terminal mechanical potentiometer (AD5243) or a 2-terminal  
variable resistor (AD5248). Available in four different end-to-  
end resistance values (2.5k, 10k, 50k, 100k ) these low  
temperature coefficient devices are ideal for high accuracy and  
stability variable resistance adjustments. The wiper settings are  
controllable through the I2C compatible digital interface. The  
AD5248 has extra package address decode pins AD0 & AD1  
allowing multiple parts to share the same I2C 2-wire bus on a  
PCB.  
VDD  
RDAC  
RDAC  
REGISTER 2  
REGISTER 1  
GND  
AD0  
ADDRESS  
DECODE  
AD1  
8
SDA  
SCL  
SERIAL INPUT  
REGISTER  
Figure 2. AD5248  
Note:  
The terms digital potentiometer, VR, and RDAC are used interchangeably.  
The resistance between the wiper and either end point of the  
fixed resistor varies linearly with respect to the digital code  
transferred into the RDAC latch1.  
Purchase of licensed I2C components of Analog Devices or one of its sublicensed  
Associated Companies conveys a license for the purchaser under the Philips I2C  
Patent Rights to use these components in an I2C system, provided that the system  
conforms to the I2C Standard Specification as defined by Philips.  
Operating from a 2.7 to 5.5 volt power supply and consuming  
less than 5µA allows for usage in portable battery operated  
Rev. PrE5/12/03  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
AD5243/AD5248  
Preliminary Technical Data  
TABLE OF CONTENTS  
Electrical Characteristics—2.5 kΩ Version................................... 3  
Level Shifting for Bidirectional Interface................................ 12  
ESD Protection ........................................................................... 12  
Terminal Voltage Operating Range.......................................... 12  
Power-Up Sequence ................................................................... 13  
Layout and Power Supply Bypassing ....................................... 13  
Pin Configuration and Function Descriptions........................... 14  
Pin Configuration ...................................................................... 14  
Pin Function Descriptions ........................................................ 14  
Outline Dimensions....................................................................... 15  
Ordering Guide .......................................................................... 15  
ESD Caution................................................................................ 15  
Electrical Characteristics—10 kΩ, 50 kΩ, 100 kΩ Versions ....... 4  
Timing Characteristics—2.5 kΩ, 10 kΩ, 50 kΩ, 100 kΩ Versions  
............................................................................................................. 5  
Absolute Maximum Ratings1 .......................................................... 5  
Typical Performance Characteristics ............................................. 6  
Test Circuits....................................................................................... 7  
I2C Interface....................................................................................... 8  
Operation......................................................................................... 10  
Programming the Variable Resistor ......................................... 10  
Programming the Potentiometer Divider............................... 11  
I2C Compatible 2-Wire Serial Bus............................................ 11  
REVISION HISTORY  
Revision 0: Initial Version  
Rev. PrE 5/12/03 | Page 2 of 16  
AD5243/AD5248  
Preliminary Technical Data  
ELECTRICAL CHARACTERISTICS—2.5 kΩ VERSION  
(VDD = 5 V 10%, or 3 V 10%ꢀ VA = +VDDꢀ VB = 0 Vꢀ –40°C < TA < +125°Cꢀ unless otherwise noted.)  
Table 1.  
Parameter  
Symbol  
Conditions  
Min  
Typ1  
Max  
Unit  
DC CHARACTERISTICS—RHEOSTAT MODE  
Resistor Differential Nonlinearity2  
Resistor Integral Nonlinearity2  
Nominal Resistor Tolerance3  
Resistance Temperature Coefficient  
Wiper Resistance  
R-DNL  
R-INL  
∆RAB  
∆RAB/∆T  
RW  
RWB, VA = no connect  
RWB, VA = no connect  
TA = 25°C  
–1.8  
–5  
–30  
0.2  
0.ꢀ5 +5  
+1.8  
LSB  
LSB  
%
ppm/°C  
+30  
VAB = VDD, Wiper = no connect  
35  
50  
120  
DC CHARACTERISTICS—POTENTIOMETER DIVIDER MODE (Specifications apply to all VRs)  
Resolution  
N
8
Bits  
Differential Nonlinearity4  
Integral Nonlinearity4  
Voltage Divider Temperature Coefficient  
Full-Scale Error  
DNL  
INL  
∆VW/∆T  
VWFSE  
VWZSE  
–1.5  
–1.5  
0.1  
0.6  
15  
–2.5  
+2  
+1.5  
+1.5  
LSB  
LSB  
ppm/°C  
LSB  
LSB  
Code = 0x80  
Code = 0xFF  
Code = 0x00  
–6  
0
0
+6  
Zero-Scale Error  
RESISTOR TERMINALS  
Voltage Range5  
VA,B,W  
CA,B  
GND  
VDD  
V
pF  
Capacitance6 A, B  
f = 1 MHz, measured to GND,  
Code = 0x80  
f = 1 MHz, measured to GND,  
Code = 0x80  
45  
60  
Capacitance6 W  
CW  
pF  
Shutdown Supply Currentꢀ  
Common-Mode Leakage  
DIGITAL INPUTS AND OUTPUTS  
Input Logic High  
IDD_SD  
ICM  
VDD = 5.5 V  
VA = VB = VDD/2  
0.01  
1
1
µA  
nA  
VIH  
VIL  
VIH  
VIL  
IIL  
2.4  
2.1  
V
V
V
V
µA  
pF  
Input Logic Low  
Input Logic High  
Input Logic Low  
Input Current  
Input Capacitance6  
0.8  
VDD = 3 V  
VDD = 3 V  
VIN = 0 V or 5 V  
0.6  
1
CIL  
5
POWER SUPPLIES  
Power Supply Range  
Supply Current  
Power Dissipation8  
VDD RANGE  
IDD  
PDISS  
2.ꢀ  
5.5  
5
0.2  
V
µA  
mW  
VIH = 5 V or VIL = 0 V  
VIH = 5 V or VIL = 0 V, VDD = 5 V  
3
Power Supply Sensitivity  
PSS  
∆VDD = +5 V 10%,  
Code = Midscale  
0.02  
0.05 %/%  
DYNAMIC CHARACTERISTICS6, 9  
Bandwidth –3dB  
BW_5K  
THDW  
tS  
RAB = 2.5 kΩ, Code = 0x80  
VA = 1 V rms, VB = 0 V, f = 1 kHz  
VA= 5 V, VB = 0 V, 1 LSB error  
band  
2.4  
0.05  
1
MHz  
%
µs  
Total Harmonic Distortion  
VW Settling Time  
Resistor Noise Voltage Density  
eN_WB  
RWB = 2.5 kΩ, RS = 0  
4.5  
nV/√Hz  
Rev. PrE 5/12/03 | Page 3 of 16  
 
 
 
 
 
 
 
 
 
 
AD5243/AD5248  
Preliminary Technical Data  
ELECTRICAL CHARACTERISTICS—10 kΩ, 50 kΩ, 100 kΩ VERSIONS  
(VDD = 5 V 10%, or 3 V 10%ꢀ VA = VDDꢀ VB = 0 Vꢀ –40°C < TA < +125°Cꢀ unless otherwise noted.)  
Table 2.  
Parameter  
Symbol  
Conditions  
Min  
Typ1  
Max  
Unit  
DC CHARACTERISTICS—RHEOSTAT MODE  
Resistor Differential Nonlinearity2  
Resistor Integral Nonlinearity2  
Nominal Resistor Tolerance3  
Resistance Temperature Coefficient  
R-DNL  
R-INL  
∆RAB  
RWB, VA = no connect  
RWB, VA = no connect  
TA = 25°C  
VAB = VDD,  
Wiper = no connect  
–1  
–2  
–30  
0.1  
0.25  
+1  
+2  
+30  
LSB  
LSB  
%
∆RAB/∆T  
35  
50  
ppm/°C  
Wiper Resistance  
RW  
VDD = 5 V  
120  
DC CHARACTERISTICS—POTENTIOMETER DIVIDER MODE (Specifications apply to all VRs)  
Resolution  
N
8
Bits  
Differential Nonlinearity4  
Integral Nonlinearity4  
Voltage Divider Temperature Coefficient  
Full-Scale Error  
DNL  
INL  
∆VW/∆T  
VWFSE  
VWZSE  
–1  
–1  
0.1  
0.3  
15  
–1  
+1  
+1  
LSB  
LSB  
ppm/°C  
LSB  
LSB  
Code = 0x80  
Code = 0xFF  
Code = 0x00  
–3  
0
0
3
Zero-Scale Error  
1
RESISTOR TERMINALS  
Voltage Range5  
VA,B,W  
CA,B  
GND  
VDD  
V
pF  
Capacitance6 A, B  
f = 1 MHz, measured to  
GND, Code = 0x80  
f = 1 MHz, measured to  
GND, Code = 0x80  
45  
60  
Capacitance6 W  
CW  
pF  
Shutdown Supply Currentꢀ  
Common-Mode Leakage  
DIGITAL INPUTS AND OUTPUTS  
Input Logic High  
IDD_SD  
ICM  
VDD = 5.5 V  
VA = VB = VDD/2  
0.01  
1
1
µA  
nA  
VIH  
VIL  
VIH  
VIL  
IIL  
2.4  
2.1  
V
V
V
V
µA  
pF  
Input Logic Low  
Input Logic High  
Input Logic Low  
Input Current  
Input Capacitance6  
0.8  
VDD = 3 V  
VDD = 3 V  
VIN = 0 V or 5 V  
0.6  
1
CIL  
5
POWER SUPPLIES  
Power Supply Range  
Supply Current  
Power Dissipation8  
VDD RANGE  
IDD  
PDISS  
2.ꢀ  
5.5  
5
0.2  
V
µA  
mW  
VIH = 5 V or VIL = 0 V  
VIH = 5 V or VIL = 0 V,  
3
V
DD = 5 V  
Power Supply Sensitivity  
PSS  
∆VDD = +5 V 10%,  
Code = Midscale  
0.02  
0.05 %/%  
DYNAMIC CHARACTERISTICS6, 9  
Bandwidth –3dB  
BW  
RAB = 10 kΩ/50 kΩ/100 kΩ,  
Code = 0x80  
VA =1 V rms, VB = 0 V,  
f = 1 kHz, RAB = 10 kΩ  
VA = 5 V, VB = 0 V,  
1 LSB error band  
RWB = 5 kΩ, RS = 0  
600/100/40  
kHz  
%
Total Harmonic Distortion  
THDW  
tS  
0.05  
2
VW Settling Time (10 kΩ/50 kΩ/100 kΩ)  
Resistor Noise Voltage Density  
µs  
eN_WB  
9
nV/√Hz  
Rev. PrE 5/12/03 | Page 4 of 16  
 
AD5243/AD5248  
Preliminary Technical Data  
TIMING CHARACTERISTICS—2.5 kΩ, 10 kΩ, 50 kΩ, 100 kΩ VERSIONS  
(VDD = +5V 10%, or +3V 10%ꢀ VA = VDDꢀ VB = 0 Vꢀ –40°C < TA < +125°Cꢀ unless otherwise noted.)  
Table 3.  
Parameter  
Symbol  
Conditions  
Min Typ1 Max Unit  
I2C INTERFACE TIMING CHARACTERISTICS6, 10 (Specifications Apply to All Parts)  
SCL Clock Frequency  
tBUF Bus Free Time between STOP and START  
tHD;STA Hold Time (Repeated START)  
fSCL  
t1  
t2  
400  
kHz  
µs  
µs  
1.3  
0.6  
After this period, the first clock pulse is  
generated.  
tLOW Low Period of SCL Clock  
tHIGH High Period of SCL Clock  
tSU;STA Setup Time for Repeated START Condition  
tHD;DAT Data Hold Time  
tSU;DAT Data Setup Time  
tF Fall Time of Both SDA and SCL Signals  
tR Rise Time of Both SDA and SCL Signals  
tSU;STO Setup Time for STOP Condition  
t3  
t4  
t5  
t6  
tꢀ  
t8  
t9  
t10  
1.3  
0.6  
0.6  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
50  
0.9  
100  
0.6  
300  
300  
NOTES  
1 Typical specifications represent average readings at +25°C and VDD = 5 V.  
2 Resistor position nonlinearity error R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper  
positions. R-DNL measures the relative step change from ideal between successive tap positions. Parts are guaranteed monotonic.  
3 VAB = VDD, Wiper (VW) = no connect.  
4 INL and DNL are measured at VW with the RDAC configured as a potentiometer divider similar to a voltage output D/A converter. VA = VDD and VB = 0 V.  
DNL specification limits of 1 LSB maximum are guaranteed monotonic operating conditions.  
5 Resistor terminals A, B, W have no limitations on polarity with respect to each other.  
6 Guaranteed by design and not subject to production test.  
Measured at the A terminal. The A terminal is open circuited in shutdown mode.  
8 PDISS is calculated from (IDD × VDD). CMOS logic level inputs result in minimum power dissipation.  
9 All dynamic characteristics use VDD = 5 V.  
10 See timing diagrams for locations of measured values.  
ABSOLUTE MAXIMUM RATINGS1  
(TA = +25°C, unless otherwise noted.)  
Table 4.  
Stresses above those listed under Absolute Maximum Ratings  
Parameter  
VDD to GND  
VA, VB, VW to GND  
Value  
may cause permanent damage to the device. This is a stress  
rating only and functional operation of the device at these or  
any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
–0.3 V to +ꢀ V  
VDD  
1
IMAX  
20 mA  
Digital Inputs and Output Voltage to GND 0 V to +ꢀ V  
Operating Temperature Range  
Maximum Junction Temperature (TJMAX  
Storage Temperature  
–40°C to +125°C  
)
150°C  
–65°C to +150°C  
300°C  
Lead Temperature (Soldering, 10 sec)  
Thermal Resistance2 θJA: MSOP-10  
230°C/W  
NOTES  
1 Maximum terminal current is bounded by the maximum current handling of  
the switches, maximum power dissipation of the package, and maximum  
applied voltage across any two of the A, B, and W terminals at a given  
resistance.  
2 Package power dissipation = (TJMAX – TA)/θJA  
.
Rev. PrE 5/12/03 | Page 5 of 16  
 
 
AD5243/AD5248  
Preliminary Technical Data  
TYPICAL PERFORMANCE CHARACTERISTICS  
Rev. PrE 5/12/03 | Page 6 of 16  
 
AD5243/AD5248  
Preliminary Technical Data  
TEST CIRCUITS  
Figure 3 to Figure 11 illustrate the test circuits that define the  
test conditions used in the product specification tables.  
5V  
OP279  
V
DUT  
A
V+ = V  
DD  
1LSB = V+/2  
OUT  
N
V
IN  
W
W
V+  
OFFSET  
GND  
B
A
DUT  
B
V
MS  
OFFSET  
BIAS  
Figure 3. Test Circuit for Potentiometer Divider Nonlinearity Error (INL, DNL)  
Figure 8. Test Circuit for Noninverting Gain  
NO CONNECT  
DUT  
A
+15V  
I
W
W
A
V
DUT  
IN  
W
AD8610  
–15V  
V
OUT  
OFFSET  
GND  
B
B
V
MS  
2.5V  
Figure 9. Test Circuit for Gain vs. Frequency  
Figure 4. Test Circuit for Resistor Position Nonlinearity Error  
(Rheostat Operation; R-INL, R-DNL)  
0.1V  
SW  
R
=
SW  
I
DUT  
DUT  
CODE = 0x00  
I
= V /R  
NOMINAL  
DD  
W
W
A
V
W
W
V
MS2  
B
0.1V  
I
SW  
B
V
R
= [V  
– V  
]/I  
MS2  
W
MS1  
W
MS1  
V
TO V  
DD  
SS  
Figure 5. Test Circuit for Wiper Resistance  
Figure 10. Test Circuit for Incremental ON Resistance  
V
A
NC  
V+ = V  
PSRR (dB) = 20 LOG  
10%  
DD  
V  
V  
MS  
DD  
(
)
V
DD  
A
I
V
A
B
%
CM  
V  
V  
DUT  
GND  
DD  
MS  
W
V+  
W
PSS (%/%) =  
%
DD  
B
V
SS  
V
V
MS  
CM  
NC NC = NO CONNECT  
Figure 6. Test Circuit for Power Supply Sensitivity (PSS, PSSR)  
Figure 11. Test Circuit for Common-Mode Leakage current  
A
B
DUT  
5V  
W
V
IN  
OP279  
V
OUT  
OFFSET  
GND  
OFFSET  
BIAS  
Figure 7. Test Circuit for Inverting Gain  
Rev. PrE 5/12/03 | Page ꢀ of 16  
 
 
 
AD5243/AD5248  
I2C INTERFACE  
Preliminary Technical Data  
Table 5. Write Mode  
AD5243  
S
0
1
1
0
1
1
1
1
W
A
A0 SD  
A0 SD  
X
X
X
X
X
X
X
X
A
A
Dꢀ D6 D5 D4 D3 D2 D1 D0  
Data Byte  
A
A
P
P
Slave Address Byte  
Instruction Byte  
AD5248  
S
0
0
1
1
AD1 AD0 W  
A
X
X
X
X
Dꢀ D6 D5 D4 D3 D2 D1 D0  
Data Byte  
Slave Address Byte  
Instruction Byte  
Table 6. Read Mode  
AD5243  
S
0
1
0
1
1
1
1
R
R
A
A
Dꢀ D6 D5 D4 D3 D2 D1 D0  
Data Byte  
A
A
P
P
Slave Address Byte  
AD5248  
S
0
1
0
1
1
AD1 AD0  
Dꢀ D6 D5 D4 D3 D2 D1 D0  
Data Byte  
Slave Address Byte  
S = Start Condition  
P = Stop Condition  
A = Acknowledge  
X = Don’t Care  
A0 = RDAC sub address select bit  
SD = Shutdown connects wiper to B terminal and open  
circuits A terminal. It does not change contents of wiper  
register.  
D7, D6, D5, D4, D3, D2, D1, D0 = Data Bits  
W
= Write  
R = Read  
Rev. PrE 5/12/03 | Page 8 of 16  
 
 
AD5243/AD5248  
Preliminary Technical Data  
t2  
t8  
t9  
SCL  
t6  
t7  
t5  
t10  
t2  
t3  
t4  
t9  
t8  
SDA  
t1  
P
S
S
P
Figure 12. I2C Interface Detailed Timing Diagram  
1
9
1
9
1
9
SCL  
SDA  
0
1
0
1
1
1
1
R/W  
A0  
SD  
X
X
X
X
X
X
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
ACK BY  
AD5243  
ACK BY  
AD5243  
ACK BY  
AD5243  
FRAME 1  
SLAVE ADDRESS BYTE  
FRAME 2  
INSTRUCTION BYTE  
FRAME 3  
STOP BY  
START BY  
MASTER  
DATA BYTE  
MASTER  
Figure 13. Writing to the RDAC Register – AD5243  
1
9
1
9
1
9
SCL  
SDA  
0
1
0
1
1
AD1 AD0 R/W  
A0  
SD  
X
X
X
X
X
X
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
ACK BY  
AD5248  
ACK BY  
AD5248  
ACK BY  
AD5248  
FRAME 1  
FRAME 2  
INSTRUCTION BYTE  
FRAME 3  
STOP BY  
START BY  
MASTER  
SLAVE ADDRESS BYTE  
DATA BYTE  
MASTER  
Figure 14. Writing to the RDAC Register – AD5248  
1
9
1
9
SCL  
0
1
0
1
1
1
1
R/W  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDA  
ACK BY  
AD5243  
NO ACK  
BY MASTER  
FRAME 1  
SLAVE ADDRESS BYTE  
FRAME 2  
RDAC REGISTER  
START BY  
MASTER  
STOP BY  
MASTER  
Figure 15. Reading Data from a Previously Selected RDAC Register in Write Mode – AD5243  
1
9
1
9
SCL  
SDA  
0
1
0
1
1
AD1 AD0 R/W  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
ACK BY  
AD5248  
NO ACK  
BY MASTER  
STOP BY  
MASTER  
FRAME 1  
SLAVE ADDRESS BYTE  
FRAME 2  
RDAC REGISTER  
START BY  
MASTER  
Figure 16 Reading Data from a Previously Selected RDAC Register in Write Mode – AD5248  
Rev. PrE 5/12/03 | Page 9 of 16  
 
 
 
AD5243/AD5248  
OPERATION  
Preliminary Technical Data  
The AD5243/48 is a 256-position digitally controlled variable  
resistor (VR) device.  
D
R
WB (D) =  
×RAB +RW  
(1)  
256  
An internal power-on preset places the wiper at midscale  
during power-on, which simplifies the fault condition recovery  
at power-up.  
where D is the decimal equivalent of the binary code loaded in  
the 8-bit RDAC register, RAB is the end-to-end resistance, and  
RW is the wiper resistance contributed by the on resistance of  
the internal switch.  
PROGRAMMING THE VARIABLE RESISTOR  
Rheostat Operation  
In summary, if RAB = 10 kΩ and the A terminal is open  
circuited, the following output resistance RWB will be set for the  
indicated RDAC latch codes.  
The nominal resistance of the RDAC between terminals A and  
B is available in 5 kΩ, 10 kΩ, 50 kΩ, and 100 kΩ. The final two  
or three digits of the part number determine the nominal  
resistance value, e.g., 10 kΩ = 10ꢀ 50 kΩ = 50. The nominal  
resistance (RAB) of the VR has 256 contact points accessed by  
the wiper terminal, plus the B terminal contact. The 8-bit data  
in the RDAC latch is decoded to select one of the 256 possible  
settings. Assume a 10 kΩ part is used, the wipers first  
Table 7. Codes and Corresponding RWB Resistance  
D (Dec.)  
RWB (Ω)  
9,961  
5,060  
99  
Output State  
255  
128  
1
Full Scale (RAB – 1 LSB + RW)  
Midscale  
1 LSB  
0
60  
Zero Scale (Wiper Contact Resistance)  
connection starts at the B terminal for data 0x00. Since there is a  
60 Ω wiper contact resistance, such connection yields a  
minimum of 60 Ω resistance between terminals W and B. The  
second connection is the first tap point, which corresponds to  
99 Ω (RWB = RAB/256 + RW = 39 Ω + 60 Ω) for data 0x01.  
The third connection is the next tap point, representing 138 Ω  
(2 × 39 Ω + 60 Ω) for data 0x02, and so on. Each LSB data value  
increase moves the wiper up the resistor ladder until the last tap  
point is reached at 9961 Ω (RAB – 1 LSB + RW). Figure 17 shows  
a simplified diagram of the equivalent RDAC circuit where the  
last resistor string will not be accessedꢀ therefore, there is 1 LSB  
less of the nominal resistance at full scale in addition to the  
wiper resistance.  
Note that in the zero-scale condition a finite wiper resistance of  
60 Ω is present. Care should be taken to limit the current flow  
between W and B in this state to a maximum pulse current of  
no more than 20 mA. Otherwise, degradation or possible  
destruction of the internal switch contact can occur.  
Similar to the mechanical potentiometer, the resistance of the  
RDAC between the wiper W and terminal A also produces a  
digitally controlled complementary resistance RWA. When these  
terminals are used, the B terminal can be opened. Setting the  
resistance value for RWA starts at a maximum value of resistance  
and decreases as the data loaded in the latch increases in value.  
The general equation for this operation is  
A
256 D  
256  
SD BIT  
RS  
R
WA (D) =  
×RAB + RW  
(2)  
D7  
D6  
For RAB = 10 kΩ and the B terminal open circuited, the  
following output resistance RWA will be set for the indicated  
RDAC latch codes.  
RS  
D5  
D4  
D3  
D2  
RS  
D1  
D0  
W
Table 8. Codes and Corresponding RWA Resistance  
RDAC  
D (Dec.)  
RWA (Ω)  
Output State  
Full Scale  
Midscale  
1 LSB  
LATCH  
RS  
AND  
B
255  
128  
1
99  
DECODER  
5,060  
9,961  
10,060  
0
Zero Scale  
Figure 17. AD5243/48 Equivalent RDAC Circuit  
Typical device to device matching is process lot dependent and  
may vary by up to 30%. Since the resistance element is  
processed in thin film technology, the change in RAB with  
temperature has a very low 45 ppm/°C temperature coefficient.  
The general equation determining the digitally programmed  
output resistance between W and B is  
Rev. PrE 5/12/03 | Page 10 of 16  
 
 
AD5243/AD5248  
Preliminary Technical Data  
2. In the write mode, the second byte is the instruction byte.  
The first bit (MSB) of the instruction byte is the RDAC sub  
address select bit. A logic low will select channel-1 and a  
logic high will select channel-2.  
PROGRAMMING THE POTENTIOMETER DIVIDER  
Voltage Output Operation  
The digital potentiometer easily generates a voltage divider at  
wiper-to-B and wiper-to-A proportional to the input voltage at  
A-to-B. Unlike the polarity of VDD to GND, which must be  
positive, voltage across A-B, W-A, and W-B can be at either  
polarity.  
The second MSB, SD, is a shutdown bit. A logic high  
causes an open circuit at terminal A while shorting the  
wiper to terminal B. This operation yields almost 0 Ω in  
rheostat mode or 0 V in potentiometer mode. It is  
important to note that the shutdown operation does not  
disturb the contents of the register. When brought out of  
shutdown, the previous setting will be applied to the  
RDAC. Also, during shutdown, new settings can be  
programmed. When the part is returned from shutdown,  
the corresponding VR setting will be applied to the RDAC.  
If ignoring the effect of the wiper resistance for approximation,  
connecting the A terminal to 5 V and the B terminal to ground  
produces an output voltage at the wiper-to-B starting at 0 V up  
to 1 LSB less than 5 V. Each LSB of voltage is equal to the  
voltage applied across terminal AB divided by the 256 positions  
of the potentiometer divider. The general equation defining the  
output voltage at VW with respect to ground for any valid input  
voltage applied to terminals A and B is  
The remainder of the bits in the instruction byte are don’t  
cares(see Table 5).  
D
256  
256 D  
256  
VW (D) =  
VA  
+
VB  
(3)  
After acknowledging the instruction byte, the last byte in  
write mode is the data byte. Data is transmitted over the  
serial bus in sequences of nine clock pulses (eight data bits  
followed by an acknowledge bit). The transitions on the  
SDA line must occur during the low period of SCL and  
remain stable during the high period of SCL (see Table 5).  
For a more accurate calculation, which includes the effect of  
wiper resistance, VW, can be found as  
RWB (D)  
RAB  
RWA (D)  
RAB  
VW (D) =  
VA +  
VB  
(4)  
3. In the read mode, the data byte follows immediately after  
the acknowledgment of the slave address byte. Data is  
transmitted over the serial bus in sequences of nine clock  
pulses(a slight difference with the write mode, where there  
are eight data bits followed by an acknowledge bit).  
Similarly, the transitions on the SDA line must occur  
during the low period of SCL and remain stable during the  
high period of SCL (see Figure 15 and Figure 16).  
Operation of the digital potentiometer in the divider mode  
results in a more accurate operation over temperature. Unlike  
the rheostat mode, the output voltage is dependent mainly on  
the ratio of the internal resistors RWA and RWB and not the  
absolute values. Therefore, the temperature drift reduces to  
15 ppm/°C.  
I2C COMPATIBLE 2-WIRE SERIAL BUS  
The 2-wire I2C serial bus protocol operates as follows:  
Note that the channel of interest is the one that is  
previously selected in the Write Mode. In the case where  
users need to read the RDAC values of both channels, they  
need to program the first channel in the Write Mode and  
then change to the Read Mode to read the first channel  
value. After that, they need to change back to the Write  
Mode with the second channel selected and read the  
second channel value in the Read Mode again. It is not  
necessary for users to issue the Frame 3 data byte in the  
write mode for subsequent readback operation. Users  
should refer to Figure 15 for the programming format.  
1. The master initiates data transfer by establishing a START  
condition, which is when a high-to-low transition on the  
SDA line occurs while SCL is high (see Figure 13). The  
following byte is the slave address byte, which consists of  
W
the slave address followed by an R/ bit (this bit  
determines whether data will be read from or written to  
the slave device). The AD5243 has a fixed slave address  
byte whereas the AD5248 has two configurable address bits  
AD0 and AD1 (see Table 5).  
The slave whose address corresponds to the transmitted  
address responds by pulling the SDA line low during the  
ninth clock pulse (this is termed the acknowledge bit). At  
this stage, all other devices on the bus remain idle while the  
selected device waits for data to be written to or read from  
W
its serial register. If the R/ bit is high, the master will read  
W
from the slave device. On the other hand, if the R/ bit is  
low, the master will write to the slave device.  
Rev. PrE 5/12/03 | Page 11 of 16  
 
AD5243/AD5248  
Preliminary Technical Data  
4. After all data bits have been read or written, a STOP  
condition is established by the master. A STOP condition is  
defined as a low-to-high transition on the SDA line while  
SCL is high. In write mode, the master will pull the SDA  
line high during the tenth clock pulse to establish a STOP  
condition (see Figure 13) In read mode, the master will  
issue a No Acknowledge for the ninth clock pulse (i.e., the  
SDA line remains high). The master will then bring the  
SDA line low before the tenth clock pulse which goes high  
to establish a STOP condition (see Figure 15 and Figure  
16).  
FETs such as the FDV301N.  
V
= 3.3V  
V
5V  
=
DD1  
DD2  
R
R
R
R
P
P
P
P
G
S
D
SDA1  
SCL1  
SDA2  
SCL2  
G
M1  
S
D
M2  
3.3V  
5V  
2
AD5243  
E PROM  
A repeated write function gives the user flexibility to update the  
RDAC output a number of times after addressing and  
instructing the part only once. For example, after the RDAC has  
acknowledged its slave address and instruction bytes in the  
write mode, the RDAC output will update on each successive  
byte. If different instructions are needed, the write/read mode  
has to start again with a new slave address, instruction, and data  
byte. Similarly, a repeated read function of the RDAC is also  
allowed.  
Figure 19. Level Shifting for Operation at Different Potentials  
ESD PROTECTION  
All digital inputs are protected with a series input resistor and  
parallel Zener ESD structures shown in Figure 20 and Figure 21.  
This applies to the digital input pins SDA, SCL, and AD0.  
340Ω  
LOGIC  
Multiple Devices on One Bus(applies only to AD5248)  
V
SS  
Figure 18 shows four AD5248 devices on the same serial bus.  
Each has a different slave address since the states of their AD0  
and AD1 pins are different. This allows each device on the bus  
to be written to or read from independently. The master device  
output bus line drivers are open-drain pull-downs in a fully I2C  
compatible interface.  
Figure 20. ESD Protection of Digital Pins  
A,B,W  
V
SS  
+5V  
Figure 21. ESD Protection of Resistor Terminals  
Rp  
Rp  
SDA  
SCL  
TERMINAL VOLTAGE OPERATING RANGE  
MASTER  
The AD5243/48 VDD and GND power supply defines the  
boundary conditions for proper 3-terminal digital  
potentiometer operation. Supply signals present on terminals A,  
B, and W that exceed VDD or GND will be clamped by the  
internal forward biased diodes (see Figure 22).  
+5V  
+5 V  
D
+5V  
SDA SCL  
AD1  
SDA SCL  
AD1  
SDA SCL  
AD1  
SDA SCL  
AD1  
AD0  
AD5248  
AD0  
AD5248  
AD0  
AD5248  
AD0  
AD5248  
Figure 18. Multiple AD5248 Devices on One I2C Bus  
V
DD  
A
W
B
LEVEL SHIFTING FOR BIDIRECTIONAL INTERFACE  
While most legacy systems may be operated at one voltage, a  
new component may be optimized at another. When two  
systems operate the same signal at two different voltages, proper  
level shifting is needed. For instance, one can use a 3.3 V  
E2PROM to interface with a 5 V digital potentiometer. A level  
shifting scheme is needed to enable a bidirectional  
V
SS  
Figure 22. Maximum Terminal Voltages Set by VDD and VSS  
communication so that the setting of the digital potentiometer  
can be stored to and retrieved from the E2PROM. Figure 19  
shows one of the implementations. M1 and M2 can be any  
N-channel signal FETs, or if VDD falls below 2.5 V, low threshold  
Rev. PrE 5/12/03 | Page 12 of 16  
 
 
 
 
 
 
AD5243/AD5248  
Preliminary Technical Data  
device should be bypassed with disc or chip ceramic capacitors  
of 0.01 µF to 0.1 µF. Low ESR 1 µF to 10 µF tantalum or  
electrolytic capacitors should also be applied at the supplies to  
minimize any transient disturbance and low frequency ripple  
(see Figure 23). Note that the digital ground should also be  
joined remotely to the analog ground at one point to minimize  
the ground bounce.  
POWER-UP SEQUENCE  
Since the ESD protection diodes limit the voltage compliance at  
terminals A, B, and W (see Figure 22), it is important to power  
VDD/GND before applying any voltage to terminals A, B, and Wꢀ  
otherwise, the diode will be forward biased such that VDD will be  
powered unintentionally and may affect the rest of the users  
circuit. The ideal power-up sequence is in the following order:  
GND, VDD, digital inputs, and then VA/B/W. The relative order of  
powering VA, VB, VW, and the digital inputs is not important as  
long as they are powered after VDD/GND.  
V
V
DD  
DD  
+
10 F  
C3  
C1  
0.1 F  
µ
µ
AD5243  
LAYOUT AND POWER SUPPLY BYPASSING  
GND  
It is a good practice to employ compact, minimum lead length  
layout design. The leads to the inputs should be as direct as  
possible with a minimum conductor length. Ground paths  
should have low resistance and low inductance.  
Figure 23. Power Supply Bypassing  
Similarly, it is also a good practice to bypass the power supplies  
with quality capacitors for optimum stability. Supply leads to the  
Rev. PrE 5/12/03 | Page 13 of 16  
 
 
AD5243/AD5248  
Preliminary Technical Data  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
PIN CONFIGURATION  
PIN FUNCTION DESCRIPTIONS  
Table 9.  
Pin Name Description  
1
2
3
4
5
B1  
A1  
W1  
B2  
10  
9
1
2
3
4
5
6
8
9
10  
B1  
B1 Terminal.  
A1  
A1 Terminal.  
8
W2  
GND  
A2  
SDA  
SCL  
W2  
GND  
VDD  
SCL  
SDA  
A2  
W2 Terminal.  
7
Digital Ground.  
VDD  
6
Positive Power Supply.  
Serial Clock Input. Positive edge triggered.  
Serial Data Input/Output.  
A2 Terminal.  
Figure 24.- AD5243 Pin Configuration  
B2  
B2 Terminal.  
W2  
W2 Terminal.  
Table 10.  
Pin Name Description  
1
2
3
4
5
B1  
W1  
B2  
10  
9
AD0  
1
2
B1  
B1 Terminal.  
8
W2  
GND  
AD1  
SDA  
SCL  
AD0  
Programmable address bit 0 for multiple  
package decoding.  
7
VDD  
6
3
4
5
6
8
W2  
W2 Terminal  
GND  
VDD  
Digital Ground.  
Figure 25. – AD5243 Pin Configuration  
Positive Power Supply..  
Serial Clock Input. Positive edge triggered.  
Serial Data Input/Output.  
SCL  
SDA  
AD1  
Programmable address bit 1 for multiple  
package decoding.  
9
B2  
B2 Terminal.  
W1 Terminal.  
10  
W1  
Rev. PrE 5/12/03 | Page 14 of 16  
 
AD5243/AD5248  
Preliminary Technical Data  
OUTLINE DIMENSIONS  
3.00 BSC  
10  
6
4.90 BSC  
3.00 BSC  
PIN 1  
1
5
0.50 BSC  
0.95  
0.85  
0.75  
1.10 MAX  
0.23  
0.20  
0.17  
0.80  
0.40  
8°  
0°  
0.15  
0.00  
0.27  
0.17  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187BA  
Figure 26. 10-Lead Mini Small Outline Package [MSOP]  
(RM-10)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
RAB (Ω)  
2.5k  
Temperature  
Package Description  
MSOP-10  
Package Option  
Branding  
D0L  
AD5243BRM2.5-R2  
AD5243BRM2.5-RLꢀ  
AD5243BRM10-R2  
AD5243BRM10-RLꢀ  
AD5243BRM50-R2  
AD5243BRM50-RLꢀ  
AD5243BRM100-R2  
AD5243BRM100-RLꢀ  
AD5243EVAL  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
2.5k  
MSOP-10  
D0L  
10k  
MSOP-10  
D0M  
D0M  
D0N  
10k  
MSOP-10  
50k  
MSOP-10  
50k  
MSOP-10  
D0N  
100k  
100k  
See Note 1  
MSOP-10  
D0P  
MSOP-10  
D0P  
Evaluation Board  
Model  
RAB (Ω)  
2.5k  
Temperature  
Package Description  
MSOP-10  
Package Option  
RM-10  
Branding  
D1F  
AD5248BRM2.5-R2  
AD5248BRM2.5-RLꢀ  
AD5248BRM10-R2  
AD5248BRM10-RLꢀ  
AD5248BRM50-R2  
AD5248BRM50-RLꢀ  
AD5248BRM100-R2  
AD5248BRM100-RLꢀ  
AD5248EVAL  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
2.5k  
MSOP-10  
RM-10  
D1F  
10k  
MSOP-10  
RM-10  
D1G  
D1G  
D1H  
D1H  
D1J  
10k  
MSOP-10  
RM-10  
50k  
MSOP-10  
RM-10  
50k  
MSOP-10  
RM-10  
100k  
100k  
See Note 1  
MSOP-10  
RM-10  
MSOP-10  
RM-10  
D1J  
Evaluation Board  
1The evaluation board is shipped with the 10 kΩ RAB resistor option; however, the board is compatible with all available resistor value options.  
The AD5243/48 contains 2532 transistors. Die size: 30.7 mil × 76.8 mil = 2,358 sq. mil.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the  
human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. PrE 5/12/03 | Page 15 of 16  
 
AD5243/AD5248  
NOTES  
Preliminary Technical Data  
Rev. PrE 5/12/03 | Page 16 of 16  

相关型号:

AD5243BRM100-RL7

Dual 256-Position I2C Compatible Digital Potentiometer
ADI

AD5243BRM2.5

Dual 256-Position I2C Compatible Digital Potentiometer
ADI

AD5243BRM2.5-R2

IC 2.5K DIGITAL POTENTIOMETER, 2-WIRE SERIAL CONTROL INTERFACE, 256 POSITIONS, PDSO10, 3 X 4.90 MM, MO-187BA, MSOP-10, Digital Potentiometer
ADI

AD5243BRM2.5-RL7

Dual 256-Position I2C Compatible Digital Potentiometer
ADI

AD5243BRM50

Dual 256-Position I2C Compatible Digital Potentiometer
ADI

AD5243BRM50-R2

IC 50K DIGITAL POTENTIOMETER, 2-WIRE SERIAL CONTROL INTERFACE, 256 POSITIONS, PDSO10, 3 X 4.90 MM, MO-187BA, MSOP-10, Digital Potentiometer
ADI

AD5243BRM50-RL7

Dual 256-Position I2C Compatible Digital Potentiometer
ADI

AD5243BRMZ10

Dual, 256-Position, I2C-Compatible Digital Potentiometers
ADI

AD5243BRMZ10-RL7

Dual, 256-Position, I2C-Compatible Digital Potentiometers
ADI

AD5243BRMZ100

Dual, 256-Position, I2C-Compatible Digital Potentiometers
ADI

AD5243BRMZ100-RL7

Dual, 256-Position, I2C-Compatible Digital Potentiometers
ADI

AD5243BRMZ2.5

Dual, 256-Position, I2C-Compatible Digital Potentiometers
ADI