AD5292SRUZ-20-EP [ADI]

Single Channel, 1024-Position, 1% R-Tol, Digital Potentiometer with 20-Times Programmable Memory;
AD5292SRUZ-20-EP
型号: AD5292SRUZ-20-EP
厂家: ADI    ADI
描述:

Single Channel, 1024-Position, 1% R-Tol, Digital Potentiometer with 20-Times Programmable Memory

光电二极管 转换器 电阻器
文件: 总16页 (文件大小:491K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1024-Position, Digital Potentiometer with  
Maximum 1ꢀ ꢁ-ꢂoleranꢃe ꢄrror anꢅ 20-ꢂP Memorꢆ  
Data Sheet  
AD5292-ꢄP  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
V
RESET  
DD  
Single-channel, 1024-position resolution  
20 kΩ nominal resistance  
Maximum 1ꢀ nominal resistor tolerance error (resistor  
performance mode)  
20-times programmable wiper memory  
Rheostat mode temperature coefficient: 35 ppm/°C  
Voltage divider temperature coefficient: 5 ppm/°C  
+9 V to +33 V single-supply operation  
9 V to 16.5 V dual-supply operation  
SPI-compatible serial interface  
POWER-ON  
RESET  
AD5292-EP  
V
LOGIC  
RDAC  
REGISTER  
SCLK  
SYNC  
A
DATA  
SERIAL  
INTERFACE  
W
OTP  
MEMORY  
BLOCK  
DIN  
B
Wiper setting readback  
SDO  
Power-on refreshed from 20-TP memory  
RDY  
ENHANCED PRODUCT FEATURES  
V
EXT_CAP  
GND  
SS  
Supports defense and aerospace applications (AQEC)  
Temperature range: −55°C to +125°C  
Controlled manufacturing baseline  
1 assembly/test site  
Figure 1.  
1 fabrication site  
Enhanced product change notification  
Qualification data available on request  
APPLICATIONS  
Mechanical potentiometer replacement  
Instrumentation: gain and offset adjustment  
Programmable voltage-to-current conversion  
Programmable filters, delays, and time constants  
Programmable power supply  
Low resolution DAC replacement  
Sensor calibration  
GENERAL DESCRIPTION  
The AD5292-EP is a single-channel, 1024-position digital  
potentiometer1 that combines industry leading variable resistor  
performance with nonvolatile memory (NVM) in a compact  
package. This device is capable of operating across a wide voltage  
range, supporting both dual supply operation at 10.5 V to 1ꢀ.5  
V and single-supply operation at +21 V to +33 V, while ensuring  
less than 1% end-to-end resistor tolerance error and offering 20-  
time programmable (20-TP) memory.  
The AD5292-EP device wiper settings are controllable through  
the SPI digital interface. Unlimited adjustments are allowed  
before programming the resistance value into the 20-TP memory.  
The AD5292-EP does not require any external voltage supply  
to facilitate fuse blow, and there are 20 opportunities for perma-  
nent programming. During 20-TP activation, a permanent blow  
fuse command freezes the wiper position (analogous to placing  
epoxy on a mechanical trimmer).  
The guaranteed industry leading low resistor tolerance error  
feature simplifies open-loop applications as well as precision  
calibration and tolerance matching applications.  
The AD5292-EP is available in a compact 14-lead TSSOP  
package. The part is guaranteed to operate over the extended  
industrial temperature range of −55°C to +125°C.  
Additional application and technical information can be found  
in the AD5292 data sheet.  
1 The terms digital potentiometer and RDAC are used interchangeably.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2011 Analog Devices, Inc. All rights reserved.  
 
AD5292-ꢄP  
Data Sheet  
ꢂABLꢄ OF CONꢂꢄNꢂS  
Features .............................................................................................. 1  
Interface Timing Specifications...................................................5  
Absolute Maximum Ratings ............................................................7  
Thermal Resistance.......................................................................7  
ESD Caution...................................................................................7  
Pin Configuration and Function Descriptions..............................8  
Typical Performance Characteristics ..............................................9  
Test Circuits..................................................................................... 14  
Outline Dimensions....................................................................... 15  
Ordering Guide .......................................................................... 15  
Enhanced Product Features ............................................................ 1  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics—AD5292-EP.................................... 3  
Resistor Performance Mode Code Range ................................. 4  
REVISION HISTORY  
9/11—Revision 0: Initial Version  
Rev. 0 | Page 2 of 16  
 
Data Sheet  
AD5292-ꢄP  
SPꢄCIFICAꢂIONS  
ELECTRICAL CHARACTERISTICS—AD5292-EP  
VDD = 21 V to 33 V, VSS = 0 V; VDD = 10.5 V to 1ꢀ.5 V, VSS = −10.5 V to −1ꢀ.5 V; VLOGIC = 2.7 V to 5.5 V, VA = VDD, VB = VSS,  
−55°C < TA < +125°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Conditions  
Min  
Typ1  
Max  
Unit  
DC CHARACTERISTICS—RHEOSTAT MODE  
Resolution  
Resistor Differential Nonlinearity2  
Resistor Integral Nonlinearity2  
N
10  
−1  
−2  
−3  
−1  
Bits  
LSB  
LSB  
LSB  
%
R-DNL  
R-INL  
R-INL  
∆RAB/RAB  
∆RAB/RAB  
RWB, VA = NC  
+1  
+2  
+3  
+1  
RAB =20 kΩ, |VDD − VSS| = 26 V to 33 V  
RAB =20 kΩ, |VDD − VSS| = 21 V to 26 V  
See Table 2  
Nominal Resistor Tolerance (R-Perf Mode)3  
±0.5  
±±  
Nominal Resistor Tolerance (Normal  
Mode)4  
%
Resistance Temperature Coefficient  
Wiper Resistance  
(∆RAB/RAB)/∆T × 106  
RW  
Code = full scale; see Figure 14  
Code= zero scale  
35  
60  
ppm/°C  
Ω
100  
DC CHARACTERISTICS—POTENTIOMETER  
DIVIDER MODE  
Resolution  
N
10  
Bits  
Differential Nonlinearity5  
Integral Nonlinearity5  
Voltage Divider Temperature Coefficient4  
Full-Scale Error  
DNL  
−1  
+1  
LSB  
INL  
−2.5  
+2.5  
LSB  
(∆VW/VW)/∆T × 106  
Code = half scale; see Figure 1±  
Code = full scale  
5
ppm/°C  
LSB  
VWFSE  
VWZSE  
−8  
0
+1  
10  
Zero-Scale Error  
Code = zero scale  
LSB  
RESISTOR TERMINALS  
Terminal Voltage Range6  
Capacitance A, Capacitance B4  
VA, VB, VW  
CA, CB  
VSS  
VDD  
V
f = 1 MHz, measured to GND,  
code = half scale  
85  
65  
±1  
pF  
Capacitance W4  
CW  
ICM  
f = 1 MHz, measured to GND,  
code = half scale  
pF  
Common-Mode Leakage Current4  
DIGITAL INPUTS  
Input Logic High4  
Input Logic Low4  
VA = VB = VW  
−120  
2.0  
120  
nA  
JEDEC compliant  
VLOGIC = 2.± V to 5.5 V  
VLOGIC = 2.± V to 5.5 V  
VIN = 0 V or VLOGIC  
VIH  
VIL  
IIL  
V
0.8  
±1  
V
Input Current  
Input Capacitance4  
μA  
pF  
CIL  
5
5
DIGITAL OUTPUTS (SDO and RDY)  
Output High Voltage4  
Output Low Voltage4  
Three-State Leakage Current  
Output Capacitance4  
POWER SUPPLIES  
VOH  
VOL  
RPULL_UP = 2.2 kΩ to VLOGIC  
RPULL_UP = 2.2 kΩ to VLOGIC  
VLOGIC − 0.4  
−1  
V
GND + 0.4  
+1  
V
μA  
pF  
COL  
Single-Supply Power Range  
Dual-Supply Power Range  
Positive Supply Current  
Negative Supply Current  
Logic Supply Range  
VDD  
VSS = 0 V  
9
33  
V
VDD/VSS  
IDD  
±9  
±16.5  
2
V
VDD/VSS = ±16.5 V  
VDD/VSS = ±16.5 V  
0.1  
μA  
μA  
V
ISS  
−2  
−0.1  
VLOGIC  
ILOGIC  
2.±  
5.5  
10  
Logic Supply Current  
OTP Store Current4, ±  
OTP Read Current4, 8  
VLOGIC = 5 V, VIH = 5 V or VIL = GND  
VIH = 5 V or VIL = GND  
1
μA  
mA  
mA  
μW  
%/%  
ILOGIC_PROG  
ILOGIC_FUSE_READ  
PDISS  
25  
25  
8
VIH = 5 V or VIL = GND  
Power Dissipation9  
VIH = 5 V or VIL = GND  
110  
Power Supply Rejection Ratio  
PSRR  
∆VDD/∆VSS = ±15 V ± 10%  
0.103  
Rev. 0 | Page 3 of 16  
 
 
 
 
 
AD5292-ꢄP  
Data Sheet  
Parameter  
DYNAMIC CHARACTERISTICS5, 10  
Symbol  
Conditions  
Min  
Typ1  
Max  
Unit  
Bandwidth  
BW  
THDW  
tS  
−3 dB  
520  
−93  
kHz  
dB  
Total Harmonic Distortion  
VW Settling Time  
VA = 1 V rms, VB = 0 V, f = 1 kHz  
VA = 30 V, VB = 0 V, ±0.5 LSB error  
band, initial code = zero scale, board  
capacitance = 1±0 pF  
Code = full-scale, normal mode  
Code = full-scale, R-Perf mode  
Code = half-scale, normal mode  
Code = half-scale, R-Perf mode  
±50  
2.5  
2.5  
5
ns  
μs  
μs  
μs  
Resistor Noise Density  
eN_WB  
Code = half-scale, TA = 25°C, 0 kHz to  
200 kHz  
10  
nV/√Hz  
1 Typical values represent average readings at 25°C, VDD = 15 V, VSS = −15 V, and VLOGIC = 5 V.  
2 Resistor position nonlinearity error. R-INL is the deviation from an ideal value measured between RWB at Code 0x00B and Code 0x3FF or between RWA at Code 0x3F3  
and Code 0x000. R-DNL measures the relative step change from ideal between successive tap positions. The specification is guaranteed in resistor performance mode,  
with a wiper current of 1 mA for VA < 12 V and 1.2 mA for VA ≥ 12 V.  
3 Resistor performance mode. The terms resistor performance mode and R-Perf mode are used interchangeably.  
4 Guaranteed by design and characterization, not subject to production test.  
5 INL and DNL are measured at VW with the RDAC configured as a potentiometer divider similar to a voltage output DAC. VA = VDD and VB = 0 V. DNL specification limits  
of ±1 LSB maximum are guaranteed monotonic operating conditions.  
6 Resistor Terminal A, Resistor Terminal B, and Resistor Terminal W have no limitations on polarity with respect to each other. Dual-supply operation enables ground-  
referenced bipolar signal adjustment.  
± Different from operating current; supply current for fuse program lasts approximately 550 μs.  
8 Different from operating current; supply current for fuse read lasts approximately 550 μs.  
9 PDISS is calculated from (IDD × VDD) + (ISS × VSS) + (ILOGIC × VLOGIC).  
10 All dynamic characteristics use VDD = 15 V, VSS = −15 V, and VLOGIC = 5 V.  
RESISTOR PERFORMANCE MODE CODE RANGE  
Table 2.  
−55°C < TA < +125°C  
Resistor  
Tolerance per  
Code  
|VDD − VSS| = 30 V to 33 V  
RWB RWA  
From 0x1EF From 0x000 From 0x1F4 From 0x000 From 0x1F4 From 0x000 N/A  
to 0x3FF to 0x210 to 0x3FF to 0x20B to 0x3FF to 0x20B  
From 0x0C3 From 0x000 From 0x0E6 From 0x000 From 0x131 From 0x000 From 0x131 From 0x000  
to 0x3FF to 0x33C to 0x3FF to 0x319 to 0x3FF to 0x2CE to 0x3FF to 0x2CE  
From 0x0±3 From 0x000 From 0x08± From 0x000 From 0x0AF From 0x000 From 0x0AF From 0x000  
|VDD − VSS| = 26 V to 30 V  
|VDD − VSS| = 22 V to 26 V  
|VDD − VSS| = 21 V to 22 V  
RWB RWA  
RWB RWA  
RWB  
RWA  
1% R-Tolerance  
2% R-Tolerance  
3% R-Tolerance  
N/A  
to 0x3FF  
to 0x38C  
to 0x3FF  
to 0x3±8  
to 0x3FF  
to 0x350  
to 0x3FF  
to 0x350  
Rev. 0 | Page 4 of 16  
 
 
Data Sheet  
AD5292-ꢄP  
INTERFACE TIMING SPECIFICATIONS  
VDD/VSS  
= 15 V, VLOGIC = 2.7 V to 5.5 V, 55°C < TA < +125°C. All specifications TMIN to TMAX, unless otherwise noted.  
Table 3.  
Parameter  
Limit1  
20  
10  
10  
10  
5
5
1
4003  
14  
1
Unit  
Description  
2
t1  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns max  
SCLK cycle time  
SCLK high time  
SCLK low time  
SYNC to SCLK falling edge setup time  
Data setup time  
t2  
t3  
t4  
t5  
t6  
t±  
t8  
t9  
Data hold time  
SCLK falling edge to SYNC rising edge  
Minimum SYNC high time  
SYNC rising edge to next SCLK fall ignore  
RDY rising edge to SYNC falling edge  
SYNC rising edge to RDY fall time  
4
t10  
4
t11  
40  
4
t12  
2.4  
410  
8
μs max  
ns max  
ms max  
ms min  
ns max  
ms max  
ns max  
ns min  
ms max  
RDY low time, RDAC register write command execute time (R-Perf mode)  
RDY low time, RDAC register write command execute time (normal mode)  
RDY low time, memory program execute time  
Software/hardware reset  
4
t12  
4
t12  
4
t12  
1.5  
450  
1.3  
450  
20  
4
t13  
RDY low time, RDAC register readback execute time  
RDY low time, memory readback execute time  
SCLK rising edge to SDO valid  
4
t13  
4
t14  
tRESET  
Minimum RESET pulse width (asynchronous)  
Power-on OTP restore time  
5
tPOWER-UP  
2
1 All input signals are specified with tR = tF = 1 ns/V (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2.  
2 Maximum SCLK frequency is 50 MHz.  
3 Refer to t12 and t13 for RDAC register and memory commands operations.  
4 RPULL_UP = 2.2 kΩ to VLOGIC, with a capacitance load of 168 pF.  
5 Maximum time after VLOGIC is equal to 2.5 V.  
DB9 (MSB)  
DB0 (LSB)  
C3  
C1  
C0  
D9  
D7  
D6  
D5  
D4  
D3  
D0  
0
0
C2  
D8  
D2  
D1  
DATA BITS  
CONTROL BITS  
Figure 2. Shift Register Content  
Rev. 0 | Page 5 of 16  
 
 
AD5292-ꢄP  
Timing Diagrams  
t4  
Data Sheet  
t7  
t2  
t1  
SCLK  
t9  
t3  
t8  
SYNC  
t5  
t6  
D7  
DIN  
D6  
D2  
X
X
C3  
C2  
D1  
D0  
SDO  
t11  
t10  
t12  
RDY  
tRESET  
RESET  
Figure 3. Write Timing Diagram, CPOL = 0, CPHA = 1  
SCLK  
SYNC  
t9  
DIN  
X
X
X
C3  
D0  
X
D0  
C3  
D1  
D0  
t14  
C3  
SDO  
RDY  
X
X
D1  
D0  
t11  
t13  
Figure 4. Read Timing Diagram, CPOL = 0, CPHA = 1  
Rev. 0 | Page 6 of 16  
Data Sheet  
AD5292-ꢄP  
ABSOLUꢂꢄ MAXIMUM ꢁAꢂINGS  
TA = 25°C, unless otherwise noted.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 4.  
Parameter  
Rating  
VDD to GND  
VSS to GND  
VLOGIC to GND  
VDD to VSS  
−0.3 V to +35 V  
+0.3 V to −25 V  
−0.3 V to +± V  
35 V  
VSS − 0.3 V, VDD + 0.3 V  
−0.3 V to VLOGIC + 0.3 V  
−0.3 V to +± V  
VA, VB, VW to GND  
THERMAL RESISTANCE  
Digital Input and Output Voltage to GND  
EXT_CAP Voltage to GND  
IA, IB, IW  
Continuous  
Pulsed1  
Frequency > 10 kHz  
Frequency ≤ 10 kHz  
Operating Temperature Range3  
Maximum Junction Temperature (TJ max)  
Storage Temperature Range  
Reflow Soldering  
Peak Temperature  
Time at Peak Temperature  
Package Power Dissipation  
θJA is defined by JEDEC specification JESD-51 and the value is  
dependent on the test board and test environment.  
±3 mA  
Table 5. Thermal Resistance  
±3/d2  
±3/√d2  
−55°C to +125°C  
150°C  
−65°C to +150°C  
Package Type  
θJA  
931  
θJC  
Unit  
14-Lead TSSOP  
20  
°C/W  
1 JEDEC 2S2P test board, still air (0 m/sec to 1 m/sec air flow).  
ESD CAUTION  
260°C  
20 sec to 40 sec  
(TJ max − TA)/θJA  
1 Maximum terminal current is bounded by the maximum current handling of  
the switches, maximum power dissipation of the package, and maximum  
applied voltage across any two of the A, B, and W terminals at a given  
resistance.  
2 Pulse duty factor.  
3 Includes programming of OTP memory.  
Rev. 0 | Page ± of 16  
 
 
 
 
AD5292-ꢄP  
Data Sheet  
PIN CONFIGUꢁAꢂION AND FUNCꢂION DꢄSCꢁIPꢂIONS  
RESET  
1
2
3
4
5
6
7
14 RDY  
V
13  
SDO  
SS  
A
W
B
12  
SYNC  
AD5292-EP  
11 SCLK  
10 DIN  
TOP VIEW  
(Not to Scale)  
V
9
8
GND  
DD  
EXT_CAP  
V
LOGIC  
Figure 5. Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No. Mnemonic Description  
1
RESET  
Hardware Reset Pin. Refreshes the RDAC register with the contents of the 20-TP memory register. Factory  
default loads midscale until the first 20-TP wiper memory location is programmed. RESET is activated at the  
logic high transition. Tie RESET to VLOGIC if not used.  
2
VSS  
Negative Supply. Connect to 0 V for single-supply applications. This pin should be decoupled with 0.1 μF  
ceramic capacitors and 10 μF capacitors.  
3
4
5
6
±
8
A
W
B
VDD  
EXT_CAP  
VLOGIC  
Terminal A of RDAC. VSS ≤ VA ≤ VDD.  
Wiper Terminal of RDAC. VSS ≤ VW ≤ VDD.  
Terminal B of RDAC. VSS ≤ VB ≤ VDD.  
Positive Power Supply. This pin should be decoupled with 0.1 μF ceramic capacitors and 10 μF capacitors.  
External Capacitor. Connect a 1 μF capacitor to EXT_CAP. This capacitor must have a voltage rating of ≥± V.  
Logic Power Supply; 2.± V to 5.5 V. This pin should be decoupled with 0.1 μF ceramic capacitors and 10 μF  
capacitors.  
9
10  
GND  
DIN  
Ground Pin, Logic Ground Reference.  
Serial Data Input. The AD5292-EP has a 16-bit shift register. Data is clocked into the register on the falling edge  
of the serial clock input.  
11  
12  
SCLK  
SYNC  
Serial Clock Input. Data is clocked into the shift register on the falling edge of the serial clock input. Data can be  
transferred at rates up to 50 MHz.  
Falling Edge Synchronization Signal. This is the frame synchronization signal for the input data. When SYNC  
goes low, it enables the shift register and data is transferred in on the falling edges of the following clocks. The  
selected register is updated on the rising edge of SYNC following the 16th clock cycle. If SYNC is taken high  
before the 16th clock cycle, the rising edge of SYNC acts as an interrupt, and the write sequence is ignored by  
the DAC.  
13  
14  
SDO  
RDY  
Serial Data Output. This open-drain output requires an external pull-up resistor. SDO can be used to clock data  
from the shift register in daisy-chain mode or in readback mode.  
Ready Pin. This active-high open-drain output identifies the completion of a write or read operation to or from  
the RDAC register or memory.  
Rev. 0 | Page 8 of 16  
 
Data Sheet  
AD5292-ꢄP  
ꢂYPICAL PꢄꢁFOꢁMANCꢄ CHAꢁACꢂꢄꢁISꢂICS  
1.0  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
–40°C  
+25°C  
0.8  
0.6  
+105°C  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.1  
–0.2  
–0.3  
+105°C  
768  
+25°C  
512  
CODE (Decimal)  
–40°C  
0
128  
256  
384  
512  
640  
768  
896  
1023  
0
128  
256 384  
640  
896  
1023  
CODE (Decimal)  
Figure 6. R-INL in R-Perf Mode vs. Code  
Figure 9. R-DNL in R-Perf Mode vs. Code  
1.5  
1.0  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0
–0.5  
–1.0  
–1.5  
–0.1  
–0.2  
+105°C  
768  
+25°C  
512  
CODE (Decimal)  
+105°C  
768  
–40°C  
+25°C  
512  
CODE (Decimal)  
–40°C  
0
128  
256 384  
640  
896  
1023  
0
128  
256 384  
640  
896  
1023  
Figure 7. INL in R-Perf Mode vs. Code  
Figure 10. DNL in R-Perf Mode vs. Code  
1.0  
0.8  
0.15  
0.10  
0.05  
0
0.6  
0.4  
0.2  
–0.05  
–0.10  
–0.15  
–0.20  
0
–0.2  
–0.4  
–0.6  
+105°C  
768  
+105°C  
768  
+25°C  
512  
CODE (Decimal)  
+25°C  
512  
CODE (Decimal)  
–40°C  
–40°C  
0
128  
256 384  
640  
896  
1023  
0
128  
256 384  
640  
896  
1023  
Figure 8. R-INL in Normal Mode vs. Code  
Figure 11. R-DNL in Normal Mode vs. Code  
Rev. 0 | Page 9 of 16  
 
AD5292-ꢄP  
Data Sheet  
0.8  
0.10  
0.05  
–40°C  
+25°C  
+105°C  
–40°C  
+25°C  
+105°C  
0.6  
0.4  
0
0.2  
0
–0.05  
–0.10  
–0.15  
–0.20  
–0.2  
–0.4  
–0.6  
–0.8  
0
128  
256  
384  
512  
640  
768  
896  
1023  
0
128  
256  
384  
512  
640  
768  
896  
1023  
CODE (Decimal)  
CODE (Decimal)  
Figure 15. DNL in Normal Mode vs. Code  
Figure 12. INL in Normal Mode vs. Code  
450  
0.20  
0.18  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
V
V
/V = ±15V  
DD SS  
V
= ±15V  
DD  
= +5V  
LOGIC  
400  
350  
300  
250  
200  
150  
100  
50  
I
LOGIC  
I
DD  
0
I
SS  
–50  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90 100  
TEMPERATURE (°C)  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
DIGITAL INPUT VOLTAGE (V)  
Figure 16. Supply Current ILOGIC vs. Digital Input Voltage  
Figure 13. Supply Current (IDD, ISS, ILOGIC) vs. Temperature  
700  
600  
500  
400  
300  
200  
100  
0
700  
600  
500  
400  
300  
200  
100  
0
V
V
= 30V  
= 0V  
V
V
= 30V  
= 0V  
DD  
SS  
DD  
SS  
0
256  
512  
768  
1023  
0
256  
512  
768  
1023  
CODE (Decimal)  
CODE (Decimal)  
Figure 14. Rheostat Mode Tempco ΔRWB/ΔT vs. Code  
Figure 17. Potentiometer Mode Tempco ΔRWB/ΔT vs. Code  
Rev. 0 | Page 10 of 16  
 
 
Data Sheet  
AD5292-ꢄP  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
0x200  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
0x100  
0x080  
0x040  
0x020  
0x010  
0x008  
0x004  
0x002  
0x001  
100  
10  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 21. Power Supply Rejection Ratio vs. Frequency  
Figure 18. 20 kΩ Gain vs. Frequency vs. Code  
0
0
–15  
V
/V = ±15V  
V
/V = ±15V,  
DD SS  
DD SS  
CODE = HALF SCALE  
= 1V rms  
CODE = HALF SCALE  
fIN = 1kHz  
NOISE BW = 22kHz  
V
–20  
–40  
IN  
NOISE BW = 22kHz  
–30  
–45  
–60  
–60  
–80  
–75  
–100  
–120  
–140  
–90  
–105  
–120  
0.001  
0.01  
0.1  
AMPLITUDE (V rms)  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 22. THD + Noise vs. Amplitude  
Figure 19. THD + Noise vs. Frequency  
1,000,000  
900,000  
800,000  
700,000  
600,000  
500,000  
400,000  
300,000  
200,000  
100,000  
0
35  
30  
25  
20  
15  
10  
5
0pF  
75pF  
150pF  
250pF  
0
–5  
–0.4  
0
8
16  
32  
64  
128  
256  
512  
–0.2  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
CODE (Decimal)  
TIME (ms)  
Figure 20. Bandwidth vs. Code vs. Net Capacitance  
Figure 23. IDD Waveform While Blowing/Reading Fuse  
Rev. 0 | Page 11 of 16  
AD5292-ꢄP  
Data Sheet  
35  
40  
32  
24  
16  
8
V
V
V
/V = ±15V  
V
, CODE: FULL SCALE,  
NORMAL MODE  
V
V
V
V
/V = 30V/0V  
DD SS  
WB  
DD SS  
= V  
= 5V  
A
B
DD  
SS  
LOGIC  
= V  
30  
25  
20  
15  
= V  
A
B
DD  
CODE = HALF CODE  
= V  
SS  
V
, CODE: FULL SCALE,  
WB  
R-PERF MODE  
0
–8  
–16  
10  
SYNC  
5
0
V
, CODE: HALF-SCALE,  
NORMAL MODE  
–24  
–32  
WB  
V
, CODE: HALF-SCALE,  
R-PERF MODE  
WB  
40  
–5  
–0.5  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
TIME (µs)  
TIME (µs)  
Figure 24. Large-Signal Settling Time from Code Zero Scale  
Figure 27. Digital Feedthrough  
8
7
6
5
4
3
2
1
0
6
5
V
V
/V = ±15V  
DD SS  
V
V
V
/V = 30V/0V  
DD SS  
= +5V  
= V  
= V  
LOGIC  
A
B
DD  
SS  
4
3
2
1
0
–1  
0
256  
512  
768  
1023  
CODE (Decimal)  
TIME (ms)  
Figure 25. Theoretical Maximum Current vs. Code  
Figure 28. VEXT_CAP Waveform While Reading Fuse Or Calibration  
1.2  
1.0  
8
V
V
/V = ±15V  
V
V
V
V
/V = ±15V  
DD SS  
DD SS  
= +5V  
= +5V  
LOGIC  
LOGIC  
= V  
= V  
A
B
DD  
SS  
0.8  
6
3
0.6  
0.4  
0.2  
0
2
–0.2  
–0.4  
–0.6  
–0.8  
0
–2  
–2  
0
2
4
6
8
10  
12  
14  
16  
TIME (µs)  
TIME (ms)  
Figure 29. VEXT_CAP Waveform While Writing Fuse  
Figure 26. Maximum Transition Glitch  
Rev. 0 | Page 12 of 16  
Data Sheet  
AD5292-ꢄP  
300  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
= V  
= V  
V
/V = ±15V  
A
DD  
DD SS  
B
SS  
TEMPERATURE = 25°C  
250  
200  
150  
100  
50  
0
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90 100  
TEMPERATURE (°C)  
21  
26  
30  
33  
VOLTAGE V /V  
DD SS  
Figure 30. Code Range > 1% R-Tolerance Error vs. Temperature  
Figure 31. Code Range > 1% R-Tolerance Error vs. Voltage  
Rev. 0 | Page 13 of 16  
AD5292-ꢄP  
Data Sheet  
ꢂꢄSꢂ CIꢁCUIꢂS  
Figure 32 to Figure 37 define the test conditions used in the Specifications section.  
NC  
DUT  
A
I
V
W
A
V+ = V ± 10%  
DD  
W
V  
V  
MS  
DD  
V
A
B
DD  
PSRR (dB) = 20 log  
B
W
V+  
~
V
MS  
V  
V  
%
%
MS  
DD  
PSS (%/%) =  
V
MS  
NC = NO CONNECT  
Figure 32. Resistor Position Nonlinearity Error  
(Rheostat Operation; R-INL, R-DNL)  
Figure 35. Power Supply Sensitivity (PSS, PSRR)  
+15V  
A
DUT  
A
V+ = V  
DD  
1LSB = V+/2  
W
V
N
IN  
DUT  
OP42  
–15V  
V
W
OUT  
B
V+  
OFFSET  
GND  
B
V
MS  
2.5V  
Figure 33. Potentiometer Divider Nonlinearity Error  
(INL, DNL)  
Figure 36. Gain vs. Frequency  
+15V  
NC  
–15V  
GND  
GND  
0.1V  
R
=
=
WB  
A
V
DUT  
I
DD  
I
DUT  
A
CM  
WB  
+15V  
–15V  
W
R
CODE = 0x00  
WB  
2
R
W
W
+
V
GND  
SS  
B
B
0.1V  
I
GND  
WB  
V
TO V  
DD  
NC  
+15V  
GND  
SS  
A = NC  
NC = NO CONNECT  
–15V  
Figure 37. Common-Mode Leakage Current  
Figure 34. Wiper Resistance  
Rev. 0 | Page 14 of 16  
 
 
 
AD5292-ꢄP  
Data Sheet  
OUꢂLINꢄ DIMꢄNSIONS  
5.10  
5.00  
4.90  
14  
8
7
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
0.65 BSC  
1.05  
1.00  
0.80  
1.20  
MAX  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.15  
0.05  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.30  
0.19  
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1  
Figure 38. 14-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-14)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
RAB (kΩ)  
Resolution  
Memory  
Temperature Range  
Package Description  
Package Option  
AD5292SRU-20-EP  
20  
1024  
20-TP  
−55°C to +125°C  
14-Lead TSSOP  
RU-14  
Rev. 0 | Page 15 of 16  
 
AD5292-ꢄP  
NOꢂꢄS  
Data Sheet  
©2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D10095-0-9/11(0)  
Rev. 0 | Page 16 of 16  
 
 
 

相关型号:

AD5293

Single-Channel, 1024-Position, 1% R-Tolerance Digital Potentiometer
ADI

AD5293ABRUZ20

IC 20K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 1024 POSITIONS, PDSO14, MO-153AB-1, TSSOP-14, Digital Potentiometer
ADI

AD5293ABRUZ50

IC 50K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 1024 POSITIONS, PDSO14, MO-153AB-1, TSSOP-14, Digital Potentiometer
ADI

AD5293BRUZ-100

Single-Channel, 1024-Position, 1percent R-Tolerance Digital Potentiometer
ADI

AD5293BRUZ-100-RL7

Single-Channel, 1024-Position, 1percent R-Tolerance Digital Potentiometer
ADI

AD5293BRUZ-20

Single-Channel, 1024-Position, 1% R-Tolerance Digital Potentiometer
ADI

AD5293BRUZ-20-RL7

Single-Channel, 1024-Position, 1% R-Tolerance Digital Potentiometer
ADI

AD5293BRUZ-50

Single-Channel, 1024-Position, 1percent R-Tolerance Digital Potentiometer
ADI

AD5293BRUZ-50-RL7

Single-Channel, 1024-Position, 1percent R-Tolerance Digital Potentiometer
ADI

AD52X1B

12 BIT SUCCESSIVE APPROXIMATION HIGH ACCURACY A/D CONVERTERS
ADI

AD52X1T

12 BIT SUCCESSIVE APPROXIMATION HIGH ACCURACY A/D CONVERTERS
ADI

AD52X2B

12 BIT SUCCESSIVE APPROXIMATION HIGH ACCURACY A/D CONVERTERS
ADI