AD5258BRMZ10-R7 [ADI]

Nonvolatile, I2C-Compatible 64-Position, Digital Potentiometer; 非易失, I2C兼容64位,数字电位器
AD5258BRMZ10-R7
型号: AD5258BRMZ10-R7
厂家: ADI    ADI
描述:

Nonvolatile, I2C-Compatible 64-Position, Digital Potentiometer
非易失, I2C兼容64位,数字电位器

转换器 电位器 电阻器 光电二极管
文件: 总24页 (文件大小:534K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Nonvolatile, I2C®-Compatible  
64-Position, Digital Potentiometer  
Data Sheet  
AD5258  
FEATURES  
FUNCTIONAL BLOCK DIAGRAMS  
Nonvolatile memory maintains wiper settings  
64-position digital potentiometer  
Compact MSOP-10 (3 mm × 4.9 mm)  
I2C-compatible interface  
RDAC  
V
DD  
A
RDAC  
V
RDAC  
LOGIC  
GND  
EEPROM  
W
B
REGISTER  
6
6
DATA  
CONTROL  
V
LOGIC pin provides increased interface flexibility  
SCL  
SDA  
2
I C  
End-to-end resistance 1 kΩ, 10 kΩ, 50 kΩ, 100 kΩ  
Resistance tolerance stored in EEPROM (0.1% accuracy)  
Power-on EEPROM refresh time <1 ms  
Software write protect command  
Address Decode Pin AD0 and Address Decode Pin AD1 allow  
four packages per bus  
SERIAL  
INTERFACE  
AD0  
AD1  
COMMAND  
DECODE LOGIC  
AD5258  
ADDRESS  
DECODE LOGIC  
POWER-  
ON RESET  
CONTROL LOGIC  
100-year typical data retention at 55°C  
Wide operating temperature 40°C to +85°C  
3 V to 5 V single supply  
Figure 1. Block Diagram  
V
V
DD  
LOGIC  
A
APPLICATIONS  
EEPROM  
SCL  
SDA  
AD0  
AD1  
LCD panel VCOM adjustment  
RDAC  
REGISTER  
AND  
2
I
C
SERIAL  
INTERFACE  
LCD panel brightness and contrast control  
Mechanical potentiometer replacement in new designs  
Programmable power supplies  
RF amplifier biasing  
LEVEL  
SHIFTER  
W
COMMAND  
DECODE LOGIC  
ADDRESS  
DECODE LOGIC  
Automotive electronics adjustment  
Gain control and offset adjustment  
Fiber to the home systems  
CONTROL  
LOGIC  
GND  
B
Figure 2. Block Diagram Showing Level Shifters  
Electronics level settings  
GENERAL DESCRIPTION  
The AD5258 provides a compact, nonvolatile 3 mm × 4.9 mm  
packaged solution for 64-position adjustment applications. These  
devices perform the same electronic adjustment function as  
mechanical potentiometers1 or variable resistors, but with  
enhanced resolution and solid-state reliability.  
The wiper settings are controllable through an I2C-compatible  
digital interface that is also used to read back the wiper register  
and EEPROM content in addition, resistor tolerance is stored  
within EEPROM, providing an end-to-end tolerance accuracy  
of 0.1%. There is also a software write protection function that  
ensures data cannot be written to the EEPROM register.  
A separate VLOGIC pin delivers increased interface flexibility. For  
users who need multiple parts on one bus, Address Bit AD0 and  
Address Bit AD1 allow up to four devices on the same bus.  
1 The terms digital potentiometer, VR (variable resistor), and RDAC are used  
interchangeably.  
Rev. D  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2005–2013 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
 
AD5258  
Data Sheet  
TABLE OF CONTENTS  
Writing ......................................................................................... 15  
Storing/Restoring ....................................................................... 15  
Reading........................................................................................ 15  
I2C Byte Formats............................................................................. 16  
Generic Interface........................................................................ 16  
Write Modes................................................................................ 16  
Read Modes................................................................................. 17  
Store/Restore Modes.................................................................. 17  
Tolerance Readback Modes ...................................................... 18  
ESD Protection of Digital Pins and Resistor Terminals........ 19  
Power-Up Sequence ................................................................... 19  
Layout and Power Supply Bypassing ....................................... 19  
Multiple Devices on One Bus ................................................... 19  
Display Applications ...................................................................... 20  
Circuitry ...................................................................................... 20  
Outline Dimensions....................................................................... 21  
Ordering Guide .......................................................................... 21  
Features .............................................................................................. 1  
Applications....................................................................................... 1  
Functional Block Diagrams............................................................. 1  
General Description ......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics............................................................. 3  
Timing Characteristics ................................................................ 5  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 8  
Test Circuits..................................................................................... 13  
Theory of Operation ...................................................................... 14  
Programming the Variable Resistor......................................... 14  
Programming the Potentiometer Divider............................... 14  
I2C Interface..................................................................................... 15  
REVISION HISTORY  
1/13—Rev. C to Rev. D  
3/07—Rev. 0 to Rev. A  
Changes to Zero-Scale Error Parameter and Logic Supply  
Parameter, Table 1..............................................................................3  
Removed Evaluation Board Section and Figure 43, Renumbered  
Sequentially ......................................................................................19  
Updated Format..................................................................Universal  
Changes to Features Section ............................................................1  
Changes to General Description Section .......................................1  
Changes to Table 4.............................................................................7  
Changes to I2C Interface Section.................................................. 15  
Changes to Table 5.......................................................................... 16  
Changes to Multiple Devices on One Bus Section..................... 19  
5/10—Rev. B to Rev. C  
Changes to Storing/Restoring Section......................................... 15  
Changes to Table 7.......................................................................... 16  
Changes to Table 14........................................................................ 17  
3/05—Revision 0: Initial Version  
1/10—Rev. A to Rev. B  
Changes to Figure 44...................................................................... 20  
Updated Outline Dimensions....................................................... 21  
Rev. D | Page 2 of 24  
 
Data Sheet  
AD5258  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
VDD = VLOGIC = 5 V 10%, or 3 V 10%; VA = VDD; VB = 0 V; −40°C < TA < +85°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Conditions  
Min  
Typ1  
Max  
Unit  
DC CHARACTERISTICS—RHEOSTAT MODE  
Resistor Differential Nonlinearity  
1 kΩ  
R-DNL  
RWB, VA = no connect  
LSB  
−1.5  
−0.25  
0.3  
0.1  
+1.5  
+0.25  
10 kΩ/50 kΩ/100 kΩ  
Resistor Integral Nonlinearity  
1 kΩ  
10 kΩ/100 kΩ  
50 kΩ  
R-INL  
RWB, VA = no connect  
TA = 25°C, VDD = 5.5 V  
LSB  
−5  
−0.5  
−0.25  
0.5  
0.1  
0.1  
+5  
+0.5  
+0.25  
Nominal Resistor Tolerance  
1 kΩ  
RAB  
0.9  
1.5  
kΩ  
10 kΩ/50 kΩ/100 kΩ  
Resistance Temperature Coefficient  
Total Wiper Resistance  
ΔRAB  
−30  
+30  
%
(ΔRAB × 106)/(RAB × ΔT)  
Code = 0x00/0x20  
Code = 0x00  
200/15  
75  
ppm/°C  
RWB  
350  
DC CHARACTERISTICS—POTENTIOMETER  
DIVIDER MODE  
Differential Nonlinearity  
1 kΩ  
10 kΩ/50 kΩ/100 kΩ  
Integral Nonlinearity  
1 kΩ  
10 kΩ/50 kΩ/100 kΩ  
Full-Scale Error  
1 kΩ  
DNL  
INL  
LSB  
LSB  
LSB  
−1  
−0.25  
0.3  
0.1  
+1  
+0.25  
−1  
−0.25  
0.3  
0.1  
+1  
+0.25  
VWFSE  
Code = 0x3F  
−6  
−1  
−1  
−3  
−0.3  
−0.1  
0
0
0
10 kΩ  
50 kΩ/100 kΩ  
Zero-Scale Error  
1 kΩ  
VWZSE  
Code = 0x00  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
ppm/°C  
−40°C < TA < 85°C  
85°C < TA < 125°C  
−40°C < TA < 85°C  
85°C < TA < 125°C  
0
0
0
3
5
6
1
1.5  
0.5  
10 kΩ  
0.3  
50 kΩ/100 kΩ  
0.1  
120/15  
Voltage Divider Temperature Coefficient (ΔVW × 106)/(VW × ΔT)  
Code = 0x00/0x20  
RESISTOR TERMINALS  
Voltage Range  
Capacitance A, Capacitance B  
VA, VB ,VW  
CA, CB  
GND  
VDD  
V
pF  
f = 1 MHz, measured to  
GND, code = 0x20  
f = 1 MHz, measured to  
GND, code = 0x20  
45  
60  
10  
Capacitance W  
CW  
ICM  
pF  
Common-Mode Leakage  
DIGITAL INPUTS AND OUTPUTS  
Input Logic High  
VA = VB = VDD/2  
nA  
VIH  
VIL  
IIL  
0.7 × VL  
−0.5  
VL + 0.5  
+0.3 × VL  
V
V
µA  
Input Logic Low  
Leakage Current  
SDA, AD0, AD1  
SCL – Logic High  
SCL – Logic Low  
VIN = 0 V or 5 V  
VIN = 0 V  
VIN = 5 V  
0.01  
−1.4  
0.01  
5
1
+1  
1
−2.5  
Input Capacitance  
CIL  
pF  
Rev. D | Page 3 of 24  
 
 
AD5258  
Data Sheet  
Parameter  
Symbol  
Conditions  
Min  
2.7  
Typ1  
0.5  
3
Max  
Unit  
POWER SUPPLIES  
Power Supply Range  
Positive Supply Current  
Logic Supply  
VDD  
IDD  
VLOGIC  
ILOGIC  
5.5  
2
5.5  
V
µA  
V
2.7  
Logic Supply Current  
VIH = 5 V or VIL = 0 V  
−40°C < TA < 85°C  
85°C < TA < 125°C  
VIH = 5 V or VIL = 0 V  
VIH = 5 V or VIL = 0 V,  
VDD = 5 V  
6
9
µA  
µA  
mA  
µW  
Programming Mode Current (EEPROM)  
Power Dissipation  
ILOGIC(PROG)  
PDISS  
35  
20  
40  
Power Supply Rejection Ratio  
PSRR  
VDD = +5 V 10%,  
Code = 0x20  
0.01  
0.06  
%/%  
DYNAMIC CHARACTERISTICS  
Bandwidth −3 dB  
BW  
Code = 0x20  
RAB = 1 kΩ  
18000  
1000  
190  
100  
0.1  
kHz  
kHz  
kHz  
kHz  
%
RAB = 10 kΩ  
RAB = 50 kΩ  
RAB = 100 kΩ  
RAB = 10 kΩ, VA = 1 V rms,  
VB = 0, f = 1 kHz  
Total Harmonic Distortion  
VW Settling Time  
THDW  
tS  
RAB = 10 kΩ, VAB = 5 V,  
1 LSB error band  
RWB = 5 kΩ, f = 1 kHz  
500  
9
ns  
Resistor Noise Voltage Density  
eN_WB  
nV/√Hz  
1
Typical values represent average readings at 25°C and VDD = 5 V.  
Rev. D | Page 4 of 24  
 
Data Sheet  
AD5258  
TIMING CHARACTERISTICS  
VDD = VLOGIC = 5 V 10%, or 3 V 10%; VA = VDD; VB = 0 V; −40°C < TA < +85°C, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Conditions  
Min Typ Max Unit  
I2C INTERFACE TIMING CHARACTERISTICS  
SCL Clock Frequency  
tBUF Bus-Free Time Between Stop and Start  
tHD;STA Hold Time (Repeated start)  
fSCL  
t1  
t2  
0
1.3  
0.6  
400  
kHz  
µs  
µs  
After this period, the first clock pulse is  
generated.  
tLOW Low Period of SCL Clock  
tHIGH High Period of SCL Clock  
tSU;STA Setup Time for Repeated Start Condition  
tHD;DAT Data Hold Time  
tSU;DAT Data Setup Time  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
t10  
1.3  
0.6  
0.6  
0
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
ms  
µs  
0.9  
100  
tF Fall Time of Both SDA and SCL Signals  
tR Rise Time of Both SDA and SCL Signals  
tSU;STO Setup Time for Stop Condition  
EEPROM Data Storing Time  
300  
300  
0.6  
tEEMEM_STORE  
26  
300  
EEPROM Data Restoring Time at Power On1  
tEEMEM_RESTORE1 VDD rise time dependant. Measure with-  
out decoupling capacitors at VDD and GND.  
EEPROM Data Restoring Time upon Restore  
Command1  
tEEMEM_RESTORE2 VDD = 5 V.  
300  
540  
µs  
µs  
EEPROM Data Rewritable Time2  
FLASH/EE MEMORY RELIABILITY  
Endurance3  
tEEMEM_REWRITE  
100 700  
100  
kCycles  
Years  
Data Retention4  
1 During power-up, the output is momentarily preset to midscale before restoring EEPROM content.  
2 Delay time after power-on preset prior to writing new EEPROM data.  
3 Endurance is qualified to 100,000 cycles per JEDEC Std. 22 Method A117 and is measured at −40°C, +25°C, and +85°C; typical endurance at +25°C is 700,000 cycles.  
4 Retention lifetime equivalent at junction temperature (TJ) = 55°C per JEDEC Std. 22, Method A117. Retention lifetime based on an activation energy of 0.6 eV derates  
with junction temperature.  
t6  
t8  
t9  
SCL  
t10  
t5  
t7  
t4  
t2  
t3  
t9  
t8  
t1  
SDA  
P
S
P
Figure 3. I2C Interface Timing Diagram  
Rev. D | Page 5 of 24  
 
 
 
AD5258  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Table 3.  
Parameter  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rating  
0.3 V to +7 V  
GND 0.3 V, VDD + 0.3 V  
VDD to GND  
VA, VB, VW to GND  
IMAX  
Pulsed1  
20 mA  
5 mA  
Continuous  
Digital Inputs and Output Voltage to GND  
0 V to 7 V  
40°C to +85°C  
150°C  
ESD CAUTION  
Operating Temperature Range  
Maximum Junction Temperature (TJMAX  
)
65°C to +150°C  
Storage Temperature  
Reflow Soldering  
Peak Temperature  
Time at Peak Temperature  
Thermal Resistance2  
θJA: MSOP-10  
260°C  
20 sec to 40 sec  
200°C/W  
1 Maximum terminal current is bounded by the maximum current handling of  
the switches, maximum power dissipation of the package, and maximum  
applied voltage across any two of the A, B, and W terminals at a given  
resistance.  
2 Package power dissipation = (TJMAX – TA)/θJA  
.
Rev. D | Page 6 of 24  
 
 
 
 
Data Sheet  
AD5258  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
W
AD0  
AD1  
SDA  
SCL  
1
2
3
4
5
10  
9
A
B
V
AD5258  
8
TOP VIEW  
DD  
(Not to Scale)  
7
GND  
6
V
LOGIC  
Figure 4. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
W Terminal, GND ≤ VW ≤ VDD  
1
W
.
2
3
4
5
6
7
8
AD0  
AD1  
SDA  
SCL  
VLOGIC  
GND  
VDD  
Programmable Pin 0 for Multiple Package Decoding. State is registered on power-up.  
Programmable Pin 1 for Multiple Package Decoding. State is registered on power-up.  
Serial Data Input/Output.  
Serial Clock Input. Positive edge triggered.  
Logic Power Supply.  
Digital Ground.  
Positive Power Supply.  
9
B
B Terminal, GND ≤ VB ≤ VDD  
.
10  
A
A Terminal, GND ≤ VA ≤ VDD.  
Rev. D | Page 7 of 24  
 
AD5258  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
VDD = VLOGIC = 5.5 V, RAB = 10 kΩ, TA = 25°C, unless otherwise noted.  
0.5  
0.4  
0.3  
0.2  
0.10  
0.08  
0.06  
0.04  
0.02  
0
2.7V  
0.1  
0
5.5V  
–0.1  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–40°C  
+85°C  
+25°C  
–0.2  
–0.3  
–0.4  
–0.5  
0
8
16  
24  
32  
40  
48  
56  
64  
0
8
16  
24  
32  
40  
48  
56  
64  
CODE (Decimal)  
CODE (Decimal)  
Figure 5. R-INL vs. Code vs. Supply Voltages  
Figure 8. DNL vs. Code vs. Temperature  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.10  
0.08  
0.06  
0.04  
0.02  
0
2.7V  
5.5V  
2.7V  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
5.5V  
0
8
16  
24  
32  
40  
48  
56  
64  
0
8
16  
24  
32  
40  
48  
56  
64  
CODE (Decimal)  
CODE (Decimal)  
Figure 6. R-DNL vs. Code vs. Supply Voltages  
Figure 9. INL vs. Code vs. Supply Voltages  
0.10  
0.08  
0.06  
0.04  
0.02  
0
0.10  
0.08  
0.06  
0.04  
0.02  
0
2.7V  
+85ºC  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
+25ºC  
–40°C  
5.5V  
0
8
16  
24  
32  
40  
48  
56  
64  
0
8
16  
24  
32  
40  
48  
56  
64  
CODE (Decimal)  
CODE (Decimal)  
Figure 7. INL vs. Code vs. Temperature  
Figure 10. DNL vs. Code vs. Supply Voltages  
Rev. D | Page 8 of 24  
 
Data Sheet  
AD5258  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.25  
0.20  
0.15  
0.10  
0.05  
0
ZSE @ V = 2.7V  
DD  
ZSE @ V = 5.5V  
DD  
–40°C  
+85°C  
+25°C  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–40  
–20  
0
20  
40  
60  
80  
0
8
16  
24  
32  
40  
48  
56  
64  
TEMPERATURE (°C)  
CODE (Decimal)  
Figure 14. Zero-Scale Error vs. Temperature  
Figure 11. R-INL vs. Code vs. Temperature  
1
0.25  
0.20  
0.15  
0.10  
0.05  
0
V
= 5.5V  
DD  
+85°C  
–40°C  
+25°C  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
0.1  
–40  
–20  
0
20  
40  
60  
80  
0
8
16  
24  
32  
40  
48  
56  
64  
TEMPERATURE (°C)  
CODE (Decimal)  
Figure 15. Supply Current vs. Temperature  
Figure 12. R-DNL vs. Code vs. Temperature  
6
5
4
3
2
1
0
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.30  
–0.35  
–0.40  
–0.45  
–0.50  
V
= 5.5V  
LOGIC  
FSE @ V = 5.5V  
DD  
FSE @ V = 2.7V  
DD  
V
= 2.7V  
20  
LOGIC  
0
–40  
–20  
0
40  
60  
80  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (ºC)  
Figure 16. Logic Supply Current vs. Temperature vs. VLOGIC  
Figure 13. Full-Scale Error vs. Temperature  
Rev. D | Page 9 of 24  
AD5258  
Data Sheet  
250  
200  
150  
100  
50  
120  
100  
80  
60  
40  
20  
0
100k R @ V = 5.5V  
DD  
T
1k  
50k  
10k  
50k R @ V = 5.5V  
DD  
T
0
–50  
–100  
10k R @ V = 5.5V  
T
DD  
1k R @ V = 5.5V  
100k  
T
DD  
–150  
0
8
16  
24  
32  
40  
48  
56  
64  
–40  
–20  
0
20  
40  
60  
80  
CODE (Decimal)  
TEMPERATURE (°C)  
Figure 17. Rheostat Mode Tempco (ΔRAB ×106)/(RAB × ∆T) vs. Code  
Figure 20. Total Resistance vs. Temperature  
120  
0
–6  
0x20  
100  
0x10  
0x08  
1k  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
80  
60  
0x04  
0x02  
0x01  
40  
50k  
20  
0
10k  
100k  
–20  
0
8
16  
24  
32  
40  
48  
56  
64  
10k  
100k  
1M  
10M  
100M  
CODE (Decimal)  
FREQUENCY (Hz)  
Figure 18. Potentiometer Mode Tempco (ΔVW × 106)/(VW × ΔT) vs. Code  
Figure 21. Gain vs. Frequency vs. Code, RAB = 1 kΩ  
350  
300  
0
–6  
0x20  
0x10  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
R
@ V = 2.7V  
DD  
WB  
250  
200  
150  
100  
50  
0x08  
0x04  
0x02  
0x01  
R
@ V = 5.5V  
DD  
WB  
0
–40  
–20  
0
20  
40  
60  
80  
1k  
10k  
100k  
1M  
10M  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 19. RWB vs. Temperature  
Figure 22. Gain vs. Frequency vs. Code, RAB = 10 kΩ  
Rev. D | Page 10 of 24  
Data Sheet  
AD5258  
10k  
1k  
0
–6  
0x20  
0x10  
0x08  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
V
= V = 5V  
LOGIC  
DD  
0x04  
0x02  
0x01  
V
= V = 3V  
LOGIC  
DD  
100  
10  
–60  
1k  
0
1
2
3
4
5
10k  
100k  
FREQUENCY (Hz)  
1M  
V
(V)  
IH  
Figure 23. Gain vs. Frequency vs. Code, RAB = 50 kΩ  
Figure 25. Logic Supply Current vs. Input Voltage  
80  
60  
40  
20  
0
0
–6  
CODE = MIDSCALE, V = V  
, V = 0V  
B
A
LOGIC  
0x20  
0x10  
0x08  
0x04  
0x02  
0x01  
PSRR @ V  
= 5V DC ± 10% p-p AC  
LOGIC  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
PSRR @ V  
= 3V DC ± 10% p-p AC  
LOGIC  
100  
1k  
10k  
100k  
1M  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
FREQUENCY (Hz)  
Figure 26. Power Supply Rejection Ratio vs. Frequency  
Figure 24. Gain vs. Frequency vs. Code, RAB = 100 kΩ  
Rev. D | Page 11 of 24  
AD5258  
Data Sheet  
V
W
1
V
W
1
SCL  
2
SCL  
2
400ns/DIV  
200ns/DIV  
Figure 27. Digital Feedthrough  
Figure 29. Large-Signal Settling Time  
V
W
1
1µs/DIV  
Figure 28. Midscale Glitch, Code 0×7F to Code 0×80  
Rev. D | Page 12 of 24  
Data Sheet  
AD5258  
TEST CIRCUITS  
Figure 30 through Figure 35 illustrate the test circuits that define the test conditions used in the product specification tables.  
V
A
V+ = V  
DD  
1LSB = V+/2  
V+ = V ± 10%  
DD  
DUT  
W
DUT  
W
N
ΔV  
ΔV  
%
%
MS  
A
B
A
B
PSSR (%/%) =  
ΔV  
DD  
DD  
V+  
V+  
V
V
MS  
MS  
Figure 30. Test Circuit for Potentiometer Divider Nonlinearity Error (INL, DNL)  
Figure 33. Test Circuit for Power Supply Sensitivity (PSS, PSSR)  
NO CONNECT  
DUT  
DUT  
+5V  
A
W
I
W
A
V
W
IN  
AD8610  
–5V  
V
B
OUT  
OFFSET  
GND  
B
V
MS  
+2.5V  
Figure 31. Test Circuit for Resistor Position Nonlinearity Error  
(Rheostat Operation; R-INL, R-DNL)  
Figure 34. Test Circuit for Gain vs. Frequency  
0.1V  
R
=
SW  
I
SW  
DUT  
CODE = 0x00  
DUT  
W
I
= V /R  
DD NOMINAL  
W
A
B
V
W
W
I
SW  
0.1V  
V
MS2  
B
R
= [V  
MS1  
– V ]/I  
MS2 W  
W
V
MS1  
GND TO V  
DD  
Figure 32. Test Circuit for Wiper Resistance  
Figure 35. Test Circuit for Common-Mode Leakage Current  
Rev. D | Page 13 of 24  
 
 
 
AD5258  
Data Sheet  
THEORY OF OPERATION  
The AD5258 is a 64-position digitally controlled variable  
resistor (VR) device. The wipers default value prior to pro-  
gramming the EEPROM is midscale.  
Similar to the mechanical potentiometer, the resistance of the  
RDAC between Wiper W and Terminal A produces a digitally  
controlled complementary resistance, RWA. The resistance value  
setting for RWA starts at a maximum value of resistance and  
decreases as the data loaded in the latch increases in value.  
The general equation for this operation is  
PROGRAMMING THE VARIABLE RESISTOR  
Rheostat Operation  
The nominal resistance (RAB) of the RDAC between Terminal A  
and Terminal B is available in 1 kΩ, 10 kΩ, 50 kΩ, and 100 kΩ.  
The nominal resistance of the VR has 64 contact points accessed  
by the wiper terminal. The 6-bit data in the RDAC latch is  
decoded to select one of 64 possible settings.  
64 D  
RWA  
(
D
)
=
× RAB + 2 × RW  
(2)  
64  
Typical device-to-device matching is process lot dependent and  
may vary by up to 30%. For this reason, resistance tolerance is  
stored in the EEPROM such that the user will know the actual  
A
A
A
R
AB within 0.1%.  
W
W
W
PROGRAMMING THE POTENTIOMETER DIVIDER  
B
B
B
Voltage Output Operation  
The digital potentiometer easily generates a voltage divider at  
Wiper W-to-Terminal B and Wiper W-to-Terminal A propor-  
tional to the input voltage at Terminal A-to-Terminal B. Unlike  
the polarity of VDD-to-GND, which must be positive, voltage  
across Terminal A-to-Terminal B, Wiper W-to-Terminal A,  
and Wiper W-to-Terminal B can be at either polarity.  
Figure 36. Rheostat Mode Configuration  
The general equation determining the digitally programmed  
output resistance between Wiper W and Terminal B is  
D
(1)  
RWB  
(
D
)
=
× RAB + 2 × RW  
64  
V
I
where:  
A
D is the decimal equivalent of the binary code loaded in the  
6-bit RDAC register.  
W
V
O
R
R
AB is the end-to-end resistance.  
W is the wiper resistance contributed by the on resistance of  
B
each internal switch.  
Figure 38. Potentiometer Mode Configuration  
A
If ignoring the effect of the wiper resistance for approximation,  
connecting the A terminal to 5 V and the B terminal to ground  
produces an output voltage at Wiper W-to-Terminal B starting  
at 0 V up to 1 LSB less than 5 V. The general equation defining  
the output voltage at VW with respect to ground for any valid  
input voltage applied to Terminal A and Terminal B is  
R
S
D5  
D4  
D3  
D2  
D1  
D0  
R
R
S
S
64 D  
D
64  
W
VW  
(
D
)
=
VA  
+
VB  
(3)  
64  
A more accurate calculation, which includes the effect of wiper  
resistance (VW) is  
R
RDAC  
S
R
WB (D)  
RAB  
R
WA (D)  
RAB  
VW (D) =  
VA  
+
VB  
(4)  
LATCH  
AND  
DECODER  
B
Operation of the digital potentiometer in the divider mode  
results in a more accurate operation over temperature. Unlike  
the rheostat mode, the output voltage is dependent mainly on  
the ratio of internal resistors (RWA and RWB) and not the abso-  
lute values.  
Figure 37. AD5258 Equivalent RDAC Circuit  
Note that in the zero-scale condition, there is a relatively  
low value finite wiper resistance. Care should be taken to  
limit the current flow between Wiper W and Terminal B in  
this state to a maximum pulse current of no more than 20 mA.  
Otherwise, degradation or destruction of the internal switch  
contact may occur.  
Rev. D | Page 14 of 24  
 
 
 
Data Sheet  
AD5258  
I2C INTERFACE  
Note that the wipers default value prior to programming the  
EEPROM is midscale.  
READING  
Assuming the register of interest was not just written to, it is  
necessary to write a dummy address and instruction byte. The  
instruction byte will vary depending on whether the data that  
is wanted is the RDAC register, EEPROM register, or tolerance  
register (see Table 11 to Table 16).  
The master initiates a data transfer by establishing a start con-  
dition when a high-to-low transition on the SDA line occurs  
while SCL is high (see Figure 3). The next byte is the slave  
address byte, which consists of the slave address (first seven bits)  
W
W
followed by an R/ bit (see Table 6). When the R/ bit is high,  
After the dummy address and instruction bytes are sent, a repeat  
start is necessary. After the repeat start, another address byte is  
W
the master reads from the slave device. When the R/ bit is  
low, the master writes to the slave device.  
W
needed, except this time the R/ bit is logic high. Following  
this address byte is the readback byte containing the informa-  
tion requested in the instruction byte. Read bits appear on the  
negative edges of the clock. Don’t cares may be in either a high  
or low state.  
The slave address of the part is determined by two configurable  
address pins, AD0 and AD1. The state of these two pins is regis-  
tered upon power-up and decoded into a corresponding I2C  
7-bit address (see Table 5). The slave address corresponding to  
the transmitted address bits responds by pulling the SDA line  
low during the ninth clock pulse (this is termed the slave  
acknowledge bit).  
The tolerance register can be read back individually (see  
Table 15) or consecutively (see Table 16). Refer to the Read  
Modes section for detailed information on the interpretation  
of the tolerance bytes.  
At this stage, all other devices on the bus remain idle while the  
selected device waits for data to be written to or read from its  
serial register.  
After all data bits have been read or written, a stop condition is  
established by the master. A stop condition is defined as a low-  
to-high transition on the SDA line while SCL is high. In write  
mode, the master pulls the SDA line high during the 10th clock  
pulse to establish a stop condition (see Table 8). In read mode,  
the master issues a no acknowledge for the ninth clock pulse  
(that is, the SDA line remains high). The master then brings the  
SDA line low before the 10th clock pulse and raises SDA high to  
establish a stop condition (see Table 11).  
WRITING  
W
In the write mode, the last bit (R/ ) of the slave address byte is  
logic low. The second byte is the instruction byte. The first three  
bits of the instruction byte are the command bits (see Table 6).  
The user must choose whether to write to the RDAC register or  
EEPROM register or to activate the software write protect (see  
Table 7 to Table 10). The final five bits are all zeros (see Table 13  
and Table 14). The slave again responds by pulling the SDA line  
low during the ninth clock pulse.  
A repeated write function provides the user with the flexibility  
of updating the RDAC output multiple times after addressing  
and instructing the part only once. For example, after the RDAC  
has acknowledged its slave address and instruction bytes in the  
write mode, the RDAC output is updated on each successive  
byte until a stop condition is received. If different instructions  
are needed, the write/read mode must restart with a new slave  
address, instruction, and data byte. Similarly, a repeated read  
function of the RDAC is also allowed.  
The final byte is the data byte MSB first. Don’t cares can be  
left either high or low. In the case of the write protect mode,  
data is not stored; rather, a logic high in the LSB enables write  
protect. Likewise, a logic low disables write protect. The slave  
again responds by pulling the SDA line low during the ninth  
clock pulse.  
STORING/RESTORING  
In this mode, only the address and instruction bytes are nec-  
W
essary. The last bit (R/ ) of the address byte is logic low. The  
first three bits of the instruction byte are the command bits  
(see Table 6). The two choices are transfer data from RDAC-  
to-EEPROM (store) or from EEPROM-to-RDAC (restore).  
The final five bits are all zeros (see Table 13 and Table 14). In  
addition, users should issue an NOP command immediately  
after restoring the EEMEM setting to RDAC, thereby mini-  
mizing supply current dissipation.  
Rev. D | Page 15 of 24  
 
 
 
 
AD5258  
Data Sheet  
I2C BYTE FORMATS  
The following generic, write, read, and store/restore control  
registers for the AD5258 refer to the device addresses listed in  
Table 5, and following is the mode/condition reference key.  
Table 5. Device Address Lookup  
I2 C Device Address  
0011000  
0011010  
1001100  
AD1 Address Pin  
AD0 Address Pin  
0
1
0
1
0
0
1
1
S = Start Condition  
P = Stop Condition  
1001110  
SA = Slave Acknowledge  
MA = Master Acknowledge  
NA = No Acknowledge  
W
= Write  
R = Read  
X = Don’t Care  
AD1 and AD0 are two-state address pins.  
GENERIC INTERFACE  
Table 6. Generic Interface Format  
7-Bit Device Address  
R/  
W
S
(See Table 5)  
SA C2 C1 C0 A4 A3 A2 A1 A0 SA D7 D6 D5 D4 D3 D2 D1 D0 SA  
Instruction Byte Data Byte  
P
Slave Address Byte  
Table 7. RDAC-to-EEPROM Interface Command Descriptions  
C2  
C1  
C0  
Command Description  
Operation between I2C and RDAC  
Operation between I2C and EEPROM  
0
0
0
0
0
1
0
1
0
Operation between I2C and Write Protection Register. See Table 10.  
1
1
1
0
0
1
0
1
0
NOP  
Restore EEPROM to RDAC1  
Store RDAC to EEPROM  
1 This command leaves the device in the EEMEM read power state, which consumes power. Issue the NOP command to return the device to its idle state.  
WRITE MODES  
Table 8. Writing to RDAC Register  
7-Bit Device Address  
S
(See Table 5)  
0
SA  
0
0
0
0
0
0
0
0
SA  
X
X
X
D5 D4 D3 D2 D1 D0 SA  
P
P
Slave Address Byte  
Instruction Byte  
Data Byte  
Table 9. Writing to EEPROM Register  
7-Bit Device Address  
S
(See Table 5)  
0
SA  
0
0
1
0
0
0
0
0
SA  
X
D5  
D4  
D3  
D2  
D1  
D0  
SA  
Slave Address Byte  
Instruction Byte  
Data Byte  
The wipers default value prior to programming the EEPROM is midscale.  
Table 10. Activating/Deactivating Software Write Protect  
7-Bit Device Address  
S
(See Table 5)  
0
SA  
0
1
0
0
0
0
0
0
SA  
0
0
0
0
0
0
0
WP  
SA  
P
Slave Address Byte  
Instruction Byte  
Data Byte  
To activate the write protection mode, the WP bit in Table 10 must be logic high. To deactivate the write protection, the command must  
be resent except with the WP in logic zero state.  
Rev. D | Page 16 of 24  
 
 
 
 
 
 
 
 
 
Data Sheet  
AD5258  
READ MODES  
Read modes are referred to as traditional because the first two  
bytes for all three cases are dummy bytes that function to place  
the pointer toward the correct register. This is the reason for the  
repeat start. In theory, this step can be avoided if the user is  
interested in reading a register that was previously written to.  
For example, if the EEPROM was just written to, the user can  
skip the two dummy bytes and proceed directly to the slave  
address byte followed by the EEPROM readback data.  
Table 11. Traditional Readback of RDAC Register Value  
7-Bit Device Address  
7-Bit Device Address  
S
(See Table 5)  
0 SA 0 0 0 0 0 0 0 0 SA S  
(See Table 5)  
1 SA X X D5 D4 D3 D2 D1 D0 NA P  
Slave Address Byte  
Instruction Byte  
Slave Address Byte  
Read-back Data  
Repeat Start  
Table 12. Traditional Readback of Stored EEPROM Value  
7-Bit Device Address  
7-Bit Device Address  
(See Table 5)  
S
(See Table 5)  
0 SA 0 0 1 0 0 0 0 0 SA  
S
1 SA X X D5 D4 D3 D2 D1 D0 NA P  
Slave Address Byte  
Instruction Byte  
Slave Address Byte  
Read-back Data  
Repeat Start  
STORE/RESTORE MODES  
Table 13. Storing RDAC Value to EEPROM  
7-Bit Device Address  
S
(See Table 5)  
0
SA  
1
1
0
0
0
0
0
0
SA  
P
Slave Address Byte  
Instruction Byte  
Table 14. Restoring EEPROM to RDAC1  
7-Bit Device Address  
S
(See Table 5)  
0
SA  
1
0
1
0
0
0
0
0
SA  
P
Slave Address Byte  
Instruction Byte  
1 User should issue an NOP command immediately after this command to conserve power.  
Rev. D | Page 17 of 24  
 
 
 
 
 
AD5258  
Data Sheet  
TOLERANCE READBACK MODES  
Table 15. Traditional Readback of Tolerance (Individually)  
7-Bit Device Address  
7-Bit Device Address  
(See Table 5)  
(See Table 5)  
S
0 SA 0 0 1 1 1 1 1 0 SA S  
1 SA D7 D6 D5 D4 D3 D2 D1 D0 NA P  
Slave Address Byte  
Instruction Byte  
Slave Address Byte  
Sign + Integer Byte  
Repeat Start  
7-Bit Device Address  
(See Table 5)  
7-Bit Device Address  
(See Table 5)  
S
0 SA 0 0 1 1 1 1 1 1 SA S  
1 SA D7 D6 D5 D4 D3 D2 D1 D0 NA P  
Slave Address Byte  
Instruction Byte  
Slave Address Byte  
Decimal Byte  
Repeat Start  
Table 16. Traditional Readback of Tolerance (Consecutively)  
7-Bit Device Address  
7-Bit Device Address  
S
(See Table 5)  
0 SA 0 0 1 1 1 1 1 0 SA S  
(See Table 5)  
1 SA D7 D6 D5 D4 D3 D2 D1 D0 MA D7 D6 D5 D4 D3 D2 D1 D0 NA P  
Slave Address Byte  
Instruction Byte  
Slave Address Byte  
Sign + Integer Byte  
Decimal Byte  
Repeat Start  
Calculating RAB Tolerance Stored in Read-Only Memory  
A
A
A
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
–6  
D1  
–7  
D0  
–8  
6
5
4
3
2
1
0
–1  
2
–2  
2
–3  
2
–4  
2
–5  
2
SIGN  
2
2
2
2
2
2
2
2
2
2
SIGN  
SEVEN BITS FOR AN INTEGER NUMBER  
EIGHT BITS FORA DECIMAL NUMBER  
Figure 39. Format of Stored Tolerance in Sign Magnitude Format with Bit Position Descriptions  
(Unit is Percent; Only Data Bytes are Shown)  
The AD5258 features a patented RAB tolerance storage in the  
nonvolatile memory. Tolerance is stored in the memory during  
factory production and can be read by users at any time. The  
knowledge of stored tolerance allows users to accurately calcu-  
late RAB. This feature is valuable for precision, rheostat mode,  
and open-loop applications where knowledge of absolute  
resistance is critical.  
In the first memory location, the MSB is designated for the sign  
(0 = + and 1 = −) and the seven LSBs are designated for the integer  
portion of the tolerance. In the second memory location, all eight  
data bits are designated for the decimal portion of tolerance. Note  
that the decimal portion has a limited accuracy of only 0.1%. For  
example, if the rated RAB = 10 kΩ and the data readback from  
Address 11110 shows 0001 1100 and from Address 11111 shows  
0000 1111, the tolerance can be calculated as  
The stored tolerance resides in the read-only memory and is  
expressed as a percentage. The tolerance is stored in two memory  
location bytes in sign magnitude binary form (see Figure 39). The  
two EEPROM address bytes are 11110 (sign + integer) and 11111  
(decimal number). The two bytes can be individually accessed  
with two separate commands (see Table 15). Alternatively, read-  
back of the first byte followed by the second byte can be done  
in one command (see Table 16). In the latter case, the memory  
pointer automatically increments from the first to the second  
EEPROM location (increments from 11110 to 11111) if read  
consecutively.  
MSB: 0 = +  
Next 7 MSB: 001 1100 = 28  
8 LSB: 0000 1111 = 15 × 2–8 = 0.06  
Tolerance = 28.06%  
Rounded Tolerance = 28.1% and therefore  
RAB_ACTUAL = 12.810 kΩ  
Rev. D | Page 18 of 24  
 
 
 
 
Data Sheet  
AD5258  
of powering VA, VB, VW and the digital inputs is not important  
ESD PROTECTION OF DIGITAL PINS AND  
RESISTOR TERMINALS  
as long as they are powered after GND, VDD, and VLOGIC  
.
The AD5258 VDD, VLOGIC, and GND power supplies define the  
boundary conditions for proper 3-terminal and digital input  
operation. Supply signals present on Terminal A, Terminal B,  
and Terminal W that exceed VDD or GND are clamped by the  
internal forward-biased ESD protection diodes (see Figure 40).  
Digital Input SCL and Digital Input SDA are clamped by ESD  
protection diodes with respect to VLOGIC and GND as shown in  
Figure 41.  
LAYOUT AND POWER SUPPLY BYPASSING  
It is good practice to employ compact, minimum lead length  
layout design. The leads to the inputs should be as direct as  
possible with minimum conductor length. Ground paths  
should have low resistance and low inductance.  
Similarly, it is also good practice to bypass the power supplies  
with quality capacitors for optimum stability. Supply leads to  
the device should be bypassed with disc or chip ceramic capaci-  
tors of 0.01 µF to 0.1 µF. In addition, low ESR 1 µF to 10 µF  
tantalum or electrolytic capacitors should be applied at the  
supplies to minimize any transient disturbance and low fre-  
quency ripple (see Figure 42). As well, the digital ground  
should be joined remotely to the analog ground at one point  
to minimize the ground bounce.  
V
DD  
A
W
B
GND  
Figure 40. Maximum Terminal Voltages Set by VDD and GND  
V
V
DD  
DD  
+
C2  
10µF  
C1  
0.1µF  
V
LOGIC  
AD5258  
SCL  
SDA  
GND  
GND  
Figure 42. Power Supply Bypassing  
Figure 41. Maximum Terminal Voltages Set by VLOGIC and GND  
MULTIPLE DEVICES ON ONE BUS  
POWER-UP SEQUENCE  
The AD5258 has two configurable address pins, AD0 and AD1.  
The state of these two pins is registered upon power-up and  
decoded into a corresponding I2C-compatible 7-bit address (see  
Table 5). This allows up to four devices on the bus to be written  
to or read from independently.  
Because the ESD protection diodes limit the voltage compliance  
at Terminal A, Terminal B, and Terminal W (see Figure 40), it is  
important to power GND/VDD/VLOGIC before applying any volt-  
age to Terminal A, Terminal B, and Terminal W; otherwise, the  
diode is forward-biased such that VDD and VLOGIC are powered  
unintentionally and may affect the users circuit. The ideal  
power-up sequence is in the following order: GND, VDD  
,
V
LOGIC, digital inputs, and then VA, VB, VW. The relative order  
Rev. D | Page 19 of 24  
 
 
 
 
 
 
 
AD5258  
Data Sheet  
DISPLAY APPLICATIONS  
affect that node’s bias because it is only on the order of  
CIRCUITRY  
microamps. VLOGIC is tied to the microcontrollers (MCU) 3.3 V  
digital supply because VLOGIC will draw the 35 mA that is needed  
when writing to the EEPROM. It would be impractical to try to  
source 35 mA through the 70 kΩ resistor; therefore, VLOGIC is  
A special feature of the AD5258 is its unique separation of  
the VLOGIC and VDD supply pins. The reason for doing this is  
to provide greater flexibility in applications that do not always  
provide the needed supply voltages.  
not connected to the same node as VDD  
.
In particular, LCD panels often require a VCOM voltage in  
the range of 3 V to 5 V. The circuit in Figure 43 is the rare  
exception in which a 5 V supply is available to power the  
digital potentiometer.  
For this reason, VLOGIC and VDD are provided as two separate  
supply pins that can either be tied together or treated inde-  
pendently; VLOGIC supplies the logic/EEPROM with power, and  
V
DD biases up the A, B, and W terminals for added flexibility.  
SUPPLIES POWER  
VCC (~3.3V)  
14.4V  
TO BOTH THE MCU  
AND THE LOGIC  
SUPPLY OF THE  
DIGITAL  
VCC (~3.3V)  
5V  
14.4V  
R1  
70kΩ  
R1  
POTENTIOMETER  
70kΩ  
C1  
1µF  
C1  
1µF  
AD5258  
AD5258  
R6  
R5  
R6  
R5  
V
V
DD  
10kΩ 10kΩ  
V
V
DD  
10kΩ 10kΩ  
U1  
AD8565  
U1  
AD8565  
LOGIC  
LOGIC  
R2  
10kΩ  
R2  
A
A
3.5V < V  
COM  
< 4.5V  
10kΩ  
SCL  
SDA  
GND  
3.5V < V  
COM  
< 4.5V  
+
SCL  
SDA  
GND  
+
MCU  
W
MCU  
W
B
B
R3  
25kΩ  
R3  
25kΩ  
Figure 44. Circuitry When a Separate Supply Is Not Available for VDD  
Figure 43. VCOM Adjustment Application  
For a more detailed look at this application, refer to the article,  
“Simple VCOM Adjustment uses any Logic-Supply Voltage” in the  
September 30, 2004, issue of EDN magazine.  
More commonly, only analog 14.4 V and digital logic 3.3 V sup-  
plies are available (see Figure 44). By placing discrete resistors  
above and below the digital potentiometer, VDD can be tapped  
off the resistor string itself. Based on the chosen resistor values,  
the voltage at VDD in this case equals 4.8 V, allowing the wiper to  
be safely operated up to 4.8 V. The current draw of VDD will not  
Rev. D | Page 20 of 24  
 
 
 
 
Data Sheet  
AD5258  
OUTLINE DIMENSIONS  
3.10  
3.00  
2.90  
10  
1
6
5
5.15  
4.90  
4.65  
3.10  
3.00  
2.90  
PIN 1  
IDENTIFIER  
0.50 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.70  
0.55  
0.40  
0.15  
0.05  
0.23  
0.13  
6°  
0°  
0.30  
0.15  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-BA  
Figure 45. 10-Lead Mini Small Outline Package [MSOP]  
(RM-10)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
RAB (kΩ)  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description2  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
Evaluation Board  
Package Option  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
Branding  
D4K  
D4K  
D4L  
D4L  
D4M  
D4M  
D4N  
AD5258BRMZ1  
1
1
AD5258BRMZ1-R7  
AD5258BRMZ10  
AD5258BRMZ10-R7  
AD5258BRMZ50  
AD5258BRMZ50-R7  
AD5258BRMZ100  
AD5258BRMZ100-R7  
EVAL-AD5258DBZ  
10  
10  
50  
50  
100  
100  
D4N  
1 Z = RoHS Compliant Part.  
2 The evaluation board is shipped with the 10 kΩ RAB resistor option; however, the board is compatible with all available resistor value options.  
Rev. D | Page 21 of 24  
 
 
 
AD5258  
NOTES  
Data Sheet  
Rev. D | Page 22 of 24  
Data Sheet  
NOTES  
AD5258  
Rev. D | Page 23 of 24  
AD5258  
NOTES  
Data Sheet  
I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).  
©2005–2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05029-0-1/13(D)  
Rev. D | Page 24 of 24  

相关型号:

AD5258BRMZ10-R71

Nonvolatile, I2C-Compatible 64-Position, Digital Potentiometer
ADI

AD5258BRMZ100

Nonvolatile, I2C-Compatible 64-Position, Digital Potentiometer
ADI

AD5258BRMZ100-R7

Nonvolatile, I2C-Compatible 64-Position, Digital Potentiometer
ADI

AD5258BRMZ100-R71

Nonvolatile, I2C-Compatible 64-Position, Digital Potentiometer
ADI

AD5258BRMZ100-RL7

IC 100K DIGITAL POTENTIOMETER, 2-WIRE SERIAL CONTROL INTERFACE, 64 POSITIONS, PDSO10, LEAD FREE, MO-187-BA, MSOP-10, Digital Potentiometer
ADI

AD5258BRMZ1001

Nonvolatile, I2C-Compatible 64-Position, Digital Potentiometer
ADI

AD5258BRMZ101

Nonvolatile, I2C-Compatible 64-Position, Digital Potentiometer
ADI

AD5258BRMZ11

Nonvolatile, I2C-Compatible 64-Position, Digital Potentiometer
ADI

AD5258BRMZ50

Nonvolatile, I2C-Compatible 64-Position, Digital Potentiometer
ADI

AD5258BRMZ50-R7

Nonvolatile, I2C-Compatible 64-Position, Digital Potentiometer
ADI

AD5258BRMZ50-R71

Nonvolatile, I2C-Compatible 64-Position, Digital Potentiometer
ADI

AD5258BRMZ501

Nonvolatile, I2C-Compatible 64-Position, Digital Potentiometer
ADI