AD5318ARUZ-REEL7 [ADI]

2.5 V to 5.5 V Octal Voltage Output 8-/10-/12-Bit DACs in 16-Lead TSSOP; 2.5 V至5.5 V八通道电压输出8位/ 10位/ 12位DAC,采用16引脚TSSOP
AD5318ARUZ-REEL7
型号: AD5318ARUZ-REEL7
厂家: ADI    ADI
描述:

2.5 V to 5.5 V Octal Voltage Output 8-/10-/12-Bit DACs in 16-Lead TSSOP
2.5 V至5.5 V八通道电压输出8位/ 10位/ 12位DAC,采用16引脚TSSOP

转换器 数模转换器 光电二极管
文件: 总28页 (文件大小:408K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2.5 V to 5.5 V Octal Voltage Output  
8-/10-/12-Bit DACs in 16-Lead TSSOP  
AD5308/AD5318/AD5328  
APPꢀICATIONS  
FEATURES  
AD5308: 8 buffered 8-bit DACs in 16-lead TSSOP  
A version: 1 ꢀSB INꢀ, B version: 0.75 ꢀSB INꢀ  
AD5318: 8 buffered 10-bit DACs in 16-lead TSSOP  
A version: 4 ꢀSB INꢀ, B version: 3 ꢀSB INꢀ  
AD5328: 8 buffered 12-bit DACs in 16-lead TSSOP  
A version: 16 ꢀSB INꢀ, B version: 12 ꢀSB INꢀ  
ꢀow power operation: 0.7 mA @ 3 V  
Guaranteed monotonic by design over all codes  
Power-down to 120 nA @ 3 V, 400 nA @ 5 V  
Double-buffered input logic  
Portable battery-powered instruments  
Digital gain and offset adjustment  
Programmable voltage and current sources  
Optical networking  
Automatic test equipment  
Mobile communications  
Programmable attenuators  
Industrial process control  
Buffered/unbuffered/VDD reference input options  
Output range: 0 V to VREF or 0 V to 2 VREF  
Power-on reset to 0 V  
Programmability  
Individual channel power-down  
Simultaneous update of outputs (ꢀDAC)  
ꢀow power, SPI-®, QSPI-™, MICROWIRE-™, and DSP-  
compatible 3-wire serial interface  
On-chip rail-to-rail output buffer amplifiers  
Temperature range: −40°C to +125°C  
Qualified for automotive applications  
GENERAꢀ DESCRIPTION  
incorporate a power-on reset circuit, which ensures that the  
DAC outputs power up to 0 V and remain there until a valid  
write to the device takes place. The outputs of all DACs may be  
The AD5308/AD5318/AD5328 are octal 8-, 10-, and 12-bit  
buffered voltage output DACs in a 16-lead TSSOP. They operate  
from a single 2.5 V to 5.5 V supply, consuming 0.7 mA typical  
at 3 V. Their on-chip output amplifiers allow the outputs to  
swing rail-to-rail with a slew rate of 0.7 V/μs. The AD5308/  
AD5318/AD5328 use a versatile 3-wire serial interface that  
operates at clock rates up to 30 MHz and is compatible with  
standard SPI, QSPI, MICROWIRE, and DSP interface  
standards.  
LDAC  
updated simultaneously using the asynchronous  
input.  
The parts contain a power-down feature that reduces the current  
consumption of the devices to 400 nA at 5 V (120 nA at 3 V).  
The eight channels of the DAC may be powered down individually.  
All three parts are offered in the same pinout, which allows  
users to select the resolution appropriate for their application  
without redesigning their circuit board.  
The references for the eight DACs are derived from two  
reference pins (one per DAC quad). These reference inputs can  
be configured as buffered, unbuffered, or VDD inputs. The parts  
Rev. F  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2002–2011 Analog Devices, Inc. All rights reserved.  
 
AD5308/AD5318/AD5328  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Low Power Serial Interface ....................................................... 18  
LDAC  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Functional Block Diagram .............................................................. 3  
Specifications..................................................................................... 4  
Absolute Maximum Ratings............................................................ 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
Typical Performance Characteristics ............................................. 9  
Terminology .................................................................................... 13  
Theory of Operation ...................................................................... 15  
Digital-to-Analog Converter .................................................... 15  
Resistor String............................................................................. 15  
Output Amplifier........................................................................ 15  
Power-On Reset.......................................................................... 16  
Power-Down Mode .................................................................... 16  
Serial Interface ............................................................................ 16  
Load DAC Input (  
) Function......................................... 18  
Double-Buffered Interface ........................................................ 18  
Microprocessor Interface............................................................... 19  
ADSP-2101/ADSP-2103-to-AD5308/AD5318/AD5328  
Interface....................................................................................... 19  
68HC11/68L11-to-AD5308/AD5318/AD5328 Interface ..... 19  
80C51/80L51-to-AD5308/AD5318/AD5328 Interface......... 19  
Microwire-to-AD5308/AD5318/AD5328 Interface.............. 20  
Applications Information.............................................................. 21  
Typical Application Circuit....................................................... 21  
Driving VDD from the Reference Voltage ................................ 21  
Bipolar Operation Using the AD5308/AD5318/AD5328..... 21  
Opto-Isolated Interface for Process Control Applications ... 21  
Decoding Multiple AD5308/AD5318/AD5328s.................... 22  
Outline Dimensions....................................................................... 24  
Ordering Guide .......................................................................... 24  
REVISION HISTORY  
4/11—Rev. E to Rev. F  
Added Automotive Products Information................. Throughout  
2/11—Rev. D to Rev. E  
Change to Temperature Range .................................... Throughout  
Changes to Table 3, t4 Timing Characteristics.............................. 6  
3/07—Rev. C to Rev. D  
Updated Format..................................................................Universal  
Changes to Absolute Maximum Ratings Section......................... 7  
9/05—Rev. B to Rev. C  
Updated Format..................................................................Universal  
Change to Equation........................................................................ 21  
11/03—Rev. A to Rev. B  
Changes to Ordering Guide ............................................................ 4  
Changes to Y axis on TPCs 12, 13, and 15.................................... 9  
8/03—Rev. 0 to Rev. A  
Added A Version.................................................................Universal  
Changes to Features.......................................................................... 1  
Changes to Specifications................................................................ 2  
Edits to Absolute Maximum Ratings ............................................. 4  
Edits to Ordering Guide .................................................................. 4  
Updated Outline Dimensions....................................................... 18  
Rev. F | Page 2 of 28  
 
AD5308/AD5318/AD5328  
FUNCTIONAL BLOCK DIAGRAM  
V
ABCD  
V
REF  
DD  
V
DD  
GAIN-SELECT  
LOGIC  
STRING  
INPUT  
REGISTER  
DAC  
REGISTER  
V
V
V
V
V
V
V
V
A
B
C
D
E
F
DAC A  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
LDAC  
DAC  
REGISTER  
STRING  
DAC B  
INPUT  
REGISTER  
DAC  
REGISTER  
INPUT  
REGISTER  
STRING  
DAC C  
SCLK  
DAC  
REGISTER  
INPUT  
REGISTER  
STRING  
DAC D  
INTERFACE  
LOGIC  
SYNC  
DIN  
INPUT  
REGISTER  
DAC  
REGISTER  
STRING  
DAC E  
INPUT  
REGISTER  
DAC  
REGISTER  
STRING  
DAC F  
INPUT  
REGISTER  
DAC  
REGISTER  
STRING  
DAC G  
G
H
T  
INPUT  
REGISTER  
DAC  
REGISTER  
STRING  
DAC H  
GND  
POWER-ON  
RESET  
GAIN-SELECT  
LOGIC  
POWER-DOWN  
LOGIC  
V
DD  
V
EFGH  
REF  
GND  
LDAC  
Figure 1.  
Rev. F | Page 3 of 28  
 
AD5308/AD5318/AD5328  
SPECIFICATIONS  
VDD = 2.5 V to 5.5 V; VREF = 2 V; RL = 2 kΩ to GND; CL = 200 pF to GND; all specifications TMIN to TMAX, unless otherwise specified.  
Table 1.  
A Version1  
Typ  
B Version1  
Typ  
Parameter2  
Min  
Max  
Min  
Max  
Unit  
Conditions/Comments  
DC PERFORMANCE3, 4  
AD5308  
Resolution  
Relative Accuracy  
Differential Nonlinearity  
8
8
Bits  
LSB  
LSB  
0.15  
0.02  
1
0.25  
0.15  
0.02  
0.ꢀ5  
0.25  
Guaranteed monotonic by  
design over all codes  
AD5318  
Resolution  
Relative Accuracy  
Differential Nonlinearity  
10  
12  
10  
12  
Bits  
LSB  
LSB  
0.5  
0.05  
4
0.50  
0.5  
0.05  
3
0.50  
Guaranteed monotonic by  
design over all codes  
AD5328  
Resolution  
Relative Accuracy  
Differential Nonlinearity  
Bits  
LSB  
LSB  
2
0.2  
1ꢁ  
1.0  
2
0.2  
12  
1.0  
Guaranteed monotonic by  
design over all codes  
Offset Error  
5
ꢁ0  
5
ꢁ0  
mV  
VDD = 4.5 V, gain = 2, see  
Figure 2ꢀ and Figure 28  
Gain Error  
0.30  
10  
1.25  
0.30  
1.25  
% of FSR  
mV  
VDD = 4.5 V, gain = 2, see  
Figure 2ꢀ and Figure 28  
Lower deadband exists only  
if offset error is negative, see  
Figure 2ꢀ  
Upper deadband exists only  
if VREF = VDD and offset plus  
gain error is positive, see  
Figure 28  
Lower Deadband5  
ꢁ0  
10  
ꢁ0  
Upper Deadband5  
10  
ꢁ0  
10  
ꢁ0  
mV  
Offset Error Driftꢁ  
Gain Error Driftꢁ  
−12  
−5  
−12  
−5  
ppm of  
FSR/°C  
ppm of  
FSR/°C  
DC Power Supply Rejection Ratioꢁ  
DC Crosstalkꢁ  
−ꢁ0  
200  
−ꢁ0  
200  
dB  
μV  
VDD = 10%  
RL = 2 kΩ to GND or VDD  
DAC REFERENCE INPUTSꢁ  
VREF Input Range  
1.0  
0.25  
VDD  
VDD  
1.0  
0.25  
VDD  
VDD  
V
V
Buffered reference mode  
Unbuffered reference mode  
VREF Input Impedance (RDAC  
)
>10.0  
45.0  
>10.0  
45.0  
MΩ  
Buffered reference mode  
and power-down mode  
Unbuffered reference mode,  
0 V to VREF output range  
Unbuffered reference mode,  
0 V to 2 VREF output range  
3ꢀ.0  
18.0  
3ꢀ.0  
18.0  
kΩ  
kΩ  
22.0  
22.0  
Reference Feedthrough  
−ꢀ0.0  
−ꢀ5.0  
−ꢀ0.0  
−ꢀ5.0  
dB  
dB  
Frequency = 10 kHz  
Frequency = 10 kHz  
Channel-to-Channel Isolation  
OUTPUT CHARACTERISTICSꢁ  
Minimum Output Voltageꢀ  
0.001  
0.001  
V
V
Ω
This is a measure of the  
minimum and maximum  
Drive capability of the  
output amplifier  
Maximum Output Voltageꢀ  
DC Output Impedance  
VDD  
VDD − 0.001  
0.5  
0.001  
0.5  
Rev. F | Page 4 of 28  
 
 
 
 
AD5308/AD5318/AD5328  
A Version1  
Typ  
B Version1  
Typ  
Parameter2  
Min  
Max  
Min  
Max  
Unit  
mA  
mA  
μs  
Conditions/Comments  
VDD = 5 V  
VDD = 3 V  
Coming out of power-down  
mode, VDD = 5 V  
Short Circuit Current  
25.0  
1ꢁ.0  
2.5  
25.0  
1ꢁ.0  
2.5  
Power-Up Time  
5.0  
5.0  
μs  
Coming out of power-down  
mode, VDD = 3 V  
LOGIC INPUTSꢁ  
Input Current  
VIL, Input Low Voltage  
1
0.8  
0.8  
0.ꢀ  
1
0.8  
0.8  
0.ꢀ  
μA  
V
V
VDD = 5 V 10%  
VDD = 3 V 10%  
VDD = 2.5 V  
V
VIH, Input High Voltage  
1.ꢀ  
2.5  
1.ꢀ  
2.5  
V
VDD = 2.5 V to 5.5 V, TTL and  
CMOS compatible  
Pin Capacitance  
POWER REQUIREMENTS  
VDD  
3.0  
3.0  
pF  
V
5.5  
5.5  
IDD (Normal Mode)8  
VDD = 4.5 V to 5.5 V  
VIH = VDD and VIL = GND  
All DACs in unbuffered  
mode, in buffered mode  
Extra current is typically x μA  
per DAC; x = (5 μA +  
VREF/RDAC)/4  
1.0  
0.ꢀ  
1.8  
1.5  
1.0  
0.ꢀ  
1.8  
1.5  
mA  
mA  
VDD = 2.5 V to 3.ꢁ V  
IDD (Power-Down Mode)9  
VDD = 4.5 V to 5.5 V  
VIH = VDD and VIL = GND  
0.4  
0.12  
1
1
0.4  
0.12  
1
1
μA  
μA  
VDD = 2.5 V to 3.ꢁ V  
1 Temperature range (A, B version): 40°C to +125°C; typical at 25°C.  
2 See the Terminology section.  
3 DC specifications tested with the outputs unloaded unless stated otherwise.  
4 Linearity is tested using a reduced code range: AD5308 (Code 8 to Code 255), AD5318 (Code 28 to Code 1023), and AD5328 (Code 115 to Code 4095).  
5 This corresponds to x codes. x = deadband voltage/LSB size.  
Guaranteed by design and characterization; not production tested.  
For the amplifier output to reach its minimum voltage, offset error must be negative. For the amplifier output to reach its maximum voltage, VREF = VDD and offset plus  
gain error must be positive.  
8 Interface inactive. All DACs active. DAC outputs unloaded.  
9 All eight DACs powered down.  
VDD = 2.5 V to 5.5 V; RL = 2 kΩ to GND; CL = 200 pF to GND; all specifications TMIN to TMAX, unless otherwise noted.  
Table 2. AC Characteristics1  
A, B Version2  
Parameter3  
Min  
Typ  
Max  
Unit  
Conditions/Comments  
Output Voltage Settling Time  
AD5308  
AD5318  
VREF = VDD = 5 V  
8
8
9
10  
μs  
μs  
μs  
1/4 scale to 3/4 scale change (0x40 to 0xC0)  
1/4 scale to 3/4 scale change (0x100 To 0x300)  
1/4 scale to 3/4 scale change (0x400 to 0xC00)  
AD5328  
Slew Rate  
0.ꢀ  
12  
0.5  
0.5  
1
3
200  
−ꢀ0  
V/μs  
nV-sec  
nV-sec  
nV-sec  
nV-sec  
nV-sec  
kHz  
Major-Code Change Glitch Energy  
Digital Feedthrough  
Digital Crosstalk  
Analog Crosstalk  
DAC-to-DAC Crosstalk  
Multiplying Bandwidth  
Total Harmonic Distortion  
1 LSB change around major carry  
VREF = 2 V 0.1 V p-p, unbuffered mode  
VREF = 2.5 V 0.1 V p-p, frequency = 10 kHz  
dB  
1 Guaranteed by design and characterization; not production tested.  
2 Temperature range (A, B version): –40°C to +125°C; typical at 25°C.  
3 See the Terminology section.  
Rev. F | Page 5 of 28  
 
AD5308/AD5318/AD5328  
Table 3. Timing Characteristics1, 2, 3  
A, B Version  
Parameter  
ꢀimit at TMIN, TMAX  
Unit  
Conditions/Comments  
t1  
t2  
t3  
t4  
33  
13  
13  
13  
ns min  
ns min  
ns min  
ns min  
SCLK cycle time  
SCLK high time  
SCLK low time  
SYNC to SCLK falling edge setup time; temperature range (A, B  
verstion): −40°C to +105°C  
15  
ns min  
SYNC to SCLK falling edge setup time; temperature range (A, B  
verstion): −40°C to +125°C  
t5  
t6  
t7  
5
4.5  
0
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
Data set up time  
Data hold time  
SCLK falling edge to SYNC rising edge  
t8  
50  
20  
20  
0
Minimum SYNC high time  
t9  
LDAC pulse width  
t10  
t11  
SCLK falling edge to LDAC rising edge  
SCLK falling edge to LDAC falling edge  
1 Guaranteed by design and characterization; not production tested.  
2 All input signals are specified with tR = tF = 5 ns (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2.  
3 See Figure 2.  
t1  
SCLK  
t2  
t3  
t7  
t8  
t4  
t6  
SYNC  
DIN  
t5  
DB15  
DB0  
t9  
t11  
1
LDAC  
t10  
2
LDAC  
NOTES  
1
ASYNCHRONOUS LDAC UPDATE MODE.  
SYNCHRONOUS LDAC UPDATE MODE.  
2
Figure 2. Serial Interface Timing Diagram  
Rev. F | Page 6 of 28  
 
 
AD5308/AD5318/AD5328  
ABSOLUTE MAXIMUM RATINGS  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
TA = 25°C, unless otherwise specified.  
Table 4.  
Parameter  
Rating1  
VDD to GND  
−0.3 V to +7 V  
Digital Input Voltage to GND  
Reference Input Voltage to GND  
VOUTA–VOUTD to GND  
−0.3 V to VDD + 0.3 V  
−0.3 V to VDD + 0.3 V  
−0.3 V to VDD + 0.3 V  
Operating Temperature Range  
Industrial (A, B Version)  
Storage Temperature Range  
ESD CAUTION  
−40°C to +125°C  
−65°C to +150°C  
150°C  
Junction Temperature (TJ MAX  
16-Lead TSSOP  
)
Power Dissipation  
θJA Thermal Impedance  
Lead Temperature  
Soldering  
(TJ MAX − TA)/θJA  
150.4°C/W  
JEDEC industry-standard  
J-STD-020  
1 Transient currents of up to 100 mA do not cause SCR latch-up.  
Rev. F | Page 7 of 28  
 
 
AD5308/AD5318/AD5328  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
LDAC  
SYNC  
SCLK  
DIN  
AD5308/  
AD5318/  
AD5328  
V
GND  
DD  
V
V
V
V
A
B
C
D
V
V
V
V
V
H
G
F
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
TOP VIEW  
(Not to Scale)  
E
V
ABCD  
EFGH  
REF  
REF  
Figure 3. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No. Mnemonic Description  
1
LDAC  
This active low control input transfers the contents of the input registers to their respective DAC registers. Pulsing  
this pin low allows any or all DAC registers to be updated if the input registers have new data. This allows simul-  
taneous updates of all DAC outputs. Alternatively, this pin can be tied permanently low.  
2
SYNC  
Active Low Control Input. This is the frame synchronization signal for the input data. When SYNC goes low, it  
powers on the SCLK and DIN buffers and enables the input shift register. Data is transferred in on the falling edges  
of the following 16 clocks. If SYNC is taken high before the 16th falling edge, the rising edge of SYNC acts as an  
interrupt and the write sequence is ignored by the device.  
3
VDD  
Power Supply Input. These parts can be operated from 2.5 V to 5.5 V, and the supply should be decoupled with a 10 μF  
capacitor in parallel with a 0.1 μF capacitor to GND.  
4
5
6
7
8
VOUT  
VOUT  
VOUT  
VOUT  
A
B
C
D
Buffered Analog Output Voltage from DAC A. The output amplifier has rail-to-rail operation.  
Buffered Analog Output Voltage from DAC B. The output amplifier has rail-to-rail operation.  
Buffered Analog Output Voltage from DAC C. The output amplifier has rail-to-rail operation.  
Buffered Analog Output Voltage from DAC D. The output amplifier has rail-to-rail operation.  
Reference Input Pin for DACs A, B, C, and D. It can be configured as a buffered, unbuffered, or VDD input to the four  
DACs, depending on the state of the BUF and VDD control bits. It has an input range from 0.25 V to VDD in unbuffered  
mode and from 1 V to VDD in buffered mode.  
VREFABCD  
9
VREFEFGH  
Reference Input Pin for DACs E, F, G, and H. It can be configured as a buffered, unbuffered, or VDD input to the four  
DACs, depending on the state of the BUF and VDD control bits. It has an input range from 0.25 V to VDD in unbuffered  
mode and from 1 V to VDD in buffered mode.  
10  
11  
12  
13  
14  
15  
VOUT  
VOUT  
VOUT  
VOUT  
GND  
DIN  
E
F
G
H
Buffered Analog Output Voltage from DAC E. The output amplifier has rail-to-rail operation.  
Buffered Analog Output Voltage from DAC F. The output amplifier has rail-to-rail operation.  
Buffered Analog Output Voltage from DAC G. The output amplifier has rail-to-rail operation.  
Buffered Analog Output Voltage from DAC H. The output amplifier has rail-to-rail operation.  
Ground Reference Point for All Circuitry on the Part.  
Serial Data Input. This device has a 16-bit shift register. Data is clocked into the register on the falling edge of the  
serial clock input. The DIN input buffer is powered down after each write cycle.  
16  
SCLK  
Serial Clock Input. Data is clocked into the input shift register on the falling edge of the serial clock input. Data can  
be transferred at rates up to 30 MHz. The SCLK input buffer is powered down after each write cycle.  
Rev. F | Page 8 of 28  
 
AD5308/AD5318/AD5328  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.3  
0.2  
1.0  
T
V
= 25°C  
A
T
= 25°C  
A
= 5V  
DD  
V
= 5V  
DD  
0.5  
0
0.1  
0
–0.1  
–0.2  
–0.3  
–0.5  
–1.0  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
CODE  
CODE  
Figure 7. AD5308 Typical DNL Plot  
Figure 4. AD5308 Typical INL Plot  
3
0.6  
0.4  
T
V
= 25°C  
T = 25°C  
A
A
= 5V  
V
= 5V  
DD  
DD  
2
1
0.2  
0
0
–1  
–2  
–3  
–0.2  
–0.4  
–0.6  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
CODE  
CODE  
Figure 5. AD5318 Typical INL Plot  
Figure 8. AD5318 Typical DNL Plot  
12  
8
1.0  
0.5  
T
V
= 25°C  
T
V
= 25°C  
A
A
= 5V  
= 5V  
DD  
DD  
4
0
0
–4  
–8  
–12  
–0.5  
–1.0  
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
CODE  
CODE  
Figure 6. AD5328 Typical INL Plot  
Figure 9. AD5328 Typical DNL Plot  
Rev. F | Page 9 of 28  
 
 
 
 
 
 
AD5308/AD5318/AD5328  
0.50  
0.2  
0.1  
T
V
= 25°C  
T
V
= 25°C  
= 2V  
A
A
= 5V  
DD  
REF  
MAX INL  
0.25  
0
0
GAIN ERROR  
MAX DNL  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
MIN DNL  
OFFSET ERROR  
–0.25  
–0.50  
MIN INL  
0
1
2
3
4
5
6
0
1
2
3
4
5
V
(V)  
V
(V)  
REF  
DD  
Figure 10. AD5308 INL and DNL Error vs. VREF  
Figure 13. Offset Error and Gain Error vs. VDD  
0.5  
0.4  
5
4
3
2
1
0
V
= 3V  
REF  
= 5V  
V
DD  
MAX INL  
5V SOURCE  
3V SOURCE  
0.3  
0.2  
MAX DNL  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
MIN DNL  
3V SINK  
5V SINK  
MIN INL  
80  
0
1
2
3
4
5
6
– 40  
0
40  
120  
SINK/SOURCE CURRENT (mA)  
TEMPERATURE (°C)  
Figure 14. VOUT Source and Sink Current Capability  
Figure 11. AD5308 INL Error and DNL Error vs. Temperature  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.0  
V
V
= 5V  
DD  
= 2V  
REF  
T
V
= 25°C  
= 5V  
A
DD  
0.5  
0
GAIN ERROR  
OFFSET ERROR  
–0.5  
–1.0  
ZERO SCALE  
HALF SCALE  
DAC CODE  
FULL SCALE  
–40  
0
40  
TEMPERATURE (°C)  
80  
120  
Figure 15. Supply Current vs. DAC Code  
Figure 12. AD5308 Offset Error and Gain Error vs. Temperature  
Rev. F | Page 10 of 28  
 
AD5308/AD5318/AD5328  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
T
= 25°C  
T = 25°C  
A
A
V
= 2V, GAIN = +1,  
V
= 5V  
REF  
BUFFERED  
DD  
V
= 5V  
REF  
V
= V  
DD  
REF  
V
A
OUT  
CH1  
CH2  
SCLK  
V
V
= 2V, GAIN = +1, UNBUFFERED  
= V , GAIN = +1, UNBUFFERED  
REF  
REF  
DD  
CH1 1V, CH2 5V, TIME BASE = 1μs/DIV  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
SUPPLY VOLTAGE (V)  
Figure 16. Supply Current vs. Supply Voltage  
Figure 19. Half-Scale Settling (1/4 to 3/4 Scale Code Change)  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
T
V
V
= 25°C  
A
T
= 25°C  
= 5V  
A
DD  
= 2V  
REF  
V
DD  
CH1  
CH2  
V
A
OUT  
CH1 2.00V, CH2 200mV, TIME BASE = 200μs/DIV  
2.0  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
V
DD  
Figure 17. Power-Down Current vs. Supply Voltage  
Figure 20. Power-On Reset to 0 V  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
T
V
V
= 25°C  
DECREASING  
A
T
V
= 25°C  
A
= 5V  
DD  
= 5V  
DD  
= 2V  
REF  
INCREASING  
V
A
OUT  
CH1  
CH2  
PD  
V
= 3V  
DD  
CH1 500V, CH2 5.00mV, TIME BASE = 1μs/DIV  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
(V)  
3.5  
4.0  
4.5  
5.0  
V
LOGIC  
Figure 18. Supply Current vs. Logic Input Voltage for SCLK and DIN Increasing  
and Decreasing  
Figure 21. Exiting Power-Down to Midscale  
Rev. F | Page 11 of 28  
AD5308/AD5318/AD5328  
35  
0.02  
0.01  
0
SS = 300  
T
V
= 25°C  
= 5V  
A
V
V
= 3V  
= 5V  
DD  
DD  
DD  
30  
25  
20  
15  
10  
5
MEAN: 0.693798  
MEAN: 1.02055  
–0.01  
–0.02  
0
0.6  
0.7  
0.8  
0.9  
(mA)  
1.0  
1.1  
0
1
2
3
4
5
6
I
DD  
V
(V)  
REF  
Figure 22. IDD Histogram with VDD = 3 V and VDD = 5 V  
Figure 25. Full-Scale Error vs. VREF  
2.50  
2.49  
2.48  
2.47  
100ns/DIV  
1μs/DIV  
Figure 26. DAC-to-DAC Crosstalk  
Figure 23. AD5328 Major-Code Transition Glitch Energy  
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 24. Multiplying Bandwidth (Small-Signal Frequency Response)  
Rev. F | Page 12 of 28  
AD5308/AD5318/AD5328  
TERMINOLOGY  
Relative Accuracy  
Major-Code Transition Glitch Energy  
For the DAC, relative accuracy or integral nonlinearity (INL) is  
a measure of the maximum deviation, in LSB, from a straight  
line passing through the endpoints of the DAC transfer func-  
tion. Typical INL vs. code plots can be seen in Figure 4, Figure 5,  
and Figure 6.  
Major-code transition glitch energy is the energy of the impulse  
injected into the analog output when the code in the DAC  
register changes state. It is normally specified as the area of the  
glitch in nV-sec and is measured when the digital code is  
changed by 1 LSB at the major carry transition (011 ... 11 to  
100 ... 00 or 100 ... 00 to 011 ... 11).  
Differential Nonlinearity  
Differential nonlinearity (DNL) is the difference between the  
measured change and the ideal 1 LSB change between any two  
adjacent codes. A specified differential nonlinearity of 1 LSB  
maximum ensures monotonicity. This DAC is guaranteed  
monotonic by design. Typical DNL vs. code plots can be seen  
in Figure 7, Figure 8, and Figure 9.  
Digital Feedthrough  
Digital feedthrough is a measure of the impulse injected into  
the analog output of a DAC from the digital input pins of the  
device, but is measured when the DAC is not being written to  
SYNC  
(
held high). It is specified in nV-sec and is measured  
with a full-scale change on the digital input pins, that is, from  
all 0s to all 1s and vice versa.  
Offset Error  
This is a measure of the offset error of the DAC and the output  
amplifier (see Figure 27 and Figure 28). It can be negative or  
positive, and is expressed in millivolts.  
Digital Crosstalk  
This is the glitch impulse transferred to the output of one DAC  
at midscale in response to a full-scale code change (all 0s to all  
1s and vice versa) in the input register of another DAC. It is  
measured in standalone mode and is expressed in nV-sec.  
Gain Error  
This is a measure of the span error of the DAC. It is the devia-  
tion in slope of the actual DAC transfer characteristic from the  
ideal expressed as a percentage of the full-scale range.  
Analog Crosstalk  
This is the glitch impulse transferred to the output of one DAC  
due to a change in the output of another DAC. It is measured by  
loading one of the input registers with a full-scale code change  
Offset Error Drift  
This is a measure of the change in offset error with changes in  
temperature. It is expressed in (ppm of full-scale range)/°C.  
LDAC  
(all 0s to all 1s and vice versa) while keeping  
high. Then  
LDAC  
pulse  
low and monitor the output of the DAC whose digital  
Gain Error Drift  
This is a measure of the change in gain error with changes in  
temperature. It is expressed in (ppm of full-scale range)/°C.  
code is not changed. The area of the glitch is expressed in nV-sec.  
DAC-to-DAC Crosstalk  
This is the glitch impulse transferred to the output of one DAC  
due to a digital code change and subsequent output change of  
another DAC. This includes both digital and analog crosstalk.  
It is measured by loading one of the DACs with a full-scale code  
DC Power Supply Rejection Ratio (PSRR)  
This indicates how the output of the DAC is affected by changes  
in the supply voltage. PSRR is the ratio of the change in VOUT to  
a change in VDD for full-scale output of the DAC. It is measured  
in decibels. VREF is held at 2 V and VDD is varied 10ꢀ.  
LDAC  
change (all 0s to all 1s and vice versa) with  
low and  
monitoring the output of another DAC. The energy of the glitch  
is expressed in nV-sec.  
DC Crosstalk  
This is the dc change in the output level of one DAC in response  
to a change in the output of another DAC. It is measured with a  
full-scale output change on one DAC while monitoring another  
DAC. It is expressed in microvolts.  
Multiplying Bandwidth  
The amplifiers within the DAC have a finite bandwidth. The  
multiplying bandwidth is a measure of this. A sine wave on the  
reference (with full-scale code loaded to the DAC) appears on  
the output. The multiplying bandwidth is the frequency at  
which the output amplitude falls to 3 dB below the input.  
Reference Feedthrough  
This is the ratio of the amplitude of the signal at the DAC out-  
put to the reference input when the DAC output is not being  
Total Harmonic Distortion (THD)  
LDAC  
updated (that is,  
is high). It is expressed in decibels.  
This is the difference between an ideal sine wave and its atten-  
uated version using the DAC. The sine wave is used as the refer-  
ence for the DAC and the THD is a measure of the harmonics  
present on the DAC output. It is measured in decibels.  
Channel-to-Channel Isolation  
This is the ratio of the amplitude of the signal at the output of  
one DAC to a sine wave on the reference input of another DAC.  
It is measured in decibels.  
Rev. F | Page 13 of 28  
 
AD5308/AD5318/AD5328  
GAIN ERROR  
PLUS  
OFFSET ERROR  
GAIN ERROR  
PLUS  
OFFSET ERROR  
OUTPUT  
VOLTAGE  
UPPER  
DEADBAND  
CODES  
OUTPUT  
VOLTAGE  
ACTUAL  
IDEAL  
NEGATIVE  
OFFSET  
ERROR  
DAC CODE  
POSITIVE  
OFFSET  
ERROR  
ACTUAL  
IDEAL  
FULL SCALE  
DAC CODE  
Figure 28. Transfer Function with Positive Offset  
LOWER  
DEADBAND  
CODES  
AMPLIFIER  
FOOTROOM  
NEGATIVE  
OFFSET  
ERROR  
Figure 27. Transfer Function with Negative Offset (VREF = VDD  
)
Rev. F | Page 14 of 28  
 
 
AD5308/AD5318/AD5328  
THEORY OF OPERATION  
If there is a buffered reference in the circuit (for example, the  
REF192), there is no need to use the on-chip buffers of the  
AD5308/AD5318/AD5328. In unbuffered mode, the input  
impedance is still large at typically 45 kΩ per reference input  
for 0 V to VREF mode and 22 kΩ for 0 V to 2 VREF mode.  
The AD5308/AD5318/AD5328 are octal resistor-string DACs  
fabricated on a CMOS process with resolutions of 8, 10, and  
12 bits, respectively. Each contains eight output buffer ampli-  
fiers and is written to via a 3-wire serial interface. They operate  
from single supplies of 2.5 V to 5.5 V and the output buffer  
amplifiers provide rail-to-rail output swing with a slew rate of  
0.7 V/ꢁs. DAC A, DAC B, DAC C, and DAC D share a common  
reference input, VREFABCD. DAC E, DAC F, DAC G, and DAC H  
share a common reference input, VREFEFGH. Each reference  
input can be buffered to draw virtually no current from the  
reference source, can be unbuffered to give a reference input  
range from 0.25 V to VDD, or can come from VDD. The devices  
have a power-down mode in which all DACs can be turned off  
individually with a high impedance output.  
RESISTOR STRING  
The resistor-string section is shown in Figure 30. It is simply a  
string of resistors, each of value R. The digital code loaded to  
the DAC register determines at which node on the string the  
voltage is tapped off to be fed into the output amplifier. The  
voltage is tapped off by closing one of the switches connecting  
the string to the amplifier. Because it is a string of resistors, it is  
guaranteed monotonic.  
R
R
DIGITAꢀ-TO-ANAꢀOG CONVERTER  
The architecture of one DAC channel consists of a resistor  
string DAC followed by an output buffer amplifier. The voltage  
at the VREF pin provides the reference voltage for the corre-  
sponding DAC. Figure 29 shows a block diagram of the DAC  
architecture. Since the input coding to the DAC is straight  
binary, the ideal output voltage is given by  
TO OUTPUT  
AMPLIFIER  
R
R
R
VREF × D  
VOUT  
where:  
=
2N  
Figure 30. Resistor String  
D is the decimal equivalent of the binary code that is loaded to  
the DAC register:  
0 to 255 for AD5308 (8 bits)  
0 to 1023 for AD5318 (10 bits)  
0 to 4095 for AD5328 (12 bits)  
N is the DAC resolution.  
OUTPUT AMPꢀIFIER  
The output buffer amplifier is capable of generating output  
voltages to within 1 mV of either rail. Its actual range depends  
on the value of VREF, the gain of the output amplifier, the offset  
error, and the gain error.  
V
ABCD  
REF  
V
DD  
If a gain of 1 is selected (gain bit = 0), the output range is  
REFERENCE  
BUFFER  
0.001 V to VREF  
.
GAIN MODE  
V
BUF  
DD  
(GAIN = +1 OR +2)  
If a gain of 2 is selected (gain bit = 1), the output range is  
0.001 V to 2 VREF. Because of clamping, however, the maximum  
output is limited to VDD − 0.001 V.  
DAC  
REGISTER  
INPUT  
REGISTER  
RESISTOR  
STRING  
V
A
OUT  
The output amplifier is capable of driving a load of 2 kΩ to  
GND or VDD, in parallel with 500 pF to GND or VDD. The  
source and sink capabilities of the output amplifier can be seen  
in the plot in Figure 14.  
OUTPUT  
BUFFER AMPLIFIER  
Figure 29. Single DAC Channel Architecture  
DAC Reference Inputs  
The slew rate is 0.7 V/μs with a half-scale settling time to  
0.5 LSB (at 8 bits) of 6 μs.  
There is a reference pin for each quad of DACs. The reference  
inputs can be buffered from VDD, or unbuffered. The advantage  
with the buffered input is the high impedance it presents to the  
voltage source driving it. However, if the unbuffered mode is  
used, the user can have a reference voltage as low as 0.25 V and  
as high as VDD since there is no restriction due to the headroom  
and footroom of the reference amplifier.  
Rev. F | Page 15 of 28  
 
 
 
AD5308/AD5318/AD5328  
POWER-ON RESET  
SERIAꢀ INTERFACE  
The AD5308/AD5318/AD5328 are provided with a power-on  
reset function so that they power up in a defined state. The  
power-on state is  
The AD5308/AD5318/AD5328 are controlled over a versatile  
3-wire serial interface that operates at clock rates up to 30 MHz  
and is compatible with SPI, QSPI, MICROWIRE, and DSP  
interface standards.  
Normal operation  
Input Shift Register  
Reference inputs unbuffered  
0 V to VREF output range  
Output voltage set to 0 V  
The input shift register is 16 bits wide. Data is loaded into the  
device as a 16-bit word under the control of a serial clock input,  
SCLK. The timing diagram for this operation is shown in Figure 2.  
LDAC  
LDAC  
SYNC  
input is a level-triggered input that acts as a frame  
bits set to  
high  
The  
synchronization signal and chip enable. Data can be transferred  
SYNC  
Both input and DAC registers are filled with 0s and remain so  
until a valid write sequence is made to the device. This is  
particularly useful in applications where it is important to know  
the state of the DAC outputs while the device is powering up.  
into the device only while  
is low. To start the serial data  
SYNC  
transfer,  
SYNC  
should be taken low, observing the minimum  
SYNC  
to SCLK falling edge set-up time, t4. After  
goes  
low, serial data is shifted into the device’s input shift register on  
the falling edges of SCLK for 16 clock pulses.  
POWER-DOWN MODE  
The AD5308/AD5318/AD5328 have low power consumption,  
typically dissipating 2.4 mW with a 3 V supply and 5 mW with  
a 5 V supply. Power consumption can be further reduced when  
the DACs are not in use by putting them into power-down  
mode, which is described in the Serial Interface section.  
SYNC  
To end the transfer,  
edge of the 16th SCLK pulse, observing the minimum SCLK  
SYNC  
must be taken high after the falling  
falling edge to  
rising edge time, t7.  
After the end of the serial data transfer, data is automatically  
transferred from the input shift register to the input register of  
When in default mode, all DACs work normally with a typical  
power consumption of 1 mA at 5 V (800 μA at 3 V). However,  
when all DACs are powered down, that is, in power-down  
mode, the supply current falls to 400 nA at 5 V (120 nA at 3 V).  
Not only does the supply current drop, but the output stage is  
also internally switched from the output of the amplifier,  
making it open-circuit. This has the advantage that the output is  
three-state while the part is in power-down mode, and provides  
a defined input condition for whatever is connected to the  
output of the DAC amplifier. The output stage is illustrated in  
Figure 31.  
SYNC  
the selected DAC. If  
is taken high before the 16th falling  
edge of SCLK, the data transfer is aborted and the DAC input  
registers are not updated.  
Data is loaded MSB first (Bit 15). The first bit determines  
whether it is a DAC write or a control function.  
DAC Write  
The 16-bit word consists of 1 control bit and 3 address bits fol-  
lowed by 8, 10, or 12 bits of DAC data, depending on the device  
type. In the case of a DAC write, the MSB is a 0. The next 3  
address bits determine whether the data is for DAC A, DAC B,  
DAC C, DAC D, DAC E, DAC F, DAC G, or DAC H. The  
AD5328 uses all 12 bits of DAC data. The AD5318 uses 10 bits  
and ignores the 2 LSBs. The AD5308 uses 8 bits and ignores the  
last 4 bits. These ignored LSBs should be set to 0. The data  
format is straight binary, with all 0s corresponding to 0 V  
output and all 1s corresponding to full-scale output.  
The bias generator, the output amplifiers, the resistor string, and  
all other associated linear circuitry are shut down when the  
power-down mode is activated. However, the contents of the  
registers are unaffected when in power-down. In fact, it is  
possible to load new data to the input registers and DAC regis-  
ters during power-down. The DAC outputs update as soon as  
the device comes out of power-down mode. The time to exit  
power-down is typically 2.5 μs when VDD = 5 V and 5 μs when  
Table 6. Address Bits for the AD5308/AD5318/AD5328  
VDD = 3 V.  
A2 (Bit 14)  
A1 (Bit 13)  
A0 (Bit 12)  
DAC Addressed  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
DAC A  
DAC B  
DAC C  
DAC D  
DAC E  
DAC F  
DAC G  
DAC H  
AMPLIFIER  
RESISTOR-  
STRING DAC  
V
OUT  
POWER-DOWN  
CIRCUITRY  
Figure 31. Output Stage During Power-Down  
Rev. F | Page 16 of 28  
 
 
 
AD5308/AD5318/AD5328  
Control Functions  
BUF  
In the case of a control function, the MSB (Bit 15) is a 1. This is  
followed by two control bits, which determine the mode. There  
This controls whether the reference of a group of DACs is  
buffered or unbuffered. The reference of the first group of DACs  
(A, B, C, and D) is controlled by setting Bit 2, and the second  
group of DACs (E, F, G, and H) is controlled by setting Bit 3.  
LDAC  
are four different control modes: reference and gain mode,  
mode, power-down mode, and reset mode. The write sequences  
for these modes are shown in Table 7.  
0: unbuffered reference.  
1: buffered reference.  
Reference and Gain Mode  
This mode determines whether the reference for each group of  
DACs is buffered, unbuffered, or from VDD. It also determines  
the gain of the output amplifier. To set up the reference of both  
groups, set the control bits to (00), set the GAIN bits, the BUF  
bits, and the VDD bits.  
GAIN  
The gain of the DACs is controlled by setting Bit 4 for the first  
group of DACs (A, B, C, and D) and Bit 5 for the second group  
of DACs (E, F, G, and H).  
0: output range of 0 V to VREF  
.
1: output range of 0 V to 2 VREF  
.
Table 7. Control Words for the AD53x8  
D/C  
Control Bits  
14  
15  
13 12 11 10  
9
x
x
x
x
8
x
x
x
x
7
x
6
x
5
4
3
2
1
0
Mode  
Gain of output amplifier and  
GAIN Bits  
BUF Bits  
VDD Bits  
1
1
1
1
0
0
1
1
0
x
x
x
x
x
x
x
x
x
E...H A...D E...H A...D E...H A...D reference selection  
LDAC Bits  
1
x
x
x
x
F
x
x
E
x
x
x
C
x
1/0  
1/0  
LDAC  
Channels  
D
0
Reset  
1
x
H
x
G
x
B
A
Power-down  
Reset  
1/0  
x
x
x
BIT 15  
(MSB)  
BIT 0  
(LSB)  
LDAC  
Mode  
D/C A2 A1  
A0 D7 D6 D5 D4 D3 D2 D1 D0  
DATA BITS  
0
0
0
0
LDAC  
LDAC  
, which determines when data is  
mode controls  
transferred from the input registers to the DAC registers. There  
are three options when updating the DAC registers, as shown in  
Table 8.  
Figure 32. AD5308 Input Shift Register Contents  
BIT 15  
(MSB)  
BIT 0  
(LSB)  
D/C A2 A1  
A0 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
0
0
LDAC  
Table 8.  
Mode  
DATA BITS  
Bits 12:2  
x ... x  
Bit 15  
Bit 14  
Bit 13  
Bit 1  
0
Bit 0  
0
Description  
LDAC low  
LDAC high  
Figure 33. AD5318 Input Shift Register Contents  
1
1
1
0
0
0
1
1
1
x ... x  
0
1
BIT 15  
(MSB)  
BIT 0  
(LSB)  
x ... x  
1
0
LDAC single  
update  
Reserved  
D/C A2 A1  
A0 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
DATA BITS  
1
0
1
x ... x  
1
1
Figure 34. AD5328 Input Shift Register Contents  
LDAC  
LDAC  
Low (00): This option sets  
permanently low,  
VDD  
allowing the DAC registers to be updated continuously.  
These bits are set when VDD is to be used as a reference. The  
first group of DACs (A, B, C, and D) can be set up to use VDD by  
setting Bit 0, and the second group of DACs (E, F, G, and H) by  
setting Bit 1. The VDD bits have priority over the BUF bits.  
LDAC LDAC  
High (01): This option sets  
permanently high.  
The DAC registers are latched and the input registers can  
change without affecting the contents of the DAC registers.  
This is the default option for this mode.  
When VDD is used as the reference, it is always unbuffered and  
has an output range of 0 V to VREF regardless of the state of the  
GAIN and BUF bits.  
LDAC  
LDAC  
Single Update (10): This option causes a single pulse on  
, updating the DAC registers once.  
Reserved (11): reserved.  
Rev. F | Page 17 of 28  
 
 
AD5308/AD5318/AD5328  
LDAC  
function enables double-buffering of the DAC  
Power-Down Mode  
Use of the  
data, and the GAIN, BUF and VDD bits. There are two ways in  
LDAC  
The individual channels of the AD5308/AD5318/AD5328 can  
be powered down separately. The control mode for this is (10).  
On completion of this write sequence, the channels that have  
been set to 1 are powered down.  
which the  
Synchronous  
data is read in on the falling edge of the 16th SCLK pulse.  
function can operate:  
LDAC  
: The DAC registers are updated after new  
LDAC  
can be permanently low or pulsed as in Figure 2.  
Reset Mode  
LDAC  
Asynchronous  
: The outputs are not updated at the same  
LDAC  
This mode consists of two possible reset functions, as outlined  
in Table 9.  
time that the input registers are written to. When  
goes  
low, the DAC registers are updated with the contents of the  
input register.  
Table 9. Reset Mode  
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 ... 0  
Description  
DOUBꢀE-BUFFERED INTERFACE  
1
1
1
1
1
1
0
1
x ... x  
x ... x  
DAC data reset  
Data and control reset  
The AD5308/AD5318/AD5328 DACs all have double-buffered  
interfaces consisting of two banks of registers: input and DAC.  
The input registers are connected directly to the input shift  
register and the digital code is transferred to the relevant input  
register on completion of a valid write sequence. The DAC  
registers contain the digital code used by the resistor strings.  
DAC Data Reset: On completion of this write sequence, all  
DAC registers and input registers are filled with 0s.  
Data and Control Reset: This function carries out a DAC data  
reset and resets all the control bits (GAIN, BUF, VDD,  
power-down channels) to their power-on conditions.  
LDAC  
, and  
LDAC  
LDAC  
bits are set to (01),  
When the  
pin is high and the  
ꢀOW POWER SERIAꢀ INTERFACE  
the DAC registers are latched and the input registers can change  
state without affecting the contents of the DAC registers. How-  
To minimize the power consumption of the device, the interface  
powers up fully only when the device is being written to, that is,  
on the falling edge of  
LDAC  
LDAC  
ever, when the  
bits are set to (00) or when the  
pin  
SYNC  
. The SCLK and DIN input buffers  
SYNC  
is brought low, the DAC registers become transparent and the  
contents of the input registers are transferred to them.  
are powered down on the rising edge of  
.
The double-buffered interface is useful if the user requires  
simultaneous updating of all DAC outputs. The user can write  
up to seven of the input registers individually and then, by  
ꢀOAD DAC INPUT (ꢀDAC) FUNCTION  
LDAC  
Access to the DAC registers is controlled by both the  
pin  
LDAC  
function  
LDAC  
and the  
mode bits. The operation of the  
LDAC  
bringing  
low when writing to the remaining DAC input  
can be likened to the configuration shown in Figure 35.  
register, all outputs will update simultaneously.  
EXTERNAL LDAC PIN  
LDAC FUNCTION  
These parts contain an extra feature whereby a DAC register is  
not updated unless its input register has been updated since the  
INTERNAL LDAC MODE  
LDAC  
LDAC  
last time  
was low. Normally, when  
is brought low,  
LDAC  
Figure 35.  
Function  
the DAC registers are filled with the contents of the input regis-  
ters. In the case of the AD5308/AD5318/AD5328, the part  
updates the DAC register only if the input register has been  
changed since the last time the DAC register was updated,  
thereby removing unnecessary digital crosstalk.  
If the user wishes to update the DAC through software, the  
LDAC LDAC  
pin should be tied high and the  
required. Alternatively, if the user wishes to control the DAC  
LDAC LDAC  
mode bits  
mode bits set as  
through hardware, that is, the  
pin, the  
high (default mode).  
LDAC  
should be set to  
Rev. F | Page 18 of 28  
 
 
 
AD5308/AD5318/AD5328  
MICROPROCESSOR INTERFACE  
ADSP-2101/ADSP-2103-to-  
68HC11/68L11  
AD5308/  
AD5318/  
AD5328*  
AD5308/AD5318/AD5328 INTERFACE  
Figure 36 shows a serial interface between the AD5308/AD5318/  
AD5328 and the ADSP-2101/ADSP-2103. The ADSP-2101/  
ADSP-2103 should be set up to operate in the SPORT transmit  
alternate framing mode. The ADSP-2101/ADSP-2103 SPORT is  
programmed through the SPORT control register and should be  
configured as follows: internal clock operation, active low framing,  
and 16-bit word length. Transmission is initiated by writing a word  
to the Tx register after the SPORT has been enabled. The data is  
clocked out on each rising edge of the DSPs serial clock and  
clocked into the AD5308/AD5318/ AD5328 on the falling edge  
of the DAC’s SCLK.  
PC7  
SYNC  
SCLK  
DIN  
SCK  
MOSI  
*ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 37. 68HC11/68L11-to-AD5308/AD5318/ AD5328 Interface  
80C51/80ꢀ51-to-AD5308/AD5318/AD5328  
INTERFACE  
Figure 38 shows a serial interface between the AD5308/AD5318/  
AD5328 and the 80C51/80L51 microcontroller. The setup for  
the interface is as follows: TxD of the 80C51/80L51 drives SCLK  
of the AD5308/AD5318/AD5328, while RxD drives the serial data  
ADSP-2101/  
ADSP-2103*  
AD5308/  
AD5318/  
AD5328*  
SYNC  
line of the part. The  
signal is again derived from a bit  
programmable pin on the port. In this case, port line P3.3 is used.  
When data is transmitted to the AD5308/AD5318/AD5328, P3.3  
is taken low. The 80C51/80L51 transmits data only in 8-bit bytes;  
thus, only eight falling clock edges occur in the transmit cycle. To  
load data to the DAC, P3.3 is left low after the first eight bits are  
transmitted, and a second write cycle is initiated to transmit the  
second byte of data. P3.3 is taken high following the completion  
of this cycle. The 80C51/80L51 outputs the serial data in a format  
that has the LSB first. The AD5308/AD5318/AD5328 requires  
its data with the MSB as the first bit received. The 80C51/80L51  
transmit routine should take this into account.  
TFS  
DT  
SYNC  
DIN  
SCLK  
SCLK  
*ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 36. ADSP-2101/ADSP-2103-to-AD5308/AD5318/AD5328 Interface  
68HC11/68ꢀ11-to-AD5308/AD5318/AD5328  
INTERFACE  
Figure 37 shows a serial interface between the AD5308/AD5318/  
AD5328 and the 68HC11/68L11 microcontroller. SCK of the  
68HC11/68L11 drives the SCLK of the AD5308/AD5318/AD5328,  
and the MOSI output drives the serial data line (DIN) of the DAC.  
The sync signal is derived from a port line (PC7). The set up  
conditions for the correct operation of this interface are as follows:  
the 68HC11/68L11 should be configured so that its CPOL bit is a  
0 and its CPHA bit is a 1. When data is being transmitted to the  
DAC, the sync line is taken low (PC7). When the 68HC11/ 68L11  
is configured as just described, data appearing on the MOSI output  
is valid on the falling edge of SCK. Serial data from the 68HC11/  
68L11 is transmitted in 8-bit bytes with only eight falling clock  
edges occurring in the transmit cycle. Data is transmitted MSB  
first. To load data to the AD5308/AD5318/AD5328, PC7 is left  
low after the first eight bits are transferred, and a second serial  
write operation is performed to the DAC. PC7 is taken high at  
the end of this procedure.  
80C51/80L51*  
AD5308/  
AD5318/  
AD5328*  
P3.3  
SYNC  
SCLK  
DIN  
TxD  
RxD  
*ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 38. 80C51/80L51-to-AD5308/AD5318/AD5328 Interface  
Rev. F | Page 19 of 28  
 
 
 
 
AD5308/AD5318/AD5328  
MICROWIRE-to-AD5308/AD5318/AD5328  
INTERFACE  
MICROWIRE*  
AD5308/  
AD5318/  
AD5328*  
Figure 39 shows an interface between the AD5308/AD5318/  
AD5328 and any MICROWIRE-compatible device. Serial data  
is shifted out on the falling edge of the serial clock, SK, and is  
clocked into the AD5308/AD5318/AD5328 on the rising edge  
of SK, which corresponds to the falling edge of the DAC’s SCLK.  
CS  
SK  
SO  
SYNC  
SCLK  
DIN  
*ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 39. MICROWIRE-to-AD5308/AD5318/AD5328 Interface  
Rev. F | Page 20 of 28  
 
 
AD5308/AD5318/AD5328  
APPLICATIONS INFORMATION  
TYPICAꢀ APPꢀICATION CIRCUIT  
output is achievable using an AD820, the AD8519, or an OP196  
as the output amplifier.  
The AD5308/AD5318/AD5328 can be used with a wide range  
of reference voltages where the devices offer full, one-quadrant  
multiplying capability over a reference range of 0.25 V to VDD.  
More typically, these devices are used with a fixed, precision  
reference voltage. Suitable references for 5 V operation are the  
AD780, ADR381, and REF192 (2.5 V references). For 2.5 V  
operation, a suitable external reference is the AD589 or the  
AD1580 (1.2 V band gap references). Figure 40 shows a typical  
setup for the AD5308/AD5318/AD5328 when using an external  
reference.  
R2  
10kΩ  
+5V  
+5V  
R1  
10kΩ  
+6V TO +16V  
10μF  
0.1μF  
±5V  
V
DD  
AD820/  
AD8519/  
OP196  
V
A
OUT  
AD5308/  
AD5318/  
AD5328  
V
IN  
–5V  
REF192  
V
OUT  
V
V
ABCD  
REF  
V
V
B
C
OUT  
OUT  
1μF  
GND  
B
REF  
V
= 2.5V TO 5.5V  
DD  
V
H
GND  
OUT  
10μF  
0.1μF  
1μF  
DIN SCLK SYNC  
V
V
A
B
OUT  
OUT  
V
IN  
V
SERIAL  
INTERFACE  
V
V
ABCD  
REF  
OUT  
EFGH  
REF  
Figure 41. Bipolar Operation with the AD5308/AD5318/AD5328  
EXT  
REF  
AD5308/AD5318/  
AD5328  
The output voltage for any input code can be calculated as  
follows:  
AD780/ADR3811/REF192  
SCL  
WITH V = 5V OR  
DD  
AD589/AD1580 WITH  
DIN  
V
V
G
H
OUT  
OUT  
N
V
= 2.5V  
DD  
(
)
(
)
SYNC  
REFIN × D /2 × R1+ R2  
VOUT  
=
REFIN ×  
(
R2/ R1  
)
GND  
R1  
SERIAL  
INTERFACE  
where:  
Figure 40. AD5308/AD5318/AD5328 Using a 2.5 V or 5 V External Reference  
D is the decimal equivalent of the code loaded to the DAC.  
N is the DAC resolution.  
REFIN is the reference voltage input.  
DRIVING VDD FROM THE REFERENCE VOꢀTAGE  
If an output range of 0 V to VDD is required when the reference  
inputs are configured as unbuffered, the simplest solution is to  
connect the reference input to VDD. As this supply can be noisy  
and not very accurate, the AD5308/AD5318/AD5328 can be  
powered from a voltage reference. For example, using a 5 V  
reference, such as the REF195, works because the REF195  
outputs a steady supply voltage for the AD5308/AD5318/  
AD5328. The typical current required from the REF195 is a  
1 μA supply current and ≈ 112 μA into the reference inputs (if  
unbuffered); this is with no load on the DAC outputs. When the  
DAC outputs are loaded, the REF195 also needs to supply the  
current to the loads. The total current required (with a10 kΩ  
load on each output) is  
with  
REFIN = 5 V , R1 = R2 = 10 kΩ  
N
(
)
VOUT = 10 × D/2 5 V  
OPTO-ISOꢀATED INTERFACE FOR PROCESS  
CONTROꢀ APPꢀICATIONS  
The AD5308/AD5318/AD5328 have a versatile 3-wire serial  
interface, making them ideal for generating accurate voltages in  
process control and industrial applications. Due to noise and  
safety requirements, or distance, it may be necessary to isolate  
the AD5308/AD5318/AD5328 from the controller. This can  
easily be achieved by using opto-isolators that provide isolation  
in excess of 3 kV. The actual data rate achieved may be limited  
by the type of optocouplers chosen. The serial loading structure  
of the AD5308/AD5318/AD5328 makes them ideally suited for  
use in opto-isolated applications. Figure 42 shows an opto-  
isolated interface to the AD5308/AD5318/AD5328 where DIN,  
1.22 mA + 8(5 V/10 kΩ) = 5.22 mA  
The load regulation of the REF195 is typically 2.0 ppm/mA,  
which results in an error of 10.4 ppm (52 μV) for the 5.22 mA  
current drawn from it. This corresponds to a 0.003 LSB error at  
8 bits and 0.043 LSB error at 12 bits.  
SYNC  
SCLK, and  
are driven from optocouplers. The power  
BIPOꢀAR OPERATION USING THE  
AD5308/AD5318/AD5328  
supply to the part also needs to be isolated. This is done by  
using a transformer. On the DAC side of the transformer, a 5 V  
regulator provides the 5 V supply required for the AD5308/  
AD5318/AD5328.  
The AD5308/AD5318/AD5328 have been designed for single-  
supply operation, but a bipolar output range is also possible  
using the circuit in Figure 41. This circuit gives an output  
voltage range of 5 V. Rail-to-rail operation at the amplifier  
Rev. F | Page 21 of 28  
 
 
 
AD5308/AD5318/AD5328  
5V  
V
V
A
B
OUT  
OUT  
REGULATOR  
POWER  
10μF  
0.1μF  
SCLK  
DIN  
SYNC  
DIN  
AD5308  
V
DD  
SCLK  
10kΩ  
V
DD  
V
V
G
H
OUT  
OUT  
SCLK  
V
ABCD  
EFGH  
SCLK  
V
REF  
DD  
V
REF  
V
CC  
V
V
A
B
OUT  
OUT  
AD5308/AD5318/  
AD5328  
ENABLE  
1G  
1A  
1B  
1Y0  
1Y1  
1Y2  
1Y3  
V
DD  
74HC139  
DGND  
SYNC  
DIN  
CODED  
ADDRESS  
AD5308  
V
V
V
V
V
V
V
V
A
10kΩ  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
B
C
D
E
F
SYNC  
SYNC  
SCLK  
V
V
G
H
OUT  
OUT  
V
V
A
B
V
OUT  
OUT  
DD  
G
H
10kΩ  
SYNC  
DIN  
DIN  
DIN  
AD5308  
GND  
SCLK  
V
V
G
H
OUT  
OUT  
Figure 42. AD5308/AD5318/AD5328 in an Opto-Isolated Interface  
V
V
A
B
OUT  
OUT  
DECODING MUꢀTIPꢀE AD5308/AD5318/AD5328s  
SYNC  
DIN  
SYNC  
The  
pin on the AD5308/AD5318/AD5328 can be used in  
AD5308  
applications to decode a number of DACs. In this application,  
the DACs in the system receive the same serial clock and serial  
SCLK  
V
V
G
H
OUT  
OUT  
SYNC  
data but only the  
to one of the devices is active at any one  
Figure 43. Decoding Multiple AD5308 Devices in a System  
time, allowing access to four channels in this 16-channel sys-  
tem. The 74HC139 is used as a 2-to-4 line decoder to address  
any of the DACs in the system. To prevent timing errors from  
occurring, the enable input should be brought to its inactive  
state while the coded-address inputs are changing state.  
Figure 43 shows a diagram of a typical setup for decoding  
multiple AD5308 devices in a system.  
Rev. F | Page 22 of 28  
 
 
 
AD5308/AD5318/AD5328  
Table 10. Overview of AD53xx Serial Devices  
Part No.  
SINGꢀES  
AD5300  
AD5310  
AD5320  
AD5301  
AD5311  
AD5321  
DUAꢀS  
AD5302  
AD5312  
AD5322  
AD5303  
AD5313  
AD5323  
QUADS  
AD5304  
AD5314  
AD5324  
AD5305  
AD5315  
AD5325  
AD5306  
AD5316  
AD5326  
AD5307  
AD5317  
AD5327  
OCTAꢀS  
AD5308  
AD5318  
AD5328  
Resolution  
DNꢀ  
VREF Pins  
Settling Time (μs)  
Interface  
Package  
Pins  
8
0.25  
0 (VREF = VDD)  
0 (VREF = VDD)  
0 (VREF = VDD)  
0 (VREF = VDD)  
0 (VREF = VDD)  
0 (VREF = VDD)  
4
6
8
6
7
8
SPI  
SPI  
SPI  
2-Wire  
2-Wire  
2-Wire  
SOT-23, MSOP  
SOT-23, MSOP  
SOT-23, MSOP  
SOT-23, MSOP  
SOT-23, MSOP  
SOT-23, MSOP  
6, 8  
6, 8  
6, 8  
6, 8  
6, 8  
6, 8  
10  
12  
8
10  
12  
0.50  
1.00  
0.25  
0.50  
1.00  
8
0.25  
0.50  
1.00  
0.25  
0.50  
1.00  
2
2
2
2
2
2
6
7
8
6
7
8
SPI  
SPI  
SPI  
SPI  
SPI  
SPI  
MSOP  
MSOP  
MSOP  
TSSOP  
TSSOP  
TSSOP  
10  
10  
10  
16  
16  
16  
10  
12  
8
10  
12  
8
0.25  
0.50  
1.00  
0.25  
0.50  
1.00  
0.25  
0.50  
1.00  
0.25  
0.50  
1.00  
1
1
1
1
1
1
4
4
4
2
2
2
6
7
8
6
7
8
6
7
8
6
7
8
SPI  
SPI  
SPI  
2-Wire  
2-Wire  
2-Wire  
2-Wire  
2-Wire  
2-Wire  
SPI  
MSOP  
MSOP  
MSOP  
MSOP  
MSOP  
MSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
10  
10  
10  
10  
10  
10  
16  
16  
16  
16  
16  
16  
10  
12  
8
10  
12  
8
10  
12  
8
10  
12  
SPI  
SPI  
8
10  
12  
0.25  
0.50  
1.00  
2
2
2
6
7
8
SPI  
SPI  
SPI  
TSSOP  
TSSOP  
TSSOP  
16  
16  
16  
Table 11. Overview of AD53xx Parallel Devices  
Part No. Resolution DNꢀ  
VREF Pins Settling Time (μs) Additional Pin Functions  
Package Pins  
SINGꢀES  
BUF  
GAIN HBEN CꢀR  
AD5330  
AD5331  
AD5340  
AD5341  
8
0.25  
0.50  
1.00  
1.00  
1
1
1
1
6
7
8
8
TSSOP  
TSSOP  
TSSOP  
TSSOP  
20  
20  
24  
20  
10  
12  
12  
DUAꢀS  
AD5332  
AD5333  
AD5342  
AD5343  
8
0.25  
0.50  
1.00  
1.00  
2
2
2
1
6
7
8
8
TSSOP  
TSSOP  
TSSOP  
TSSOP  
20  
24  
28  
20  
10  
12  
12  
QUADS  
AD5334  
AD5335  
AD5336  
AD5344  
8
0.25  
0.50  
0.50  
1.00  
2
2
4
4
6
7
7
8
TSSOP  
TSSOP  
TSSOP  
TSSOP  
24  
24  
28  
28  
10  
10  
12  
Rev. F | Page 23 of 28  
AD5308/AD5318/AD5328  
OUTLINE DIMENSIONS  
5.10  
5.00  
4.90  
16  
9
8
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
1.20  
MAX  
0.15  
0.05  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
0.65  
BSC  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AB  
Figure 44. 16-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-16)  
Dimensions shown in millimeters  
ORDERING GUIDE  
2
Model1,  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
Package Option  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
AD5308ARU  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
AD5308ARU-REEL7  
AD5308ARUZ  
AD5308ARUZ-REEL7  
AD5308BRU  
AD5308BRU-REEL  
AD5308BRU-REEL7  
AD5308BRUZ  
AD5308BRUZ-REEL  
AD5308BRUZ-REEL7  
AD5318ARU  
AD5318ARU-REEL7  
AD5318ARUZ  
AD5318ARUZ-REEL7  
AD5318BRU  
AD5318BRU-REEL  
AD5318BRU-REEL7  
AD5318BRUZ  
AD5318BRUZ-REEL  
AD5318BRUZ-REEL7  
AD5328ARU  
AD5328ARU-REEL7  
AD5328ARUZ  
AD5328ARUZ-REEL7  
AD5328BRU  
AD5328BRU-REEL  
AD5328BRU-REEL7  
AD5328BRUZ  
AD5328BRUZ-REEL  
AD5328BRUZ-REEL7  
AD5308WARUZ-REEL7  
1 Z = RoHS Compliant Part.  
2 W = Qualified for Automotive Applications.  
Rev. F | Page 24 of 28  
 
 
AD5308/AD5318/AD5328  
AUTOMOTIVE PRODUCTS  
The AD5308WARUZ-REEL7 model is available with controlled manufacturing to support the quality and reliability requirement s of  
automotive applications. Note that this automotive model may have specifications that differ from the commercial models; therefore,  
designers should review the Specifications section of this data sheet carefully. Only the automotive grade product shown is available for  
use in automotive applications. Contact your local Analog Devices, Inc., account representative for specific product ordering information  
and to obtain the specific Automotive Reliability report for this model.  
Rev. F | Page 25 of 28  
AD5308/AD5318/AD5328  
NOTES  
Rev. F | Page 26 of 28  
AD5308/AD5318/AD5328  
NOTES  
Rev. F | Page 27 of 28  
AD5308/AD5318/AD5328  
NOTES  
©2002–2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D02812-0-4/11(F)  
Rev. F | Page 28 of 28  
 
 
 
 
 
 
 
 
 

相关型号:

AD5318BRU

2.5 V to 5.5 V Octal Voltage Output 8-/10-/12-Bit DACs in 16-Lead TSSOP
ADI

AD5318BRU-REEL

2.5 V to 5.5 V Octal Voltage Output 8-/10-/12-Bit DACs in 16-Lead TSSOP
ADI

AD5318BRU-REEL7

2.5 V to 5.5 V Octal Voltage Output 8-/10-/12-Bit DACs in 16-Lead TSSOP
ADI

AD5318BRUZ

2.5 V to 5.5 V Octal Voltage Output 8-/10-/12-Bit DACs in 16-Lead TSSOP
ADI

AD5318BRUZ

SERIAL INPUT LOADING, 7 us SETTLING TIME, 10-BIT DAC, PDSO16, ROHS COMPLIANT, MO-153AB, TSSOP-16
ROCHESTER

AD5318BRUZ-REEL

2.5 V to 5.5 V Octal Voltage Output 8-/10-/12-Bit DACs in 16-Lead TSSOP
ADI

AD5318BRUZ-REEL7

2.5 V to 5.5 V Octal Voltage Output 8-/10-/12-Bit DACs in 16-Lead TSSOP
ADI

AD532

Internally Trimmed Integrated Circuit Multiplier
ADI

AD5320

+2.7 V to +5.5 V, 140 uA, Rail-to-Rail Output 12-Bit DAC in a SOT-23
ADI

AD5320*

+2.7 V to +5.5 V. 140 uA. Rail-to-Rail Output 12-Bit DAC in a SOT-23
ADI

AD5320BRM

+2.7 V to +5.5 V, 140 uA, Rail-to-Rail Output 12-Bit DAC in a SOT-23
ADI

AD5320BRM-REEL

2.7 V to 5.5 V, 140 μA, Rail-to-Rail Output 12-Bit DAC in an SOT-23
ADI