AD53522JSQ [ADI]

High Speed Dual Pin Electronic; 高速双引脚电子
AD53522JSQ
型号: AD53522JSQ
厂家: ADI    ADI
描述:

High Speed Dual Pin Electronic
高速双引脚电子

电子
文件: 总12页 (文件大小:153K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Speed  
Dual Pin Electronic  
a
AD53522  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM (One-Half)  
1000 MHz Toggle Rate  
Driver/Comparator/Active Load and Dynamic Clamp  
Included  
Inhibit Mode Function  
100-Lead LQFP Package with Built-In Heat Sink  
Driver  
48 Output Resistance  
800 ps Tr/Tf for a 3 V Step  
Comparator  
V
V
V
V
V
V
EE  
CC  
CC  
CC  
EE  
EE  
VH  
VTERM  
DATA  
DATAB  
IOD  
AD53522  
VCH  
VHDCPL  
OUT  
DRIVER  
IODB  
RLD  
VLDCPL  
VCL  
1.1 ns Propagation Delay at 3 V  
Load  
RLDB  
VL  
40 mA Voltage Programmable Current Range  
50 ns Settling Time to 15 mV  
PWRD  
HCOMP  
VCCO  
QH  
APPLICATIONS  
Automatic Test Equipment  
Semiconductor Test Systems  
Board Test Systems  
QHB  
COMPARATOR  
Instrumentation and Characterization Equipment  
QL  
QLB  
LCOMP  
PRODUCT DESCRIPTION  
The AD53522 is a complete, high speed, single-chip solution  
that performs the pin electronics functions of driver, comparator,  
and active load (DCL) for ATE applications. In addition, the  
driver contains a dynamic clamp function and the active load  
contains an integrated Schottky diode bridge.  
VCOM  
IOLC  
+1  
VCOM_S  
V/I  
IOXRTN  
ACTIVE LOAD  
The driver is a proprietary design that features three active states:  
Data High mode, Data Low mode, and Term mode, as well as  
an Inhibit State. In conjunction with the integrated dynamic  
clamp, this facilitates the implementation of a high speed active  
termination. The output voltage range is –0.5 V to +6.5 V to  
accommodate a wide variety of test devices.  
PROT_LO  
PROT_HI  
INHL  
INHLB  
THERM*  
IOHC  
V/I  
1.0A/K  
DR_GND GND_ROT PWRGND HQGND THERMSTART  
The dual comparator, with an input range equal to the driver  
output range, features PECL compatible outputs. Signal tracking  
capability is in the range of 3 V/ns.  
9  
*ONLY 1 (ONE) THERM PER DEVICE  
The active load can be set for up to 40 mA load current. IOH, IOL  
and the buffered VCOM are independently adjustable. On-board  
Schottky diodes provide high speed switching and low capacitance.  
,
that is proportional to absolute temperature. The gain is trimmed  
to a nominal value of 1.0 µA/K. As an example, the output current  
can be sensed by using a 10 kresistor connected from 10 V to  
the THERM (IOUT) pin. A voltage drop across the resistor will  
be developed that equals 10 kϫ 1 µA/°K = 10 mV/°K = 2.98 V  
at room temperature.  
Also included is an on-board temperature sensor that gives an  
indication of the silicon surface temperature of the DCL. This  
information can be used to measure JC and JA or flag an alarm  
if proper cooling is lost. Output from the sensor is a current sink  
REV. A  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
AD53522–SPECIFICATIONS  
DRIVER1 (TJ = 85C 5C, +VS = +10.5 V 1%, –VS = –4.5 V 1%, VCCO = 3.3 V, unless otherwise noted.)  
Spec  
Spec3  
Perf  
No. Parameter  
Conditions  
Min  
Typ2  
Max  
Unit  
DIFFERENTIAL INPUT CHARACTERISTICS  
(DATA to DATAB, IOD to IODB, RLD to RLDB)  
1
2
3
Voltage Range  
Note: Inputs are from Same Logic  
Type Family  
Note: AC Tests Performed  
0
+3.3  
V
N
P
Differential Voltage with  
LVPECL Levels  
Bias Current  
400  
–250  
600  
1000  
mV  
µA  
V
IN = 1.5 V, 2.5 V  
+250  
+50  
P
REFERENCE INPUTS  
Bias Currents  
4
Max Value Measured during  
Linearity Tests  
–50  
µA  
P
OUTPUT CHARACTERISTICS  
Logic High Range  
10  
11  
12  
Data = H, VH = –0.4 V to +6.5 V,  
Vl = –0.5 V (VT = 0 V, VH Meets  
Test 20, 21, and 22 Specs)  
Data = L, VL = –0.5 V to +6.4 V,  
VH = 6.5 V (VT = 0 V, VL Meets  
Test 30, 31, and 32 Specs)  
VL = –0.05 V, VH = +0.05 V,  
VT = 0 V and VL = –0.5 V,  
VH = +6.5 V, VT = 0 V  
–0.4  
–0.5  
+0.1  
+6.5  
+6.4  
+7.0  
V
V
V
P
P
P
Logic Low Range  
Amplitude [VH–VL]  
ABSOLUTE ACCURACY  
VH Offset  
20  
21  
22  
30  
31  
32  
33  
Data = H, VH = 0 V, VL = –0.5 V,  
VT = +3 V  
Data = H, VH = –0.4 V to +6.5 V,  
VL = –0.5 V, VT = +3 V  
Data = H, VH = –0.4 V to +6.5 V,  
VL = –0.5 V, VT = +3 V  
–50  
–0.3  
–5  
+50  
+0.3  
+5  
mV  
P
P
P
P
P
P
N
VH Gain Error  
% of VH  
mV  
Linearity Error  
VL Offset  
Data = L, VL = 0 V, VH = +6.5 V,  
VT = +3 V  
–50  
–0.3  
–5  
+50  
+0.3  
+5  
mV  
VL Gain Error  
Data = L, VL = –0.5 V to +6.4 V,  
VH = +6.5 V, VT = +3 V  
Data = L, VL = –0.5 V to +6.4 V,  
VH = +6.5 V, VT = +3 V  
VL = 0 V, VH = +5 V, VT = 0 V  
% of VL  
mV  
Linearity Error  
Offset Temperature Coefficient  
+0.5  
mV/°C  
OUTPUT RESISTANCE  
VH = –0.3 V  
40  
41  
42  
43  
44  
50  
51  
52  
VL = –0.5 V, VT = 0 V, IOUT = +1,  
+30 mA  
VL = –0.5 V, VT = 0 V, IOUT = –1,  
–30 mA  
VH = +6.5 V, VT = 0 V, IOUT = +1,  
+30 mA  
VH = +6.5 V, VT = 0 V, IOUT = –1,  
–30 mA  
VL = 0 V, VT = 0 V, IOUT = –30 mA  
(Trim Point)  
Cbyp = 39 nF, VH = +6.5 V,  
VL = –0.5 V, VT = 0 V  
+46  
+46  
+46  
+46  
+50  
+50  
+50  
+50  
N
P
VH = +6.5 V  
VL = –0.5 V  
P
VL = +6.4 V  
N
P
VH = +2.5 V  
+47.5  
Dynamic Current Limit  
Static Current Limit  
Static Current Limit  
+100  
–120  
+60  
mA  
mA  
mA  
N
P
Output to –0.5 V, VH = +6.5 V,  
VL = –0.5 V, VT = 0 V, DATA = H  
Output to +6.5 V, VH = +6.5 V,  
VL = –0.5 V, VT = 0 V, DATA = L  
–60  
+120  
P
–2–  
REV. A  
AD53522  
DRIVER1 (continued)  
Spec  
Spec3  
Perf  
No. Parameter  
Conditions  
Min  
Typ2  
Max  
Unit  
VTERM  
60  
Voltage Range  
Term Mode, VTERM = –0.3 V  
to +6.3 V, VL = 0 V, VH = +3 V  
(VTERM Meets Test 61, 62, and 63 specs)  
Term Mode, VTERM = 0 V,  
–0.3  
+6.3  
V
P
61  
62  
63  
VTERM Offset  
–50  
–0.3  
–5  
+50  
+0.3  
+5  
mV  
P
VL = 0 V, VH = +3 V  
VTERM Gain Error  
VTERM Linearity Error4  
Term Mode, VTERM = –0.3 V  
to +6.3 V, VL = 0 V, VH = +3 V  
Term Mode, VTERM = –0.3 V  
to +6.3 V, VL = 0 V, VH = +3 V  
VTERM = 0 V, VL = 0 V, VH = +3 V  
% of VSET  
mV  
P
P
64  
70  
Offset Temperature Coefficient  
Output Resistance DC  
+0.5  
mV/°C  
N
N
N
I
OUT = +30 mA, –1 mA,  
VTERM = –0.3 V, VH = +3 V, VL = 0 V  
OUT = –30 mA, +1 mA,  
VTERM =+6.3 V, VH = +3 V, VL = 0 V  
IOUT 30 mA, 1 mA,  
+46  
+50  
I
=
VTERM = +2.5 V, VH = +3 V, VL = 0 V  
+VS , –VS 1%  
Output to –0.3 V, VTERM = +6.3 V  
P
N
P
P
72  
73  
74  
PSRR, Drive, or Term Mode  
Static Current Limit  
Static Current Limit  
+17.8  
mV/V  
mA  
mA  
–120  
+60  
–60  
+120  
Output to +6.3 V, VTERM = –0.3 V  
DYNAMIC PERFORMANCE, DRIVE (VH and VL)  
80  
81  
82  
Propagation Delay Time  
Measured at 50%, VL = 0 V,  
1.25  
1.4  
2
1.55  
200  
ns  
P
VH = 3 V, into 500 Ω  
Propagation Delay T.C.  
Measured at 50%, VL = 0 V,  
VH = 3 V, into 500 Ω  
ps/°C  
ps  
N
P
Delay Matching, Edge-to-Edge  
Measured at 50%, VL = 0 V,  
VH = 3 V, into 500 Ω  
RISE AND FALL TIMES  
200 mV Swing  
90  
Measured 20%–80%, VL = –0.1 V,  
VH = +0.1 V, into 50 Ω  
0.25  
0.3  
ns  
ns  
ns  
ns  
ns  
ns  
N
N
N
N
P
91  
1 V Swing  
3 V Swing  
3 V Swing  
3 V Swing  
5 V Swing  
Measured 20%–80%, VL = 0 V,  
VH = 1 V, into 50 Ω  
92  
Measured 10%–90%, VL = 0 V,  
VH = 3 V, into 50 Ω  
0.8  
93  
Measured 10%–90%, VL = 0 V,  
VH = 3 V, into 500 Ω  
0.8  
93A  
94  
Measured 20%–80%, VL = 0 V,  
VH = 3 V, into 500 Ω  
0.450  
0.560  
1.2  
0.670  
1.5  
Measured 10%–90%, VL = 0 V,  
VH = 5 V, into 500 Ω  
N
RISE AND FALL TIME TEMPERATURE COEFFICIENT  
100  
101  
102  
110  
1 V Swing  
3 V Swing  
5 V Swing  
Overshoot and Preshoot  
(Per Test 91)  
(Per Test 92)  
(Per Test 94)  
VL, VH = –0.1 V, +0.1 V,  
Driver Terminated into 50 Ω  
VL, VH = 0.0 V, 3 V,  
Driver Terminated into 50 Ω  
2
2
4
ps/°C  
ps/°C  
ps/°C  
N
N
N
0 – 50  
0 + 50  
% of Step N  
+ mV  
–6.0 – 50  
+6.0 + 50 % of Step N  
+ mV  
SETTLING TIME  
to 15 mV  
120  
VL = 0 V, VH = 0.5 V,  
50  
ns  
N
Driver Terminated into 50 Ω  
121  
130  
to 4 mV  
Delay Change vs. Pulse Width  
VL = 0 V, VH = 0.5 V  
10  
25  
µs  
ps  
N
N
VL/VH = 0/3, PW = 2.5 ns/7.5 ns,  
30 ns/90 ns, DC = 25%  
75  
131  
Delay Change vs. Duty Cycle  
VL = 0 V, VH = 3 V, Duty Cycle  
25  
ps  
N
(DC) 5% to 95%, T = 40 ns  
–3–  
REV. A  
AD53522  
SPECIFICATIONS (continued)  
DRIVER1 (continued)  
Spec  
Spec3  
Perf  
No. Parameter  
Conditions  
Min  
Typ2  
Max  
Unit  
MINIMUM WIDTH PULSE  
140  
141  
142  
1 V Swing  
3 V Swing  
Toggle Rate  
Measured at 50% point width  
0.6  
ns  
N
N
N
V
OUT AC Swing = 0.9 VOUT DC  
Swing Terminated, 50 Load on  
Transmission Line  
VH = 1 V, VL = 0 V, Terminated  
to 50 ,VOUT > 300 mV p-p  
1.5  
ns  
1000  
MHz  
DYNAMIC PERFORMANCE, INHIBIT  
150  
151  
152  
153  
Delay Time, Active to Inhibit  
Measured at 50%, VH = 4 V,  
VL = 0 V, VTT = 2  
Measured at 50%, VH = 4 V,  
VL = 0 V, VTT = 2  
Measured at 50%, VH = 4 V,  
VL = 0 V, VTT = 2  
Measured at 50%, VH = 4 V,  
VL = 0 V, VTT = 2  
1.7  
1.7  
150  
150  
2.0  
2.2  
250  
250  
ns  
ns  
ps  
ps  
P
P
P
P
Delay Time, Inhibit to Active  
Delay Time Matching,  
Inhibit to Active  
Delay Time Matching,  
Active to Inhibit  
160  
170  
I/O Spike  
Rise, Fall Time, Active to Inhibit  
VH = 0 V, VL = 0 V  
VL = 0 V, VTT = 2  
200  
1.2  
mV p-p  
ns  
N
N
(20%–80% of 1 V Output)  
VH = 4 V, VL = 0 V, VTT = 2  
(20%–80% of 1 V Output)  
171  
Rise, Fall Time, Inhibit to Active  
0.6  
ns  
N
DYNAMIC PERFORMANCE, VTERM  
Delay Time, VH to VTERM  
180  
Measured at 50%, VL = VH = 2 V,  
VTERM = 0 V, VTT = 0 V  
Measured at 50%, VL = VH = 0 V,  
VTERM = 2 V, VTT = 0 V  
Measured at 50%, VL = VH = 2 V,  
VTERM = 0 V, VTT = 0 V  
Measured at 50%, VL = VH = 0 V,  
VTERM = 2 V, VTT = 0 V  
VH/VL, VTERM = (0 V, 2 V),  
(0 V, 6 V)  
1.5  
1.6  
1.6  
1.6  
1.9  
1.9  
2.0  
2.0  
ns  
ns  
ns  
ns  
P
P
P
P
181  
Delay Time, VL to VTERM  
Delay Time, VTERM to VH  
Delay Time, VTERM to VL  
Overshoot and Preshoot  
182  
183  
190  
–6.0 + 50  
+6.0 + 50 % of Step N  
+ mV  
191A  
191B  
192A  
192B  
VTERM Rise Time, VL to VT,  
Normal Mode  
VTERM Rise Time, VT to VH,  
Normal Mode  
VTERM Fall Time, VT to VL,  
Normal Mode  
VTERM Fall Time, VH to VT,  
VL, VH = 0 V, VTERM = 2 V,  
20%–80%  
VL, VH = 2 V, VTERM = 0 V,  
20%–80%  
VL, VH = 0 V, VTERM = 2 V,  
20%–80%  
1.0  
0.6  
0.6  
1.0  
ns  
ns  
ns  
ns  
N
N
N
N
VL, VH = 2V, VTERM = 0 V,  
Normal Mode  
20%–80%  
–4–  
REV. A  
AD53522  
COMPARATOR1  
Spec  
Spec3  
Perf  
No. Parameter  
Conditions  
Min  
Typ2 Max  
Unit  
DC INPUT CHARACTERISTICS  
VCCO Range  
Offset Voltage (VOS  
Offset Voltage Drift  
HCOMP, LCOMP  
200  
201  
202  
203  
+2.0  
–25  
+4.5  
+25  
V
N
P
N
)
Common-Mode Voltage = 0 V  
Common-Mode Voltage = 0 V  
Over Linearity Range  
mV  
µV/°C  
µA  
+50  
–50  
+50  
P
BIAS CURRENTS  
Voltage Range (VCM  
Differential Voltage (VDIFF  
Gain Error  
Linearity Error  
Extended Range Operation  
206  
207  
208  
209  
210  
)
–0.5  
+6.5  
+7  
0.0  
V
V
P
P
N
N
P
)
V
V
IN = –0.5 V to +6.5 V  
IN = –0.5 V to +6.5 V  
–0.25  
–2  
%FSR  
mV  
V
+2  
HCOMP, LCOMP = –1, Output –1.0  
Toggle VOUT from –0.9 V to –1.1 V  
DIGITAL OUTPUTS  
Logic 1 Voltage Q  
220  
221  
222  
225  
Q or QB, 150 to GND,  
150 from Q to QB  
VCCO – 1.05  
VCCO – 0.85  
V
V
V
ps  
P
P
P
N
Logic 0 Voltage QB  
Logic Differential, Q–QB  
Slew Rate  
Q or QB, 150 to GND,  
150 from Q to QB  
VCCO – 2.2  
0.65  
VCCO – 1.5  
1.15  
Q or Qb, 150 to GND,  
150 from Q to QB  
Q or QB (20% – 80% of output,  
150 from Q to QB)  
0.9  
380  
CHANNEL COMPARATOR SWITCHING PERFORMANCE  
PROPAGATION DELAY5, 6, 7  
240  
241  
Input to Output  
VIN = 3 V p-p, 2 V/ns  
0.7  
1.1  
ns  
ps/°C  
P
N
Propagation Delay Tempco  
Prop Delay Change with respect to:  
Slew Rate: 1, 2, 3 V/ns  
Amplitude: 500 mV, 1.0 V, 3.0 V  
Equivalent Input Rise Time  
V
IN = 3 V p-p, 2 V/ns  
1.0  
250  
260  
270  
V
V
V
IN = 0 V to 3 V  
IN = 1.0 V/ns  
IN = 0 V to 2 V, < 80 ps,  
120  
100  
275  
ps  
ps  
ps  
N
N
N
20%–80% Rise Time  
Driver in VTERM = 0 V  
280  
281  
Pulse Width Linearity  
Settling Time  
V
IN = 0 V to 3 V, 2 V/ns, PW =  
50  
ps  
ns  
N
N
3, 4, 5, 10 ns, Driver Hi-Z mode  
Settling to 8 mV, VIN = 0 V to  
3 V, Driver Hi-Z mode  
25  
6
282  
290  
Hysteresis  
Comparator Propagation Delay  
Matching, HCOMP to LCOMP  
mV  
ps  
N
P
V
IN = 0 V to 3 V, 2 V/ns  
125  
INPUT CHARACTERISTICS (INHL, INHLB)  
See Driver Spec No. 1  
300  
301  
302  
Input Voltage  
VIOH = 1 V, VIOL = 1 V,  
VCOM = 2 V, VDUT = 0 V  
INHL, INHLB = 0 V, 3.3 V,  
AC Tests 0.2 V and 0.8 V  
VDUT = 0.8 V, 6.5 V  
0
+3.3  
+250  
+4.0  
V
P
P
P
INHL, INHLB Bias Current  
–250  
0
µA  
V
VIOH Current Program Range,  
IOH = 0 mA to –40 mA  
–5–  
REV. A  
AD53522  
SPECIFICATIONS (continued)  
ACTIVE LOAD1  
Spec  
Spec3  
Perf  
No. Parameter  
Conditions  
Min  
Typ2  
Max  
Unit  
303  
304  
305  
310  
311  
312  
VIOL Current Program Range,  
IOL = 0 mA to 40 mA  
VIOH, VIOL Input Bias Current  
VDUT = –0.5 V, +5.2 V  
VIOL = 0 V, 4 V and  
VIOH = 0 V, 4 V  
0
–300  
4.0  
+300 µA  
V
P
P
IOXRTN Range  
VDUT = –0.5 V, +6.5 V  
VDUT Range  
IOL = +40 mA, IOH = –40 mA,  
–0.5, +6.5  
V
N
P
P
P
IOL = +40 mA, IOH = –40 mA,  
|VDUT – VCOM|> 1.3 V  
VDUT – VCOM > 1.3 V  
–0.5  
+0.8  
–0.5  
+6.5  
+6.5  
+5.2  
V
V
V
VDUT Range,  
IOH = 0 mA to –40 mA  
VDUT Range,  
VCOM – VDUT > 1.3 V  
IOL = 0 mA to +40 mA  
OUTPUT CHARACTERISTICS  
Accuracy  
320  
321  
Gain Error, Load Current,  
Normal Range Calculated at  
1 mA and 40 mA points2  
IOL, IOH = 25 µA – 40 mA,  
–0.35  
+0.35 %ISET  
P
P
VCOM = 0 V, VDUT = 2 V, and  
IOL = 25 µA to 40 mA, VCOM = +6.5 V,  
VDUT = +5.2 V and IOH = 25 µA to  
40 mA, VCOM = –0.5 V, VDUT = +0.8 V  
Calculated from Intercept of 1 mA  
and 40 mA Points  
Load Offset  
–300  
–80  
+300 µA  
322  
323  
Load Nonlinearity  
Output Current Tempco  
IOL, IOH from 25 µA to 40 mA  
Measured at IOH, IOL = 200 µA  
+80  
µA  
P
N
<
3
µA/°C  
324 IOH Extended Range  
Driver Inhibited, IOH = 1 mA,  
Change in IOH from VTT = 0 V to  
VTT = –1.0 V  
2
%
P
VCOM BUFFER  
330  
331  
332  
VCOM Buffer Offset Error  
VCOM Buffer Bias Current  
VCOM Buffer Gain Error  
IOL, IOH = 40 mA, VCOM = 0 V  
VCOM = 0 V  
IOL, IOH = 40 mA,  
–50  
–20  
–4  
+50  
+20  
+4  
mV  
µA  
%
P
P
P
VCOM = –0.5 V to +6.5 V  
IOL, IOH = 40 mA,  
333  
VCOM Buffer Linearity Error  
–10  
+10  
mV  
P
VCOMI = –0.5 V to +6.5 V  
DYNAMIC PERFORMANCE  
Propagation Delay  
340  
341  
342  
350  
360  
361  
I
MAX to INHIBIT  
VTT = +2 V, VCOM = +4 V/0 V,  
IOL = +20 mA, IOH = –20 mA  
VTT= +2 V, VCOM = +4 V/0 V,  
IOL = +20 mA, IOH = –20 mA  
Matching = (Test 340 Value) –  
(Test 341 Value)  
VCOM = 0 V, IOL = +20 mA,  
IOH = –20 mA  
IOL = +20 mA, IOH = –20 mA,  
1.0  
1.3  
1.8  
2.0  
ns  
ns  
ns  
mV  
ns  
µs  
P
INHIBIT to IMAX  
Propagation Delay Matching  
I/O Spike  
1.2  
2.4  
P
–1.0  
+1.0  
P
250  
50  
N
N
N
Settling Time to 15 mV  
Settling Time to 4 mV  
50 Load, to 15 mV  
IOL = +20 mA, IOH = –20 mA,  
50 Load, to 4 mV  
10  
–6–  
REV. A  
AD53522  
DYNAMIC CLAMP1  
Spec  
Spec3  
Perf  
No. Parameter  
Conditions  
Min  
Typ2 Max  
Unit  
400  
401  
402  
410  
411  
420  
430  
440  
Input Voltage VCH  
Input Voltage VCL  
2
7.5  
+4  
+250  
+250  
1.01  
75  
V
V
P
P
P
P
P
N
P
P
–1.5  
–250  
–250  
0.96  
50  
Input Bias Current VCH/VCL  
VCH, VCL Offset Error  
VCH, VCL Gain Error  
Static Current Capability  
Incremental Resistance  
VCHP, VCLP Protection  
Diodes Vf @ 500 µA  
Overrange Spec 401, 402  
µA  
mV  
V/V  
mA  
I
TEST = 1 mA  
I
TEST = 1 mA  
11 mA to 21 mA  
45  
0.52  
48  
52  
0.64  
V
441  
Protection Diodes Max Current  
For Information Only  
2
mA  
N
TOTAL FUNCTION  
Spec  
Spec3  
Perf  
No. Parameter  
Conditions  
Min  
Typ2 Max  
Unit  
500  
501  
503  
504  
PWRD Input Voltage  
PWRD Bias Current  
Power-Down Supply Reduction  
Power-Down Output  
Leakage Current  
0
–250  
35  
5
V
µA  
%
P
P
P
P
PWRD Trip Point 1.4 V 0.15 V  
VIOH = 0 V, VIOL = 0 V  
VIOH = 0 V, VIOL = 0 V,  
+250  
60  
+20  
–20  
nA  
V
OUT = –0.5 V to +5.5 V  
505  
Power-Down Output  
VIOH = 0 V, VIOL = 0 V,  
–500  
+500  
nA  
P
Leakage Current  
V
V
V
V
OUT = 5.5 V to 6.5 V  
OUT = –0.5 V to +6.5 V  
OUT = 0 V to 5 V  
OUT = –1 V  
600  
601  
602  
605  
606  
Output Leakage Current  
Output Leakage Current  
Output Leakage Current  
Output Capacitance  
–1  
–500  
–5  
+1  
+500  
+5  
µA  
nA  
µA  
pF  
pF  
P
P
P
N
Driver and Load Inhibited  
9.2  
2.5  
Output Capacitance Term  
Driver VTERM = 0 V, Load Inhibited  
N
POWER SUPPLIES  
Spec  
Spec3  
Perf  
No. Parameter  
Conditions  
Min  
Typ2 Max  
Unit  
610  
620  
630  
640  
Total Supply Range  
15  
+10.5  
–4.5  
465  
475  
V
V
V
mA  
N
N
N
P
Positive Supply, VCC  
Negative Supply, VEE  
Positive Supply Current, VCC  
Driver = Inhibit, ILOAD Program = 40 mA,  
Load = Active  
Driver = Inhibit, ILOAD Program = 40 mA,  
Load = Active  
Driver = Inhibit, ILOAD Program = 40 mA,  
Load = Active (IVCCO – (comparator  
logic output currents))  
570  
600  
45  
650  
651  
Negative Supply Current, VEE  
mA  
mA  
P
P
Comparator Supply Current  
Overhead, VCCO  
660  
Total Power Dissipation  
Driver = Inhibit, ILOAD Program = 40 mA,  
Load = Active  
Driver = Inhibit, ILOAD Program = 40 mA, 0 mA  
RLOAD = 10 k, VSOURCE = 10.5 V  
7.2  
7.9  
5.9  
W
P
661  
700  
Total Power Dissipation  
Temperature Sensor Gain Factor  
5.2  
1
W
µA/°K  
P
N
NOTES  
1All temperature coefficients are measured at TJ = 75°C to 95°C. In test figures, voltmeter loading is 1 Mor greater, scope probe loading is 100 kin parallel with 0.6 pF.  
2Typical values are not tested or guaranteed. Nominal values are generated from design or simulation analyses and/or limited bench evaluations and are not tested or guaranteed.  
3Spec Perf: N = Nominal, O = Operating Condition, T = Typical, P = Production, Max/Min.  
4VTERM linearity over the following condition: VL – 6 V < VTERM < VH + 6 V.  
5All ac input values are referred to the source end of transmission line input.  
6All ac tests are performed with driver in VTERM mode except where noted.  
7Rise time is calculated SQRT((comp out Tr)2 – (comp in Tr)2).  
Specifications are subject to change without notice.  
–7–  
REV. A  
AD53522  
ABSOLUTE MAXIMUM RATINGS1  
POWER SUPPLY VOLTAGE  
VCC to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.3 V  
DATA to DATAB, IOD to IODB, RLD to RLDB . . . 3 V  
INHL to INHLB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V  
VH, VL, VTERM to GND (RSERIES < 500 ) . +7.5 V, –1.1 V  
VH to VL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +8 V, –3.5 V  
(VH – VTERM) and (VTERM – VL) . . . . . . . . . . . . . 8 V  
Reflection Clamp High/Low . . . . . . . . . . . . . . . +8.5 V, –2 V  
Protection Clamp Breakdown Voltage . . . . . . . . . . . . . . 12 V  
Protection Clamp Current . . . . . . . . . . . . . . . . . . . . . 5 mA  
VOUT to HCOMP or LCOMP . . . . . . . . . . . . . . . . . . 7.8 V  
ENVIRONMENTAL  
V
EE to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –7 V  
VCC to VEE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V  
VCCO to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 V  
PWRGND, DRGND, GND_ROT, or HQGND . . . .  
OUTPUTS  
0.4 V  
VOUT Short Circuit Duration . . . . . . . . . . . . . . . . Indefinite2  
VOUT, Inhibit Mode . . . . . . . . . . . . . . . . . . . . . +8.5 V, –2 V  
VOUT, Inhibit Mode . . . . . VL – 5.5 V < VOUT < VH + 5.5 V  
VHDCPL . . . . . . . . Do Not Connect Except for Cap to VCC  
VLDCPL . . . . . . . . Do Not Connect Except for Cap to VEE  
Operating Temperature (Junction) . . . . . . . . . . . . . . . 175°C  
Storage Temperature . . . . . . . . . . . . . . . . –65°C to +150°C  
Lead Temperature (Soldering, 10 sec)3 . . . . . . . . . . . 260°C  
QH, QHB, QL, QLB Maximum IOUT  
:
NOTES  
Continuous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
Surge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 mA  
THERM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 V, 0 V  
Driver Output Capacitance, Maximum . . . . . . . . . . . . 10 pF  
INPUTS  
1 Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
sections of this specification is not implied. Absolute maximum limits apply  
individually, not in combination. Exposure to absolute maximum rating conditions  
for extended periods may affect device reliability.  
2 Output short circuit protection is guaranteed as long as proper heat sinking is  
employed to ensure compliance with the operating temperature limits.  
3 To ensure lead coplanarity ( 0.002 inches) and solderability, handling with bare  
hands should be avoided and the device should be stored in environments at 24°C  
5°C (75°F 10°F) with relative humidity not to exceed 65%.  
DATA, DATAB, IOD, IODB, RLD, RLDB  
. . . . . . . . . . . . . . . . . . . . . . . . (VCCO + 1.5 V, VCCO – 4.5 V)  
INHL, INHLB, CMPD . . . . . . . . . . . . . . . –0.4 V to +5.5 V  
PWRD . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.4 V to +4.5 V  
ORDERING GUIDE  
Model  
Temperature Range  
0°C to 70°C  
Package Description  
Package Option  
AD53522JSQ  
100-Lead LQFP-EDQUAD  
with Integral Heat Slug  
SQ-100  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the AD53522 features proprietary ESD protection circuitry, permanent damage may occur on  
devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
Table I. Driver Truth Table  
Table II. Comparator Truth Table  
Output States  
Output  
DATA DATAB IOD IODB RLD RLDB State  
VOUT  
QH  
QHB  
QL  
QLB  
0
1
X
1
0
X
1
1
0
0
0
1
X
X
0
X
X
1
VL  
VH  
INH and  
CLAMP  
VTERM  
> HCOMP > LCOMP  
> HCOMP < LCOMP  
< HCOMP > LCOMP  
< HCOMP < LCOMP  
1
1
0
0
0
0
1
1
1
0
1
0
0
1
0
1
X
X
0
1
1
0
Table III. Active Load Truth Table  
Output States (Including Diode Bridge)  
IOL I(VOUT  
VDUT  
INHL INHLB IOH  
)
<VCOM 0  
>VCOM 0  
1
1
0
V(IOHC) ϫ +10 mA V(IOLC) ϫ –10 mA IOL  
V(IOHC) ϫ +10 mA V(IOLC) ϫ –10 mA IOH  
X
1
0
0
0
–8–  
REV. A  
AD53522  
PIN CONFIGURATION  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
PIN 1  
IDENTIFIER  
1
2
75 LCOMP1  
PROT_HI1  
IOXRTN1  
VCH1  
74  
73  
72  
71  
70  
V
CC  
3
V
CC  
4
V
EE  
VCL1  
5
VHDCPL1  
OUT1  
V
EE  
HEAT SLUG  
6
QH1  
7
69 QHB1  
68 VCCO1  
67 QLB1  
66 QL1  
VLDCPL1  
PWRGND  
PWRGND  
DR_GND  
PWRGND  
PWRGND  
GND_ROT  
PWRGND  
PWRGND  
8
9
10  
11  
12  
13  
14  
15  
65  
64  
RLDB1  
PWRD1  
AD53522  
63 GND_ROT  
62 PWRD2  
61 RLDB2  
60 QL2  
TOP VIEW  
(Not to Scale)  
DR_GND2 16  
PWRGND 17  
PWRGND 18  
VLDCPL2 19  
OUT2 20  
59 QLB2  
58 VCCO2  
57 QHB2  
56 QH2  
VHDCPL2 21  
VCL2 22  
55  
54  
53  
52  
51  
V
EE  
V
EE  
VCH2 23  
V
CC  
IOXRTN2 24  
PROT_HI2 25  
V
CC  
LCOMP2  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
NOTE  
DIE IS MOUNTED TO THE BACK OF THE HEAT SLUG.  
THE PACKAGE IS MOUNTED TO THE BOARD, HEAT SLUG UP.  
PIN FUNCTION DESCRIPTIONS  
Pin Number Mnemonic  
Description  
1
2
3
4
5
PROT_HI1  
IOXRTN1  
VCH1  
Channel 1, Output Voltage Sensing Diode.  
Current Return Path for the Active Load for Channel 1. Typically connected to a power ground.  
Analog Input Voltage that Sets the Reflection Clamp High Level of Channel 1.  
VCL1  
Analog Input Voltage that Sets the Reflection Clamp Low Level of Channel 1.  
VHDCPL1  
Internal Supply Decoupling for the Driver Output Stage of Channel 1. This pin needs to be connected to  
V
CC through a 39 nF (minimum) capacitor.  
6
7
OUT1  
Input/Output For The Driver, Window Comparator, Reflection Clamp, and Active Load of Channel 1.  
VLDCPL1  
Internal Supply Decoupling for the Driver Output Stage of Channel 1. This pin needs to be connected to  
VEE through a 39 nF (minimum) capacitor.  
8, 9, 11, 12, 14, PWRGND  
15, 17, 18, 27,  
Power Ground.  
28, 38, 44, 45,  
81, 82, 88, 98, 99  
10  
DR_GND  
Analog Ground.  
REV. A  
–9–  
AD53522  
Pin Number Mnemonic  
Description  
13  
16  
19  
GND_ROT  
DR_GND2  
VLDCPL2  
Analog Ground.  
Analog Ground.  
Internal Supply Decoupling for the Driver Output Stage of Channel 2. This pin needs to be connected to  
VEE through a 39 nF (minimum) capacitor.  
20  
21  
OUT2  
Input/Output for the Driver, Window Comparator, Reflection Clamp, and Active Load of Channel 2  
VHDCPL2  
Internal Supply Decoupling for the Driver Output Stage of Channel 2. This pin needs to be connected to  
V
CC through a 39 nF (minimum) capacitor.  
22  
23  
24  
25  
26  
29  
30  
31  
32  
33  
34  
35  
VCL2  
Analog Input Voltage that Sets the Reflection Clamp Low Level of Channel 2  
Analog Input Voltage that Sets the Reflection Clamp High Level of Channel 2  
Current Return Path for the Active Load for Channel 2. Typically connected to a power ground.  
Channel 2, Output Voltage Sensing Diode.  
VCH2  
IOXRTN2  
PROT_HI2  
PROT_LO2  
VCOM_S2  
Channel 2, Output Voltage Sensing Diode.  
Analog Output Voltage that Represents a Buffered VCOM1 Input  
THERMSTART Temperature Sensor Startup Pin. Normally not connected.  
IOLC2  
IOHC2  
HQGND  
INHL2  
INHLB2  
VEE  
Analog Input Voltage that Programs the Channel 2 Active Load Source Current.  
Analog Input Voltage that Programs the Channel 2 Active Load Sink Current.  
Clean Analog Ground for the Active Load for Channel 2.  
One of Two Complementary Inputs that Control the Inhibit Mode for the Active Load Bridge of Channel 2.  
One of Two Complementary Inputs that Control the Inhibit Mode for the Active Load Bridge of Channel 2.  
Negative Supply Terminal.  
36, 54, 55,  
71, 72, 90  
37, 52, 53,  
73, 74, 89  
VCC  
Positive Supply Terminal.  
39  
40  
41  
42  
43  
RLD2  
IOD2  
One of Two Complementary Inputs that Control, in Conjunction with IOD2 and IODB2, the Operating  
Mode of the Channel 2 Driver. Refer to Table I for specific conditions.  
One of Two Complementary Inputs that Control, in Conjunction with RLD2 and RLDB2, the Operating  
Mode of the Channel 2 Driver. Refer to Table I for specific conditions.  
IODB2  
DATA2  
DATAB2  
One of Two Complementary Inputs that Control, in Conjunction with RLD2 and RLDB2, the Operating  
Mode of the Channel 2 Driver. Refer to Table I for specific conditions.  
One of Two Complementary Inputs that Determine the High and Low State of the Channel 2 Driver.  
Driver output is high for DATA2 > DATAB2. Refer to Table I for specific conditions.  
One of Two Complementary Inputs that Determine the High and Low State of the Channel 2 Driver.  
Driver output is high for DATA2 > DATAB2. Refer to Table I for specific conditions.  
46  
47  
VCOM2  
VH2  
Analog Input Voltage that Establishes the Commutation Voltage for the Active Load Diode Bridge for Channel 2.  
Analog Input Voltage that Sets the Logic 1 Level of the Driver Output Limit for Channel 2. Determines  
the driver output for DATA2 > DATAB2.  
48  
49  
VTERM2  
VL2  
Analog Input Voltage that Set the Termination Voltage Level of the Channel 2 Driver when in VTERM Mode.  
Analog Input Voltage that Set the Logic 0 Level of the Driver Output Limit for Channel 2. Determines  
the driver output for DATAB2 > DATA2.  
50  
51  
56  
57  
58  
HCOMP2  
LCOMP2  
QH2  
Analog Input Voltage that Sets the Logic 1 Compare Reference for the Window Comparator of Channel 2.  
Analog Input Voltage that Sets the Logic 0 Compare Reference for the Window Comparator of Channel 2.  
One of Two Complementary Outputs for the Logic 1 Window Comparator of Channel 1.  
One of Two Complementary Outputs for the Logic 1 Window Comparator of Channel 1.  
QHB2  
VCCO2  
Input Supply Voltage for QH2, QHB2, QL2, and QLB2 Signals and Reference Voltage for DATA2, DATAB2,  
IOD2, IODB2, RLD2, and RLDB2.  
59  
QLB2  
One of Two Complementary Outputs for the Logic 0 Window Comparator of Channel 2.  
–10–  
REV. A  
AD53522  
Pin Number Mnemonic  
Description  
60  
61  
QL2  
One of Two Complementary Outputs for the Logic 0 Window Comparator of Channel 2.  
RLDB2  
One of Two Complementary Inputs that Control, in Conjunction with IOD2 and IODB2, the Operating  
Mode of the Channel 2 Driver. Refer to Table I for specific conditions.  
62  
63  
64  
65  
PWRD2  
GND_ROT  
PWRD1  
RLDB1  
Power-Down Control for Channel 2.  
Analog Ground.  
Power-Down Control for Channel 1.  
One of Two Complementary Inputs that Control, in Conjunction with IOD1 and IODB1, the Operating  
Mode of the Channel 1 Driver.  
66  
67  
68  
QL1  
One of Two Complementary Outputs for the Logic 0 Window Comparator of Channel 1.  
One of Two Complementary Outputs for the Logic 0 Window Comparator of Channel 1.  
QLB1  
VCCO1  
Input Supply Voltage for QH1, QHB1, QL1, and QLB1 Signals and Reference Voltage for DATA1,  
DATAB1, IOD1, IODB1, RLD1, and RLDB1.  
69  
70  
75  
76  
77  
QHB1  
One of Two Complementary Outputs for the Logic 1 Window Comparator of Channel 1.  
One of Two Complementary Outputs for the Logic 1 Window Comparator of Channel 1.  
Analog Input Voltage that Sets the Logic 0 Compare Reference for the Window Comparator of Channel 1.  
Analog Input Voltage that Sets the Logic 1 Compare Reference for the Window Comparator of Channel 1.  
QH1  
LCOMP1  
HCOMP1  
VL1  
Analog Input Voltage that Sets the Logic 0 Level of the Driver Output Limit for Channel 1. Determines  
the driver output for DATAB1 > DATA1.  
78  
79  
VTERM1  
VH1  
Analog Input Voltage that Sets the Termination Voltage Level of the Channel 1 Driver when in VTERM Mode.  
Analog Input Voltage that Sets the Logic 1 Level of the Driver Output Limit for Channel 1. Determines  
the driver output for DATA1 > DATAB1.  
80  
83  
VCOM1  
Analog Input Voltage that Establishes the Commutation Voltage for the Active Load Diode Bridge for Channel 1.  
DATAB1  
One of Two Complementary Inputs that Determine the High and Low State of the Channel 1 Driver.  
Driver output is high for DATA1 > DATAB1. Refer to the Driver Truth Table for specific conditions.  
84  
85  
86  
87  
DATA1  
IODB1  
IOD1  
One of Two Complementary Inputs that Determine the High and Low State of the Channel 1 Driver.  
Driver output is high for DATA1 > DATAB1. Refer to the Driver Truth Table for specific conditions.  
One of Two Complementary Inputs that Control, in Conjunction with RLD1 and RLDB1, the Operating  
Mode of the Channel 1 Driver. Refer to Table I for specific conditions.  
One of Two Complementary Inputs that Control, in Conjunction with RLD1 and RLDB1, the Operating  
Mode of the Channel 1 Driver. Refer to Table I for specific conditions.  
RLD1  
One of Two Complementary Inputs that Control, in Conjunction with IOD1 and IODB1, the Operating  
Mode of the Channel 1 Driver. Refer to Table I for specific conditions.  
91  
92  
93  
94  
95  
96  
INHLB1  
INHL1  
One of Two Complementary Inputs that Control the Inhibit Mode for the Active Load Bridge of Channel 1.  
One of Two Complementary Inputs that Control the Inhibit Mode for the Active Load Bridge of Channel 1.  
Clean Analog Ground for the Active Load for Channel 1.  
HQGND  
IOHC1  
IOLC1  
Analog Input Voltage that Programs the Channel 1 Active Load Sink Current.  
Analog Input Voltage that Programs the Channel 1 Active Load Source Current.  
THERM  
Temperature Sensor Output Pin. A resistor (10 k) should be connected between THERM and VCC.  
The approximate die temperature can be determined by measuring the current through the resistor. The  
typical scale factor is 1 µA/°K.  
97  
VCOM_S1  
Analog Output Voltage that Represents a Buffered VCOM1 Input.  
Channel 1 Output Voltage Sensing Diode.  
100  
PROT_LO1  
REV. A  
–11–  
AD53522  
OUTLINE DIMENSIONS  
100-Lead Low Profile Quad Flat Package, Integrated Heat Sink [LQFP-ED]  
(SQ-100)  
Dimensions shown in millimeters  
16.00 BSC SQ  
1.60 MAX  
14.00 BSC SQ  
0.75  
0.60  
0.45  
100  
1
76  
75  
PIN 1  
SEATING  
PLANE  
9.78  
9.65  
9.40  
12.00  
REF  
BOTTOM VIEW  
(PINS DOWN)  
1.45  
1.40  
1.35  
0.20  
0.09  
VIEW A  
7؇  
3.5؇  
0؇  
0.15  
0.05  
0.08  
50  
25  
MAX LEAD  
26  
49  
COPLANARITY  
0.27  
0.22  
0.17  
0.50 BSC  
VIEW A  
ROTATED 90؇ CCW  
COMPLIANT TO JEDEC STANDARDS MS-026BED-HU  
Revision History  
Location  
Page  
10/03—Data Sheet changed from REV. 0 to REV. A.  
Changes to FUNCTIONAL BLOCK DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Changes to GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Changes to SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Changes to PIN FUNCTION DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
–12–  
REV. A  

相关型号:

AD535JD

IC ANALOG MULTIPLIER OR DIVIDER, 1 MHz BAND WIDTH, PDIP14, TO-116, 14 PIN, Analog Computational Function
ADI

AD535JD

ANALOG MULTIPLIER OR DIVIDER, 1 MHz BAND WIDTH, PDIP14, TO-116, 14 PIN
ROCHESTER

AD535JH

IC ANALOG MULTIPLIER OR DIVIDER, 1 MHz BAND WIDTH, MBCY10, HERMETIC SEALED, METAL CAN, TO-100, 10 PIN, Analog Computational Function
ADI

AD535JH

ANALOG MULTIPLIER OR DIVIDER, 1 MHz BAND WIDTH, MBCY10, HERMETIC SEALED, METAL CAN, TO-100, 10 PIN
ROCHESTER

AD535KD

ANALOG MULTIPLIER OR DIVIDER, 1MHz BAND WIDTH, PDIP14, TO-116, 14 PIN
ROCHESTER

AD535KH

IC ANALOG MULTIPLIER OR DIVIDER, 1 MHz BAND WIDTH, MBCY10, HERMETIC SEALED, METAL CAN, TO-100, 10 PIN, Analog Computational Function
ADI

AD535KH

ANALOG MULTIPLIER OR DIVIDER, 1 MHz BAND WIDTH, MBCY10, HERMETIC SEALED, METAL CAN, TO-100, 10 PIN
ROCHESTER

AD536

Integrated Circuit True RMS-to-DC Converter
ADI

AD5360

16-Channel, 16/14-Bit, Serial Input, Voltage-Output DAC
ADI

AD5360BCPZ-REEL7

16-Channel, 16-Bit, Serial Input, Voltage-Output DAC
ADI

AD5360BCPZ-REEL71

16-Channel, 16-/14-Bit, Serial Input, Voltage-Output DAC
ADI

AD5360BCPZ1

16-Channel, 16-/14-Bit, Serial Input, Voltage-Output DAC
ADI