AD5341BRUZ1

更新时间:2024-10-29 12:35:26
品牌:ADI
描述:2.5 V to 5.5 V, 115 μA, Parallel Interface Single Voltage-Output 8-/10-/12-Bit DACs

AD5341BRUZ1 概述

2.5 V to 5.5 V, 115 μA, Parallel Interface Single Voltage-Output 8-/10-/12-Bit DACs 2.5 V至5.5 V , 115 μA ,并行接口单电压输出8位/ 10位/ 12位DAC

AD5341BRUZ1 数据手册

通过下载AD5341BRUZ1数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
2.5 V to 5.5 V, 115 μA, Parallel Interface  
Single Voltage-Output 8-/10-/12-Bit DACs  
AD5330/AD5331/AD5340/AD5341  
FEATURES  
GENERAL DESCRIPTION  
AD5330: single 8-bit DAC in 20-lead TSSOP  
AD5331: single 10-bit DAC in 20-lead TSSOP  
AD5340: single 12-bit DAC in 24-lead TSSOP  
AD5341: single 12-bit DAC in 20-lead TSSOP  
Low power operation: 115 μA @ 3 V, 140 μA @ 5 V  
The AD5330/AD5331/AD5340/AD53411 are single 8-/10-/12-  
bit DACs. They operate from a 2.5 V to 5.5 V supply consuming  
just 115 μA at 3 V and feature a power-down mode that further  
reduces the current to 80 nA. The devices incorporate an on-chip  
output buffer that can drive the output to both supply rails, but  
PD  
Power-down to 80 nA @ 3 V, 200 nA @ 5 V via  
2.5 V to 5.5 V power supply  
Pin  
the AD5330, AD5340, and AD5341 allow a choice of buffered  
or unbuffered reference input.  
Double-buffered input logic  
The AD5330/AD5331/AD5340/AD5341 have a parallel  
Guaranteed monotonic by design over all codes  
Buffered/unbuffered reference input options  
Output range: 0 V to VREF or 0 V to 2 × VREF  
Power-on reset to 0 V  
CS  
interface.  
input registers on the rising edge of  
The GAIN pin allows the output range to be set at 0 V to VREF or  
0 V to 2 × VREF  
Input data to the DACs is double-buffered, allowing simultane-  
LDAC  
selects the device and data is loaded into the  
WR  
.
LDAC  
.
Simultaneous update of DAC outputs via  
CLR  
pin  
Asynchronous  
facility  
Low power parallel data interface  
On-chip rail-to-rail output buffer amplifiers  
Temperature range: −40°C to +105°C  
ous update of multiple DACs in a system using the  
pin.  
input is also provided, which resets the  
CLR  
An asynchronous  
contents of the input register and the DAC register to all zeros.  
These devices also incorporate a power-on reset circuit that  
ensures that the DAC output powers on to 0 V and remains  
there until valid data is written to the device.  
APPLICATIONS  
Portable battery-powered instruments  
Digital gain and offset adjustment  
Programmable voltage and current sources  
Programmable attenuators  
The AD5330/AD5331/AD5340/AD5341 are available in thin  
shrink small outline packages (TSSOP).  
Industrial process control  
1 Protected by U.S. Patent Number 5,969,657.  
FUNCTIONAL BLOCK DIAGRAM  
V
V
DD  
REF  
3
12  
POWER-ON  
RESET  
AD5330  
BUF  
GAIN  
DB  
1
8
DAC  
REGISTER  
INPUT  
REGISTER  
8-BIT  
DAC  
20  
13  
4
BUFFER  
7
0
V
OUT  
.
.
DB  
6
7
CS  
WR  
CLR  
RESET  
POWER-DOWN  
LOGIC  
9
10  
LDAC  
11  
5
PD GND  
Figure 1. AD5330  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 www.analog.com  
Fax: 781.461.3113 ©2000–2008 Analog Devices, Inc. All rights reserved.  
 
 
 
AD5330/AD5331/AD5340/AD5341  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Double-Buffered Interface ........................................................ 18  
CLR  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
AC Characteristics........................................................................ 4  
Timing Characteristics ................................................................ 5  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configurations and Function Descriptions ........................... 7  
Terminology .................................................................................... 11  
Typical Performance Characteristics ........................................... 13  
Theory of Operation ...................................................................... 17  
Digital-to-Analog Section......................................................... 17  
Resistor String............................................................................. 17  
DAC Reference Input................................................................. 17  
Output Amplifier........................................................................ 17  
Parallel Interface ............................................................................. 18  
Clear Input (  
Chip Select Input ( )............................................................... 18  
WR  
) ...................................................................... 18  
CS  
)....................................................................... 18  
LDAC  
Write Input (  
Load DAC Input (  
).......................................................... 18  
High-Byte Enable Input (HBEN)............................................. 18  
Power-On Reset.......................................................................... 18  
Power-Down Mode ........................................................................ 19  
Suggested Databus Formats .......................................................... 20  
Applications Information.............................................................. 21  
Typical Application Circuits ..................................................... 21  
Driving VDD From the Reference Voltage ............................... 21  
Bipolar Operation Using the AD5330/AD5331/  
AD5340/AD5341......................................................................... 21  
Decoding Multiple AD5330/AD5331/ AD5340/AD5341 .... 21  
Programmable Current Source ................................................ 22  
Power Supply Bypassing and Grounding................................ 22  
Outline Dimensions....................................................................... 24  
Ordering Guide .......................................................................... 25  
REVISION HISTORY  
2/08—Rev. 0 to Rev. A  
Updated Format..................................................................Universal  
Changes to Table 4.......................................................................... 16  
Replaced Driving VDD from the Reference Voltage Section ..... 21  
Updated Outline Dimensions....................................................... 24  
Changes to Ordering Guide .......................................................... 25  
4/00—Revision 0: Initial Version  
Rev. A | Page 2 of 28  
 
AD5330/AD5331/AD5340/AD5341  
SPECIFICATIONS  
VDD = 2.5 V to 5.5 V, VREF = 2 V, RL = 2 kΩ to GND; CL = 200 pF to GND; all specifications TMIN to TMAX, unless otherwise noted.  
Table 1.  
B Version2  
Parameter1  
DC PERFORMANCE3, 4  
Min Typ  
Max  
Unit  
Conditions/Comments  
AD5330  
Resolution  
8
Bits  
LSB  
0.25 LSB  
Relative Accuracy  
Differential Nonlinearity  
AD533ꢀ  
0.ꢀ5  
0.02  
Guaranteed monotonic by design over all codes  
Guaranteed monotonic by design over all codes  
Guaranteed monotonic by design over all codes  
Resolution  
ꢀ0  
0.5  
0.05  
Bits  
LSB  
LSB  
Relative Accuracy  
Differential Nonlinearity  
AD5340/AD534ꢀ  
Resolution  
Relative Accuracy  
Differential Nonlinearity  
Offset Error  
4
0.5  
ꢀ2  
2
0.2  
0.4  
0.ꢀ5  
ꢀ0  
ꢀ0  
−ꢀ2  
−5  
−10  
Bits  
LSBs  
LSB  
% of FSR  
% of FSR  
mV  
ꢀ1  
3
10  
Gain Error  
Lower Deadband5  
Upper Deadband  
Offset Error Drift1  
Gain Error Drift1  
DC Power Supply Rejection Ratio1  
DAC REFERENCE INPUT1  
VREF Input Range  
Lower deadband exists only if offset error is negative  
VDD = 5 V; upper deadband exists only if VREF = VDD  
10  
mV  
ppm of FSR/°C  
ppm of FSR/°C  
dB  
ΔVDD = ꢀ0%  
0.25  
VDD  
VDD  
V
V
Buffered reference (AD5330, AD5340, and AD534ꢀ)  
Unbuffered reference  
VREF Input Impedance  
>ꢀ0  
ꢀ80  
90  
MΩ  
kΩ  
kΩ  
dB  
Buffered reference (AD5330, AD5340, and AD534ꢀ)  
Unbuffered reference; gain = ꢀ, input impedance = RDAC  
Unbuffered reference; gain = 2, input impedance = RDAC  
Frequency = ꢀ0 kHz  
Reference Feedthrough  
OUTPUT CHARACTERISTICS1  
Minimum Output Voltage4, 7  
Maximum Output Voltage4, 7  
DC Output Impedance  
−90  
0.00ꢀ  
VDD − 0.00ꢀ  
V min  
V max  
Ω
mA  
mA  
μs  
Rail-to-rail operation  
0.5  
25  
ꢀ5  
2.5  
5
Short-Circuit Current  
VDD = 5 V  
VDD = 3 V  
Power-Up Time  
Coming out of power-down mode; VDD = 5 V  
Coming out of power-down mode; VDD = 3 V  
μs  
LOGIC INPUTS1  
Input Current  
Input Low Voltage, VIL  
μA  
V
V
0.8  
0.1  
0.5  
VDD = 5 V ꢀ0%  
VDD = 3 V ꢀ0%  
VDD = 2.5 V  
V
Input High Voltage, VIH  
Pin Capacitance  
2.4  
2.ꢀ  
2.0  
V
V
V
pF  
VDD = 5 V ꢀ0%  
VDD = 3 V ꢀ0%  
VDD = 2.5 V  
3
Rev. A | Page 3 of 28  
 
AD5330/AD5331/AD5340/AD5341  
B Version2  
Min Typ  
Parameter1  
Max  
Unit  
Conditions/Comments  
POWER REQUIREMENTS  
VDD  
2.5  
5.5  
V
IDD (Normal Mode)  
VDD = 4.5 V to 5.5 V  
VDD = 2.5 V to 3.1 V  
DACs active and excluding load currents. Unbuffered  
Reference, VIH = VDD, VIL = GND  
IDD increases by 50 μA at VREF > VDD − ꢀ00 mV.  
ꢀ40  
ꢀꢀ5  
250  
200  
μA  
μA  
In buffered mode, extra current is (5 + VREF/RDAC) μA,  
where RDAC is the resistance of the resistor string.  
IDD (Power-Down Mode)  
VDD = 4.5 V to 5.5 V  
VDD = 2.5 V to 3.1 V  
0.2  
0.08  
μA  
μA  
See the Terminology section.  
2 Temperature range: B Version: −40°C to +ꢀ05°C; typical specifications are at 25°C.  
3 Linearity is tested using a reduced code range: AD5330 (Code 8 to Code 255); AD533ꢀ (Code 28 to Code ꢀ023); AD5340/AD534ꢀ (Code ꢀꢀ5 to Code 4095).  
4 DC specifications tested with output unloaded.  
5 This corresponds to x codes. x = deadband voltage/LSB size.  
1 Guaranteed by design and characterization, not production tested.  
7 For the amplifier output to reach its minimum voltage, offset error must be negative. For the amplifier output to reach its maximum voltage, VREF = VDD and offset plus  
gain error must be positive.  
AC CHARACTERISTICS1  
VDD = 2.5 V to 5.5 V. RL = 2 kΩ to GND, CL = 200 pF to GND; all specifications TMIN to TMAX, unless otherwise noted.  
Table 2.  
B Version3  
Min Typ Max  
Parameter2  
Unit  
Conditions/Comments  
Output Voltage Settling Time  
AD5330  
AD533ꢀ  
AD5340  
AD534ꢀ  
VREF = 2 V; see Figure 29  
1
7
8
8
8
9
ꢀ0  
ꢀ0  
μs  
μs  
μs  
μs  
¼ scale to ¾ scale change (0x40 to 0xC0)  
¼ scale to ¾ scale change (0xꢀ00 to 0x300)  
¼ scale to ¾ scale change (0x400 to 0xC00)  
¼ scale to ¾ scale change (0x400 to 0xC00)  
Slew Rate  
0.7  
1
0.5  
200  
−70  
V/μs  
nV/s  
nV/s  
kHz  
dB  
Major Code Transition Glitch Energy  
Digital Feedthrough  
Multiplying Bandwidth  
Total Harmonic Distortion  
ꢀ LSB change around major carry  
VREF = 2 V 0.ꢀ V p-p; unbuffered mode  
VREF = 2.5 V 0.ꢀ V p-p; frequency = ꢀ0 kHz  
Guaranteed by design and characterization, not production tested.  
2 See the Terminology section.  
3 Temperature range: B Version: −40°C to +ꢀ05°C; typical specifications are at 25°C.  
Rev. A | Page 4 of 28  
 
 
AD5330/AD5331/AD5340/AD5341  
TIMING CHARACTERISTICS1, 2, 3  
VDD = 2.5 V to 5.5 V, all specifications TMIN to TMAX, unless otherwise noted.  
Table 3.  
Parameter  
Limit at TMIN, TMAX  
Unit  
Condition/Comments  
tꢀ  
0
ns min  
CS to WR setup time.  
t2  
0
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
CS to WR hold time.  
t3  
20  
5
4.5  
5
WR pulse width.  
t4  
t5  
t1  
Data, GAIN, BUF, HBEN setup time.  
Data, GAIN, BUF, HBEN hold time.  
Synchronous mode; WR falling to LDAC falling.  
Synchronous mode; LDAC falling to WR rising.  
Synchronous mode; WR rising to LDAC rising.  
Asynchronous mode; LDAC rising to WR rising.  
Asynchronous mode; WR rising to LDAC falling.  
LDAC pulse width.  
t7  
5
t8  
4.5  
5
t9  
tꢀ0  
tꢀꢀ  
tꢀ2  
tꢀ3  
4.5  
20  
20  
50  
CLR pulse width.  
Time between WR cycles.  
Guaranteed by design and characterization, not production tested.  
2 All input signals are specified with tR = tF = 5 ns (ꢀ0% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2.  
3 See Figure 2.  
t1  
t2  
CS  
t3  
t13  
WR  
t5  
t4  
DATA,  
GAIN,  
BUF,  
HBEN  
t8  
t6  
t7  
t9  
1
LDAC  
t10  
t11  
2
LDAC  
t12  
CLR  
NOTES:  
1
2
SYNCHRONOUS LDAC UPDATE MODE  
ASYNCHRONOUS LDAC UPDATE MODE  
Figure 2. Parallel Interface Timing Diagram  
Rev. A | Page 5 of 28  
 
 
 
 
AD5330/AD5331/AD5340/AD5341  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 4.  
Parameter  
Rating  
VDD to GND  
−0.3 V to +7 V  
Digital Input Voltage to GND  
Digital Output Voltage to GND  
Reference Input Voltage to GND  
VOUT to GND  
−0.3 V to VDD + 0.3 V  
−0.3 V to VDD + 0.3 V  
−0.3 V to VDD + 0.3 V  
−0.3 V to VDD + 0.3 V  
Operating Temperature Range  
Industrial (B Version)  
Storage Temperature Range  
Junction Temperature  
TSSOP Package  
ESD CAUTION  
−40°C to +ꢀ05°C  
−15°C to +ꢀ50°C  
ꢀ50°C  
Power Dissipation  
(TJ max – TA)/θJA mW  
θJA Thermal Impedance (20-Lead TSSOP)85°C/W  
θJA Thermal Impedance (24-Lead TSSOP)80°C/W  
Reflow Soldering  
Peak Temperature  
210°C  
Time at Peak Temperature  
20 sec to 40 sec  
Thermal resistance (JEDEC 4-layer (2S2P) board).  
Rev. A | Page 1 of 28  
 
 
 
AD5330/AD5331/AD5340/AD5341  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
V
V
DD  
REF  
3
12  
POWER-ON  
RESET  
AD5330  
BUF  
1
8
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
BUF  
NC  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
7
6
DAC  
REGISTER  
INPUT  
REGISTER  
GAIN  
8-BIT  
DAC  
DB 20  
4
BUFFER  
7
0
V
OUT  
.
.
V
3
REF  
OUT  
5
13  
DB  
8-BIT  
AD5330  
TOP VIEW  
V
4
4
6
CS  
5
GND  
CS  
3
(Not to Scale)  
7
6
WR  
CLR  
2
RESET  
7
WR  
POWER-DOWN  
LOGIC  
1
9
8
GAIN  
CLR  
LDAC  
0
10  
LDAC  
9
V
DD  
10  
PD  
11  
5
PD GND  
NC = NO CONNECT  
Figure 3. AD5330 Functional Block Diagram  
Figure 4. AD5330 Pin Configuration  
Table 5. AD5330 Pin Function Descriptions  
Pin No.  
Mnemonic  
BUF  
NC  
Description  
2
Buffer Control Pin. This pin controls whether the reference input to the DAC is buffered or unbuffered.  
No Connect.  
3
VREF  
Reference Input.  
4
5
VOUT  
GND  
CS  
Output of DAC. Buffered output with rail-to-rail operation.  
Ground reference point for all circuitry on the part.  
1
Active Low Chip Select Input. This is used in conjunction with WR to write data to the parallel interface.  
Active Low Write Input. This is used in conjunction with CS to write data to the parallel interface.  
7
WR  
8
9
GAIN  
CLR  
Gain Control Pin. This controls whether the output range from the DAC is 0 V to VREF or 0 V to 2 × VREF  
Asynchronous active low control input that clears all input registers and DAC registers to zero.  
Active low control input that updates the DAC registers with the contents of the input registers.  
Power-Down Pin. This active low control pin puts the DAC into power-down mode.  
.
ꢀ0  
ꢀꢀ  
ꢀ2  
LDAC  
PD  
VDD  
Power Supply Input. These parts can operate from 2.5 V to 5.5 V and the supply should be decoupled with a  
ꢀ0 μF capacitor in parallel with a 0.ꢀ μF capacitor to GND.  
ꢀ3 to 20  
DB0 to DB7  
Eight Parallel Data Inputs. DB7 is the MSB of these eight bits.  
Rev. A | Page 7 of 28  
 
AD5330/AD5331/AD5340/AD5341  
V
V
DD  
REF  
3
12  
POWER-ON  
RESET  
AD5331  
DB  
DB  
1
2
8
9
DAC  
REGISTER  
INPUT  
REGISTER  
GAIN  
DB  
8
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
8
9
7
6
10-BIT  
DAC  
20  
13  
4
BUFFER  
7
0
V
OUT  
.
.
DB  
V
3
REF  
OUT  
5
6
7
10-BIT  
AD5331  
TOP VIEW  
CS  
V
4
4
5
GND  
CS  
3
WR  
CLR  
(Not to Scale)  
RESET  
6
2
POWER-DOWN  
LOGIC  
9
7
WR  
1
10  
LDAC  
8
GAIN  
CLR  
LDAC  
0
9
V
DD  
11  
5
10  
PD  
PD GND  
Figure 5. AD5331 Functional Block Diagram  
Figure 6. AD5331 Pin Configuration  
Table 6. AD5331 Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
DB8  
Parallel Data Input.  
2
DB9  
Most Significant Bit of Parallel Data Input.  
Unbuffered Reference Input.  
3
VREF  
4
VOUT  
GND  
CS  
Output of DAC. Buffered output with rail-to-rail operation.  
Ground reference point for all circuitry on the part.  
5
1
Active Low Chip Select Input. This is used in conjunction with WR to write data to the parallel interface.  
Active Low Write Input. This is used in conjunction with CS to write data to the parallel interface.  
7
WR  
8
GAIN  
CLR  
Gain Control Pin. This controls whether the output range from the DAC is 0 V to VREF or 0 V to 2 × VREF  
Active low control input that clears all input registers and DAC registers to zero.  
.
9
ꢀ0  
ꢀꢀ  
ꢀ2  
LDAC  
PD  
Active low control input that updates the DAC registers with the contents of the input registers.  
Power-Down Pin. This active low control pin puts the DAC into power-down mode.  
VDD  
Power Supply Input. These parts can operate from 2.5 V to 5.5 V and the supply should be decoupled with a  
ꢀ0 μF capacitor in parallel with a 0.ꢀ μF capacitor to GND.  
ꢀ3 to 20 DB0 to DB7  
Eight Parallel Data Inputs.  
Rev. A | Page 8 of 28  
AD5330/AD5331/AD5340/AD5341  
V
V
DD  
REF  
4
14  
POWER-ON  
RESET  
AD5340  
DB  
DB  
1
2
3
10  
11  
1
2
24  
23  
22  
21  
20  
19  
18  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
9
8
10  
11  
BUF  
DAC  
REGISTER  
INPUT  
REGISTER  
GAIN 10  
12-BIT  
DAC  
5
3
BUF  
BUFFER  
V
OUT  
7
6
5
4
3
2
1
0
DB 24  
9
.
.
4
V
REF  
OUT  
NC  
15  
8
DB  
0
12-BIT  
AD5340  
TOP VIEW  
V
5
CS  
6
9
WR  
CLR  
(Not to Scale)  
7
GND  
CS  
RESET  
POWER-DOWN  
LOGIC  
11  
12  
8
17 DB  
16 DB  
15 DB  
9
WR  
LDAC  
10  
11  
12  
GAIN  
CLR  
LDAC  
14  
V
DD  
13  
7
13  
PD  
PD GND  
Figure 7. AD5340 Functional Block Diagram  
Figure 8. AD5340 Pin Configuration  
Table 7. AD5340 Pin Function Descriptions  
Pin No.  
Mnemonic  
DBꢀ0  
DBꢀꢀ  
Description  
2
3
4
5
1
7
Parallel Data Input.  
Most Significant Bit of Parallel Data Input.  
BUF  
Buffer Control Pin. This pin controls whether the reference input to the DAC is buffered or unbuffered.  
VREF  
Reference Input.  
VOUT  
Output of DAC. Buffered output with rail-to-rail operation.  
No Connect.  
Ground reference point for all circuitry on the part.  
NC  
GND  
8
CS  
Active Low Chip Select Input. This is used in conjunction with WR to write data to the parallel interface.  
Active Low Write Input. This is used in conjunction with CS to write data to the parallel interface.  
9
WR  
ꢀ0  
ꢀꢀ  
ꢀ2  
ꢀ3  
ꢀ4  
GAIN  
CLR  
LDAC  
PD  
Gain Control Pin. This controls whether the output range from the DAC is 0 V to VREF or 0 V to 2 × VREF  
Asynchronous active low control input that clears all input registers and DAC registers to zero.  
Active low control input that updates the DAC registers with the contents of the input registers.  
Power-Down Pin. This active low control pin puts the DAC into power-down mode.  
.
VDD  
Power Supply Input. These parts can operate from 2.5 V to 5.5 V and the supply should be decoupled with a  
ꢀ0 μF capacitor in parallel with a 0.ꢀ μF capacitor to GND.  
ꢀ5 to 24 DB0 to DB9  
Ten Parallel Data Inputs.  
Rev. A | Page 9 of 28  
AD5330/AD5331/AD5340/AD5341  
V
V
DD  
REF  
3
12  
POWER-ON  
RESET  
AD5341  
HIGH BYTE  
REGISTER  
BUF  
2
8
GAIN  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
HBEN  
BUF  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
7
6
DB 20  
7
.
LOW BYTE  
REGISTER  
12-BIT  
DAC  
.
4
BUFFER  
V
OUT  
13  
DB  
0
V
3
REF  
5
10-BIT  
AD5341  
TOP VIEW  
1
V
4
HBEN  
OUT  
4
5
GND  
CS  
3
6
CS  
(Not to Scale)  
6
RESET  
2
POWER-DOWN  
LOGIC  
7
WR  
7
WR  
1
9
CLR  
8
GAIN  
CLR  
LDAC  
0
10  
LDAC  
9
V
DD  
11  
5
10  
PD  
PD GND  
Figure 9. AD5341 Functional Block Diagram  
Figure 10. AD5341 Pin Configuration  
Table 8. AD5341 Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
HBEN  
High Byte Enable Pin. This pin is used when writing to the device to determine if data is written to the high  
byte register or the low byte register.  
2
BUF  
VREF  
VOUT  
GND  
CS  
Buffer Control Pin. This pin controls whether the reference input to the DAC is buffered or unbuffered.  
Reference Input.  
Output of DAC. Buffered output with rail-to-rail operation.  
3
4
5
1
Ground reference point for all circuitry on the part.  
Active low Chip Select Input. This is used in conjunction with WR to write data to the parallel interface.  
Active Low Write Input. This is used in conjunction with CS to write data to the parallel interface.  
7
WR  
8
9
GAIN  
CLR  
LDAC  
PD  
Gain Control Pin. This controls whether the output range from the DAC is 0 V to VREF or 0 V to 2 × VREF  
Asynchronous active low control input that clears all input registers and DAC registers to zero.  
Active low control input that updates the DAC registers with the contents of the input registers.  
Power-Down Pin. This active low control pin puts the DAC into power-down mode.  
.
ꢀ0  
ꢀꢀ  
ꢀ2  
VDD  
Power Supply Input. These parts can operate from 2.5 V to 5.5 V and the supply should be decoupled with a  
ꢀ0 μF capacitor in parallel with a 0.ꢀ μF capacitor to GND.  
ꢀ3 to 20 DB0 to DB7  
Eight Parallel Data Inputs. DB7 is the MSB of these eight bits.  
Rev. A | Page ꢀ0 of 28  
AD5330/AD5331/AD5340/AD5341  
TERMINOLOGY  
Relative Accuracy or Integral Nonlinearity (INL)  
For the DAC, relative accuracy or INL is a measure of the  
maximum deviation, in LSBs, from a straight line passing  
through the actual endpoints of the DAC transfer function.  
Typical INL vs. code plots can be seen in Figure 14, Figure 15,  
and Figure 16.  
GAIN ERROR  
AND  
OFFSET ERROR  
OUTPUT  
VOLTAGE  
Differential Nonlinearity (DNL)  
ACTUAL  
IDEAL  
DNL is the difference between the measured change and the  
ideal 1 LSB change between any two adjacent codes. A specified  
differential nonlinearity of 1 LSB maximum ensures mono-  
tonicity. This DAC is guaranteed monotonic by design. Typical  
DNL vs. code plots can be seen in Figure 17, Figure 18, and  
Figure 19.  
POSITIVE  
OFFSET  
Gain Error  
DAC CODE  
This is a measure of the span error of the DAC (including any  
error in the gain of the buffer amplifier). It is the deviation in  
slope of the actual DAC transfer characteristic from the ideal,  
expressed as a percentage of the full-scale range. This is  
illustrated in Figure 11.  
Figure 12. Positive Offset Error and Gain Error  
GAIN ERROR  
AND  
OFFSET ERROR  
Offset Error  
This is a measure of the offset error of the DAC and the output  
amplifier. It is expressed as a percentage of the full-scale range.  
If the offset voltage is positive, the output voltage is still positive  
at zero input code. This is shown in Figure 12. Because the  
DACs operate from a single supply, a negative offset cannot  
appear at the output of the buffer amplifier. Instead, there is  
a code close to zero at which the amplifier output saturates  
(amplifier footroom). Below this code, there is a deadband over  
which the output voltage does not change. This is illustrated in  
Figure 13.  
OUTPUT  
VOLTAGE  
ACTUAL  
IDEAL  
NEGATIVE  
OFFSET  
DAC CODE  
POSITIVE  
GAIN ERROR  
NEGATIVE  
GAIN ERROR  
DEADBAND CODES  
AMPLIFIER  
FOOTROOM  
(~1mV)  
OUTPUT  
VOLTAGE  
ACTUAL  
IDEAL  
NEGATIVE  
OFFSET  
DAC CODE  
Figure 13. Negative Offset Error and Gain Error  
Figure 11. Gain Error  
Rev. A | Page ꢀꢀ of 28  
 
 
 
 
AD5330/AD5331/AD5340/AD5341  
Offset Error Drift  
This is a measure of the change in offset error with changes in  
temperature. It is expressed in (ppm of full-scale range)/°C.  
Digital Feedthrough  
Digital Feedthrough is a measure of the impulse injected into  
the analog output of the DAC from the digital input pins of the  
CS  
device; it is measured when the DAC is not being written to (  
held high). It is specified in nV/s and is measured with a full-  
scale change on the digital input pins, that is, from all 0s to all  
1s and vice versa.  
Gain Error Drift  
This is a measure of the change in gain error with changes in  
temperature. It is expressed in (ppm of full-scale range)/°C.  
Power-Supply Rejection Ratio (PSRR)  
Multiplying Bandwidth  
This indicates how the output of the DAC is affected by changes  
in the supply voltage. PSRR is the ratio of the change in VOUT to  
a change in VDD for full-scale output of the DAC. It is measured  
in decibels. VREF is held at 2 V and VDD is varied 10ꢀ.  
The amplifiers within the DAC have a finite bandwidth. The  
multiplying bandwidth is a measure of this. A sine wave on the  
reference (with a full-scale code loaded to the DAC) appears on  
the output. The multiplying bandwidth is the frequency at  
which the output amplitude falls to 3 dB below the input.  
Reference Feedthrough  
This is the ratio of the amplitude of the signal at the DAC  
output to the reference input when the DAC output is not being  
Total Harmonic Distortion (THD)  
This is the difference between an ideal sine wave and its atte-  
nuated version using the DAC. The sine wave is used as the  
reference for the DAC and THD is a measure of the harmonics  
present on the DAC output. It is measured in decibels.  
LDAC  
updated (that is,  
is high). It is expressed in decibels.  
Major-Code Transition Glitch Energy  
Major-code transition glitch energy is the energy of the impulse  
injected into the analog output when the DAC changes state. It  
is normally specified as the area of the glitch in nV/s and is  
measured when the digital code is changed by 1 LSB at the  
major carry transition (011 … 11 to 100 … 00 or 100 … 00  
to 011 … 11).  
Rev. A | Page ꢀ2 of 28  
AD5330/AD5331/AD5340/AD5341  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.0  
0.3  
T
V
= 25°C  
A
T
V
= 25°C  
A
= 5V  
DD  
= 5V  
DD  
0.2  
0.1  
0.5  
0
0
–0.1  
–0.2  
–0.3  
–0.5  
–1.0  
0
0
0
50  
100  
150  
200  
250  
1000  
4000  
0
0
0
50  
100  
150  
200  
250  
1000  
4000  
CODE  
CODE  
Figure 14. AD5330 Typical INL Plot  
Figure 17. AD5330 Typical DNL Plot  
3
2
0.6  
0.4  
T
V
= 25°C  
T
V
= 25°C  
A
A
= 5V  
= 5V  
DD  
DD  
1
0.2  
0
–1  
–2  
0
–0.2  
–0.4  
–0.6  
–3  
200  
400  
500  
800  
200  
400  
600  
800  
CODE  
CODE  
Figure 15. AD5331 Typical INL Plot  
Figure 18. AD5331 Typical DNL Plot  
12  
8
1.0  
0.5  
T
V
= 25°C  
= 5V  
A
T
V
= 25°C  
A
DD  
= 5V  
DD  
4
0
0
–4  
–8  
–12  
–0.5  
–1.0  
1000  
2000  
3000  
1000  
2000  
3000  
CODE  
CODE  
Figure 16. AD5340/AD5341 Typical INL Plot  
Figure 19. AD5340/AD5341 Typical DNL Plot  
Rev. A | Page ꢀ3 of 28  
 
 
 
 
AD5330/AD5331/AD5340/AD5341  
1.00  
0.2  
0.1  
T
V
= 25°C  
= 5V  
A
T
= 25°C  
DD  
A
0.75  
0.50  
0.25  
0
V
= 2V  
REF  
0
GAIN ERROR  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
MAX INL  
MAX DNL  
MIN DNL  
–0.25  
–0.50  
–0.75  
–1.00  
MIN INL  
OFFSET ERROR  
2
3
4
5
0
1
2
3
4
5
6
V
(V)  
V
(V)  
REF  
DD  
Figure 20. AD5330 INL and DNL Error vs. VREF  
Figure 23. Offset Error and Gain Error vs. VDD  
5
4
3
2
1
0
1.00  
0.75  
0.50  
0.25  
0
V
V
= 5V  
DD  
= 3V  
REF  
5V SOURCE  
3V SOURCE  
MAX DNL  
MAX INL  
–0.25  
–0.50  
–0.75  
–1.00  
MIN DNL  
MIN INL  
3V SINK  
5V SINK  
–40  
0
40  
TEMPERATURE (°C)  
80  
120  
0
1
2
3
4
5
6
SINK/SOURCE CURRENT (mA)  
Figure 21. AD5330 INL Error and DNL Error vs. Temperature  
Figure 24. VOUT Source and Sink Current Capability  
1.0  
300  
250  
200  
150  
100  
50  
V
V
= 5V  
= 2V  
T
V
= 25°C  
= 2V  
DD  
REF  
A
REF  
V
V
= 5.5V  
= 3.6V  
DD  
0.5  
0
GAIN ERROR  
DD  
OFFSET ERROR  
–0.5  
–1.0  
–40  
0
0
40  
80  
120  
ZERO-SCALE  
FULL-SCALE  
TEMPERATURE (°C)  
DAC CODE  
Figure 22. AD5330 Offset Error and Gain Error vs. Temperature  
Figure 25. Supply Current vs. DAC Code  
Rev. A | Page ꢀ4 of 28  
 
AD5330/AD5331/AD5340/AD5341  
300  
200  
100  
0
T
= 25°C  
A
T
= 25°C  
DD  
A
V
= 5V  
CH2  
5V  
CLK  
V
OUT  
CH1  
1V  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
V
TIME BASE = 5µs/DIV  
DD  
Figure 26. Supply Current vs. Supply Voltage  
Figure 29. Half-Scale Settling (¼ to ¾ Scale Code Change)  
0.5  
0.4  
0.3  
0.2  
0.1  
0
T
= 25°C  
A
T
V
V
= 25°C  
A
= 5V  
DD  
= 2V  
REF  
CH1  
2V  
V
DD  
V
A
OUT  
CH2  
200mV  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
V
TIME BASE = 200µs/DIV  
DD  
Figure 27. Power-Down Current vs. Supply Voltage  
Figure 30. Power-On Reset to 0 V  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
T
= 25°C  
A
T
V
V
= 25°C  
A
= 5V  
DD  
= 2V  
REF  
CH1  
500mV  
V
= 5V  
DD  
V
A
OUT  
PD  
CH2  
5V  
V
= 3V  
DD  
0
1
2
3
4
5
V
(V)  
TIME BASE = 1µs/DIV  
LOGIC  
Figure 28. Supply Current vs. Logic Input Voltage  
Figure 31. Exiting Power-Down to Midscale  
Rev. A | Page ꢀ5 of 28  
 
 
AD5330/AD5331/AD5340/AD5341  
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
V
= 3V  
DD  
V
= 5V  
DD  
80 90 100 110 120 130 140 150 160 170 180 190 200  
(µA)  
0.01  
0.1  
1
10  
100  
1k  
10k  
I
FREQUENCY (kHz)  
DD  
Figure 32. IDD Histogram with VDD = 3 V and VDD = 5 V  
Figure 34. Multiplying Bandwidth (Small-Signal Frequency Response)  
0.4  
0.917  
0.916  
0.915  
0.914  
0.913  
0.912  
0.911  
0.910  
0.909  
0.908  
0.907  
0.906  
0.905  
0.904  
0.903  
T
= 25°C  
A
V
= 5V  
DD  
0.2  
0
–0.2  
0
1
2
3
4
5
V
(V)  
250ns/DIV  
REF  
Figure 33. AD5340 Major-Code Transition Glitch Energy  
Figure 35. Full-Scale Error vs. VREF  
Rev. A | Page ꢀ1 of 28  
AD5330/AD5331/AD5340/AD5341  
THEORY OF OPERATION  
V
REF  
The AD5330/AD5331/AD5340/AD5341 are single resistor-  
string DACs fabricated on a CMOS process with resolutions  
of 8, 10, and 12 bits, respectively. They are written to using a  
parallel interface. They operate from single supplies of 2.5 V to  
5.5 V and the output buffer amplifiers offer rail-to-rail output  
swing. The AD5330, AD5340, and AD5341 have a reference  
input that can be buffered to draw virtually no current from  
the reference source. The reference input of the AD5331 is  
unbuffered. The devices have a power-down feature that  
reduces current consumption to only 80 nA @ 3 V.  
R
R
R
TO OUTPUT  
AMPLIFIER  
R
R
DIGITAL-TO-ANALOG SECTION  
The architecture of one DAC channel consists of a reference  
buffer and a resistor-string DAC followed by an output buffer  
amplifier. The voltage at the VREF pin provides the reference  
voltage for the DAC. Figure 36 shows a block diagram of the  
DAC architecture. Because the input coding to the DAC is  
straight binary, the ideal output voltage is given by  
Figure 37. Resistor String  
DAC REFERENCE INPUT  
There is a reference input pin for the DAC. The reference  
input is buffered on the AD5330, AD5340, and AD5341 but  
can be configured as unbuffered also. The reference input of  
the AD5331 is unbuffered. The buffered/unbuffered option is  
controlled by the BUF pin.  
D
VOUT = VREF  
×
×Gain  
2N  
where:  
In buffered mode (BUF = 1), the current drawn from an  
external reference voltage is virtually zero because the  
impedance is at least 10 MΩ. The reference input range is  
1 V to 5 V with a 5 V supply.  
D is the decimal equivalent of the binary code, which is loaded  
to the DAC register:  
0 to 255 for AD5330 (8 Bits)  
0 to 1023 for AD5331 (10 Bits)  
0 to 4095 for AD5340/AD5341 (12 Bits)  
In unbuffered mode (BUF = 0), the user can have a reference  
voltage as low as 0.25 V and as high as VDD because there is no  
restriction due to headroom and footroom of the reference  
amplifier. The impedance is still large at typically 180 kΩ for  
0 V to VREF mode and 90 kΩ for 0 V to 2 × VREF mode. If there is  
an external buffered reference (for example, REF192), there is  
no need to use the on-chip buffer.  
N is the DAC resolution.  
Gain is the output amplifier gain (1 or 2).  
V
REF  
REFERENCE  
BUFFER  
BUF  
OUTPUT AMPLIFIER  
GAIN  
The output buffer amplifier is capable of generating output  
voltages to within 1 mV of either rail. Its actual range depends  
on VREF, GAIN, the load on VOUT, and offset error.  
INPUT  
REGISTER  
DAC  
REGISTER  
RESISTOR  
STRING  
V
OUT  
OUTPUT  
BUFFER AMPLIFIER  
If a gain of 1 is selected (GAIN = 0), the output range is 0.001 V  
to VREF  
.
Figure 36. Single DAC Channel Architecture  
If a gain of 2 is selected (GAIN = 1), the output range is 0.001 V  
to 2 × VREF. However, because of clamping, the maximum  
output is limited to VDD – 0.001 V.  
RESISTOR STRING  
The resistor-string section is shown in Figure 37. It is simply a  
string of resistors, each of value R. The digital code loaded to  
the DAC register determines at what node on the string the  
voltage is tapped off to be fed into the output amplifier. The  
voltage is tapped off by closing one of the switches connecting  
the string to the amplifier. Because it is a string of resistors, it is  
guaranteed monotonic.  
The output amplifier is capable of driving a load of 2 kΩ to  
GND or 2 kΩ to VDD in parallel with 500 pF to GND or 500 pF  
to VDD. The source and sink capabilities of the output amplifier  
can be seen in Figure 24.  
The slew rate is 0.7 V/μs with a half-scale settling time to  
0.5 ꢀSB (at eight bits) of 6 μs with the output unloaded (see  
Figure 29).  
Rev. A | Page 17 of 28  
 
 
 
 
 
 
 
AD5330/AD5331/AD5340/AD5341  
PARALLEL INTERFACE  
LOAD DAC INPUT (LDAC)  
The AD5330, AD5331, and AD5340 load their data as a single  
8-, 10-, or 12-bit word, while the AD5341 loads data as a low  
byte of eight bits and a high byte containing four bits.  
LDAC  
transfers data from the input register to the DAC register  
LDAC  
(and therefore updates the outputs). Use of the  
function  
enables double-buffering of the DAC data, GAIN, and BUF.  
LDAC  
DOUBLE-BUFFERED INTERFACE  
There are two  
asynchronous mode.  
In synchronous mode, the DAC register is updated after new  
WR LDAC  
can  
modes: synchronous mode and  
The AD5330/AD5331/AD5340/AD5341 DACs all have double-  
buffered interfaces consisting of an input register and a DAC  
register. DAC data, BUF, and GAIN inputs are written to the  
CS  
WR  
input register under the control of chip select ( ) and write (  
).  
data is read in on the rising edge of the  
be tied permanently low or pulsed, as shown in Figure 2.  
In asynchronous mode, the outputs are not updated at the same  
LDAC  
input.  
LDAC  
Access to the DAC register is controlled by the  
function.  
is high, the DAC register is latched and the input  
register may change state without affecting the contents of the  
LDAC  
LDAC  
When  
time that the input register is written to. When  
goes low,  
the DAC register is updated with the contents of the input  
register.  
DAC register. However, when  
is brought low, the DAC  
register becomes transparent and the contents of the input  
register are transferred to it. The gain and buffer control signals  
are also double-buffered and are only updated when  
taken low.  
HIGH BYTE ENABLE INPUT (HBEN)  
LDAC  
is  
High byte enable is a control input on the AD5341 only. It  
determines if data is written to the high byte input register  
or the low byte input register.  
Double-buffering is also useful where the DAC data is loaded  
in two bytes, as in the AD5341, because it allows the whole  
data word to be assembled in parallel before updating the DAC  
register. This prevents spurious outputs that can occur if the DAC  
register is updated with only the high byte or the low byte.  
The low data byte of the AD5341 consists of Data Bits [0:7]  
at the data inputs DB0 to DB7, whereas the high byte consists  
of Data Bits [8:11] at the data inputs DB0 to DB3, as shown in  
Figure 38. DB4 to DB7 are ignored during a high byte write, but  
they can be used for data to set up the reference input as buffered/  
unbuffered, and buffer amplifier gain (see Figure 42).  
HIGH BYTE  
These parts contain an extra feature whereby the DAC register  
is not updated unless its input register has been updated since  
LDAC  
the last time that  
was brought low. Normally, when  
LDAC  
is brought low, the DAC register is filled with the  
X
X
X
X
DB  
DB  
DB  
DB  
11  
10  
9
8
contents of the input register. In the case of the AD5330/  
AD5331/AD5340/AD5341, the parts only update the DAC  
register if the input register has been changed since the last time  
the DAC register was updated. This removes unnecessary crosstalk.  
LOW BYTE  
DB DB  
DB  
DB  
DB  
DB  
DB  
1
DB  
7
6
5
4
3
2
0
X = UNUSED BIT  
Figure 38. Data Format for AD5341  
CLEAR INPUT (CLR)  
POWER-ON RESET  
CLR  
is an active low, asynchronous clear that resets the input  
The AD5330/AD5331/AD5340/AD5341 are provided with a  
power-on reset function, so that they power up in a defined  
state. The power-on state is  
and DAC registers.  
CHIP SELECT INPUT (CS)  
CS  
is an active low input that selects the device.  
Normal operation  
WRITE INPUT (WR)  
Reference input unbuffered  
0 V to VREF output range  
Output voltage set to 0 V  
WR  
is an active low input that controls writing of data to the  
device. Data is latched into the input register on the rising  
WR  
edge of  
.
Both input and DAC registers are filled with zeros and remain  
as such until a valid write sequence is made to the device. This  
is particularly useful in applications where it is important to know  
the state of the DAC outputs while the device is powering up.  
Rev. A | Page ꢀ8 of 28  
 
 
 
 
 
 
 
 
 
AD5330/AD5331/AD5340/AD5341  
POWER-DOWN MODE  
The AD5330/AD5331/AD5340/AD5341 have low power  
consumption, dissipating only 0.35 mW with a 3 V supply and  
0.7 mW with a 5 V supply. Power consumption can be further  
reduced when the DAC is not in use by putting it into power-  
RESISTOR  
STRING DAC  
AMPLIFIER  
V
OUT  
POWER-DOWN  
CIRCUITRY  
PD  
down mode, which is selected by taking Pin  
low.  
Figure 39. Output Stage During Power-Down  
PD  
When the  
pin is high, the DAC works normally with a  
The bias generator, the output amplifier, the resistor string, and  
all other associated linear circuitry are shut down when the  
power-down mode is activated. However, the contents of the  
registers are unaffected when in power-down. The time to exit  
power-down is typically 2.5 μs for VDD = 5 V and 5 μs when  
PD  
typical power consumption of 140 μA at 5 V (115 μA at 3 V).  
In power-down mode, however, the supply current falls to  
200 nA at 5 V (80 nA at 3 V) when the DAC is powered down.  
Not only does the supply current drop, but the output stage  
is also internally switched from the output of the amplifier,  
making it open-circuit. This has the advantage that the output  
is three-state while the part is in power-down mode and provides  
a defined input condition for whatever is connected to the  
output of the DAC amplifier. The output stage is illustrated in  
Figure 39.  
VDD = 3 V. This is the time from a rising edge on the  
pin to  
when the output voltage deviates from its power-down voltage  
(see Figure 31).  
Table 9. AD5330/AD5331/AD5340 Truth Table1  
CLR  
LDAC  
CS  
WR  
Function  
0
X
0
0
X
X
0
0
X
X
No data transfer  
X
No data transfer  
Clear all registers  
Load input register  
Load input register and DAC register  
Update DAC register  
0ꢀ  
0ꢀ  
X
X = don’t care.  
Table 10. AD5341 Truth Table1  
CLR  
LDAC  
CS  
WR  
HBEN  
Function  
0
X
0
0
0
X
X
0
0
0
0
X
X
X
X
X
0
0
X
No data transfer  
X
No data transfer  
Clear all registers  
Load low byte input register  
Load high byte input register  
Load low byte input register and DAC register  
Load high byte input register and DAC register  
Update DAC register  
0ꢀ  
0ꢀ  
0ꢀ  
0ꢀ  
X
X = don’t care.  
Rev. A | Page ꢀ9 of 28  
 
 
 
 
AD5330/AD5331/AD5340/AD5341  
SUGGESTED DATABUS FORMATS  
The AD5341 is a 12-bit device that uses byte load, so only four  
bits of the high byte are actually used as data. Two of the unused  
bits can be used for GAIN and BUF data by connecting them to  
the GAIN and BUF inputs; for example, Bit 6 and Bit 7, as  
shown in Figure 41 and Figure 42.  
In most applications, GAIN and BUF are hard-wired. However,  
if more flexibility is required, they can be included in a databus.  
This enables the user to software program GAIN, giving the  
option of doubling the resolution in the lower half of the DAC  
range. In a bused system, GAIN and BUF can be treated as data  
inputs because they are written to the device during a write  
8-BIT  
DATA BUS  
DATA  
LDAC  
operation and take effect when  
is taken low. This means  
INPUTS  
DB DB  
6
7
that the reference buffers and the output amplifier gain of  
multiple DAC devices can be controlled using common GAIN  
and BUF lines.  
BUF  
AD5341  
GAIN  
LDAC  
CLR  
CS  
In the case of the AD5330, this means that the databus must be  
wider than eight bits. The AD5331 and AD5340 databuses must  
be at least 10 bits and 12 bits wide, respectively, and are best  
suited to a 16-bit databus system.  
WR  
HBEN  
Figure 41. AD5341 Data Format for Byte Load with GAIN and BUF Data  
on 8-Bit Bus  
Examples of data formats for putting GAIN and BUF on a  
16-bit databus are shown in Figure 40. Note that any unused bits  
above the actual DAC data can be used for BUF and GAIN. DAC  
devices can be controlled using common GAIN and BUF lines.  
In this case, the low byte is written to first in a write operation  
with HBEN = 0. Bit 6 and Bit 7 of DAC data are written into  
GAIN and BUF registers but have no effect. The high byte is  
then written to. Only the lower four bits of data are written into  
the DAC high byte register, so Bit 6 and Bit 7 can be GAIN and  
BUF data.  
AD5330  
X
DB  
BUF GAIN  
BUF GAIN  
BUF GAIN  
X
X
X
X
X
X
X
DB  
DB DB DB DB DB  
4 3 2 1  
5
DB  
6
7
0
AD5331  
X
X
X
DB DB DB DB DB DB DB DB DB DB  
9 8 7 6 5 4 3 2 1  
0
AD5340  
LDAC  
is used to update the DAC, GAIN, and BUF values.  
X
DB DB DB DB DB DB DB DB DB DB DB DB  
11 10  
9
8
7
6
5
4
3
2
1
0
X = UNUSED BIT  
HIGH BYTE  
BUF  
GAIN  
X
X
DB  
DB  
DB  
DB  
11  
10  
9
8
Figure 40. GAIN and BUF Data on a 16-Bit Bus  
LOW BYTE  
DB  
DB  
DB  
2
DB  
DB  
6
DB  
DB  
1
DB  
5
4
7
3
0
X = UNUSED BIT  
Figure 42. AD5341 with GAIN and BUF Data on 8-Bit Bus  
Rev. A | Page 20 of 28  
 
 
 
 
AD5330/AD5331/AD5340/AD5341  
APPLICATIONS INFORMATION  
TYPICAL APPLICATION CIRCUITS  
BIPOLAR OPERATION USING THE AD5330/AD5331/  
AD5340/AD5341  
The AD5330/AD5331/AD5340/AD5341 can be used with  
a wide range of reference voltages, especially if the reference  
inputs are configured to be unbuffered, in which case the  
devices offer full, one-quadrant multiplying capability over a  
reference range of 0.25 V to VDD. More typically, these devices  
can be used with a fixed, precision reference voltage. Figure 43  
shows a typical setup for the devices when using an external  
reference connected to the unbuffered reference inputs. If the  
reference inputs are unbuffered, the reference input range is  
from 0.25 V to VDD, but if the on-chip reference buffers are  
used, the reference range is reduced. Suitable references for 5 V  
operation are the AD780 and REF192. For 2.5 V operation, a  
suitable external reference is the AD589, a 1.23 V band gap  
reference.  
The AD5330/AD5331/AD5340/AD5341 are designed for  
single-supply operation, but bipolar operation is achievable  
using the circuit shown in Figure 45. The circuit shown has  
been configured to achieve an output voltage range of –5 V <  
VO < +5 V. Rail-to-rail operation at the amplifier output is  
achievable using an AD820 or OP295 as the output amplifier.  
The output voltage for any input code can be calculated as follows:  
VO = [(1 + R4/R3) × (R2/(R1 + R2) × (2 × VREF × D/2N)] –  
R4 × VREF/R3  
where:  
D is the decimal equivalent of the code loaded to the DAC.  
N is the DAC resolution.  
V
= 2.5V TO 5.5V  
V
REF is the reference voltage input.  
with:  
VREF = 2.5 V.  
DD  
+
0.1µF  
10µF  
V
R1 = R3 = 10 kΩ.  
IN  
V
DD  
R2 = R4 = 20 kΩ and VDD = 5 V.  
EXT  
REF  
V
V
OUT  
REF  
VO = (10 × D/2N) − 5.  
V
OUT  
GND  
AD5330/AD5331/  
AD5340/AD5341  
V
= 5V  
DD  
R4  
20k  
AD780/REF192  
WITH V = 5V  
+
0.1µF  
10µF  
REF  
DD  
+5V  
OR  
R3  
10kΩ  
GND  
AD589 WITH V = 2.5V  
DD  
V
IN  
V
= ±5V  
O
EXT  
REF  
V
OUT  
V
DD  
Figure 43. AD5330/AD5331/AD5340/AD5341 Using External Reference  
V
GND  
0.1µF  
–5V  
AD5330/AD5331/  
AD5340/AD5341  
DRIVING VDD FROM THE REFERENCE VOLTAGE  
R1  
10kΩ  
AD780/REF192  
V
OUT  
WITH V = 5V  
If an output range of 0 V to VDD is required, the simplest  
solution is to connect the reference inputs to VDD. Because this  
supply may not be very accurate and may be noisy, the devices  
can be powered from the reference voltage, for example using  
a 5 V reference such as the ADP667, as shown in Figure 44.  
6V TO 16V  
DD  
OR  
R2  
20kΩ  
AD589 WITH V = 2.5V  
DD  
GND  
Figure 45. Bipolar Operation using the AD5330/AD5331/AD5340/AD5341  
DECODING MULTIPLE AD5330/AD5331/  
AD5340/AD5341  
+
0.1µF  
10µF  
CS  
The pin on these devices can be used in applications to  
V
IN  
decode a number of DACs. In this application, all DACs in the  
system receive the same data and  
of the DACs is active at any one time, so data is only written to  
the DAC whose is low. If multiple AD5341s are being used, a  
common HBEN line is also required to determine if the data is  
written to the high byte or low byte register of the selected DAC.  
ADP667  
WR  
CS  
pulses, but only to one  
V
V
DD  
REF  
V
V
OUT  
OUT  
CS  
VSET  
GND SHDN  
0.1µF  
AD5330/AD5331/  
AD5340/AD5341  
The 74HC139 is used as a 2-line to 4-line decoder to address  
any of the DACs in the system. To prevent timing errors, the  
enable input should be brought to its inactive state while the  
coded address inputs are changing state. Figure 46 shows a  
diagram of a typical setup for decoding multiple devices in a  
system. Once data has been written sequentially to all DACs in  
GND  
Figure 44. Using an ADP667 as Power and Reference to  
AD5330/AD5331/AD5340/AD5341  
Rev. A | Page 2ꢀ of 28  
 
 
 
 
 
 
 
AD5330/AD5331/AD5340/AD5341  
V
= 5V  
DD  
a system, all the DACs can be updated simultaneously using a  
LDAC  
CLR  
common  
line. A common  
line can also be used to  
+
0.1µF  
0.1µF  
10µF  
reset all DAC outputs to zero.  
V
SOURCE  
V
IN  
AD5330/AD5331/  
AD5340/AD5341  
EXT  
REF  
LOAD  
V
5V  
OUT  
V
DD  
HBEN*  
HBEN*  
V
V
OUT  
REF  
WR  
LDAC  
CLR  
WR  
DATA  
INPUTS  
GND  
AD820/  
OP295  
LDAC  
CLR  
CS  
AD5330/AD5331/  
AD5340/AD5341  
AD780/REF192  
WITH V = 5V  
DD  
4.7k  
470Ω  
AD5330/AD5331/  
AD5340/AD5341  
GND  
HBEN*  
WR  
DATA  
INPUTS  
LDAC  
CLR  
CS  
V
V
DD  
Figure 47. Programmable Current Source  
CC  
1Y0  
ENABLE  
G1  
A1  
POWER SUPPLY BYPASSING AND GROUNDING  
AD5330/AD5331/  
AD5340/AD5341  
74HC139  
1Y1  
1Y2  
1Y3  
CODED  
ADDRESS  
In any circuit where accuracy is important, careful consid-  
eration of the power supply and ground return layout helps  
to ensure the rated performance. The printed circuit board on  
which the AD5330/AD5331/AD5340/AD5341 are mounted  
should be designed so that the analog and digital sections are  
separated and confined to certain areas of the board. If the  
device is in a system where multiple devices require an AGND-  
to-DGND connection, the connection should be made at one  
point only. The star ground point should be established as  
closely as possible to the device. The AD5330/AD5331/  
AD5340/AD5341 should have ample supply bypassing of  
10 μF in parallel with 0.1 μF on the supply located as close to  
the package as possible, ideally right up against the device.  
The 10 μF capacitors are the tantalum bead type. The 0.1 μF  
capacitor should have low effective series resistance (ESR) and  
effective series inductance (ESI), like the common ceramic  
types that provide a low impedance path to ground at high  
frequencies to handle transient currents due to internal logic  
switching.  
HBEN*  
B1  
WR  
DATA  
INPUTS  
LDAC  
CLR  
CS  
DGND  
AD5330/AD5331/  
AD5340/AD5341  
HBEN*  
WR  
DATA  
INPUTS  
LDAC  
CLR  
CS  
*AD5341 ONLY  
Figure 46. Decoding Multiple DAC Devices  
PROGRAMMABLE CURRENT SOURCE  
Figure 47 shows the AD5330/AD5331/AD5340/AD5341 used  
as the control element of a programmable current source. In  
this example, the full-scale current is set to 1 mA. The output  
voltage from the DAC is applied across the current setting  
resistor of 4.7 kΩ in series with the 470 Ω adjustment poten-  
tiometer, which gives an adjustment of about 5ꢀ. Suitable  
transistors to place in the feedback loop of the amplifier include  
the BC107 and the 2N3904, which enable the current source to  
operate from a minimum VSOURCE of 6 V. The operating range is  
determined by the operating characteristics of the transistor.  
Suitable amplifiers include the AD820 and the OP295, both  
having rail-to-rail operation on their outputs. The current for  
any digital input code and resistor value can be calculated as  
follows:  
The power supply lines of the device should use as large a trace  
as possible to provide low impedance paths and reduce the  
effects of glitches on the power supply line. Fast switching  
signals such as clocks should be shielded with digital ground  
to avoid radiating noise to other parts of the board, and should  
never be run near the reference inputs. Avoid crossover of  
digital and analog signals. Traces on opposite sides of the board  
should run at right angles to each other. This reduces the effects  
of feedthrough through the board. A microstrip technique is by  
far the best, but not always possible with a double-sided board.  
In this technique, the component side of the board is dedicated to  
the ground plane while signal traces are placed on the solder side.  
D
I = G ×VREF  
×
mA  
(2N × R)  
where:  
G is the gain of the buffer amplifier (1 or 2).  
D is the digital equivalent of the digital input code.  
N is the DAC resolution (8, 10, or 12 bits).  
R is the sum of the resistor plus adjustment potentiometer  
in kilo ohms.  
Rev. A | Page 22 of 28  
 
 
 
 
AD5330/AD5331/AD5340/AD5341  
Table 11. Overview of AD53xx Parallel Devices  
Additional Pin Functions  
CLR  
Part No. Resolution Bits DNL  
Singles  
No. of VREF Pins Settling Time BUF  
GAIN  
HBEN  
Package No. of Pins  
AD5330  
AD533ꢀ  
AD5340  
AD534ꢀ  
8
0.25  
0.5  
1 μs  
7 μs  
8 μs  
8 μs  
BUF  
GAIN  
GAIN  
GAIN  
GAIN  
CLR  
CLR  
CLR  
CLR  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
20  
20  
24  
20  
ꢀ0  
ꢀ2  
ꢀ2  
ꢀ.0  
BUF  
BUF  
ꢀ.0  
HBEN  
Duals  
AD5332  
AD5333  
AD5342  
AD5343  
8
0.25  
0.5  
2
2
2
1 μs  
7 μs  
8 μs  
8 μs  
CLR  
CLR  
CLR  
CLR  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
20  
24  
28  
20  
ꢀ0  
ꢀ2  
ꢀ2  
BUF  
BUF  
GAIN  
GAIN  
ꢀ.0  
ꢀ.0  
HBEN  
HBEN  
Quads  
AD5334  
AD5335  
AD5331  
AD5344  
8
0.25  
0.5  
2
2
4
4
1 μs  
7 μs  
7 μs  
8 μs  
GAIN  
GAIN  
CLR  
CLR  
CLR  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
24  
24  
28  
28  
ꢀ0  
ꢀ0  
ꢀ2  
0.5  
ꢀ.0  
Table 12. Overview of AD53xx Serial Devices  
Part No.  
Singles  
AD5300  
AD53ꢀ0  
AD5320  
AD530ꢀ  
AD53ꢀꢀ  
AD532ꢀ  
Resolution Bits  
No. of DACs  
DNL  
Interface  
Settling Time  
Package  
No of Pins  
8
0.25  
0.5  
ꢀ.0  
SPI  
SPI  
SPI  
4 μs  
1 μs  
8 μs  
1 μs  
7 μs  
8 μs  
SOT-23, MSOP  
SOT-23, MSOP  
SOT-23, MSOP  
SOT-23, MSOP  
SOT-23, MSOP  
SOT-23, MSOP  
1, 8  
1, 8  
1, 8  
1, 8  
1, 8  
1, 8  
ꢀ0  
ꢀ2  
8
ꢀ0  
ꢀ2  
0.25  
0.5  
ꢀ.0  
2-Wire  
2-Wire  
2-Wire  
Duals  
AD5302  
AD53ꢀ2  
AD5322  
AD5303  
AD53ꢀ3  
AD5323  
8
2
2
2
2
2
2
0.25  
0.5  
ꢀ.0  
SPI  
SPI  
SPI  
SPI  
SPI  
SPI  
1 μs  
7 μs  
8 μs  
1 μs  
7 μs  
8 μs  
MSOP  
MSOP  
MSOP  
TSSOP  
TSSOP  
TSSOP  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ1  
ꢀ1  
ꢀ1  
ꢀ0  
ꢀ2  
8
ꢀ0  
ꢀ2  
0.25  
0.5  
ꢀ.0  
Quads  
AD5304  
AD53ꢀ4  
AD5324  
AD5305  
AD53ꢀ5  
AD5325  
AD5301  
AD53ꢀ1  
AD5321  
AD5307  
AD53ꢀ7  
AD5327  
8
4
4
4
4
4
4
4
4
4
4
4
4
0.25  
0.5  
ꢀ.0  
SPI  
SPI  
SPI  
1 μs  
7 μs  
8 μs  
1 μs  
7 μs  
8 μs  
1 μs  
7 μs  
8 μs  
1 μs  
7 μs  
8 μs  
MSOP, LFCSP  
MSOP, LFCSP  
MSOP, LFCSP  
MSOP  
MSOP  
MSOP  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ1  
ꢀ1  
ꢀ1  
ꢀ1  
ꢀ1  
ꢀ1  
ꢀ0  
ꢀ2  
8
ꢀ0  
ꢀ2  
8
ꢀ0  
ꢀ2  
8
ꢀ0  
ꢀ2  
0.25  
0.5  
ꢀ.0  
2-Wire  
2-Wire  
2-Wire  
2-Wire  
2-Wire  
2-Wire  
SPI  
0.25  
0.5  
ꢀ.0  
TSSOP  
TSSOP  
TSSOP  
0.25  
0.5  
ꢀ.0  
TSSOP  
TSSOP  
TSSOP  
SPI  
SPI  
Rev. A | Page 23 of 28  
AD5330/AD5331/AD5340/AD5341  
OUTLINE DIMENSIONS  
6.60  
6.50  
6.40  
20  
11  
10  
4.50  
4.40  
4.30  
6.40 BSC  
1
PIN 1  
0.65  
BSC  
1.20 MAX  
0.15  
0.05  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
COPLANARITY  
0.10  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-153-AC  
Figure 48. 20-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-20)  
Dimensions shown in millimeters  
7.90  
7.80  
7.70  
24  
13  
12  
4.50  
4.40  
4.30  
6.40 BSC  
1
PIN 1  
0.65  
BSC  
1.20  
MAX  
0.15  
0.05  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
0.20  
0.09  
SEATING  
PLANE  
0.10 COPLANARITY  
COMPLIANT TO JEDEC STANDARDS MO-153-AD  
Figure 49. 24-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-24)  
Dimensions shown in millimeters  
Rev. A | Page 24 of 28  
 
AD5330/AD5331/AD5340/AD5341  
ORDERING GUIDE  
Model  
AD5330BRU  
AD5330BRU-REEL  
AD5330BRU-REEL7  
AD5330BRUZꢀ  
Temperature Range  
–40°C to +ꢀ05°C  
–40°C to +ꢀ05°C  
–40°C to +ꢀ05°C  
–40°C to +ꢀ05°C  
–40°C to +ꢀ05°C  
Package Description  
Package Option  
20-Lead Thin Shrink Small Outline Package [TSSOP]  
20-Lead Thin Shrink Small Outline Package [TSSOP]  
20-Lead Thin Shrink Small Outline Package [TSSOP]  
20-Lead Thin Shrink Small Outline Package [TSSOP]  
20-Lead Thin Shrink Small Outline Package [TSSOP]  
20-Lead Thin Shrink Small Outline Package [TSSOP]  
20-Lead Thin Shrink Small Outline Package [TSSOP]  
20-Lead Thin Shrink Small Outline Package [TSSOP]  
20-Lead Thin Shrink Small Outline Package [TSSOP]  
20-Lead Thin Shrink Small Outline Package [TSSOP]  
20-Lead Thin Shrink Small Outline Package [TSSOP]  
20-Lead Thin Shrink Small Outline Package [TSSOP]  
24-Lead Thin Shrink Small Outline Package [TSSOP]  
24-Lead Thin Shrink Small Outline Package [TSSOP]  
24-Lead Thin Shrink Small Outline Package [TSSOP]  
24-Lead Thin Shrink Small Outline Package [TSSOP]  
24-Lead Thin Shrink Small Outline Package [TSSOP]  
24-Lead Thin Shrink Small Outline Package [TSSOP]  
20-Lead Thin Shrink Small Outline Package [TSSOP]  
20-Lead Thin Shrink Small Outline Package [TSSOP]  
20-Lead Thin Shrink Small Outline Package [TSSOP]  
20-Lead Thin Shrink Small Outline Package [TSSOP]  
20-Lead Thin Shrink Small Outline Package [TSSOP]  
20-Lead Thin Shrink Small Outline Package [TSSOP]  
RU-20  
RU-20  
RU-20  
RU-20  
RU-20  
RU-20  
RU-20  
RU-20  
RU-20  
RU-20  
RU-20  
RU-20  
RU-24  
RU-24  
RU-24  
RU-24  
RU-24  
RU-24  
RU-20  
RU-20  
RU-20  
RU-20  
RU-20  
RU-20  
AD5330BRUZ-REELꢀ  
AD5330BRUZ-REEL7–40°C to +ꢀ05°C  
AD533ꢀBRU  
–40°C to +ꢀ05°C  
–40°C to +ꢀ05°C  
–40°C to +ꢀ05°C  
–40°C to +ꢀ05°C  
–40°C to +ꢀ05°C  
AD533ꢀBRU-REEL  
AD533ꢀBRU-REEL7  
AD533ꢀBRUZꢀ  
AD533ꢀBRUZ-REELꢀ  
AD533ꢀBRUZ-REEL7–40°C to +ꢀ05°C  
AD5340BRU  
–40°C to +ꢀ05°C  
–40°C to +ꢀ05°C  
–40°C to +ꢀ05°C  
–40°C to +ꢀ05°C  
–40°C to +ꢀ05°C  
AD5340BRU-REEL  
AD5340BRU-REEL7  
AD5340BRUZꢀ  
AD5340BRUZ-REELꢀ  
AD5340BRUZ-REEL7–40°C to +ꢀ05°C  
AD534ꢀBRU  
–40°C to +ꢀ05°C  
–40°C to +ꢀ05°C  
–40°C to +ꢀ05°C  
–40°C to +ꢀ05°C  
–40°C to +ꢀ05°C  
AD534ꢀBRU-REEL  
AD534ꢀBRU-REEL7  
AD534ꢀBRUZꢀ  
AD534ꢀBRUZ-REELꢀ  
AD534ꢀBRUZ-REEL7–40°C to +ꢀ05°C  
Z = RoHS Compliant Part.  
Rev. A | Page 25 of 28  
 
 
AD5330/AD5331/AD5340/AD5341  
NOTES  
Rev. A | Page 21 of 28  
AD5330/AD5331/AD5340/AD5341  
NOTES  
Rev. A | Page 27 of 28  
AD5330/AD5331/AD5340/AD5341  
NOTES  
©2000–2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06852-0-2/08(A)  
Rev. A | Page 28 of 28  

AD5341BRUZ1 相关器件

型号 制造商 描述 价格 文档
AD5342 ADI 2.5 V to 5.5 V, 115 uA, Parallel Interface Single Voltage-Output 8-/10-/12-Bit DACs 获取价格
AD5342BRU ADI 2.5 V to 5.5 V, 230uA, Parallel Interface Dual Voltage-Output 8-/10-/12-Bit DACs 获取价格
AD5342BRU-REEL ADI DUAL, PARALLEL, WORD INPUT LOADING, 8us SETTLING TIME, 12-BIT DAC, PDSO28, PLASTIC, TSSOP-28 获取价格
AD5342BRU-REEL7 ADI IC DUAL, PARALLEL, WORD INPUT LOADING, 8 us SETTLING TIME, 12-BIT DAC, PDSO28, TSSOP-28, Digital to Analog Converter 获取价格
AD5342BRUZ ADI 2.5 V to 5.5 V, 230 muA, Parallel Interface Dual Voltage-Output 8-/10-/12-Bit DACs 获取价格
AD5342BRUZ-REEL7 ADI +2.5V to 5.5V, 230 &amp;#181;A Dual Rail-to-Rail Voltage Output 12-Bit DAC with Parallel Interface in 28-lead TSSOP 获取价格
AD5342_15 ADI 2.5 V to 5.5 V, 230A, Parallel Interface Dual Voltage-Output 8-/10-/12-Bit DACs 获取价格
AD5343 ADI 2.5 V to 5.5 V, 115 uA, Parallel Interface Single Voltage-Output 8-/10-/12-Bit DACs 获取价格
AD5343* ADI 2.5 V to 5.5 V. 230 uA. Parallel Interface Dual Voltage-Output 8-/10-/12-Bit DACs 获取价格
AD5343BRU ADI 2.5 V to 5.5 V, 230uA, Parallel Interface Dual Voltage-Output 8-/10-/12-Bit DACs 获取价格

AD5341BRUZ1 相关文章

  • HARTING(浩亭)圆形连接器产品选型手册
    2024-10-31
    6
  • HYCON(宏康科技)产品选型手册
    2024-10-31
    6
  • GREEGOO整流二极管和晶闸管产品选型手册
    2024-10-31
    7
  • 西门子豪掷106亿美元,战略收购工程软件巨头Altair
    2024-10-31
    8