AD5245BRJZ100-R2 [ADI]

256-Position I2C-Compatible Digital Potentiometer; 256位I2C兼容数字电位计
AD5245BRJZ100-R2
型号: AD5245BRJZ100-R2
厂家: ADI    ADI
描述:

256-Position I2C-Compatible Digital Potentiometer
256位I2C兼容数字电位计

转换器 数字电位计 电阻器 光电二极管
文件: 总20页 (文件大小:687K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
256-Position I2C®-Compatible  
Digital Potentiometer  
AD5245  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
V
256-position  
DD  
End-to-end resistance 5 kΩ, 10 kΩ, 50 kΩ, 100 kΩ  
Compact SOT-23-8 (2.9 mm × 3 mm) package  
Fast settling time: tS = 5 µs typ on power-up  
Full read/write of wiper register  
Power-on preset to midscale  
Extra package address decode pin AD0  
A
SCL  
I2C INTERFACE  
SDA  
W
B
AD0  
WIPER  
REGISTER  
Computer software replaces µC in factory programming  
applications  
POR  
Single supply: 2.7 V to 5.5 V  
GND  
Low temperature coefficient 45 ppm/°C  
Low power: IDD = 8 µA  
Figure 1.  
Wide operating temperature: –40°C to +125°C  
Evaluation board available  
PIN CONFIGURATION  
APPLICATIONS  
Mechanical potentiometer replacement in new designs  
LCD panel VCOM adjustment  
1
2
3
4
W
8
7
6
5
A
V
AD5245  
TOP VIEW  
(Not to Scale)  
B
DD  
GND  
SCL  
AD0  
SDA  
LCD panel brightness and contrast control  
Transducer adjustment of pressure, temperature, position,  
chemical, and optical sensors  
Figure 2.  
RF amplifier biasing  
Automotive electronics adjustment  
Gain control and offset adjustment  
GENERAL DESCRIPTION  
The AD5245 provides a compact 2.9 mm × 3 mm packaged  
solution for 256-position adjustment applications. These  
devices perform the same electronic adjustment function as  
mechanical potentiometers or variable resistors, with enhanced  
resolution, solid-state reliability, and superior low temperature  
coefficient performance.  
Operating from a 2.7 V to 5.5 V power supply and consuming  
less than 8 µA allows usage in portable battery-operated  
applications.  
Note that the terms digital potentiometer, VR, and RDAC are  
used interchangeably.  
The wiper settings are controllable through an I2C-compatible  
digital interface, which can also be used to read back the wiper  
register content. AD0 can be used to place up to two devices on  
the same bus. Command bits are available to reset the wiper  
position to midscale or to shut down the device into a state of  
zero power consumption.  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
AD5245  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Test Circuits..................................................................................... 12  
Theory of Operation ...................................................................... 13  
Programming the Variable Resistor......................................... 13  
Programming the Potentiometer Divider............................... 14  
ESD Protection ........................................................................... 14  
Terminal Voltage Operating Range ......................................... 14  
Power-Up Sequence ................................................................... 14  
Layout and Power Supply Bypassing ....................................... 14  
Constant Bias to Retain Resistance Setting............................. 15  
Evaluation Board........................................................................ 15  
I2C Interface .................................................................................... 16  
I2C-Compatible 2-Wire Serial Bus........................................... 16  
Outline Dimensions....................................................................... 19  
Ordering Guide .......................................................................... 19  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
Pin Configuration............................................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Electrical Characteristics................................................................. 3  
5 kΩ Version.................................................................................. 3  
10 kΩ, 50 kΩ, 100 kΩ Versions .................................................. 4  
Timing Characteristics..................................................................... 5  
5 kΩ, 10 kΩ, 50 kΩ, 100 kΩ Versions........................................ 5  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 8  
REVISION HISTORY  
Added Figure 37 ............................................................................ 14  
Changes to Equation 4.................................................................. 14  
Deleted Readback RDAC Value Section .................................... 14  
Deleted Level Shifting for Bidirectional Interface Section ...... 14  
Moved ESD Protection Section to Page ..................................... 14  
Changes to Figure 38 and Figure 39............................................ 14  
Moved Terminal Voltage Operating Range Section to Page.... 14  
Changes to Figure 40..................................................................... 14  
Moved Power-Up Sequence Section to Page ............................. 14  
Moved Layout and Power Supply Bypassing Section to Page . 15  
Added Constant Bias to Retain Resistance Setting Section..... 15  
Added Figure 42 ............................................................................ 15  
Added Evaluation Board Section ................................................ 15  
Added Figure 43 ............................................................................ 15  
Moved I2C Interface Section to Page........................................... 16  
Changes to I2C Compatible 2-Wire Serial Bus Section ........... 16  
Moved Table 5 and Table 6 to Page ............................................. 17  
(Renumbered as Table 8 and Table 9)  
1/06—Rev. A to Rev. B  
Changes to Table 3........................................................................... 5  
Changes to Ordering Guide .........................................................19  
3/04—Rev. 0 to Rev. A  
Updated Format................................................................ Universal  
Changes to Features......................................................................... 1  
Changes to Applications ................................................................. 1  
Changes to Figure 1......................................................................... 1  
Changes to Electrical Characteristics—5 kΩ Version ................ 3  
Changes to Electrical Characteristics—10 kΩ, 50 kΩ,  
and 100 kΩ Versions ....................................................................... 4  
Changes to Timing Characteristics............................................... 5  
Changes to Absolute Maximum Ratings...................................... 6  
Moved ESD Caution to Page.......................................................... 6  
Changes to Pin Configuration and Function Descriptions ....... 7  
Changes to Figures 22 and 23 ......................................................11  
Moved Figure 25 to Figure 26 ......................................................11  
Moved Figure 26 to Figure 27 ......................................................11  
Moved Figure 27 to Figure 25 ......................................................11  
Deleted Figures 31 and 32 ............................................................12  
Changes to Figure 32, Figure 33 and Figure 34 .........................12  
Changes to Rheostat Operation Section.....................................13  
Added Figure 35.............................................................................13  
Changes to Equation 1 and Equation 2 ......................................13  
Changes to Table 6 and Table 7....................................................13  
Moved Figure 36, Figure 37, and Figure 38 to Page.................. 17  
(Renumbered as Figure 44, Figure 45, and Figure 46)  
Moved Multiply Devices on One Bus Section to Page ............. 18  
Updated Ordering Guide ............................................................. 19  
Updated Outline Dimensions...................................................... 19  
Moved I2C Disclaimer to Page..................................................... 20  
5/03—Revision 0: Initial Version  
Rev. B | Page 2 of 20  
 
AD5245  
ELECTRICAL CHARACTERISTICS  
5 kΩ VERSION  
VDD = 5 V 10ꢀ or 3 V 10ꢀ, VA = VDD, VB = 0 V, 40°C < TA < +125°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Conditions  
Min  
Typ1  
Max  
+1.5  
Unit  
DC CHARACTERISTICS—RHEOSTAT MODE  
Resistor Differential Nonlinearity2  
Resistor Integral Nonlinearity2  
Nominal Resistor Tolerance3  
Resistance Temperature Coefficient  
Wiper Resistance  
R-DNL  
R-INL  
∆RAB  
RWB, VA = no connect  
RWB, VA = no connect  
TA = 25°C  
–1.5  
–4  
–30  
0.1  
LSB  
LSB  
%
ppm/°C  
0.ꢀ5 +4  
+30  
120  
(∆RAB/RAB)/∆T × 106 VAB = VDD, wiper = no connect  
45  
50  
RW  
DC CHARACTERISTICS—POTENTIOMETER DIVIDER MODE (Specifications Apply to All VRs)  
Differential Nonlinearity4  
Integral Nonlinearity4  
Voltage Divider Temperature Coefficient  
Full-Scale Error  
DNL  
INL  
–1.5  
–1.5  
0.1  
0.6  
15  
–2.5  
2
+1.5  
+1.5  
LSB  
LSB  
ppm/°C  
LSB  
LSB  
(∆VW/VW)/∆T × 106  
VWFSE  
VWZSE  
Code = 0x80  
Code = 0xFF  
Code = 0x00  
–6  
0
0
6
Zero-Scale Error  
RESISTOR TERMINALS  
Voltage Range5  
VA, VB, VW  
CA, CB  
GND  
VDD  
V
f = 1 MHz, measured to GND,  
code = 0x80  
Capacitance A, B6  
90  
pF  
f = 1 MHz, measured to GND,  
code = 0x80  
VDD = 5.5 V  
Capacitance W6  
CW  
IA_SD  
ICM  
95  
0.01  
1
pF  
µA  
nA  
Shutdown Supply Currentꢀ  
Common-Mode Leakage  
DIGITAL INPUTS AND OUTPUTS  
Input Logic High  
1
VA = VB = VDD/2  
VIH  
VIL  
VIH  
VIL  
IIL  
VDD = 5 V  
VDD = 5 V  
VDD = 3 V  
VDD = 3 V  
2.4  
2.1  
V
V
V
V
µA  
pF  
Input Logic Low  
Input Logic High  
Input Logic Low  
Input Current  
Input Capacitance6  
0.8  
0.6  
1
VIN = 0 V or 5 V  
CIL  
5
POWER SUPPLIES  
Power Supply Range  
Supply Current  
VDD RANGE  
IDD  
PDISS  
2.ꢀ  
5.5  
8
44  
V
µA  
µW  
VIH = 5 V or VIL = 0 V  
VIH = 5 V or VIL = 0 V, VDD = 5 V  
VDD = +5 V 10%, code = midscale  
3
Power Dissipation8  
Power Supply Sensitivity  
DYNAMIC CHARACTERISTICS6, 9  
Bandwidth –3 dB  
Total Harmonic Distortion  
VW Settling Time  
PSS  
0.02  
0.05 %/%  
BW_5K  
THDW  
tS  
RAB = 5 kΩ, code = 0x80  
1.2  
0.1  
1
MHz  
%
µs  
VA = 1 V rms, VB = 0 V, f = 1 kHz  
VA = 5 V, VB = 0 V, 1 LSB error band  
RWB = 2.5 kΩ, RS = 0  
Resistor Noise Voltage Density  
eN_WB  
6
nV/√Hz  
1 Typical specifications represent average readings at 25°C and VDD = 5 V.  
2 Resistor position nonlinearity error R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper  
positions. R-DNL measures the relative step change from ideal between successive tap positions. Parts are guaranteed monotonic.  
3 VAB = VDD, wiper (VW) = no connect.  
4 INL and DNL are measured at VW with the RDAC configured as a potentiometer divider similar to a voltage output D/A converter. VA = VDD and VB = 0 V.  
DNL specification limits of 1 LSB maximum are guaranteed monotonic operating conditions.  
5 Resistor Terminals A, B, and W have no limitations on polarity with respect to each other.  
6 Guaranteed by design and not subject to production test.  
Measured at the A terminal. The A terminal is open circuited in shutdown mode.  
8 PDISS is calculated from (IDD × VDD). CMOS logic level inputs result in minimum power dissipation.  
9 All dynamic characteristics use VDD = 5 V.  
Rev. B | Page 3 of 20  
 
 
 
 
AD5245  
10 kΩ, 50 kΩ, 100 kΩ VERSIONS  
VDD = 5 V 10ꢀ or 3 V 10ꢀ, VA = VDD, VB = 0 V, 40°C < TA < +125°C, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Conditions  
Min Typ1  
Max  
Unit  
DC CHARACTERISTICS—RHEOSTAT MODE  
Resistor Differential Nonlinearity2  
Resistor Integral Nonlinearity2  
Nominal Resistor Tolerance3  
Resistance Temperature Coefficient  
Wiper Resistance  
R-DNL  
R-INL  
∆RAB  
RWB, VA = no connect  
RWB, VA = no connect  
TA = 25°C  
–1  
–2  
–30  
0.1  
0.25  
+1  
+2  
+30  
LSB  
LSB  
%
ppm/°C  
(∆RAB/RAB)/∆T × 106 VAB = VDD, wiper = no connect  
45  
50  
RW VDD = 5 V  
120  
DC CHARACTERISTICS—POTENTIOMETER DIVIDER MODE (Specifications Apply to All VRs)  
Differential Nonlinearity4  
Integral Nonlinearity4  
DNL  
INL  
–1  
–1  
0.1  
0.3  
15  
–1  
1
+1  
+1  
LSB  
LSB  
ppm/°C  
LSB  
LSB  
Voltage Divider Temperature Coefficient (∆VW/VW)/∆T × 106  
Code = 0x80  
Code = 0xFF  
Code = 0x00  
Full-Scale Error  
Zero-Scale Error  
RESISTOR TERMINALS  
Voltage Range5  
VWFSE  
VWZSE  
–3  
0
0
3
VA, VB, VW  
CA, CB  
GND  
VDD  
V
pF  
Capacitance A, B6  
f = 1 MHz, measured to GND,  
code = 0x80  
f = 1 MHz, measured to GND,  
code = 0x80  
90  
95  
Capacitance W6  
CW  
pF  
Shutdown Supply Current  
Common-Mode Leakage  
DIGITAL INPUTS AND OUTPUTS  
Input Logic High  
Input Logic Low  
Input Logic High  
Input Logic Low  
Input Current  
Input Capacitance6  
IA_SD  
ICM  
VDD = 5.5 V  
VA = VB = VDD/2  
0.01  
1
1
µA  
nA  
VIH  
VIL  
VIH  
VIL  
IIL  
VDD = 5 V  
VDD = 5 V  
VDD = 3 V  
VDD = 3 V  
2.4  
2.1  
V
V
V
V
µA  
pF  
0.8  
0.6  
1
VIN = 0 V or 5 V  
CIL  
5
3
POWER SUPPLIES  
Power Supply Range  
Supply Current  
Power Dissipationꢀ  
VDD RANGE  
IDD  
PDISS  
2.ꢀ  
5.5  
8
44  
V
µA  
µW  
VIH = 5 V or VIL = 0 V  
VIH = 5 V or VIL = 0 V, VDD = 5 V  
Power Supply Sensitivity  
PSS  
VDD = 5 V 10%,  
code = midscale  
0.02  
0.05 %/%  
DYNAMIC CHARACTERISTICS6, 8  
Bandwidth –3 dB  
BW  
RAB = 10 kΩ/50 kΩ/100 kΩ,  
code = 0x80  
VA = 1 V rms, VB = 0 V, f = 1 kHz,  
RAB = 10 kΩ  
VA = 5 V, VB = 0 V,  
1 LSB error band  
RWB = 5 kΩ, RS = 0  
600/100/40  
kHz  
%
Total Harmonic Distortion  
THDW  
tS  
0.1  
2
VW Settling Time (10 kΩ/50 kΩ/100 kΩ)  
Resistor Noise Voltage Density  
µs  
eN_WB  
9
nV/√Hz  
1 Typical specifications represent average readings at 25°C and VDD = 5 V.  
2 Resistor position nonlinearity error R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper  
positions. R-DNL measures the relative step change from ideal between successive tap positions. Parts are guaranteed monotonic.  
3 VAB = VDD, wiper (VW) = no connect.  
4 INL and DNL are measured at VW with the RDAC configured as a potentiometer divider similar to a voltage output D/A converter. VA = VDD and VB = 0 V.  
DNL specification limits of 1 LSB maximum are guaranteed monotonic operating conditions.  
5 Resistor Terminals A, B, W have no limitations on polarity with respect to each other.  
6 Guaranteed by design and not subject to production test.  
PDISS is calculated from (IDD × VDD). CMOS logic level inputs result in minimum power dissipation.  
8 All dynamic characteristics use VDD = 5 V.  
Rev. B | Page 4 of 20  
 
 
 
AD5245  
TIMING CHARACTERISTICS  
5 KΩ, 10 KΩ, 50 KΩ, 100 KΩ VERSIONS  
VDD = 5 V 10ꢀ or 3 V 10ꢀ, VA = VDD, VB = 0 V, 40°C < TA < +125°C, unless otherwise noted.  
Table 3.  
Parameter  
Symbol  
Conditions  
Min  
Typ1  
Max  
400  
Unit  
I2C INTERFACE TIMING CHARACTERISTICS2, 3, 4 (Specifications Apply to All Parts)  
SCL Clock Frequency  
tBUF Bus Free Time Between STOP and START  
tHD;STA Hold Time (Repeated START)  
fSCL  
t1  
t2  
kHz  
µs  
µs  
1.3  
0.6  
After this period, the first clock  
pulse is generated.  
tLOW Low Period of SCL Clock  
tHIGH High Period of SCL Clock  
tSU;STA Setup Time for Repeated START Condition  
tHD;DAT Data Hold Time  
tSU;DAT Data Setup Time  
tF Fall Time of Both SDA and SCL Signals  
tR Rise Time of Both SDA and SCL Signals  
tSU;STO Setup Time for STOP Condition  
t3  
t4  
t5  
t6  
tꢀ  
t8  
t9  
t10  
1.3  
0.6  
0.6  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
0.9  
100  
0.6  
300  
300  
1 Typical specifications represent average readings at 25°C and VDD = 5 V.  
2 Guaranteed by design and not subject to production test.  
3 See timing diagram (Figure 44) for locations of measured values.  
4 Standard I2C mode operation guaranteed by design.  
Rev. B | Page 5 of 20  
 
 
 
AD5245  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Table 4.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Value  
VDD to GND  
VA, VB, VW to GND  
Terminal Current, A to B, A to W, B to W1  
–0.3 V to +ꢀ V  
VDD  
Pulsed  
Continuous  
20 mA  
5 mA  
Digital Inputs and Output Voltage to GND  
Operating Temperature Range  
0 V to ꢀ V  
–40°C to +125°C  
150°C  
Maximum Junction Temperature (TJMAX  
)
Storage Temperature Range  
Lead Temperature (Soldering, 10 sec)  
Thermal Resistance2 θJA: SOT-23-8  
–65°C to +150°C  
245°C  
230°C/W  
1 Maximum terminal current is bound by the maximum current handling of  
the switches, maximum power dissipation of the package, and maximum  
applied voltage across any two of the A, B, and W terminals at a given  
resistance.  
2 Package power dissipation = (TJMAX – TA)/θJA  
.
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the  
human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. B | Page 6 of 20  
 
 
 
AD5245  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
W
8
7
6
5
A
V
AD5245  
TOP VIEW  
(Not to Scale)  
B
DD  
GND  
SCL  
AD0  
SDA  
Figure 3. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No. Mnemonic  
Description  
1
2
3
4
5
6
8
W
W Terminal. GND ≤ VW ≤ VDD.  
Positive Power Supply.  
Digital Ground.  
Serial Clock Input. Positive edge triggered. Pull-up resistor required.  
Serial Data Input/Output. Pull-up resistor required.  
Programmable Address Bit 0 for Two-Device Decoding.  
B Terminal. GND ≤ VB ≤ VDD.  
VDD  
GND  
SCL  
SDA  
AD0  
B
A
A Terminal. GND ≤ VA ≤ VDD.  
Rev. B | Page ꢀ of 20  
 
AD5245  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.0  
1.0  
0.8  
–40°C  
+25°C  
+85°C  
+125°C  
5V  
0.8  
3V  
0.6  
0.6  
0.4  
0.2  
0.4  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
32  
64  
96  
128  
160  
192  
224  
256  
0
32  
64  
96  
128  
160  
192  
224  
256  
CODE (Decimal)  
CODE (Decimal)  
Figure 4. R-INL vs. Code vs. Supply Voltages  
Figure 7. DNL vs. Code vs. Temperature, VDD = 5 V  
1.0  
0.8  
1.0  
0.8  
5V  
3V  
5V  
3V  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
32  
64  
96  
128  
160  
192  
224  
256  
0
32  
64  
96  
128  
160  
192  
224  
256  
CODE (Decimal)  
CODE (Decimal)  
Figure 5. R-DNL vs. Code vs. Supply Voltages  
Figure 8. INL vs. Code vs. Supply Voltages  
1.0  
0.8  
1.0  
0.8  
–40°C  
+25°C  
+85°C  
+125°C  
5V  
3V  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.0  
0
32  
64  
96  
128  
160  
192  
224  
256  
0
32  
64  
96  
128  
160  
192  
224  
256  
CODE (Decimal)  
CODE (Decimal)  
Figure 6. INL vs. Code vs. Temperature, VDD = 5 V  
Figure 9. DNL vs. Code vs. Supply Voltages  
Rev. B | Page 8 of 20  
 
AD5245  
1.0  
0.8  
2.5  
2.0  
1.5  
1.0  
0.5  
–40  
+25°C  
+85°C  
°C  
+125°C  
0.6  
0.4  
0.2  
V
= 5.5V  
DD  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
V
= 2.7V  
DD  
0
–40  
0
40  
TEMPERATURE (°C)  
80  
120  
0
32  
64  
96  
128  
160  
192  
224  
256  
CODE (Decimal)  
Figure 10. R-INL vs. Code vs. Temperature, VDD = 5 V  
Figure 13. Zero-Scale Error vs. Temperature  
1.0  
0.8  
10  
–40°C  
+25°C  
+85°C  
+125°C  
0.6  
0.4  
0.2  
V
V
= 5.5V  
DD  
0
1
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
= 2.7V  
DD  
0.1  
0
32  
64  
96  
128  
160  
192  
224  
256  
–40  
0
40  
TEMPERATURE (°C)  
80  
120  
CODE (Decimal)  
Figure 11. R-DNL vs. Code vs. Temperature, VDD = 5 V  
Figure 14. Supply Current vs. Temperature  
2.5  
2.0  
1.5  
1.0  
70  
60  
50  
40  
30  
20  
10  
0
V
V
= 2.7V  
= 5.5V  
DD  
DD  
V
= 5V  
DD  
0.5  
0
–40  
0
40  
80  
120  
–40  
0
40  
TEMPERATURE (°C)  
80  
120  
TEMPERATURE (°C)  
Figure 12. Full-Scale Error vs. Temperature  
Figure 15. Shutdown Current vs. Temperature  
Rev. B | Page 9 of 20  
AD5245  
REF LEVEL  
0.000dB  
/DIV  
6.000dB  
MARKER 510 634.725Hz  
MAG (A/R) –9.049dB  
200  
0
0x80  
–6  
150  
100  
50  
0x40  
–12  
0x20  
0x10  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
0x08  
0x04  
0x02  
0x01  
0
–50  
0
32  
64  
96  
128  
160  
192  
224  
256  
1k  
START 1 000.000Hz  
10k  
100k  
1M  
CODE (Decimal)  
STOP 1 000 000.000Hz  
Figure 16. Rheostat Mode Tempco ∆RWB/∆T vs. Code  
Figure 19. Gain vs. Frequency vs. Code, RAB = 10 kΩ  
REF LEVEL  
0.000dB  
0
/DIV  
6.000dB  
MARKER 100 885.289Hz  
MAG (A/R) –9.014dB  
160  
140  
120  
100  
80  
0x80  
–6  
0x40  
0x20  
0x10  
0x08  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
60  
0x04  
0x02  
0x01  
40  
20  
0
–20  
0
32  
64  
96  
128  
160  
192  
224  
256  
1k  
START 1 000.000Hz  
10k  
100k  
1M  
CODE (Decimal)  
STOP 1 000 000.000Hz  
Figure 20. Gain vs. Frequency vs. Code, RAB = 50 kΩ  
Figure 17. Potentiometer Mode Tempco ∆VWB/∆T vs. Code  
REF LEVEL  
0.000dB  
0
/DIV  
6.000dB  
MARKER 54 089.173Hz  
MAG (A/R) –9.052dB  
REF LEVEL  
0.000dB  
0
/DIV  
6.000dB  
MARKER 1 000 000.000Hz  
MAG (A/R) –8.918dB  
0x80  
–6  
0x80  
–6  
0x40  
0x20  
–12  
0x40  
0x20  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
0x10  
0x08  
0x10  
0x08  
0x04  
0x04  
0x02  
0x01  
0x02  
0x01  
1k  
START 1 000.000Hz  
10k  
100k  
1M  
1k  
START 1 000.000Hz  
10k  
100k  
1M  
STOP 1 000 000.000Hz  
STOP 1 000 000.000Hz  
Figure 21. Gain vs. Frequency vs. Code, RAB = 100 kΩ  
Figure 18. Gain vs. Frequency vs. Code, RAB = 5 kΩ  
Rev. B | Page 10 of 20  
AD5245  
REF LEVEL  
–5.000dB  
/DIV  
0.500dB  
–5.5  
5k– 1.026MHz  
10k– 511kHz  
50k– 101kHz  
100k– 54kHz  
–6.0  
–6.5  
–7.0  
–7.5  
–8.0  
–8.5  
–9.0  
–9.5  
–10.0  
–10.5  
1
VW  
R = 50k  
R = 5kΩ  
SCL  
R = 10kΩ  
R = 100kΩ  
2
Ch 1 200mV  
B
Ch 2 5.00 V  
B
M 100ns A CH2 3.00 V  
W
W
10k  
100k  
1M  
10M  
START 1 000.000Hz  
STOP 1 000 000.000Hz  
Figure 22. –3 dB Bandwidth @ Code = 0x80  
Figure 25. Large Signal Settling Time, Code 0xFF ≥ 0x00  
60  
40  
20  
0
CODE = 0x80, V = V , V = 0V  
A
DD  
B
V
V
= 5V  
= 0V  
A
B
PSRR @ V  
= 3V DC ±10% p-p AC  
DD  
1
VW  
SCL  
2
PSRR @ V  
= 5V DC ±10% p-p AC  
DD  
Ch 1 100mV  
B
Ch 2 5.00 V  
B
M 200ns A CH1 152mV  
W
W
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 26. Digital Feedthrough  
Figure 23. PSRR vs. Frequency  
900  
V
= 5V  
DD  
800  
700  
600  
500  
400  
300  
V
V
= 5V  
= 0V  
A
B
1
VW  
CODE = 0x55  
CODE = 0xFF  
SCL  
200  
100  
0
2
Ch 1 5.00V  
B
Ch 2 5.00 V  
B
M 200ns A CH1 3.00 V  
W
W
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
Figure 27. Midscale Glitch, Code 0x80 ≥ 0x7F  
Figure 24. IDD vs. Frequency  
Rev. B | Page 11 of 20  
AD5245  
TEST CIRCUITS  
Figure 28 to Figure 34 illustrate the test circuits that define the test conditions used in the product specification tables (Table 1 through Table 3).  
V+ = V  
DD  
1LSB = V+/2  
DUT  
W
DUT  
+15V  
N
A
B
A
W
AD8610  
V
IN  
V+  
V
OUT  
B
OFFSET  
GND  
V
MS  
–15V  
2.5V  
Figure 32. Test Circuit for Gain vs. Frequency  
Figure 28. Test Circuit for Potentiometer Divider Nonlinearity Error  
(INL, DNL)  
NO CONNECT  
DUT  
0.1V  
R
=
SW  
I
SW  
DUT  
I
W
A
CODE = 0x00  
W
W
B
0.1V  
I
B
SW  
V
MS  
GND TO V  
DD  
Figure 29. Test Circuit for Resistor Position Nonlinearity Error  
(Rheostat Operation; R-INL, R-DNL)  
Figure 33. Test Circuit for Incremental On Resistance  
NC  
DUT  
I
= V /R  
DD NOMINAL  
DUT  
W
A
B
I
CM  
V
A
B
W
W
V
DD  
W
V
MS2  
R
= [V  
MS1  
– V  
]/I  
GND  
W
MS2  
W
V
CM  
V
MS1  
NC NC = NO CONNECT  
Figure 34. Test Circuit for Common-Mode Leakage Current  
Figure 30. Test Circuit for Wiper Resistance  
V
A
V+ = V ±10%  
DD  
V  
V  
MS  
PSRR (dB) = 20 log  
(
)
V
DD  
DD  
A
B
%
V  
V  
MS  
W
V+  
PSS (%/%) =  
%
DD  
V
MS  
Figure 31. Test Circuit for Power Supply Sensitivity (PSS, PSSR)  
Rev. B | Page 12 of 20  
 
 
 
AD5245  
THEORY OF OPERATION  
The AD5245 is a 256-position digitally controlled variable  
resistor (VR) device.  
The general equation determining the digitally programmed  
output resistance between W and B is  
D
256  
An internal power-on preset places the wiper at midscale  
during power-on, which simplifies the fault condition recovery  
at power-up.  
R
WB (D) =  
×RAB +2×RW  
(1)  
where:  
D is the decimal equivalent of the binary code loaded in the  
8-bit RDAC register.  
RAB is the end-to-end resistance.  
PROGRAMMING THE VARIABLE RESISTOR  
Rheostat Operation  
The nominal resistance of the RDAC between Terminals A and  
B is available in 5 kΩ, 10 kΩ, 50 kΩ, and 100 kΩ. The nominal  
resistance (RAB) of the VR has 256 contact points accessed by  
the wiper terminal, plus the B terminal contact. The 8-bit data  
in the RDAC latch is decoded to select one of the 256 possible  
settings.  
RW is the wiper resistance contributed by the on resistance of  
the internal switch.  
In summary, if RAB = 10 kΩ and the A terminal is open  
circuited, then the following output resistance RWB is set for the  
indicated RDAC latch codes.  
Table 6. Codes and Corresponding RWB Resistance  
A
A
A
D (Dec.)  
RWB (Ω)  
9,961  
5,060  
139  
Output State  
W
W
W
255  
128  
1
Full Scale (RAB – 1 LSB + RW)  
Midscale  
1 LSB  
B
B
B
Figure 35. Rheostat Mode Configuration  
0
100  
Zero Scale (Wiper Contact Resistance)  
Note that in the zero-scale condition, a finite wiper resistance of  
100 Ω is present. Care should be taken to limit the current flow  
between W and B in this state to a maximum pulse current of  
no more than 20 mA. Otherwise, degradation or possible  
destruction of the internal switch contact can occur.  
Assuming that a 10 kΩ part is used, the wiper’s first connection  
starts at the B terminal for Data 0x00. Because there is a 50 Ω  
wiper contact resistance, such a connection yields a minimum  
of 100 Ω (2 × 50 Ω) resistance between Terminals W and B. The  
second connection is the first tap point, which corresponds to  
139 Ω (RWB = RAB/256 + 2 × RW = 39 Ω + 2 × 50 Ω) for Data 0x01.  
The third connection is the next tap point, representing 178 Ω  
(2 × 39 Ω + 2 × 50 Ω) for Data 0x02, and so on. Each LSB data  
value increase moves the wiper up the resistor ladder until the  
last tap point is reached at 10,100 Ω (RAB + 2 × RW).  
Similar to the mechanical potentiometer, the resistance of the  
RDAC between the Wiper W and Terminal A also produces a  
digitally controlled complementary resistance, RWA. When these  
terminals are used, the B terminal can be opened. Setting the  
resistance value for RWA starts at a maximum value of resistance  
and decreases as the data loaded in the latch increases in value.  
The general equation for this operation is  
A
R
S
256 D  
256  
RWA (D) =  
×RAB +2×RW  
(2)  
R
R
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
S
For RAB = 10 kΩ and the B terminal open circuited, the  
following output resistance RWA is set for the indicated RDAC  
latch codes.  
S
W
Table 7. Codes and Corresponding RWA Resistance  
D (Dec.)  
RWA (Ω)  
Output State  
Full Scale  
Midscale  
1 LSB  
255  
128  
1
139  
R
RDAC  
S
5,060  
9,961  
10,060  
LATCH  
AND  
DECODER  
B
0
Zero Scale  
Typical device-to-device matching is process lot dependent and  
can vary by up to 30ꢀ. Because the resistance element is  
processed in thin film technology, the change in RAB with  
temperature has a very low 45 ppm/°C temperature coefficient.  
Figure 36. AD5245 Equivalent RDAC Circuit  
Rev. B | Page 13 of 20  
 
AD5245  
PROGRAMMING THE POTENTIOMETER DIVIDER  
TERMINAL VOLTAGE OPERATING RANGE  
Voltage Output Operation  
The AD5245 VDD and GND power supply defines the boundary  
conditions for proper 3-terminal digital potentiometer  
operation. Supply signals present on Terminals A, B, and W that  
exceed VDD or GND are clamped by the internal forward-biased  
diodes (see Figure 40).  
The digital potentiometer easily generates a voltage divider at  
wiper-to-B and wiper-to-A proportional to the input voltage at  
A to B. Unlike the polarity of VDD to GND, which must be  
positive, voltage across A to B, W to A, and W to B can be at  
either polarity.  
V
DD  
A
V
I
W
B
A
B
W
V
O
GND  
Figure 40. Maximum Terminal Voltages Set by VDD and GND  
Figure 37. Potentiometer Mode Configuration  
POWER-UP SEQUENCE  
If ignoring the effect of the wiper resistance for approximation,  
then connecting the A terminal to 5 V and the B terminal to  
ground produces an output voltage at the wiper-to-B starting at  
0 V up to 1 LSB less than 5 V. Each LSB of voltage is equal to the  
voltage applied across Terminal A and B divided by the 256  
positions of the potentiometer divider. The general equation  
defining the output voltage at VW with respect to ground for any  
valid input voltage applied to Terminals A and B is  
Because the ESD protection diodes limit the voltage compliance  
at Terminals A, B, and W (see Figure 40), it is important to  
power VDD and GND before applying any voltage to Terminals  
A, B, and W; otherwise, the diode is forward biased such that  
VDD is powered unintentionally and can affect the rest of the  
users circuit. The ideal power-up sequence is in the following  
order: GND, VDD, digital inputs, and then VA, VB, and VW. The  
relative order of powering VA, VB, VW, and the digital inputs is  
not important as long as they are powered after VDD and GND.  
D
256  
256 D  
256  
VW (D) =  
VA +  
VB  
(3)  
LAYOUT AND POWER SUPPLY BYPASSING  
A more accurate calculation, which includes the effect of wiper  
resistance, VW, is  
It is good practice to employ compact, minimum lead length  
layout design. The leads to the inputs should be as direct as  
possible with a minimum conductor length. Ground paths  
should have low resistance and low inductance.  
R
WB (D)  
RAB  
R
WA (D)  
RAB  
VW (D) =  
VA +  
VB  
(4)  
Similarly, it is also good practice to bypass the power supplies  
with quality capacitors for optimum stability. Supply leads to  
the device should be bypassed with disk or chip ceramic  
capacitors of 0.01 µF to 0.1 µF. Low ESR 1 µF to 10 µF tantalum  
or electrolytic capacitors should also be applied at the supplies  
to minimize any transient disturbance and low frequency ripple  
(see Figure 41). Note that the digital ground should also be  
joined remotely to the analog ground at one point to minimize  
the ground bounce.  
Operation of the digital potentiometer in the divider mode  
results in a more accurate operation over temperature. Unlike  
the rheostat mode, the output voltage is dependent mainly on  
the ratio of the internal resistors, RWA and RWB, not the absolute  
values. Therefore, the temperature drift reduces to 15 ppm/°C.  
ESD PROTECTION  
All digital inputs are protected with a series of input resistors and  
parallel Zener ESD structures, shown in Figure 38 and Figure 39.  
This applies to the digital input pins SDA, SCL, and AD0.  
340  
V
V
DD  
DD  
LOGIC  
+
C3  
C1  
10µF  
0.1µF  
AD5245  
GND  
Figure 38. ESD Protection of Digital Pins  
GND  
A, B, W  
GND  
Figure 41. Power Supply Bypassing  
Figure 39. ESD Protection of Resistor Terminals  
Rev. B | Page 14 of 20  
 
 
 
 
 
AD5245  
Although the resistance setting of the AD5245 is lost when the  
battery needs replacement, such events occur rather infrequently  
so that this inconvenience is justified by the lower cost and  
smaller size offered by the AD5245. If total power is lost, then  
the user should be provided with a means to adjust the setting  
accordingly.  
CONSTANT BIAS TO RETAIN RESISTANCE SETTING  
For users who desire nonvolatility but cannot justify the  
additional cost for the EEMEM, the AD5245 can be considered  
a low cost alternative by maintaining a constant bias to retain  
the wiper setting. The AD5245 is designed specifically with low  
power in mind, which allows low power consumption even in  
battery-operated systems. Figure 42 demonstrates the power  
consumption from a 3.4 V, 450 mA-hr Li-Ion cell phone battery  
that is connected to the AD5245. The measurement over time  
shows that the device draws approximately 1.3 µA and  
EVALUATION BOARD  
An evaluation board, along with all necessary software, is  
available to program the AD5245 from any PC running  
Windows® 98/2000/XP. The graphical user interface, as shown  
in Figure 43, is straightforward and easy to use. More detailed  
information is available in the user manual, which is provided  
with the board.  
consumes negligible power. Over a course of 30 days, the  
battery is depleted by less than 2ꢀ, the majority of which is due  
to the intrinsic leakage current of the battery itself.  
110%  
T
= 25°C  
A
108%  
106%  
104%  
102%  
100%  
98%  
96%  
94%  
92%  
Figure 43. AD5245 Evaluation Board Software  
90%  
0
5
10  
15  
20  
25  
30  
The AD5245 starts at midscale upon power-up. To increment or  
decrement the resistance, the user can simply move the scroll-  
bars on the left. To write a specific value, the user should use the  
bit pattern in the upper screen and click the Run button. The  
format of writing data to the device is shown in Table 8. To read  
the data from the device, the user can simply click the Read  
button. The format of the read bits is shown in Table 9.  
DAYS  
Figure 42. Battery Operating Life Depletion  
This demonstrates that constantly biasing the potentiometer  
can be a practical approach. Most portable devices do not  
require the removal of batteries for charging.  
Rev. B | Page 15 of 20  
 
 
 
AD5245  
I2C INTERFACE  
I2C-COMPATIBLE 2-WIRE SERIAL BUS  
The 2-wire I2C serial bus protocol operates as follows:  
3. After acknowledging the instruction byte, the last byte in  
write mode is the data byte. Data is transmitted over the  
serial bus in sequences of nine clock pulses (eight data bits  
followed by an acknowledge bit). The transitions on the  
SDA line must occur during the low period of SCL and  
remain stable during the high period of SCL (see Figure 45).  
1. The master initiates data transfer by establishing a START  
condition, which is when a high-to-low transition on the SDA  
line occurs while SCL is high (see Figure 45). The next byte  
is the slave address byte, which consists of the 7-bit slave  
4. In read mode, the data byte follows immediately after the  
acknowledgment of the slave address byte. Data is  
transmitted over the serial bus in sequences of nine clock  
pulses (a slight difference with write mode, in which eight  
data bits are followed by an acknowledge bit). Similarly, the  
transitions on the SDA line must occur during the low  
period of SCL and remain stable during the high period of  
SCL (see Figure 46).  
W
address followed by an R/ bit (this bit determines whether  
data is read from or written to the slave device). The AD5245  
has one configurable address bit, AD0 (see Table 8).  
The slave whose address corresponds to the transmitted  
address responds by pulling the SDA line low during the  
ninth clock pulse (this is termed the acknowledge bit). At  
this stage, all other devices on the bus remain idle while the  
selected device waits for data to be written to or read from  
5. After all data bits have been read or written, a STOP  
condition is established by the master. A STOP condition is  
defined as a low-to-high transition on the SDA line while  
SCL is high. In write mode, the master pulls the SDA line  
high during the 10th clock pulse to establish a STOP  
condition (see Figure 45). In read mode, the master issues a  
no acknowledge for the ninth clock pulse (that is, the SDA  
line remains high). The master then brings the SDA line low  
before the 10th clock pulse, which goes high to establish a  
STOP condition (see Figure 46).  
its serial register. If the R/ bit is high, the master reads  
W
from the slave device. On the other hand, if the R/ bit is  
W
low, the master writes to the slave device.  
2. In write mode, the second byte is the instruction byte.  
The first bit (MSB) of the instruction byte is a don’t care.  
The second MSB, RS, is the midscale reset. A logic high on  
this bit moves the wiper to the center tap, where RWA = RWB  
This feature effectively overwrites the contents of the  
.
register; therefore, when taken out of reset mode, the RDAC  
remains at midscale.  
A repeated write function gives the user flexibility to update  
the RDAC output a number of times after addressing and  
instructing the part only once. For example, after the RDAC  
has acknowledged its slave address and instruction bytes in  
the write mode, the RDAC output updates on each successive  
byte. If different instructions are needed, then the write/read  
mode has to start again with a new slave address, instruction,  
and data byte. Similarly, a repeated read function of the  
RDAC is also allowed.  
The third MSB, SD, is a shutdown bit. A logic high causes an  
open circuit at Terminal A while shorting the wiper to  
Terminal B. This operation yields almost 0 Ω in rheostat mode  
or 0 V in potentiometer mode. It is important to note that  
the shutdown operation does not disturb the contents of the  
register. When brought out of shutdown, the previous setting is  
applied to the RDAC. Also during shutdown, new settings can  
be programmed. When the part is returned from shutdown,  
the corresponding VR setting is applied to the RDAC.  
The remainder of the bits in the instruction byte are don’t  
cares (see Table 8).  
Rev. B | Page 16 of 20  
 
AD5245  
Table 8. Write Mode  
S
0
1
0
1
1
0
AD0  
W
A
X
RS SD  
X
X
X
X
X
A
D7 D6 D5 D4 D3 D2 D1 D0  
A P  
Slave Address Byte  
Instruction Byte  
Data Byte  
Table 9. Read Mode  
S
0
1
0
1
1
0
AD0  
R
A
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
A
P
Slave Address Byte  
Data Byte  
S = START condition  
P = STOP condition  
A = Acknowledge  
X = Don’t care  
R = Read  
RS = Reset wiper to midscale 0x80  
SD = Shutdown connects wiper to B terminal and open circuits  
A terminal, but does not change contents of wiper register  
Dꢀ, D6, D5, D4, D3, D2, D1, D0 = Data Bits  
W
= Write  
t2  
t8  
t9  
SCL  
t6  
t7  
t5  
t10  
t2  
t3  
t4  
t9  
t8  
SDA  
t1  
P
S
1
S
P
Figure 44. I2C Interface Detailed Timing Diagram  
9
1
9
1
9
SCL  
SDA  
X
RS SD  
X
X
X
X
X
D7 D6 D5 D4 D3 D2 D1 D0  
0
1
0
1
1
0
AD0 R/W  
ACK BY  
AD5245  
ACK BY  
AD5245  
ACK BY  
AD5245  
FRAME 1  
SLAVE ADDRESS BYTE  
FRAME 2  
INSTRUCTION BYTE  
FRAME 3  
DATA BYTE  
STOP BY  
MASTER  
START BY  
MASTER  
Figure 45. Writing to the RDAC Register  
1
9
1
9
SCL  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
1
0
1
1
0
AD0 R/W  
SDA  
ACK BY  
AD5245  
NO ACK  
BY MASTER  
STOP BY  
MASTER  
FRAME 1  
SLAVE ADDRESS BYTE  
FRAME 2  
RDAC REGISTER  
START BY  
MASTER  
Figure 46. Reading Data from a Previously Selected RDAC Register in Write Mode  
Rev. B | Page 1ꢀ of 20  
 
AD5245  
+5V  
Multiple Devices on One Bus  
RP  
RP  
Figure 47 shows two AD5245 devices on the same serial bus.  
Each has a different slave address because the states of their  
AD0 pins are different. This allows the RDAC within each  
device to be written to or read from independently. The master  
device’s output bus line drivers are open-drain pull-downs in a  
fully I2C-compatible interface.  
SDA  
SCL  
MASTER  
+5V  
SDA SCL  
SDA SCL  
AD0  
AD0  
AD5245  
AD5245  
Figure 47. Multiple AD5245 Devices on One I2C Bus  
Rev. B | Page 18 of 20  
 
AD5245  
OUTLINE DIMENSIONS  
2.90 BSC  
8
1
7
2
6
3
5
4
1.60 BSC  
2.80 BSC  
PIN 1  
INDICATOR  
0.65 BSC  
1.95  
BSC  
1.30  
1.15  
0.90  
1.45 MAX  
0.22  
0.08  
0.60  
0.45  
0.30  
8°  
4°  
0°  
0.38  
0.22  
0.15 MAX  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-178-BA  
Figure 48. 8-Lead Small Outline Transistor Package [SOT-23]  
(RJ-8)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
AD5245BRJ5-R2  
Temperature Range  
Package Description  
8-Lead SOT-23  
8-Lead SOT-23  
8-Lead SOT-23  
8-Lead SOT-23  
8-Lead SOT-23  
8-Lead SOT-23  
8-Lead SOT-23  
8-Lead SOT-23  
8-Lead SOT-23  
8-Lead SOT-23  
8-Lead SOT-23  
8-Lead SOT-23  
8-Lead SOT-23  
8-Lead SOT-23  
8-Lead SOT-23  
8-Lead SOT-23  
Evaluation Board  
Package Option Branding RAB (Ω) Ordering Quantity  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
RJ-8  
RJ-8  
RJ-8  
RJ-8  
RJ-8  
RJ-8  
RJ-8  
RJ-8  
RJ-8  
RJ-8  
RJ-8  
RJ-8  
RJ-8  
RJ-8  
RJ-8  
RJ-8  
D0G  
D0G  
D0G  
D0G  
D0H  
D0H  
D0H  
D0H  
D0J  
D0J  
D0J  
D0J  
D0K  
D0K  
D0K  
D0K  
5 k  
5 k  
5 k  
5 k  
250  
3,000  
250  
3,000  
250  
3,000  
250  
3,000  
250  
3,000  
250  
3,000  
250  
3,000  
250  
AD5245BRJ5-RLꢀ  
AD5245BRJZ5-R21  
AD5245BRJZ5-RLꢀ1  
AD5245BRJ10-R2  
AD5245BRJ10-RLꢀ  
AD5245BRJZ10-R21  
AD5245BRJZ10-RLꢀ1  
AD5245BRJ50-R2  
AD5245BRJ50-RLꢀ  
AD5245BRJZ50-R21  
AD5245BRJZ50-RLꢀ1  
AD5245BRJ100-R2  
AD5245BRJ100-RLꢀ  
AD5245BRJZ100-R21  
AD5245BRJZ100-RLꢀ1  
AD5245EVAL2  
10 k  
10 k  
10 k  
10 k  
50 k  
50 k  
50 k  
50 k  
100 k  
100 k  
100 k  
100 k  
3,000  
1 Z = Pb-free part.  
2 The evaluation board is shipped with the 10 kΩ RAB resistor option; however, the board is compatible with all available resistor value options.  
Rev. B | Page 19 of 20  
 
 
 
AD5245  
NOTES  
Purchase of licensed I2C components of Analog Devices or one of its sublicensed Associated Companies conveys a license for the  
purchaser under the Philips I2C Patent Rights to use these components in an I2C system, provided that the system conforms to the I2C  
Standard Specification as defined by Philips.  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C03436-0-1/06(B)  
Rev. B | Page 20 of 20  

相关型号:

AD5245BRJZ100-R21

256-Position I2C-Compatible Digital Potentiometer
ADI

AD5245BRJZ100-RL7

256-Position I2C-Compatible Digital Potentiometer
ADI

AD5245BRJZ100-RL71

256-Position I2C-Compatible Digital Potentiometer
ADI

AD5245BRJZ5-R2

256-Position I2C-Compatible Digital Potentiometer
ADI

AD5245BRJZ5-R21

256-Position I2C-Compatible Digital Potentiometer
ADI

AD5245BRJZ5-RL7

256-Position I2C-Compatible Digital Potentiometer
ADI

AD5245BRJZ5-RL71

256-Position I2C-Compatible Digital Potentiometer
ADI

AD5245BRJZ50-R2

256-Position I2C-Compatible Digital Potentiometer
ADI

AD5245BRJZ50-R21

256-Position I2C-Compatible Digital Potentiometer
ADI

AD5245BRJZ50-RL7

256-Position I2C-Compatible Digital Potentiometer
ADI

AD5245BRJZ50-RL71

256-Position I2C-Compatible Digital Potentiometer
ADI

AD5245EVAL

256-Position I2C Compatible Digital Potentiometer
ADI