AD5310RBRMZ-RL7 [ADI]

10-Bit nanoDAC, SPI Interface and 2 ppm/°C On-Chip Reference;
AD5310RBRMZ-RL7
型号: AD5310RBRMZ-RL7
厂家: ADI    ADI
描述:

10-Bit nanoDAC, SPI Interface and 2 ppm/°C On-Chip Reference

光电二极管 转换器
文件: 总24页 (文件大小:532K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
10-Bit nanoDAC with SPI/I2C Interface  
and 2 ppm/°C On-Chip Reference  
Data Sheet  
AD5310R/AD5311R  
FEATURES  
FUNCTIONAL BLOCK DIAGRAMS  
V
V
V
DD  
LOGIC  
REF  
High relative accuracy (INL): 0.5 LSB maximum  
Low drift 2.5 V reference: 2 ppm/°C typical  
Selectable span output: 2.5 V or 5 V  
Total unadjusted error (TUE): 0.06% of FSR maximum  
Offset error: 1.5 mV maximum  
POWER-ON  
RESET  
AD5310R  
2.5V  
REF  
LDAC  
REF  
10-BIT  
DAC  
REGISTER  
OUTPUT  
BUFFER  
V
OUT  
DAC  
RESET  
Gain error: 0.05% of FSR maximum  
Low glitch: 0.1 nV-sec  
High drive capability: 20 mA  
Low power: 1.2 mW at 3.3 V  
INPUT  
CONTROL LOGIC  
POWER-DOWN  
CONTROL LOGIC  
RESISTOR  
NETWORK  
Independent logic supply: 1.8 V logic compatible  
Wide operating temperature range: −40°C to +105°C  
Robust 4 kV HBM ESD protection  
SYNC  
SCLK SDI  
LOGIC  
GND  
Figure 1. AD5310R  
APPLICATIONS  
V
V
V
DD  
REF  
Process controls  
Data acquisition systems  
Digital gain and offset adjustment  
Programmable voltage sources  
Optical modules  
POWER-ON  
RESET  
AD5311R  
2.5V  
REF  
LDAC  
REF  
10-BIT  
DAC  
REGISTER  
OUTPUT  
BUFFER  
V
OUT  
DAC  
RESET  
INPUT  
CONTROL LOGIC  
POWER-DOWN  
CONTROL LOGIC  
GENERAL DESCRIPTION  
RESISTOR  
NETWORK  
The AD5310R/AD5311R, members of the nanoDAC® family, are  
low power, single-channel, 10-bit buffered voltage output DACs.  
The devices include an enabled by default internal 2.5 V  
reference, and provides 2 ppm/°C. The output span can be  
programmed to be 0 V to VREF or 0 V to 2 × VREF. All devices  
operate from a single 2.7 V to 5.5 V supply and are guaranteed  
monotonic by design. The devices are available in 10-lead  
MSOP packages.  
SDA  
SCL  
A0  
GND  
Figure 2. AD5311R  
Table 1. Related Devices  
Interface  
Reference  
12-Bit  
10-Bit  
AD53101  
AD53111  
SPI  
I2C  
External  
External  
AD5681R  
The internal power-on reset circuit of the AD5310R/AD5311R  
ensures that the DAC register is written to zero scale at powerup  
when the internal output buffer is configured in normal mode.  
The devices contain a power-down mode that reduces the  
current consumption of the device to 2 µA at 5 V.  
1 The AD5310R and AD5311R are not pin-to-pin or software compatible with  
the AD5310 and AD5311, respectively.  
PRODUCT HIGHLIGHTS  
The AD5310R/AD5311R use a versatile SPI or I2C interface,  
1. High Relative Accuracy (INL): 0.5 LSB maximum.  
2. Low Drift 2.5 V On-Chip Reference: 5 ppm/°C maximum  
temperature coefficient.  
RESET  
including an asynchronous  
pin and a VLOGIC pin that  
provides 1.8 V compatibility.  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2014–2017 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
 
AD5310R/AD5311R  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Transfer Function....................................................................... 17  
DAC Architecture....................................................................... 17  
Serial Interface ................................................................................ 18  
AD5310R SPI Serial Data Interface ......................................... 18  
Daisy-Chain Mode Compatibility............................................ 18  
AD5311R I2C Serial Data Interface.......................................... 19  
Commands.................................................................................. 21  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagrams............................................................. 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
AC Characteristics........................................................................ 4  
Timing Characteristics ................................................................ 5  
Absolute Maximum Ratings............................................................ 8  
Thermal Resistance ...................................................................... 8  
ESD Caution.................................................................................. 8  
Pin Configurations and Function Descriptions ........................... 9  
Typical Performance Characteristics ........................................... 11  
Terminology .................................................................................... 16  
Theory of Operation ...................................................................... 17  
Digital-to-Analog Converter .................................................... 17  
LDAC  
Load DAC (Hardware  
Pin)........................................... 22  
RESET  
Hardware  
........................................................................ 22  
AD5311R, I2C Read Operation ................................................ 22  
Thermal Hysteresis .................................................................... 23  
Power-Up Sequence ................................................................... 23  
Layout Guidelines....................................................................... 23  
Outline Dimensions....................................................................... 24  
Ordering Guide .......................................................................... 24  
REVISION HISTORY  
2/2017—Rev. A to Rev. B  
1/2014—Rev. 0 to Rev. A  
Changes to Features Section and Table 1 ...................................... 1  
Changed 1.8 V ≤ VLOGIC ≤ 5.5 V (VLOGIC = 1.8 V to 5.5 V) to  
1.62 V ≤ VLOGIC ≤ 5.5 V ...................................................................... 3  
Changed 1.8 V ≤ VLOGIC ≤ VDD to 1.62 V ≤ VLOGIC ≤ 5.5 V ............ 4  
Changes to VLOGIC Parameter, Table 2 ............................................ 4  
Changed VLOGIC = 1.8 V to 5.5 V to 1.62 V ≤ VLOGIC ≤ 5.5 V ........ 5  
Changes to Table 4 and Figure 3............................................................... 5  
Changed VLOGIC = 1.8 V to 5.5 V to 1.62 V ≤ VLOGIC ≤ 5.5 V ........ 6  
Changes to Table 8............................................................................ 9  
Changes to Table 9.......................................................................... 10  
Changes to Terminology Section.................................................. 16  
Changes to Transfer Function Section......................................... 17  
Change to Features Section..............................................................1  
Removed Endnote 2, Endnote 3, Endnote 5, and Endnote 6,  
Table 2; Renumbered Sequentially..................................................3  
Removed Endnote 3, Table 3............................................................4  
Removed Endnote 1, Table 4; Renumbered Sequentially ............5  
Changes to Table 6.............................................................................8  
Removed Solder Heat Reflow Section and Figure 44;  
Renumbered Sequentially ............................................................. 23  
1/2014—Revision 0: Initial Version  
Rev. B | Page 2 of 24  
 
Data Sheet  
AD5310R/AD5311R  
SPECIFICATIONS  
VDD = 2.7 V to 5.5 V, RL = 2 kΩ to GND, CL = 200 pF to GND, 2.5 V ≤ VREF ≤ VDD, 1.62 V ≤ VLOGIC ≤ 5.5 V, 40°C < TA < +105°C, unless  
otherwise noted.  
Table 2.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
STATIC PERFORMANCE1  
Resolution  
10  
Bits  
Relative Accuracy, INL  
Differential Nonlinearity, DNL  
Zero-Code Error  
Offset Error  
Full-Scale Error  
Gain Error  
0.5  
0.5  
1.25  
1.5  
LSB  
LSB  
mV  
mV  
% of FSR  
% of FSR  
% of FSR  
% of FSR  
% of FSR  
% of FSR  
µV/°C  
All 0s loaded to DAC register  
All 1s loaded to DAC register  
0.075  
0.05  
0.16  
0.14  
0.075  
0.06  
Total Unadjusted Error, TUE  
Internal reference, gain = 1  
Internal reference, gain = 2  
External reference, gain = 1  
External reference, gain = 2  
Zero-Code Error Drift  
Offset Error Drift  
1
1
µV/°C  
Gain Temperature Coefficient  
DC Power Supply Rejection  
Ratio, PSRR  
1
0.2  
ppm/°C  
mV/V  
DAC code = midscale, VDD = 5 V 10%  
OUTPUT CHARACTERISTICS  
Output Voltage Range  
0
0
VREF  
2 × VREF  
V
V
nF  
Gain = 1  
Gain = 2  
RL = ∞  
Capacitive Load Stability  
2
10  
nF  
kΩ  
RL = 2 kΩ  
CL = 0 µF  
Resistive Load  
1
Load Regulation  
10  
10  
µV/mA  
VDD = 5 V, DAC code = midscale;  
−30 mA ≤ IOUT ≤ 30 mA  
VDD = 3 V, DAC code = midscale;  
−20 mA ≤ IOUT ≤ 20 mA  
µV/mA  
Short-Circuit Current  
Load Impedance at Rails2  
20  
50  
mA  
20  
REFERENCE OUTPUT  
Output Voltage  
Voltage Reference TC3  
Output Impedance  
Output Voltage Noise  
Output Voltage Noise Density  
2.4975  
2.5025  
5
V
At ambient temperature  
See the Terminology section  
2
ppm/°C  
0.05  
16.5  
240  
0.1 Hz to 10 Hz  
µV p-p  
nV/√Hz  
At ambient temperature; f = 10 kHz,  
CL = 10 nF  
Capacitive Load Stability  
Load Regulation, Sourcing  
Load Regulation, Sinking  
Output Current Load Capability  
Line Regulation  
5
µF  
RL = 2 kΩ  
At ambient temperature; VDD ≥ 3 V  
At ambient temperature  
VDD ≥ 3 V  
50  
30  
µV/mA  
µV/mA  
mA  
±5  
80  
125  
25  
µV/V  
ppm  
ppm  
At ambient temperature  
First cycle  
Additional cycles  
Thermal Hysteresis  
Rev. B | Page 3 of 24  
 
AD5310R/AD5311R  
Data Sheet  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
LOGIC INPUTS  
Input Current, IIN  
1
4
µA  
µA  
V
V
pF  
Per pin  
SDA and SCL pins (AD5311R)  
Input Low Voltage, VINL  
Input High Voltage, VINH  
Pin Capacitance, CIN  
LOGIC OUTPUT (SDA)  
Output Low Voltage, VOL  
Output High Voltage, VOH  
Pin Capacitance  
POWER REQUIREMENTS  
VLOGIC  
0.3 × VLOGIC  
0.7 × VLOGIC  
2
AD5311R  
0.4  
V
ISINK = 200 μA  
ISOURCE = 200 μA  
VLOGIC − 0.4  
V
4
pF  
1.62  
5.5  
3
5.5  
5.5  
V
µA  
V
ILOGIC  
VDD  
0.25  
VIH = VLOGIC or VIL = GND  
Gain = 1  
Gain = 2  
2.7  
VREF + 1.5  
V
IDD  
VIH = VDD, VIL = GND  
Internal reference enabled  
Internal reference disabled  
Normal Mode4  
350  
110  
500  
180  
2
µA  
µA  
µA  
Power-Down Modes5  
1 Linearity is calculated using a reduced code range: Code 8 to Code 1024, output unloaded.  
2 When drawing a load current at either rail, the output voltage headroom, with respect to that rail, is limited by the 20 Ω typical channel resistance of the output  
devices; for example, when sinking 1 mA, the minimum output voltage with 20 Ω, 1 mA generates 20 mV. See Figure 29.  
3 Reference temperature coefficient calculated as per the box method. See the Terminology section for more information.  
4 Interface inactive. DAC active. Code = zero-scale, DAC output unloaded.  
5 DAC powered down.  
AC CHARACTERISTICS  
VDD = 2.7 V to 5.5 V, RL = 2 kΩ to GND, CL = 200 pF to GND, 2.5 V ≤ VREF ≤ VDD, 1.62 V ≤ VLOGIC ≤ 5.5 V, 40°C < TA < +105°C, unless  
otherwise noted.1  
Table 3.  
Parameter2  
Typ  
5
Max  
Unit  
µs  
V/µs  
nV-sec  
nV-sec  
dB  
nV/√Hz  
µV p-p  
dB  
Conditions/Comments  
Output Voltage Settling Time  
Slew Rate  
Digital-to-Analog Glitch Impulse  
Digital Feedthrough  
Total Harmonic Distortion (THD)  
Output Noise Spectral Density  
Output Noise  
7
Gain = 1, ¼ to ¾ scale settling to 0.25 LSB  
0.7  
0.1  
0.1  
−83  
200  
6
1 LSB change around major carry, gain = 1  
VREF = 2 V 0.1 V p-p, f = 10 kHz  
DAC code = midscale, f = 10 kHz  
0.1 Hz to 10 Hz; internal reference  
At ambient temperature, BW = 20 kHz, VDD = 5 V, fOUT  
1 kHz  
Signal-to-Noise Ratio (SNR)  
90  
=
=
=
Spurious-Free Dynamic Range (SFDR)  
88  
82  
dB  
dB  
At ambient temperature, BW = 20 kHz, VDD = 5 V, fOUT  
1 kHz  
At ambient temperature, BW = 20 kHz, VDD = 5 V, fOUT  
1 kHz  
Signal-to-Noise-and Distortion (SINAD) Ratio  
1 Temperature range = −40°C to +105°C, typical at 25°C.  
2 See the Terminology section.  
Rev. B | Page 4 of 24  
 
Data Sheet  
AD5310R/AD5311R  
TIMING CHARACTERISTICS  
AD5310R  
VDD = 2.7 V to 5.5 V, 1.62 V ≤ VLOGIC ≤ 5.5 V, 40°C < TA < +105°C, unless otherwise noted.  
Table 4.  
1.8 V ≤ VLOGIC ≤ 2.7 V  
2.7 V ≤ VLOGIC2 ≤ 5.5 V  
Parameter 1  
Symbol  
Min  
33  
16  
16  
15  
5
Typ  
Max  
Min  
20  
10  
10  
10  
5
Typ  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
SCLK Cycle Time  
SCLK High Time  
SCLK Low Time  
SYNC to SCLK Falling Edge Setup Time  
Data Setup Time  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
Data Hold Time  
5
5
SCLK Falling Edge to SYNC Rising Edge  
Minimum SYNC High Time  
SYNC Falling Edge to SCLK Fall Ignore  
SYNC Rising Edge to SCLK Falling Edge  
SYNC Rising Edge to LDAC Falling Edge  
LDAC Pulse Width Low  
15  
20  
16  
10  
20  
10  
t8  
t9  
t10  
t11  
t12  
t13  
t14  
t15  
25  
25  
20  
15  
RESET Minimum Pulse Width Low  
RESET Pulse Activation Time  
75  
75  
150  
1.9  
150  
1.7  
SYNC Rising Edge to SYNC Rising Edge (DAC  
Updates)  
LDAC Falling Edge to SYNC Rising Edge  
Reference Power-Up3  
Exit Shutdown3  
t16  
1.8  
1.65  
µs  
µs  
µs  
4
tREF_POWER_UP  
tSHUTDOWN  
600  
600  
5
6
6
1 All input signals are specified with tR = tF = 1 ns/V (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2.  
2 Substitute VDD for VLOGIC on devices that do not include a VLOGIC pin.  
3 Not shown in Figure 3.  
4 Same timing must be expected when powering up the device after VDD = 2.7 V.  
5
SYNC  
Time required to exit power-down to normal mode of AD5310R/AD5311R operation;  
rising edge to 90% of DAC midscale value, with output unloaded.  
Timing and Circuit Diagrams  
t4  
t7  
t1  
t9  
t2  
SCLK  
SYNC  
t10  
t3  
t8  
t15  
t5  
t6  
SDI  
DB23  
DB22  
DB21  
DB20  
DB2  
DB1  
DB0  
t11  
t12  
t16  
LDAC  
t13  
RESET  
t14  
V
OUT  
Figure 3. SPI Timing Diagram, Compatible with Mode 1 and Mode 2 (See the AN-1248 Application Note)  
Rev. B | Page 5 of 24  
 
 
AD5310R/AD5311R  
Data Sheet  
AD5311R  
VDD = 2.7 V to 5.5 V, 1.62 V ≤ VLOGIC ≤ 5.5 V, 40°C < T < +105°C, unless otherwise noted.  
A
Table 5.  
Parameter1  
Symbol  
Min  
Typ  
Max  
Unit  
kHz  
µs  
2
Serial Clock Frequency (Not Shown in Figure 4 or Figure 5) fSCL  
SCL High Time, tHIGH  
400  
t1  
0.6  
SCL Low Time, tLOW  
t2  
1.3  
µs  
Data Setup Time, tSU; DAT  
t3  
100  
ns  
Data Hold Time, tHD; DAT  
t4  
0
0.9  
µs  
Setup Time for a Repeated Start Condition, tSU; STA  
Hold Time (Repeated) Start Condition, tHD; STA  
Bus Free Time Between a Stop and a Start Condition, tBUF  
Setup Time for a Stop Condition, tSU; STO  
Rise Time of SDA Signal, tR  
Fall Time of SDA Signal, tF  
Rise Time of SCL Signal, tR  
Fall Time of SCL Signal, tF  
Pulse Width of Suppressed Spike (Not Shown in Figure 4  
Figure 5)  
t5  
t6  
t7  
t8  
0.6  
0.6  
1.3  
0.6  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
ns  
t9  
20  
300  
300  
300  
300  
50  
t10  
t11  
t12  
tSP  
20 × (VDD/5.5 V)  
20  
20 × (VDD/5.5 V)  
0
ns  
LDAC Falling Edge to SCL Falling Edge  
LDAC Pulse Width (Synchronous Mode)  
LDAC Pulse Width (Asynchronous Mode)  
RESET Pulse Width  
t13  
400  
400  
20  
ns  
ns  
ns  
ns  
µs  
µs  
t14  
t15  
t16  
75  
3
Reference Power-Up (Not Shown in Figure 4 or Figure 5)  
Exit Shutdown (Not Shown in Figure 4 or Figure 5)  
tREF_POWER_UP  
tSHUTDOWN  
600  
4
6
1 Maximum bus capacitance is limited to 400 pF. All input signals are specified with tR = tF = 1 ns/V (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2.  
2 The SDA and SCL timing is measured with the input filters enabled. Switching off the input filters improves the transfer rate; however, it has a negative effect on the  
EMC behavior of the device.  
3 Same timing should be expected when powering the device after VDD = 2.7 V.  
4 Time to exit power-down to normal mode of operation.  
t12  
t11  
t6  
t8  
t2  
SCL  
SDA  
t5  
t1  
t10  
t9  
t3  
t4  
t7  
START  
OR  
REPEATED START  
CONDITION  
STOP  
CONDITION  
REPEATED START  
CONDITION  
Figure 4. I2C Serial Interface Timing Diagram  
Rev. B | Page 6 of 24  
 
Data Sheet  
AD5310R/AD5311R  
SCL  
SDA  
ACK  
STOP  
CONDITION  
t14  
t15  
t13  
LDAC  
ASYNCHRONOUS  
DAC UPDATE  
SYNCHRONOUS  
DAC UPDATE  
t16  
RESET  
Figure 5. I2C, LDAC, and RESET Timing  
Rev. B | Page 7 of 24  
 
AD5310R/AD5311R  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
THERMAL RESISTANCE  
θJA is defined by the JEDEC JESD51 standard, and the value is  
dependent on the test board and test environment.  
Table 6.  
Parameter  
VDD to GND  
VLOGIC to GND  
VOUT to GND  
Rating  
−0.3 V to +7 V  
−0.3 V to +7 V  
−0.3 V to VDD + 0.3 V or +7 V  
(whichever is less)  
Table 7. Thermal Resistance  
Package Type  
θJA  
1351  
θJC  
N/A2  
Unit  
10-Lead MSOP  
°C/W  
1 JEDEC 2S2P test board, still air (0 m/sec airflow).  
2 N/A means not applicable.  
VREF to GND  
−0.3 V to VDD + 0.3 V or +7 V  
(whichever is less)  
Digital Input Voltage to GND  
−0.3 V to VDD + 0.3 V or +7 V  
(whichever is less)  
ESD CAUTION  
Operating Temperature Range  
Industrial  
−40°C to +105°C  
−65°C to +150°C  
135°C  
(TJ max − TA)/θJA  
4 kV  
Storage Temperature Range  
Junction Temperature (TJ max)  
Power Dissipation  
ESD1  
FICDM2  
1.25 kV  
1 Human body model (HBM) classification.  
2 Field-induced charged-device model classification.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. B | Page 8 of 24  
 
 
 
Data Sheet  
AD5310R/AD5311R  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
V
1
2
3
4
5
10  
V
DD  
OUT  
V
9
V
LOGIC  
REF  
AD5310R  
RESET  
LDAC  
GND  
8
SDI  
TOP VIEW  
(Not to Scale)  
7
SYNC  
SCLK  
6
Figure 6. Pin Configuration, AD5310R  
Table 8. AD5310R Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
3
VDD  
VLOGIC  
RESET  
Power Supply Input. This device can be operated from 2.7 V to 5.5 V. Decouple the supply to GND.  
Digital Power Supply. Voltage ranges from 1.62 V to 5.5 V. Decouple the supply to GND.  
Hardware Reset Pin. The RESET input is low level sensitive. When RESET is low, the device is reset and  
external pins are ignored. The input and DAC registers are loaded with zero-scale values, and the control  
register is loaded with default values. This pin can be tied to VLOGIC if not used.  
4
LDAC  
Load DAC. LDAC can be operated in asynchronous mode (see Figure 3). Pulsing this pin low allows the  
DAC register to be updated if the input register has new data. This pin can be tied permanently low; in this  
case, the DAC register is automatically updated when new data is written to the input register.  
5
6
GND  
SCLK  
Ground Reference.  
Serial Clock Input. Data is clocked into the input shift register on the falling edge of the serial clock input.  
Data is transferred at rates up to 50 MHz.  
7
SYNC  
Synchronization Data Input. When SYNC goes low, it enables the SCLK and SDI buffers and the input shift  
register.  
8
9
SDI  
VREF  
Serial Data Input. Data is sampled on the falling edge of the SCLK.  
Reference Input/Output. By default, this pin is a reference output. It is recommended that this pin be  
decoupled with a 10 nF capacitor to GND.  
10  
VOUT  
Analog Output Voltage from the DAC. The output amplifier has rail-to-rail operation.  
Rev. B | Page 9 of 24  
 
AD5310R/AD5311R  
Data Sheet  
V
1
2
3
4
5
10  
9
V
V
DD  
OUT  
V
LOGIC  
REF  
AD5311R  
RESET  
LDAC  
GND  
8
SDA  
SCL  
A0  
TOP VIEW  
(Not to Scale)  
7
6
Figure 7. Pin Configuration, AD5311R  
Table 9. AD5311R Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
3
VDD  
VLOGIC  
RESET  
Power Supply Input. These devices can be operated from 2.7 V to 5.5 V. Decouple the supply to GND.  
Digital Power Supply. Voltage ranges from 1.62 V to 5.5 V. Decouple the supply to GND.  
Hardware Reset Pin. The RESET input is low level sensitive. When RESET is low, the device is reset and external  
pins are ignored. The input and DAC registers are loaded with zero-scale value, and the control register is loaded  
with default values. This pin can be tied to VLOGIC if not used.  
4
LDAC  
Load DAC. Transfers the contents of the input register to the DAC register. It can be operated in two modes,  
asynchronously and synchronously, as shown in Figure 5. This pin can be tied permanently low; the DAC updates  
when new data is written to the input register.  
5
6
7
8
9
GND  
A0  
SCL  
SDA  
VREF  
Ground Reference.  
Programmable Address (ADDR1) for Multiple Package Decoding. The address pin can be updated on-the-fly.  
Serial Clock Line.  
Serial Data Input/Output.  
Reference Input/Output. The default for this pin is as a reference output. It is recommended to decouple this pin  
with a 10 nF capacitor to GND.  
10  
VOUT  
Analog Output Voltage from the DAC. The output amplifier has rail-to-rail operation.  
Rev. B | Page 10 of 24  
 
Data Sheet  
AD5310R/AD5311R  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.5  
0.5  
0.4  
0.4  
0.3  
0.3  
0.2  
0.2  
0.1  
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
CODE  
CODE  
Figure 8. INL  
Figure 11. DNL  
0.5  
0.4  
0.06  
0.04  
0.02  
0
U1_EXT  
U2_EXT  
U3_EXT  
U1_INT  
U2_INT  
U3_INT  
V
= 5V  
DD  
GAIN = 1  
= 2.5V  
V
REF  
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.02  
–0.04  
0
200  
400  
600  
800  
1000  
–40  
0
40  
TEMPERATURE (°C)  
80  
CODE  
Figure 9. TUE vs. Code  
Figure 12. TUE vs. Temperature  
0.04  
0.03  
0.02  
0.01  
0
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
T
= 25°C  
V
= 5V  
A
DD  
GAIN = 1  
V
= 2.5V  
REF  
ZS INTERNAL REFERENCE, GAIN = 1  
FS EXTERNAL REFERENCE, GAIN = 2  
FS INTERNAL REFERENCE, GAIN = 2  
ZS INTERNAL REFERENCE, GAIN = 2  
FS INTERNAL REFERENCE, GAIN = 1  
FS EXTERNAL REFERENCE, GAIN = 1  
U1 INTERNAL REFERENCE  
U2 INTERNAL REFERENCE  
U3 INTERNAL REFERENCE  
–0.01  
–0.02  
U1 EXTERNAL REFERENCE  
U2 EXTERNAL REFERENCE  
U3 EXTERNAL REFERENCE  
0
2.70  
3.30  
3.75  
4.25  
(V)  
4.75  
5.25  
–40  
–20  
0
20  
40  
60  
80  
105  
V
DD  
TEMPERATURE (°C)  
Figure 10. TUE vs. Supply, Gain = 1  
Figure 13. Supply Current vs. Temperature  
Rev. B | Page 11 of 24  
 
 
 
AD5310R/AD5311R  
Data Sheet  
500  
400  
300  
200  
100  
0
350  
V
= 5V  
U1 INTERNAL REFERENCE  
U2 INTERNAL REFERENCE  
U3 INTERNAL REFERENCE  
U1 EXTERNAL REFERENCE  
U2 EXTERNAL REFERENCE  
U3 EXTERNAL REFERENCE  
T
= 25°C  
DD  
A
GAIN = 1  
= 2.5V  
GAIN = 1  
V
V
= 2.5V  
300  
250  
200  
150  
100  
50  
REF  
REF  
U1 INTERNAL REFERENCE  
U2 INTERNAL REFERENCE  
U3 INTERNAL REFERENCE  
U1 EXTERNAL REFERENCE  
U2 EXTERNAL REFERENCE  
U3 EXTERNAL REFERENCE  
0
2.70  
3.30  
3.75  
4.25  
(V)  
4.75  
5.25  
5.50  
–40  
–20  
0
20  
40  
60  
80  
105  
V
TEMPERATURE (°C)  
DD  
Figure 14. Zero-Code Error and Offset Error vs. Temperature  
Figure 17. Zero-Code Error and Offset Error vs. Supply  
0.030  
0.025  
0.020  
0.015  
0.010  
0.005  
0
0.03  
T
= 25°C  
A
GAIN = 1  
V
= 2.5V  
REF  
0.02  
0.01  
0
U1 INTERNAL REFERENCE  
U2 INTERNAL REFERENCE  
U3 INTERNAL REFERENCE  
–0.01  
–0.02  
–0.03  
–0.04  
–0.005  
–0.010  
–0.015  
–0.020  
–0.025  
U1 EXTERNAL REFERENCE  
U2 EXTERNAL REFERENCE  
U3 EXTERNAL REFERENCE  
U1 INTERNAL REFERENCE  
U2 INTERNAL REFERENCE  
U3 INTERNAL REFERENCE  
U1 EXTERNAL REFERENCE  
U2 EXTERNAL REFERENCE  
U3 EXTERNAL REFERENCE  
V
= 5V  
DD  
GAIN = 1  
V
= 2.5V  
REF  
2.70  
3.30  
3.75  
4.25  
(V)  
4.75  
5.25  
5.50  
–40  
0
40  
TEMPERATURE (°C)  
80  
V
DD  
Figure 15. Gain Error and Full-Scale Error vs. Temperature  
Figure 18. Gain Error and Full-Scale Error vs. Supply  
2.505  
2.503  
2.501  
2.499  
2.497  
2.495  
2.50015  
2.50010  
2.50005  
2.50000  
2.49995  
2.49990  
2.49985  
2.49980  
V
= 5V  
U1  
U2  
U3  
DD  
T
= 25°C  
A
D11  
D12  
D13  
–40  
10  
TEMPERATURE (°C)  
60  
2.5  
3.5  
4.5  
5.5  
V
(V)  
DD  
Figure 16. Internal Reference Voltage vs. Temperature  
Figure 19. Internal Reference Voltage vs. Supply Voltage  
Rev. B | Page 12 of 24  
 
 
 
 
Data Sheet  
AD5310R/AD5311R  
2.5009  
2.5008  
2.5007  
2.5006  
2.5005  
2.5004  
2.5003  
4.5  
5.5V  
5.0V  
3.0V  
2.7V  
V
= 5V  
T
= 25°C  
DD  
= 25°C  
A
T
A
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
GAIN = 1  
–0.005  
–0.003  
–0.001  
0.001  
0.003  
0.005  
LOAD CURRENT (A)  
V
(V)  
REF  
Figure 20. Reference Output Spread  
Figure 23. Internal Reference Voltage vs. Load Current  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
T
T
V
= 25°C  
V
= 5V  
A
DD  
T = 25°C  
A
= 5V  
DD  
1
10  
100  
1k  
10k  
100k  
1M  
CH1 10µV  
M1.00s  
A
CH1  
2.00µV  
FREQUENCY (Hz)  
Figure 21. Internal Reference Noise, 0.1 Hz to 10 Hz  
Figure 24. Internal Reference Noise Spectral Density vs. Frequency  
T
T
T
V
= 25°C  
= 5V  
T
V
= 25°C  
A
A
= 5V  
DD  
DD  
1
1
CH1 10µV  
M1.00s  
A
CH1  
2.00µV  
CH1 10µV  
M1.00s  
A
CH1  
2.00µV  
Figure 22. 0.1 Hz to 10 Hz Output Noise Plot, External Reference  
Figure 25. 0.1 Hz to 10 Hz Output Noise Plot, Internal Reference  
Rev. B | Page 13 of 24  
 
 
 
 
AD5310R/AD5311R  
Data Sheet  
1200  
1.4  
1.0  
V
= 5V  
FULL-SCALE  
DD  
= 25°C  
SINKING, V = 3V  
T = 25°C  
A
DD  
MIDSCALE  
T
A
SOURCING, V = 5V  
DD  
ZEROSCALE  
GAIN = 1  
1000  
800  
600  
400  
200  
0
SINKING, V = 5V  
DD  
SOURCING, V = 3V  
DD  
0.6  
0.2  
–0.2  
–0.6  
–1.0  
–1.4  
10  
100  
1k  
10k  
100k  
1M  
0
0.01  
0.02  
0.03  
FREQUENCY (Hz)  
LOAD CURRENT (A)  
Figure 26. Noise Spectral Density, Gain = 1  
Figure 29. Headroom/Footroom vs. Load Current  
7
6
5
V
T
= 5V  
= 25°C  
0x3FF  
0x300  
0x200  
0x100  
0x000  
V
T
= 5V  
= 25°C  
0x3FF  
0x300  
0x200  
0x100  
0x000  
DD  
DD  
A
A
6
5
GAIN = 2  
GAIN = 1  
4
4
3
3
2
2
1
1
0
0
–1  
–2  
–1  
–50  
0
50  
–50  
0
50  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 30. Source and Sink Capability, Gain = 2  
Figure 27. Source and Sink Capability, Gain = 1  
2.5  
2.0  
1.5  
1.0  
0.5  
0
4.5  
C
C
C
C
C
= 0nF  
= 0.2nF  
= 1nF  
= 4.7nF  
= 10nF  
C
C
C
C
C
= 0nF  
= 0.2nF  
= 1nF  
= 4.7nF  
= 10nF  
L
L
L
L
L
L
L
L
L
L
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
T
= 5V  
V
T
= 5V  
DD  
= 25°C  
DD  
= 25°C  
A
A
GAIN = 1  
R
INTERNAL REFERENCE = 2.5V  
GAIN = 2  
= 2kΩ  
= 2kΩ  
R
L
L
INTERNAL REFERENCE = 2.5V  
0
0.01  
TIME (ms)  
0.02  
0
0.01  
0.02  
TIME (ms)  
Figure 31. Settling Time vs. Capacitive Load, Gain = 1  
Figure 28. Settling Time vs. Capacitive Load, Gain = 2  
Rev. B | Page 14 of 24  
 
 
Data Sheet  
AD5310R/AD5311R  
0.0015  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
GAIN = 1  
GAIN = 2  
GAIN = 2  
GAIN = 1  
V
= 5V  
= 25°C  
DD  
T
A
0.0010  
0.0005  
0
REFERENCE = 2.5V  
CODE = 0x7FFF TO 0x8000  
–0.0005  
–0.0010  
–0.0015  
–0.0020  
–0.0025  
V
= 5V  
= 25°C  
DD  
T
A
V
= MIDSCALE  
OUT  
EXTERNAL REFERENCE = 2.5V, ±0.1V p-p  
0
1
2
3
4
5
6
7
1k  
10k  
100k  
1M  
10M  
TIME (µs)  
FREQUENCY (Hz)  
Figure 32. Digital-to-Analog Glitch Impulse  
Figure 35. Multiplying Bandwidth, External Reference 2.5 V 0.1 V p-p,  
10 kHz to 10 MHz  
20  
–30  
3
V
= 5V  
= 25°C  
DD  
V
= 5V  
= 25°C  
DD  
T
A
T
A
INTERNAL REFERENCE = 2.5V  
MIDSCALE, GAIN = 2  
2
1
0
–80  
SYNC  
MIDSCALE, GAIN = 1  
–130  
–180  
0
5
10  
15  
20  
–5  
0
5
10  
15  
FREQUENCY (kHz)  
TIME (µs)  
Figure 33. Total Harmonic Distortion at 1 kHz  
Figure 36. Exiting Power-Down to Midscale  
6
5
4
3
2
1
0
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
V
DD  
V
OUT  
–1  
–0.01  
0
1
2
3
4
5
6
7
8
TIME (ms)  
Figure 34. Power-On, Reset to 0 V  
Rev. B | Page 15 of 24  
 
AD5310R/AD5311R  
Data Sheet  
TERMINOLOGY  
Digital-to-Analog Glitch Impulse  
Relative Accuracy or Integral Nonlinearity (INL)  
Digital-to-analog glitch impulse is the impulse injected into the  
analog output when the input code in the DAC register changes  
state. It is normally specified as the area of the glitch in nV-sec,  
and is measured when the digital input code is changed by 1 LSB at  
a major carry transition (0x1FF to 0x200).  
For the DAC, relative accuracy (or integral nonlinearity) is a  
measurement of the maximum deviation, in LSBs, from a straight  
line passing through the endpoints of the DAC transfer  
function. See Figure 8 for a typical INL vs. code plot.  
Differential Nonlinearity (DNL)  
Digital Feedthrough  
Differential nonlinearity is the difference between the measured  
change and the ideal 1 LSB change between any two adjacent  
codes. A specified differential nonlinearity of 1 LSB maximum  
ensures monotonicity. This DAC is guaranteed monotonic by  
design. See Figure 11 for a typical DNL vs. code plot.  
Digital feedthrough is a measure of the impulse injected into the  
analog output of the DAC from the digital inputs of the DAC, but it  
is measured when the DAC output is not updated. Digital  
feedthrough is specified in nV-sec and is measured with a full-  
scale code change on the data bus, that is, from all 0s to all 1s  
and vice versa.  
Zero Code Error  
Zero code error is a measurement of the output error when zero  
code (0x000) is loaded to the DAC register. Ideally, the output  
should be 0 V. The zero code error of the input is always positive;  
the output of the DAC cannot fall below 0 V due to a combination  
of the offset errors in the DAC and in the output amplifier. Zero  
code error is expressed in mV. See Figure 14 and Figure 17 for plots  
of zero code error.  
Output Noise Spectral Density  
Noise spectral density is a measurement of the internally generated  
random noise. Random noise is characterized as a spectral density  
(nV/√Hz). It is measured by loading the DAC to midscale and  
measuring noise at the output. It is measured in nV/√Hz. See  
Figure 22, Figure 25, and Figure 26 for plots of noise spectral  
density. See Figure 21 and Figure 24 for plots of the noise  
spectral density for the internal reference.  
Full-Scale Error  
Full-scale error is a measurement of the output error when full-  
scale code (0x3FF) is loaded to the DAC register. The recom-  
mended output is VREF – 1 LSB or |2 × VREF| − 1 LSB. Full-scale  
error is expressed in percent of full-scale range (% of FSR). See  
Figure 15 and Figure 18 for plots of full-scale error.  
Multiplying Bandwidth  
The amplifiers within the DAC have a finite bandwidth. The  
multiplying bandwidth is a measure of this. A sine wave on the  
reference (with full-scale code loaded to the DAC) appears on  
the output. The multiplying bandwidth is the frequency at  
which the output amplitude falls to 3 dB below the input.  
Gain Error  
Gain error is a measurement of the span error of the DAC. It is  
the deviation in slope of the DAC transfer characteristic from  
the ideal, expressed as % of FSR.  
Total Harmonic Distortion (THD)  
THD is the difference between an ideal sine wave and its  
attenuated version using the DAC. The sine wave is used as the  
reference for the DAC, and the THD is a measurement of the  
harmonics present on the DAC output. It is measured in dB.  
Zero-Code Error Drift  
Zero-code error drift is a measurement of the change in zero-  
code error with a change in temperature. It is expressed in µV/°C.  
Voltage Reference Temperature Coefficient (TC)  
Gain Temperature Coefficient  
Gain temperature coefficient is a measurement of the change in gain  
error with changes in temperature. It is expressed in ppm of FSR/°C.  
Voltage reference TC is a measurement of the change in the  
reference output voltage with a change in temperature. The  
reference TC is calculated using the box method, which defines  
the TC as the maximum change in the reference output over a  
given temperature range expressed in ppm/°C, as follows:  
Offset Error  
Offset error is a measure of the difference between VOUT (actual)  
and VOUT (ideal) expressed in mV in the linear region of the transfer  
function. Offset error is measured with Code 4 loaded in the  
DAC register. It can be negative or positive.  
VREFmax VREFmin  
TC =  
×106  
V
×TempRange  
REFnom  
where:  
REFmax is the maximum reference output measured over the  
total temperature range.  
REFmin is the minimum reference output measured over the total  
temperature range.  
REFnom is the nominal reference output voltage, 2.5 V.  
TempRange is the specified temperature range, −40°C to +105°C.  
DC Power Supply Rejection Ratio (PSRR)  
V
PSRR indicates how the output of the DAC is affected by changes  
in the supply voltage. PSRR is the ratio of the change in VOUT to  
a change in VDD for full-scale output of the DAC. It is measured  
in dB. VREF is held at 2 V, and VDD varies by 10%.  
V
V
Output Voltage Settling Time  
Output voltage settling time is the amount of time it takes for  
the output of a DAC to settle to a specified level for a ¼ to ¾  
full-scale input change.  
Rev. B | Page 16 of 24  
 
Data Sheet  
AD5310R/AD5311R  
THEORY OF OPERATION  
V
REF  
DIGITAL-TO-ANALOG CONVERTER  
R
The AD5310R/AD5311R are single-channel, 10-bit, serial input,  
voltage output DACs with a 2.5 V internal reference. The devices  
operate from supply voltages of 2.7 V to 5.5 V. Data is written to  
the AD5310R/AD5311R in a 24-bit word format via an I2C serial  
interface or SPI interface.  
R
R
TO OUTPUT  
BUFFER  
The AD5310R/AD5311R incorporate a power-on reset circuit that  
ensures that the DAC output powers up to a zero scale. The  
devices also have a software power-down mode that reduces the  
typical current consumption to 2 μA maximum in specs.  
R
R
TRANSFER FUNCTION  
The internal reference is on by default. The input coding to the  
DAC is straight binary, and the ideal output voltage is given by  
the following equations:  
For the AD5310R,  
Figure 38. Simplified Resistor String Structure  
D
1024  
Internal Reference  
VOUT (D) = Gain×VREF  
×
The AD5310R/AD5311R has a 2.5 V, 2 ppm/°C reference that  
provides a full-scale output of 2.5 V or 5 V, depending on the  
state of the gain bit, see Table 15.  
For the AD5311R,  
VOUT (D) = Gain×VREF  
where:  
D
1024  
×
The AD5310R/AD5311R on-chip reference is on at power-up  
but can be disabled via a write to the control register.  
The internal reference is available at the VREF pin. It is internally  
buffered and capable of driving external loads of up to 50 mA.  
D is the decimal equivalent of the binary code that is loaded to  
the DAC register.  
Gain is the gain of the output amplifier and is set to ×1 by  
default. The gain can also be set to 1 or 2 using the gain select  
bit in the control register.  
External Reference  
The VREF pin can be configured as an input pin, allowing the use  
of an external reference if the application requires it. The default  
condition of the on-chip reference is on at power-up.  
DAC ARCHITECTURE  
Before connecting an external buffer to the pin, a write to the  
control register is required to disable the internal reference, see  
the REF Bit section.  
The DAC architecture implements a segmented string DAC  
with an internal output buffer. Figure 37 shows the internal  
block diagram.  
V
REF  
Output Buffer  
2.5V  
REF  
The output buffer is designed as an input/output rail-to-rail  
buffer, which gives a maximum output voltage range of up to 0  
V to VDD. The gain bit sets the segmented string DAC gain to ×1  
or ×2 as shown in Table 15. The output buffer voltage is  
determined by VREF, the gain bit, and the offset and gain errors.  
REF (+)  
INPUT  
REGISTER  
DAC  
REGISTER  
RESISTOR  
STRING  
V
OUT  
REF (–)  
GND  
The output buffer can drive 10nF capacitance with a 2 kΩ  
resistor in parallel, as shown in Figure 34. If a higher capacitance  
load is required, a shunt resistor must be connected between the  
output amplifier and the load. The slew rate is 0.7 V/µs with a ¼  
to ¾ scale settling time of 5 µs.  
Figure 37. DAC Channel Architecture Block Diagram  
The simplified segmented resistor string DAC structure is  
shown in Figure 38. The code loaded to the DAC register  
determines the switch on the string that is connected to the  
output buffer.  
Because each resistance in the string has the same value, R, the  
string DAC is guaranteed monotonic.  
Rev. B | Page 17 of 24  
 
 
 
 
 
 
AD5310R/AD5311R  
Data Sheet  
SERIAL INTERFACE  
AD5310R SPI SERIAL DATA INTERFACE  
DAISY-CHAIN MODE COMPATIBILITY  
SYNC  
The AD5310R can be operated in a daisy-chain configuration,  
but cannot forward data because there is no SDO pin. To connect  
the AD5310R in daisy-chain mode, it is possible to connect only  
one device per chain, and the AD5310R should be connected  
the last device.  
The AD5310R has a 3-wire serial interface (  
, SCLK, and  
SDI) that is compatible with serial peripheral interface (SPI),  
Mode 1 and Mode 2, and with completely synchronous interfaces  
such as SPORT. See Figure 3 for a timing diagram of a typical  
write sequence. See the AN-1248 Application Note for more  
information about the SPI interface.  
Daisy-chaining minimizes the number of pins required from  
the controlling IC. As shown in Figure 39, the SDO pin of one  
package must be tied to the SDI pin of the next package. The  
clock period may need to be increased because of the  
propagation delay of the line between subsequent devices. By  
default, the daisy-chain configuration mode is disabled. To  
enable it, the DCEN bit must be set in the control register, as  
shown in Table 11.  
SYNC  
The write sequence begins by bringing the  
from the SDI line is sampled into the input shift register on the  
SYNC  
line low. Data  
falling edge of SCLK. The  
complete data-word (16 bits) is loaded from the SDI pin, as  
SYNC  
pin must be held low until the  
shown in Figure 3. When  
returns high, the serial data-  
word is decoded according to the instructions in Table 10.  
SYNC  
must be brought high for a minimum of 20 ns before the  
When the DCEN bit is enabled in the control register, the  
AD5310R accepts as a valid frame any data-word longer than 24  
bits, and decodes the last 24 bits received, with the last 10 LSB  
as do not care bits.  
SYNC  
next write sequence such that a falling edge of  
initiate the next write sequence.  
can  
SYNC  
If  
is brought high after 16 falling clock edges occur, it is  
interpreted as a valid write and the first 16 bits are loaded to the  
input shift register.  
AD5686  
CONTROLLER  
U1  
SDIN  
SCLK  
SYNC  
MOSI  
SCLK  
SS  
SYNC  
If  
is brought high before 16 falling clock edges, the serial  
write is ignored and the write sequence is considered invalid.  
SDO  
To minimize power consumption, it is recommended that all  
serial interface pins be operated close to the supply rails.  
MISO  
SDI  
AD5310R  
U2  
SCLK  
SYNC  
Figure 39. Daisy-Chain Connection  
SCLK  
SYNC  
24  
48  
DB23  
DB0  
DB23  
DB0  
MOSI  
INPUT WORD FOR AD5310R  
INPUT WORD FOR AD5686  
INPUT WORD FOR AD5310R  
DB23  
DB0  
SDO_U1  
UNDEFINED  
Figure 40. Daisy-Chain Timing Diagram  
Rev. B | Page 18 of 24  
 
 
 
 
Data Sheet  
AD5310R/AD5311R  
Table 10. SPI Command Operation  
Command  
Bits[DB15:DB12]  
Data Bits [DB11:DB0]1  
DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 [DB1:DB0] Operation  
C3 C2 C1 C0 DB11 DB10  
0
0
0
0
0
0
0
0
1
0
1
0
X
X
X
X
X
X
X
X
X
X
XX  
XX  
XX  
NOP. Do nothing.  
DB9  
X
DB8  
X
DB7  
X
DB6  
X
DB5  
X
DB4  
X
DB3  
X
DB2  
X
DB1  
X
DB0  
X
Write input register.  
Update DAC register  
(LDAC software).  
0
0
0
1
1
0
1
0
DB9  
DB9  
DB8  
DB8  
DB7  
DB7  
DB6  
DB6  
DB5  
DB5  
DB4  
DB4  
DB3  
0
DB2  
0
DB1  
0
DB0  
0
XX  
00  
Write DAC and input  
register.  
Write control register.  
1 X = don’t care.  
I2C Address  
Table 11. Control Register Bits  
The AD5311R has a 7-bit slave address. The five MSBs are  
10011. The second to the last bit, set by the state of the A0  
address pin and the LSB, is 0. The ability to make hardwired  
changes to A0 lets the user have two of these devices on one bus,  
as outlined in Table 12. Additionally, the pin can be updated  
before starting the transmission, allowing multiples devices in the  
same bus by connecting the pin to a GPIO or a multiplexer.  
DB11  
DB10  
DB9  
DB8  
REF  
DB7  
GAIN  
DB6  
RESET  
PD1  
PDO  
DCEN  
AD5311R I2C SERIAL DATA INTERFACE  
The AD5311R has a 2-wire, I2C-compatible serial interface.  
These devices can be connected to an I2C bus as a slave device,  
under the control of a master device. See Figure 4 for a timing  
diagram of a typical write sequence.  
Table 12. Device Address Selection  
A0 Pin Connection  
A0 Bit  
I2C Address  
1001100  
The AD5311R supports standard (100 kHz) and fast (400 kHz)  
data transfer modes. Support is not provided for 10-bit  
addressing and general call addressing.  
GND  
0
1
VLOGIC  
1001110  
The 2-wire serial bus protocol operates as follows:  
I2C Write Operation  
1. The master initiates a data transfer by establishing a start  
condition when a high to low transition on the SDA line  
occurs while SCL is high. The following byte is the address  
byte, which consists of the 7-bit slave address. The slave  
address corresponding to the transmitted address responds  
by pulling SDA low during the ninth clock pulse (this is  
called the acknowledge bit). At this stage, all other devices  
on the bus remain idle while the selected device waits for  
data to be written to, or read from, its shift register.  
2. Data is transmitted over the serial bus in sequences of nine  
clock pulses (eight data bits followed by an acknowledge  
bit). The transitions on the SDA line must occur during the  
low period of SCL and remain stable during the high  
period of SCL.  
When writing to the AD5311R, the user must begin with a start  
W
condition followed by an address byte (R/ = 0), after which  
the DAC acknowledges that it is prepared to receive data by  
pulling SDA low, as shown in Figure 41. The AD5311R requires  
a command byte that controls various DAC functions (see  
Table 13) and two bytes of data for the DAC. All these data  
bytes are acknowledged by the AD5311R. A stop condition  
follows. The write sequence is shown in Figure 41.  
3. When all the data bits have been read or written, a stop  
condition is established. In write mode, the master pulls  
the SDA line high during the tenth clock pulse to establish  
a stop condition. In read mode, the master issues a no  
acknowledge for the ninth clock pulse (that is, the SDA line  
remains high). The master then brings the SDA line low  
before the tenth clock pulse, and then high during the  
tenth clock pulse to establish a stop condition.  
Rev. B | Page 19 of 24  
 
 
 
 
AD5310R/AD5311R  
Data Sheet  
SCL  
1
0
0
1
1
A0  
0
R/W  
SDA  
START  
DB0  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
ADDRESS BYTE  
ACK MSB  
BY  
COMMAND BYTE  
ACK  
BY  
AD5311R  
CONDITION  
BY  
AD5311R  
MASTER  
SCL  
SDA  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
DATA HIGH BYTE  
ACK  
BY  
AD5311R  
DATA LOW BYTE  
ACK  
BY  
AD5311R  
STOP  
CONDITION  
BY  
MASTER  
Figure 41. I2C Write Operation  
Table 13. I2C Command Table1  
Command Byte  
Data High Byte  
Data Low Byte  
DB7 DB6 DB5 DB4 [DB3:DB0]  
[DB7:DB3]  
XXXXX  
[DB2:DB0]  
XXX  
[DB7:DB6]  
XX  
[DB5:DB0]  
XXXXX  
XXXXX  
XXXXX  
XXXXX  
00000  
Operation  
0
0
0
0
0
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
XXXX  
XXXX  
XXXX  
XXXX  
XXXX  
NOP: do nothing.  
Write input register.  
DB9:DB5  
XXXXX  
DB:DB2  
XXX  
DB1:DB0  
XX  
Update DAC register (LDAC software).  
Write DAC and input registers.  
Write control register.  
DB9:DB5  
DB9:DB5  
DB4:DB2  
000  
DB1:DB0  
00  
1 X = don’t care.  
Table 14. Control Register Bits  
DB9  
DB8  
DB7  
PDO  
DB6  
REF  
DB5  
RESET  
PD1  
GAIN  
Rev. B | Page 20 of 24  
 
 
 
Data Sheet  
AD5310R/AD5311R  
PD0 and PD1 Bits  
COMMANDS  
Write Input Register  
The AD5310R/AD5311R provide two separate modes of  
operation that are accessed by writing to the write control register.  
The input register allows the preloading of a new value for the  
DAC register. The transfer from the input register to the DAC  
In normal mode, the output buffer is directly connected to the  
register can be triggered by hardware, by the  
pin, or by  
LDAC  
V
OUT pin.  
software using Command 2.  
In power-down mode, the output buffer is internally disabled  
and the VOUT pin output impedance can be selected to a well-  
known value, as shown in Table 17.  
If new data is loaded into the DAC register, the DAC register  
automatically overwrites the input register.  
Update DAC Register  
Table 17. Operation Modes  
This command transfers the contents of the input register to the  
DAC register and, consequently, the VOUT pin is updated. The  
data contained in the serial write is ignored.  
Operating Mode  
PD1  
PD0  
Normal Mode  
0
0
Power-Down Modes  
1 kΩ Output Impedance  
100 kΩ Output Impedance  
Three-State Output Impedance  
This operation is equivalent to a software  
.
LDAC  
0
1
1
1
0
1
Write DAC Register  
This command updates the DAC register on completion of the  
write operation. The input register is refreshed automatically  
with the DAC register value.  
In power-down mode, the part disables the output buffer, but  
does not disable the internal reference. To achieve maximum  
power saving, it is recommend that the REF bit be disabled.  
Write Control Register  
The write control register command is used to set the power-  
down and gain functions. It is also used to enable/disable the  
internal reference and perform a software reset. See Table 14 for  
the control register bits.  
Disabling both the internal reference and the output buffer  
results in the supply current falling to 2 μA at 5 V.  
The output stage is illustrated in Figure 42.  
Gain Bit  
DAC  
AMPLIFIER  
V
OUT  
The gain bit selects the gain of the output amplifier. Table 15  
shows how the output voltage range corresponds to the state of  
the gain bit.  
POWER-DOWN  
CIRCUITRY  
RESISTOR  
NETWORK  
Table 15. Gain Bit  
Gain  
Output Voltage Range  
0 V to VREF (default)  
0 V to 2 × VREF  
0
1
Figure 42. Output Stage During Power-Down  
The output amplifier is shut down when the power-down mode  
is activated. However, unless the internal reference is powered  
down, the bias generator, reference, and resistor string remain  
on. The supply current falls to 2 μA at 5 V. The contents of the  
DAC register are unaffected in power-down mode, and the DAC  
register can be updated while the device is in power-down mode.  
The time that is required to exit power-down is typically 4 µs for  
REF Bit  
The on-chip reference is on at power-up by default. This reference  
can be turned on or off by setting a software programmable bit,  
DB6, in the control register. Table 16 shows how the state of the  
bit corresponds to the mode of operation.  
V
DD = 5 V, or 600 µs if the reference is disabled.  
To reduce power consumption, it is recommended that the  
internal reference be disabled if the device is placed in power-  
down mode.  
Reset Bit  
The write control register of the AD5310R/AD5311R contains a  
software reset bits that resets the DAC registers to zero scale  
and resets the input, the DAC, and the control registers to their  
default values. A software reset is initiated by setting the reset  
bit in the control register to 1. When the software reset is  
completed, the reset bit is cleared to 0 automatically.  
Table 16. REF Bit  
REF  
Reference Function  
Reference enabled (default)  
Reference disabled  
0
1
Rev. B | Page 21 of 24  
 
 
 
 
 
 
AD5310R/AD5311R  
Data Sheet  
LDAC  
RESET  
HARDWARE  
LOAD DAC (HARDWARE  
PIN)  
The AD5310R/AD5311R have a double buffered interface  
RESET  
is an active low signal that resets the DAC output to zero  
scale and sets the input, DAC, and control registers to their default  
RESET  
LDAC  
consisting of an input register and a DAC register. The  
pin transfers data from the input register to the DAC register,  
and the output is updated.  
values. It is necessary to keep  
low for 75 ns to complete  
signal returns high, the output  
remains at zero scale until a new value is programmed. While the  
RESET  
RESET  
the operation. When the  
Synchronous DAC Update (AD5311R Only)  
pin is low, the AD5310R/AD5311R ignore any new  
command.  
RESET  
LDAC  
If the  
pin is held low while the input register is written,  
the DAC register, input register, and output are updated on the  
last SCL falling edge before the ACK bit, as shown in Figure 5.  
If  
is held low at power-up, the internal reference is not  
RESET  
initialized correctly until the  
AD5311R, I2C READ OPERATION  
pin is released.  
Asynchronous DAC Update  
LDAC  
is held high while data is transmitted to the device. The  
LDAC  
DAC output is updated by taking  
low after the stop  
When reading the input register back from the AD5311R DAC,  
condition is generated. The output DAC is updated on the  
LDAC  
W
the user begins with an address byte (R/ = 1), after which the  
falling edge of the  
pin.  
DAC acknowledges that it is prepared to receive data by pulling  
SDA low. Two bytes of data containing the contents of the input  
register are then read from the DAC, as shown in Figure 43. A  
NACK condition from the master followed by a stop condition  
completes the read sequence.  
LDAC  
If  
is pulsed while the device is accessed, the pulse is ignored.  
1
9
1
9
SCL  
DB7 DB6  
DB5 DB4  
DB3 DB2  
DB1  
DB0  
1
0
0
1
1
A0  
0
R/W  
SDA  
START BY  
MASTER  
ACK. BY  
AD5311R  
ACK. BY  
MASTER  
FRAME 1  
SLAVE ADDRESS  
FRAME 2  
DATA HIGH BYTE  
1
9
SCL  
(CONTINUED)  
SDA  
(CONTINUED)  
DB7  
DB6 DB5 DB4  
DB3  
DB2  
DB1  
DB0  
NACK. BY STOP BY  
MASTER MASTER  
FRAME 3  
DATA LOW BYTE  
Figure 43. I2C Read Operation  
Rev. B | Page 22 of 24  
 
 
 
 
Data Sheet  
AD5310R/AD5311R  
THERMAL HYSTERESIS  
POWER-UP SEQUENCE  
Thermal hysteresis is the voltage difference induced on the  
reference voltage by sweeping the temperature from ambient  
to cold, to hot, and then back to ambient.  
Because diodes limit the voltage compliance at the digital and  
analog pins, it is important to power GND first before applying  
any voltage to VDD, VOUT, and VLOGIC. Otherwise, the diode is  
forward-biased such that VDD is powered unintentionally. The  
ideal power-up sequence is GND, VDD, VLOGIC, VREF, followed by  
the digital inputs.  
The thermal hysteresis data is shown in Figure 44. It is measured by  
sweeping the temperature from ambient +25°C to −40°C, then to  
+105°C, and finally returning to ambient +25°C. The VREF delta  
is next measured between the two ambient measurements and  
shown in the solid lines in Figure 44. The same temperature  
sweep and measurements are immediately repeated and the  
results are shown in the dashed lines in Figure 44.  
LAYOUT GUIDELINES  
In any circuit where accuracy is important, careful  
consideration of the power supply and ground return layout  
helps to ensure the rated performance. The PCB on which the  
AD5310R/AD5311R are mounted should be designed such that  
the AD5310R/AD5311Rare placed on the analog plane.  
6
FIRST TEMPERATURE SWEEP  
SUBSEQUENT…  
5
Ensure that the AD5310R/AD5311R have ample supply  
bypassing of 10 µF in parallel with 0.1 µF on each supply,  
located as close to the package as possible, ideally right up  
against the device. The 10 µF capacitors are the tantalum bead  
type. Use a 0.1 µF capacitor with low effective series resistance  
(ESR) and low effective series inductance (ESI), such as the  
common ceramic types, which provide a low impedance path to  
ground at high frequencies to handle transient currents due to  
internal logic switching.  
4
3
2
1
0
–100  
–80  
–60  
–40  
–20  
0
20  
40  
60  
DISTORTION (ppm)  
Figure 44. Thermal Hysteresis  
Rev. B | Page 23 of 24  
 
 
 
 
AD5310R/AD5311R  
Data Sheet  
OUTLINE DIMENSIONS  
3.10  
3.00  
2.90  
10  
1
6
5
5.15  
4.90  
4.65  
3.10  
3.00  
2.90  
PIN 1  
IDENTIFIER  
0.50 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.70  
0.55  
0.40  
0.15  
0.05  
0.23  
0.13  
6°  
0°  
0.30  
0.15  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-BA  
Figure 45. 10-Lead Mini Small Outline Package [MSOP]  
(RM-10)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Resolution (Bits)  
Temperature Range  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
Package Description  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
Package Option  
RM-10  
RM-10  
Branding  
DJZ  
DJZ  
AD5310RBRMZ  
AD5310RBRMZ-RL7  
AD5311RBRMZ  
AD5311RBRMZ-RL7  
10  
10  
10  
10  
RM-10  
RM-10  
DJX  
DJX  
1 Z = RoHS Compliant Part.  
I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).  
©2014–2017 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D11956-0-2/17(B)  
Rev. B | Page 24 of 24  
 
 

相关型号:

AD5310WBRTZ-REEL7

2.7 V to 5.5 V, 140 muA, Rail-to-Rail Voltage Output 10-Bit DAC in a SOT-23
ADI

AD5311

+2.5 V to +5.5 V, 120 uA, 2-Wire Interface, Voltage Output 8-/10-/12-Bit DACs
ADI

AD5311BRM

+2.5 V to +5.5 V, 120 uA, 2-Wire Interface, Voltage Output 8-/10-/12-Bit DACs
ADI

AD5311BRM-REEL

2.5 V to 5.5 V, 120 μA, 2-Wire Interface, Voltage-Output 8-/10-/12-Bit DACs
ADI

AD5311BRM-REEL7

2.5 V to 5.5 V, 120 μA, 2-Wire Interface, Voltage-Output 8-/10-/12-Bit DACs
ADI

AD5311BRMZ

2.5 V to 5.5 V, 120 μA, 2-Wire Interface, Voltage-Output 8-/10-/12-Bit DACs
ADI

AD5311BRMZ-REEL

2.5 V to 5.5 V, 120 &#181;A, 2-Wire Interface, Voltage-Output 10-Bit DAC
ADI

AD5311BRMZ-REEL1

2.5 V to 5.5 V, 120 μA, 2-Wire Interface, Voltage-Output 8-/10-/12-Bit DACs
ADI

AD5311BRMZ-REEL7

SERIAL INPUT LOADING, 7us SETTLING TIME, 10-BIT DAC, PDSO8, ROHS COMPLIANT, MO-187AA, MSOP-8
ADI

AD5311BRMZ-REEL7

SERIAL INPUT LOADING, 7 us SETTLING TIME, 10-BIT DAC, PDSO8, ROHS COMPLIANT, MO-187AA, MSOP-8
ROCHESTER

AD5311BRMZ-REEL71

2.5 V to 5.5 V, 120 μA, 2-Wire Interface, Voltage-Output 8-/10-/12-Bit DACs
ADI

AD5311BRMZ1

2.5 V to 5.5 V, 120 μA, 2-Wire Interface, Voltage-Output 8-/10-/12-Bit DACs
ADI