AD5391_15 [ADI]

8-/16-Channel, 3 V/5 V, Serial Input, Single-Supply, 12-/14-Bit Voltage Output;
AD5391_15
型号: AD5391_15
厂家: ADI    ADI
描述:

8-/16-Channel, 3 V/5 V, Serial Input, Single-Supply, 12-/14-Bit Voltage Output

文件: 总44页 (文件大小:900K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
8-/16-Channel, 3 V/5 V, Serial Input,  
Single-Supply, 12-/14-Bit Voltage Output  
AD5390/AD5391/AD5392  
Data Sheet  
I2C-compatible interface  
FEATURES  
Integrated functions  
channel monitor  
AD5390: 16-channel, 14-bit voltage output DAC  
AD5391: 16-channel, 12-bit voltage output DAC  
AD5392: 8-channel, 14-bit voltage output DAC  
Guaranteed monotonic  
simultaneous output update via LDAC  
clear function to user-programmable code  
amplifier boost mode to optimize slew rate  
user-programmable offset and gain adjust  
toggle mode enables square wave generation  
thermal monitor  
INL  
1 LSB max (AD5391)  
3 LSB max (AD5390-5/AD5392-5)  
4 LSB max (AD5390-3/AD5392-3)  
On-chip 1.25 V/2.5 V, 10 ppm/°C reference  
Temperature range: −40°C to +85°C  
Rail-to-rail output amplifier  
Power-down mode  
Robust 6.5 kV HBM and 2 kV FICDM ESD rating  
APPLICATIONS  
Instrumentation and industrial control  
Power amplifier control  
Level setting (ATE)  
Package types  
64-lead LFCSP (9 mm × 9 mm)  
52-lead LQFP (10 mm × 10 mm)  
User interfaces  
Control systems  
Microelectromechanical systems (MEMs)  
Variable optical attenuators (VOAs)  
Optical transceivers (MSA 300, XFP)  
Serial SPI-, QSPI-, MICROWIRE-, and DSP-compatible  
(featuring data readback)  
FUNCTIONAL BLOCK DIAGRAM  
DV  
(×3)  
DGND (×3/×4)  
AV  
(×2)  
AGND (×2)  
DAC_GND (×2)  
REF_GND  
REFOUT/REFIN SIGNAL_GND (×2)  
DD  
DD  
1.25V/2.5V  
REFERENCE  
AD5390  
2
SPI/I C  
INPUT  
REG  
0
DAC  
14  
14  
14  
14  
14  
14  
14  
REG  
0
DAC 0  
DCEN/AD1  
VOUT 0  
14  
14  
m REG0  
c REG0  
DIN/SDA  
SCLK/SCL  
SYNC/AD0  
SDO  
R
R
STATE  
R
R
INTERFACE MACHINE  
CONTROL  
LOGIC  
AND  
CONTROL  
LOGIC  
INPUT  
REG  
1
DAC  
REG  
1
14  
DAC 1  
VOUT 1  
VOUT 2  
VOUT 3  
VOUT 4  
VOUT 5  
VOUT 6  
14  
14  
m REG1  
c REG1  
BUSY  
PD  
INPUT  
REG  
6
DAC  
REG  
6
14  
14  
14  
14  
14  
14  
14  
DAC 6  
DAC 7  
CLR  
POWER-ON  
RESET  
14  
14  
RESET  
m REG6  
c REG6  
R
R
R
R
V
0
V
15  
IN  
IN  
INPUT  
DAC  
REG  
7
14  
REG  
7
VOUT 7  
VOUT 8  
14  
14  
MON_IN1  
MON_IN2  
m REG7  
c REG7  
MUX  
×2  
VOUT 15  
LDAC  
MON_OUT  
Figure 1.  
Rev. F  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2004–2014 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
AD5390/AD5391/AD5392  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
I2C Write Operation....................................................................... 28  
4-Byte Mode................................................................................ 28  
3-Byte Mode................................................................................ 29  
2-Byte Mode................................................................................ 30  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 3  
General Description......................................................................... 4  
Specifications..................................................................................... 5  
AD5390-5/AD5391-5/AD5392-5 Specifications ..................... 5  
AD5390-5/AD5391-5/AD5392-5 AC Characteristics............. 7  
AD5390-3/AD5391-3/AD5392-3 Specifications ..................... 8  
AD5390-3/AD5391-3/AD5392-3 AC Characteristics........... 10  
Timing Characteristics................................................................... 11  
AD5390/AD5391/AD5392 On-Chip Special Function  
Registers....................................................................................... 31  
Control Register Write............................................................... 33  
Hardware Functions....................................................................... 35  
Reset Function............................................................................ 35  
Asynchronous Clear Function.................................................. 35  
and  
Functions...................................................... 35  
LDAC  
BUSY  
Power-On Reset.......................................................................... 35  
Power-Down ............................................................................... 35  
Microprocessor Interfacing....................................................... 35  
Application Information................................................................ 37  
Power Supply Decoupling ......................................................... 37  
Power Supply Sequencing ......................................................... 38  
Typical Configuration Circuit .................................................. 39  
AD5390/AD5391/AD5392 Monitor Function....................... 40  
Toggle Mode Function............................................................... 40  
Thermal Monitor Function....................................................... 40  
Outline Dimensions....................................................................... 42  
Ordering Guide .......................................................................... 43  
Serial SPI-, QSPI-, MICROWIRE-, and DSP-Compatible  
Interface ....................................................................................... 11  
I2C Serial Interface...................................................................... 13  
Absolute Maximum Ratings.......................................................... 14  
ESD Caution................................................................................ 14  
Pin Configuratons and Function Descriptions .......................... 15  
Terminology .................................................................................... 18  
Typical Performance Characteristics ........................................... 19  
Functional Description.................................................................. 23  
DAC Architecture....................................................................... 23  
Data Decoding............................................................................ 24  
Interfaces.......................................................................................... 25  
DSP-, SPI-, and MICROWIRE-Compatible Serial Interface......25  
I2C Serial Interface...................................................................... 27  
Rev. F | Page 2 of 44  
Data Sheet  
AD5390/AD5391/AD5392  
REVISION HISTORY  
6/14—Rev. E to Rev. F  
1/09—Rev. B to Rev. C  
Deleted Table 1; Renumbered Sequentially ...................................4  
Changed AD5390-3/AD5391-3/AD5392-3 Input Current from  
10 µA (max) to 1 µA (max); Table 3 ..........................................8  
Changes to Table 5 ..........................................................................11  
Changes to Soft Reset Section .......................................................31  
Changes to Reset Function Section ..............................................35  
Replaced ADSP2101 with ADSP-BF527......................................36  
Added Power Supply Sequencing Section ...................................38  
Changes to Ordering Guide...........................................................43  
Updated Format ................................................................. Universal  
Changes to Figure 33 ......................................................................27  
Added Figure 34 and Renumbered Sequentially ........................27  
Changes to Figure 34 ......................................................................28  
Changes to Table 28 ........................................................................33  
Change order of Figure 41 and Figure 42 ....................................36  
Changes to Toggle Mode Function Section.................................37  
3/06—Rev. A to Rev. B  
Changes to Figure 1 ..........................................................................1  
Changes to Table 9 ..........................................................................14  
Changes to Table 12 and Table 15.................................................23  
Updated Outline Dimensions........................................................39  
Changes to Ordering Guide...........................................................40  
6/12—Rev. D to Rev. E  
Changes to Table 1 ............................................................................4  
Change to Accuracy Parameter, Gain Error, Table 2....................5  
Change to Accuracy Parameter, Gain Error, Table 4....................8  
Added Exposed Pad Notation to Figure 7 and Figure 8 ............15  
10/04—Rev. 0 to Rev. A  
5/12—Rev. C to Rev. D  
Changes to Features ..........................................................................1  
Changes to Table 1 ............................................................................3  
Changes to Table 2 ............................................................................4  
Changes to Table 3 ............................................................................6  
Changes to Table 4 ............................................................................7  
Changes to Figure 36 ......................................................................35  
Changes to Figure 37 ......................................................................36  
Changes to Figure 38 ......................................................................36  
Changes to Ordering Guide...........................................................41  
Changes to Product Title and Features Section ............................1  
Changes to Table 2 ............................................................................4  
Changes to Table 3 ............................................................................6  
Changes to Table 4 ............................................................................7  
Changes to Table 5 ............................................................................9  
Changes to Table 6 ..........................................................................10  
Changes to Table 8 ..........................................................................13  
Changes to Figure 8 and Figure 10 ...............................................14  
Changes to Table 9 ..........................................................................16  
Changes to Figure 17, Figure 18, Figure 19, And Figure 22 ......19  
Changes to Figure 23, Figure 24, Figure 25, and Figure 26 .......20  
Changes to Table 26 ........................................................................32  
Changes to Ordering Guide...........................................................40  
4/04—Revision 0: Initial Version  
Rev. F | Page 3 of 44  
 
AD5390/AD5391/AD5392  
Data Sheet  
GENERAL DESCRIPTION  
The AD5390/AD5391 are complete single-supply, 16-channel,  
14-bit and 12-bit DACs, respectively. The AD5392 is a complete  
single-supply, 8-channel, 14-bit DAC. The devices are available  
in either a 64-lead LFCSP or a 52-lead LQFP. All channels have  
an on-chip output amplifier with rail-to-rail operation. All  
devices include an internal 1.25/2.5 V, 10 ppm/°C reference, an  
on-chip channel monitor function that multiplexes the analog  
outputs to a common MON_OUT pin for external monitoring,  
and an output amplifier boost mode that optimizes the output  
amplifier slew rate.  
The AD5390/AD5391/AD5392 contain a 3-wire serial interface  
with interface speeds in excess of 30 MHz that are compatible  
with SPI®, QSPI™, MICROWIRE™, and DSP interface standards  
and an I2C-compatible interface supporting a 400 kHz data  
transfer rate.  
An input register followed by a DAC register provides double-  
buffering, allowing DAC outputs to be updated independently  
or simultaneously using the  
input. Each channel has a  
LDAC  
programmable gain and offset adjust register, letting the user  
fully calibrate any DAC channel.  
Power consumption is typically 0.25 mA per channel.  
Rev. F | Page 4 of 44  
 
Data Sheet  
AD5390/AD5391/AD5392  
SPECIFICATIONS  
AD5390-5/AD5391-5/AD5392-5 SPECIFICATIONS  
AVDD = 4.5 V to 5.5 V; DVDD = 2.7 V to 5.5 V; AGND = DGND = 0 V; REFIN = 2.5 V external. All specifications TMIN to TMAX  
,
unless otherwise noted.  
Table 1.  
AD5390-51  
Parameter  
AD5392-51 AD5391-51  
Unit  
Test Conditions/Comments  
ACCURACY  
Resolution  
14  
3
−1/+2  
4
4
12  
1
1
Bits  
Relative Accuracy  
Differential Nonlinearity  
Zero-Scale Error  
Offset Error  
LSB max  
LSB max  
mV max  
mV max  
Guaranteed monotonic over temperature  
4
4
Measured at Code 32 in the linear region  
(AD5390-5/AD5391-5); measured at Code 8 in  
the linear region (AD5391-5)  
Offset Error TC  
Gain Error  
5
0.05  
0.06  
2
5
0.05  
0.06  
µV/°C typ  
% FSR max  
% FSR max  
ppm FSR/°C typ  
LSB max  
At 25°C TMIN to TMAX  
Gain Temperature Coefficient2  
DC Crosstalk2  
2
1
1
REFERENCE INPUT/OUTPUT  
Reference Input2  
Reference Input Voltage  
2.5  
2.5  
V
1% for specified performance,  
AVDD = 2 × REFIN + 50 mV  
DC Input Impedance  
Input Current  
1
1
1
1
MΩ min  
µA max  
Typically 100 MΩ  
Typically 30 nA  
Reference Range  
Reference Output3  
1 V to AVDD/2 1 V to AVDD/2  
V min/max  
Enabled via internal/external bit in control  
register; REF select bit in control register  
selects the reference voltage  
Output Voltage  
Reference TC  
2.495/2.505 2.495/2.505  
V min/max  
V min/max  
ppm max  
ppm max  
Ω typ  
At ambient, optimized for 2.5 V operation  
At ambient when 1.25 V reference is selected  
Temperature range: 25°C to 85°C  
1.22/1.28  
10  
1.22/1.28  
10  
15  
15  
Temperature range: −40°C to +85°C  
Output Impedance  
OUTPUT CHARACTERISTICS2  
Output Voltage Range4  
Short-Circuit Current  
Load Current  
800  
800  
0/AVDD  
0/AVDD  
V min/max  
mA max  
mA max  
40  
1
40  
1
Capacitive Load Stability  
RL = ∞  
200  
1000  
0.6  
200  
1000  
0.6  
pF max  
pF max  
Ω max  
RL = 5 kΩ  
DC Output Impedance  
MONITOR OUTPUT PIN  
Output Impedance  
Three-State Leakage Current  
LOGIC INPUTS2  
1000  
100  
1000  
100  
Ω typ  
nA typ  
DVDD = 2.7 V to 5.5 V  
VIH, Input High Voltage  
VIL, Input Low Voltage  
DVDD > 3.6 V  
DVDD ≤ 3.6 V  
Input Current  
2
2
V min  
0.8  
0.6  
10  
0.8  
0.6  
10  
V max  
V max  
µA max  
pF max  
Total for all pins, TA = TMIN to TMAX  
Pin Capacitance  
10  
10  
Rev. F | Page 5 of 44  
 
 
AD5390/AD5391/AD5392  
Data Sheet  
AD5390-51  
Parameter  
AD5392-51 AD5391-51  
Unit  
Test Conditions/Comments  
LOGIC INPUTS (SCL, SDA Only)  
VIH, Input High Voltage  
VIL, Input Low Voltage  
IIN, Input Leakage Current  
VHYST, Input Hysteresis  
CIN, Input Capacitance  
Glitch Rejection  
0.7 × DVDD  
0.3 × DVDD  
1
0.05 × DVDD 0.05 × DVDD  
8
0.7 × DVDD  
0.3 × DVDD  
1
V min  
SMBus-compatible at DVDD < 3.6 V  
SMBus-compatible at DVDD < 3.6 V  
V max  
µA max  
V min  
pF typ  
ns max  
8
50  
50  
Input filtering suppresses noise spikes of <50 ns  
LOGIC OUTPUTS (BUSY, SDO)2  
Output Low Voltage  
Output High Voltage  
Output Low Voltage  
Output High Voltage  
High Impedance Leakage Current  
High Impedance Output Capacitance  
LOGIC OUTPUT (SDA)2  
VOL, Output Low Voltage  
0.4  
DVDD − 1  
0.4  
DVDD − 0.5  
1
5
0.4  
DVDD − 1  
0.4  
DVDD − 0.5  
1
5
V max  
V min  
V max  
V min  
µA max  
pF typ  
DVDD = 5 V 10%, sinking 200 µA  
DVDD = 5 V 10%, SDO only, sourcing 200 µA  
DVDD = 2.7 V to 3.6 V, sinking 200 µA  
DVDD = 2.7 V to 3.6 V SDO only, sourcing 200 µA  
0.4  
0.6  
1
0.4  
0.6  
1
V max  
V max  
µA max  
pF typ  
ISINK = 3 mA  
ISINK = 6 mA  
Three-State Leakage Current  
Three-State Output Capacitance  
POWER REQUIREMENTS  
AVDD  
8
8
4.5/5.5  
2.7/5.5  
4.5/5.5  
2.7/5.5  
V min/max  
V min/max  
DVDD  
Power Supply Sensitivity2  
∆Midscale/∆AVDD  
AIDD  
−85  
0.375  
−85  
0.375  
dB typ  
mA/channel  
max  
Outputs unloaded, boost off,  
0.25 mA/channel typ  
AIDD  
0.475  
0.475  
mA/channel  
max  
Outputs unloaded, boost on,  
0.325 mA/channel typ  
DIDD  
1
1
mA max  
µA max  
µA max  
mW max  
VIH = DVDD, VIL = DGND  
Typically 100 nA  
Typically 1 µA  
AD5390/AD5391 with outputs unloaded,  
AVDD = DVDD = 5 V, boost off  
AIDD (Power-Down)  
DIDD (Power-Down)  
Power Dissipation  
20  
20  
35  
20  
20  
35  
20  
20  
mW max  
AD5392 with outputs unloaded,  
AVDD = DVDD = 5 V, boost off  
1 The AD5390-5/AD5391-5/AD5392-5 are calibrated with a 2.5 V reference. Temperature range for all versions: −40°C to +85°C.  
2 Guaranteed by characterization, not production tested.  
3 Programmable either to 1.25 V typical or 2.5 V typical via the AD5390/AD5391/AD5392 control register. Operating the AD5390-5/AD5391-5/AD5392-5 with a reference  
of 1.25 V leads to a degradation in performance accuracy.  
4 Accuracy guaranteed from VOUT = 10 mV to AVDD − 50 mV.  
Rev. F | Page 6 of 44  
Data Sheet  
AD5390/AD5391/AD5392  
AD5390-5/AD5391-5/AD5392-5 AC CHARACTERISTICS  
AVDD = 4.5 V to 5.5 V; DVDD = 2.7 V to 5.5 V; AGND = DGND = 0 V.  
Table 2.  
Parameter  
All1  
Unit  
Test Conditions/Comments  
DYNAMIC PERFORMANCE  
Output Voltage Settling Time  
AD5390/AD5392  
¼ scale to ¾ scale change settling to 1 LSB  
Boost mode off, CR11 = 0  
Boost mode off, CR11 = 0  
Boost mode off, CR11 = 0  
Boost mode off, CR11 = 0  
Boost mode on  
3
8
3
8
µs typ  
µs max  
µs typ  
µs max  
AD5391  
Slew rate2  
2.5  
1.5  
12  
15  
100  
1
0.8  
0.1  
15  
40  
V/µs typ  
V/µs typ  
nV-s typ  
mV typ  
dB typ  
nV-s typ  
nV-s typ  
nV-s typ  
µV p-p typ  
µV p-p typ  
Boost mode off  
Digital-to-Analog Glitch Energy  
Glitch Impulse Peak Amplitude  
Channel-to-Channel Isolation  
DAC-to-DAC Crosstalk  
Digital Crosstalk  
Digital Feedthrough  
See the Terminology section  
See the Terminology section  
Effect of input bus activity on DAC output under test  
External reference midscale loaded to DAC  
Internal reference midscale loaded to DAC  
Output Noise (0.1 Hz to 10 Hz)  
Output Noise Spectral Density  
@ 1 kHz  
@ 10 kHz  
150  
100  
nV/(Hz)1/2 typ  
nV/(Hz)1/2 typ  
1 Guaranteed by characterization, not production tested.  
2 The slew rate can be adjusted via the current boost control bit in the DAC control register.  
Rev. F | Page 7 of 44  
 
AD5390/AD5391/AD5392  
Data Sheet  
AD5390-3/AD5391-3/AD5392-3 SPECIFICATIONS  
AVDD = 2.7 V to 3.6 V; DVDD = 2.7 V to 5.5 V; AGND = DGND = 0 V; REFIN = 1.25 V external. All specifications TMIN to TMAX  
,
unless otherwise noted.  
Table 3.  
AD5390-31  
Parameter  
AD5392-31  
AD5391-31  
Unit  
Test Conditions/Comments  
ACCURACY  
Resolution  
14  
4
−1/+2  
4
12  
1
1
Bits  
Relative Accuracy  
Differential Nonlinearity  
Zero-Scale Error  
Offset Error  
LSB max  
LSB max  
mV max  
Guaranteed monotonic over temperature  
Measured at code 64 in the linear region  
4
4
4
mV max  
Offset Error TC  
Gain Error  
5
5
µV/°C typ  
% FSR max  
% FSR max  
ppm FSR/°C typ  
LSB max  
0.05  
0.1  
2
0.05  
0.1  
2
At 25°C  
TMIN to TMAX  
Gain Temperature Coefficient2  
DC Crosstalk  
1
1
REFERENCE INPUT/OUTPUT  
Reference Input2  
Reference Input Voltage  
DC Input Impedance  
Input Current  
Reference Range  
Reference Output3  
1.25  
1
1
1.25  
1
1
V
1% for specified performance  
Typically 100 MΩ  
Typically 30 nA  
MΩ min  
µA max  
V min/max  
1 V to AVDD/2  
1 V to AVDD/2  
Enabled via internal/external bit in control  
register; REF select bit in control register  
selects the reference voltage  
Output Voltage  
Reference TC  
1.245/1.255  
2.47/2.53  
10  
15  
800  
1.245/1.255  
2.47/2.53  
10  
15  
800  
V min/max  
V min/max  
ppm max  
ppm max  
Ω typ  
At ambient, optimized for 1.25 V operation  
At ambient when 2.5 V reference is selected  
Temperature range: 25°C to 85°C  
Temperature range: −40°C to +85°C  
Output Impedance  
OUTPUT CHARACTERISTICS2  
Output Voltage Range4  
Short-Circuit Current  
Load Current  
0/AVDD  
40  
1
0/AVDD  
40  
1
V min/max  
mA max  
mA max  
Capacitive Load Stability  
RL = ∞  
RL = 5 kΩ  
DC Output Impedance  
MONITOR OUTPUT PIN2  
Output Impedance  
Three-State Leakage Current  
LOGIC INPUTS2  
200  
1000  
0.6  
200  
1000  
0.6  
pF max  
pF max  
Ω max  
1000  
100  
1000  
100  
Ω typ  
nA typ  
DVDD = 2.7 V to 5.5 V  
VIH, Input High Voltage  
VIL, Input Low Voltage  
DVDD > 3.6 V  
DVDD ≤ 3.6 V  
Input Current  
2
2
V min  
0.8  
0.6  
1
0.8  
0.6  
1
V max  
V max  
µA max  
pF max  
Total for all pins. TA = TMIN to TMAX  
Pin Capacitance  
10  
10  
Rev. F | Page 8 of 44  
 
Data Sheet  
AD5390/AD5391/AD5392  
AD5390-31  
AD5392-31  
Parameter  
AD5391-31  
Unit  
Test Conditions/Comments  
Logic Inputs (SCL, SDA Only)  
VIH, Input High Voltage  
VIL, Input Low Voltage  
IIN, Input Leakage Current  
VHYST, Input Hysteresis  
Glitch Rejection  
0.7 × DVDD  
0.3 × DVDD  
1
0.05 × DVDD  
50  
0.7 × DVDD  
0.3 × DVDD  
1
0.05 × DVDD  
50  
V min  
SMBus-compatible at DVDD < 3.6 V  
SMBus-compatible at DVDD < 3.6 V  
V max  
µA max  
V min  
ns max  
Input filtering suppresses noise spikes <50 ns  
Logic Outputs (BUSY, SDO)2  
Output Low Voltage  
Output High Voltage  
0.4  
DVDD 0.5  
DVDD 0.1  
1
5
0.4  
DVDD 0.5  
DVDD 0.1  
1
5
V max  
V min  
V min  
µA max  
pF typ  
DVDD = 2.7 V to 5.5 V, sinking 200 µA  
DVDD = 2.7 V to 3.6 V, SDO only, sourcing 200 µA  
DVDD = 4.5 V to 5.5 V, SDO only, sourcing 200 µA  
High Impedance Leakage Current  
High Impedance Output  
Capacitance  
Logic Output (SDA)2  
VOL, Output Low Voltage  
0.4  
0.6  
1
0.4  
0.6  
1
V max  
V max  
µA max  
pF typ  
ISINK = 3 mA  
ISINK = 6 mA  
Three-State Leakage Current  
Three-State Output  
Capacitance  
8
8
POWER REQUIREMENTS  
AVDD  
DVDD  
2.7/3.6  
2.7/5.5  
2.7/3.6  
2.7/5.5  
V min/max  
V min/max  
Power Supply Sensitivity2  
∆Midscale/∆AVDD  
AIDD  
−85  
0.375  
−85  
0.375  
dB typ  
mA/channel  
max  
Outputs unloaded, boost off,  
0.25 mA/channel typ  
AIDD  
0.475  
0.475  
mA/channel  
max  
Outputs unloaded, boost on,  
0.325 mA/channel typ  
DIDD  
1
1
mA max  
µA max  
µA max  
mW max  
VIH = DVDD, VIL = DGND  
Typically 100 nA  
Typically 1 µA  
AD5390/AD5391 with outputs unloaded,  
AVDD = DVDD = 3 V, boost off  
AIDD (Power-Down)  
DIDD (Power-Down)  
Power Dissipation  
20  
20  
21  
20  
20  
21  
12  
12  
mW max  
AD5392 with outputs unloaded,  
AVDD = DVDD = 3 V, boost off  
1 The AD5390-3/AD5391-3/AD5392-3 are calibrated with a 1.25 V reference. Temperature range for all versions: −40°C to +85°C.  
2 Guaranteed by characterization, not production tested.  
3 Programmable either to 1.25 V typical or 2.5 V typical via the AD5390/AD5391/AD5392 control register. Operating the AD5390-3/AD5391-3/AD5392-3 with a reference  
of 2.5 V leads to a degradation in performance accuracy.  
4 Accuracy guaranteed from VOUT = 39 mV to AVDD − 50 mV.  
Rev. F | Page 9 of 44  
AD5390/AD5391/AD5392  
Data Sheet  
AD5390-3/AD5391-3/AD5392-3 AC CHARACTERISTICS  
AVDD = 2.7 V to 3.6 V; DVDD = 2.7 V to 5.5 V; AGND = DGND = 0 V; CL = 200 pF to AGND.  
Table 4.  
Parameter  
All1  
Unit  
Test Conditions/Comments  
DYNAMIC PERFORMANCE  
Output Voltage Settling Time  
AD5390/AD5392  
¼ scale to ¾ scale change settling to 1 LSB  
Boost mode off, CR11 = 0  
Boost mode off, CR11 = 0  
Boost mode off, CR11 = 0  
Boost mode on, CR11 = 1  
Boost mode on  
3
8
3
8
µs typ  
µs max  
µs typ  
µs max  
AD5391  
Slew Rate2  
2.5  
1.5  
12  
15  
100  
1
0.8  
0.1  
15  
40  
V/µs typ  
V/µs typ  
nV-s typ  
mV typ  
dB typ  
nV-s typ  
nV-s typ  
nV-s typ  
µV p-p typ  
µV p-p typ  
Boost mode off, CR11 = 0  
Digital-to-Analog Glitch Energy  
Glitch Impulse Peak Amplitude  
Channel-to-Channel Isolation  
DAC-to-DAC Crosstalk  
Digital Crosstalk  
Digital Feedthrough  
See the Terminology section  
See the Terminology section  
Effect of input bus activity on DAC output under test  
External reference midscale loaded to DAC  
Internal reference midscale loaded to DAC  
OUTPUT NOISE (0.1 Hz to 10 Hz)  
Output Noise Spectral Density  
@ 1 kHz  
@ 10 kHz  
150  
100  
nV/(Hz)1/2 typ  
nV/(Hz)1/2 typ  
1 Guaranteed by design and characterization, not production tested.  
2 The slew rate can be programmed via the current boost control bit in the AD5390/AD5391/AD5392 control registers.  
Rev. F | Page 10 of 44  
 
Data Sheet  
AD5390/AD5391/AD5392  
TIMING CHARACTERISTICS  
SERIAL SPI-, QSPI-, MICROWIRE-, AND DSP-COMPATIBLE INTERFACE  
DVDD = 2 V to 5.5 V; AVDD = 2.7 V to 5.5 V; AGND = DGND = 0 V. All specifications TMIN to TMAX, unless otherwise noted.  
Table 5. 3-Wire Serial Interface1  
Parameter2, 3  
Limit at TMIN, TMAX  
Unit  
Description  
t1  
t2  
t3  
t4  
33  
13  
13  
13  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns max  
ns max  
ns min  
ns min  
SCLK cycle time  
SCLK high time  
SCLK low time  
SYNC falling edge to SCLK falling edge setup time  
24th SCLK falling edge to SYNC falling edge  
Minimum SYNC low time  
4
t5  
13  
4
t6  
33  
t7  
t7  
t8  
t9  
10  
Minimum SYNC high time  
140  
5
4.5  
36  
Minimum SYNC high time in readback mode  
Data setup time  
Data hold time  
24th SCLK falling edge to BUSY falling edge  
BUSY pulse width low (single channel update)  
24th SCLK falling edge to LDAC falling edge  
LDAC pulse width low  
4
t10  
t11  
670  
20  
4
t12  
t13  
t14  
20  
100/2000  
ns  
BUSY rising edge to DAC output response time  
min/max  
t15  
t16  
t17  
t18  
t19  
0
ns min  
ns min  
μs typ  
ns min  
μs max  
ns max  
ns min  
ns min  
ns min  
BUSY rising edge to LDAC falling edge  
LDAC falling edge to DAC output response time  
DAC output settling time, AD5390/AD5391/AD5392; boost mode off  
CLR pulse width low  
100  
3
20  
40  
20  
5
CLR pulse activation time  
5
t20  
SCLK rising edge to SDO valid  
4
t21  
SCLK falling edge to SYNC rising edge  
SYNC rising edge to SCLK rising edge  
SYNC rising edge to LDAC falling edge  
4
t22  
8
4
t23  
20  
1 Guaranteed by design and characterization, not production tested.  
2 All input signals are specified with tr = tf = 5 ns (10% to 90% of VCC) and timed from a voltage level of 1.2 V.  
3 See Figure 2, Figure 3, Figure 4, and Figure 5.  
4 Standalone mode only.  
5 Daisy-chain mode only.  
t1  
SCLK  
24  
48  
t22  
t3  
t2  
t7  
t21  
SYNC  
DIN  
t4  
t8  
t9  
DB23  
DB0 DB23  
DB0  
INPUT WORD FOR DAC N  
INPUT WORD FOR DAC N+1  
t20  
DB23  
SDO  
DB0  
t23  
UNDEFINED  
INPUT WORD FOR DAC N  
t13  
LDAC  
Figure 2. Serial Interface Timing Diagram (Daisy-Chain Mode)  
Rev. F | Page 11 of 44  
 
 
 
AD5390/AD5391/AD5392  
Data Sheet  
t1  
SCLK  
24  
24  
1
2
t3  
t2  
t4  
t5  
SYNC  
t7  
t6  
t8  
t9  
DB23  
DIN  
DB0  
t10  
BUSY  
t11  
t13  
t12  
1
LDAC  
t17  
t14  
t15  
VOUT 1  
t13  
t17  
2
LDAC  
t16  
VOUT 2  
CLR  
t18  
t19  
VOUT  
1
LDAC ACTIVE DURING BUSY  
LDAC ACTIVE DURING BUSY  
2
Figure 3. Serial Interface Timing Diagram (Standalone Mode)  
SCLK  
SYNC  
24  
48  
t7A  
DB0  
DB23'  
DB23  
DB0  
DB23  
DIN  
INPUT WORD SPECIFIES  
REGISTER TO BE READ  
NOP CONDITION  
SDO  
DB0  
UNDEFINED  
SELECTED REGISTER DATA  
CLOCKED OUT  
Figure 4. Serial Interface Timing Diagram (Data Readback Mode)  
I
200µA  
OL  
TO  
OUTPUT  
PIN  
V
V
OR  
OH (MIN)  
OL (MAX)  
C
L
50pF  
I
OH  
200µA  
Figure 5. Load Circuit for Digital Output Timing  
Rev. F | Page 12 of 44  
 
 
 
Data Sheet  
AD5390/AD5391/AD5392  
I2C SERIAL INTERFACE  
DVDD = 2.7 V to 5.5 V; AVDD = 2.7 V to 5.5 V; AGND = DGND = 0 V. All specifications TMIN to TMAX, unless otherwise noted.  
Table 6. I2C Serial Interface1  
Parameter2  
Limit at TMIN, TMAX  
Unit  
Description  
FSCL  
t1  
t2  
t3  
t4  
400  
2.5  
0.6  
1.3  
0.6  
100  
0.9  
0
0.6  
0.6  
1.3  
300  
0
300  
0
300  
20 + 0.1 CB  
400  
kHz max  
μs min  
μs min  
μs min  
μs min  
ns min  
μs max  
μs min  
μs min  
μs min  
μs min  
ns max  
ns min  
ns max  
ns min  
ns max  
ns min  
pF max  
SCL clock frequency  
SCL cycle time  
tHIGH, SCL high time  
tLOW, SCL low time  
tHD, STA, start/repeated start condition hold time  
tSU, DAT, data setup time  
tHD, DAT data hold time  
t5  
t6  
3
tHD, DAT data hold time  
t7  
t8  
t9  
t10  
tSU, STA setup time for repeated start  
tSU, STO stop condition setup time  
tBUF, bus free time between a stop and a start condition  
tF, fall time of SDA when transmitting  
tR, rise time of SCL and SDA when receiving (CMOS-compatible)  
tF, fall time of SDA when transmitting  
tF, fall time of SDA when receiving (CMOS-compatible)  
tF, fall time of SCL and SDA when receiving  
tF, fall time of SCL and SDA when transmitting  
Capacitive load for each bus line  
t11  
4
CB  
1 Guaranteed by design and characterization, not production tested.  
2 See Figure 6.  
3 A master device must provide a hold time of at least 300 ns for the SDA signal (referred to the VIH MIN of the SCL signal) to bridge the undefined region of SCL’s falling edge.  
4 CB is the total capacitance of one bus line in pF; tR and tF measured between 0.3 DVDD and 0.7 DVDD  
.
SDA  
t9  
t11  
t4  
t3  
t10  
SCL  
t4  
t6  
t2  
t5  
t7  
t8  
t1  
REPEATED  
START  
CONDITION  
STOP  
CONDITION  
START  
CONDITION  
Figure 6. I2C Interface Timing Diagram  
Rev. F | Page 13 of 44  
 
 
AD5390/AD5391/AD5392  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Transient currents of up to 100 mA do not cause SCR latch-up.  
TA = 25°C, unless otherwise noted.  
Stresses above absolute maximum ratings may cause permanent  
damage to the device. This is a stress rating only; functional  
operation of the device at these or any other conditions above  
those listed in the operational sections of this specification is  
not implied. Exposure to absolute maximum rating conditions  
for extended periods may affect device reliability.  
Table 7.  
Parameter  
Rating  
AVDD to AGND  
−0.3 V to +7 V  
DVDD to DGND  
−0.3 V to +7 V  
Digital Inputs to DGND  
Digital Outputs to DGND  
VREF to AGND  
−0.3 V to DVDD + 0.3 V  
−0.3 V to DVDD + 0.3 V  
−0.3 V to +7 V  
ESD CAUTION  
REFOUT to AGND  
AGND to DGND  
VOUTX to AGND  
−0.3 V to +7 V  
−0.3 V to +0.3 V  
−0.3 V to AVDD + 0.3 V  
ESD  
HBM  
FICSM  
6.5 kV  
2 kV  
Operating Temperature Range  
Commercial (B Version)  
Storage Temperature Range  
Junction Temperature (TJ max)  
64-Lead LFCSP, θJA  
52-Lead LQFP, θJA  
Reflow Soldering Peak Temperature  
−40°C to +85°C  
−65°C to +150°C  
150°C  
22°C/W  
38°C/W  
230°C  
Rev. F | Page 14 of 44  
 
 
Data Sheet  
AD5390/AD5391/AD5392  
PIN CONFIGURATONS AND FUNCTION DESCRIPTIONS  
52 51 50 49 48 47 46 45 44 43 42 41 40  
CLR  
NC  
1
2
39 LDAC  
38 BUSY  
37 RESET  
PIN 1  
1
2
48 NC  
47 BUSY  
46 RESET  
45 NC  
44 NC  
43 NC  
42 NC  
41 NC  
40 NC  
39 NC  
38 NC  
NC  
NC  
3
INDICATOR  
NC  
NC  
3
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
REF_GND  
REFOUT/REFIN  
SIGNAL_GND 1  
DAC_GND 1  
4
NC  
NC  
NC  
NC  
AV  
PIN 1  
4
NC  
INDICATOR  
5
5
NC  
AD5390/  
AD5391  
TOP VIEW  
(Not to Scale)  
6
6
NC  
7
REF_GND  
REFOUT/REFIN  
SIGNAL_GND 1  
DAC_GND 1  
AD5390/  
AD5391  
7
8
8
AV  
1
2
DD  
DD  
9
10  
11  
12  
13  
14  
15  
9
VOUT 0  
VOUT 1  
VOUT 2  
VOUT 3  
VOUT 4  
AGND 2  
TOP VIEW  
AV  
1
DD  
(Not to Scale)  
10  
11  
12  
13  
VOUT 15  
VOUT 0  
VOUT 1  
VOUT 2  
VOUT 3  
37 AV  
2
DD  
VOUT 14  
36 AGND 2  
35 VOUT 15  
34 VOUT 14  
33 VOUT 13  
VOUT 13  
SIGNAL_GND 2  
VOUT 4 16  
14 15 16 17 18 19 20 21 22 23 24 25 26  
NC = NO CONNECT  
NOTES  
1. NC = NO CONNECT.  
2. THE EXPOSED PAD SHOULD BE CONNECTED TO THE GROUND PLANE.  
Figure 7. AD5390/AD5391 LFCSP Pin Configuration  
Figure 9. AD5390/AD5391 LQFP Pin Configuration  
52 51 50 49 48 47 46 45 44 43 42 41 40  
CLR  
NC  
1
2
39 LDAC  
38 BUSY  
37 RESET  
36 NC  
1
2
NC  
48 NC  
47 BUSY  
46 RESET  
45 NC  
44 NC  
43 NC  
42 NC  
41 NC  
40 NC  
39 NC  
38 NC  
37 NC  
36 NC  
35 NC  
34 NC  
33 NC  
PIN 1  
NC  
3
NC  
NC  
INDICATOR  
PIN 1  
3
REF_GND  
REFOUT/REFIN  
SIGNAL_GND 1  
DAC_GND 1  
4
INDICATOR  
4
NC  
5
35  
34  
33  
32  
31  
30  
29  
28  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
5
NC  
6
NC  
6
AD5392  
7
REF_GND  
REFOUT/REFIN  
SIGNAL_GND 1  
DAC_GND 1  
7
AD5392  
TOP VIEW  
(Not to Scale)  
8
TOP VIEW  
(Not to Scale)  
9
8
AV  
1
DD  
10  
11  
12  
13  
14  
15  
9
VOUT 0  
VOUT 1  
VOUT 2  
VOUT 3  
VOUT 4  
AV  
1
DD  
VOUT 0  
VOUT 1  
VOUT 2  
VOUT 3  
10  
11  
12  
13  
VOUT 4 16  
27 SIGNAL_GND 2  
14 15 16 17 18 19 20 21 22 23 24 25 26  
NC = NO CONNECT  
NOTES  
1. NC = NO CONNECT.  
2. THE EXPOSED PAD SHOULD BE CONNECTED TO THE GROUND PLANE.  
Figure 8. AD5392 LFCSP Pin Configuration  
Figure 10. AD5392 LQFP Pin Configuration  
Rev. F | Page 15 of 44  
 
AD5390/AD5391/AD5392  
Data Sheet  
Table 8. Pin Function Descriptions  
Mnemonic  
Function  
VOUT X  
Buffered Analog Outputs for Channel X. Each analog output is driven by a rail-to-rail output amplifier operating at a gain  
of 2. Each output is capable of driving an output load of 5 kΩ to ground. Typical output impedance is 0.5 Ω.  
SIGNAL_GND 1,  
SIGNAL_GND 2  
Analog Ground Reference Points for each group of eight output channels. All SIGNAL_GND pins are tied together  
internally and should be connected to the AGND plane as close as possible to the AD5390/AD5391/AD5392.  
DAC_GND 1,  
DAC_GND 2  
Each group of eight channels contains a DAC_GND pin. This is the ground reference point for the internal 14-bit DACs.  
These pins should be connected to the AGND plane.  
AGND 1, AGND 2 Analog Ground Reference Point. Each group of eight channels contains an AGND pin. All AGND pins should be  
connected externally to the AGND plane.  
AVDD 1, AVDD  
2
Analog Supply Pins. Each group of eight channels has a separate AVDD pin. These pins should be decoupled with 0.1 uF  
ceramic capacitors and 10 µF tantalum capacitors. Operating range is 5 V 10%.  
DGND  
DVDD  
Ground for All Digital Circuitry.  
Logic Power Supply. Guaranteed operating range is 2.7 V to 5.5 V. Recommended that these pins be decoupled with  
0.1 µF ceramic capacitors and 10 µF tantalum capacitors to DGND.  
REF_GND  
Ground Reference Point for the Internal Reference. Connect to AGND.  
REFOUT/REFIN  
The AD5390/AD5391/AD5392 contains a common REFOUT/REFIN pin. When the internal reference is selected, this pin is  
the reference output. If the application necessitates the use of an external reference, it can be applied to this pin and the  
internal reference disabled via the control register. The default for this pin is a reference input.  
MON_OUT  
Analog Output Pin. When the monitor function is enabled on the AD5390/AD5391, the MON_OUT acts as the output of  
a 16-to-1 channel multiplexer that can be programmed to multiplex any channel output to the MON_OUT pin. When the  
monitor function is enabled on the AD5392, the MON_OUT acts as the output of an 8-to-1 channel multiplexer that can  
be programmed to multiplex any channel output to the MON_OUT pin. The MON_OUT pin output impedance is  
typically 500 Ω and is intended to drive a high input impedance such as that exhibited by SAR ADC inputs.  
MON_IN 1,  
MON_IN 2  
Monitor Input Pins. The AD5390/AD5391/AD5392 contains two monitor input pins to which the user can connect input  
signals (within the maximum ratings of the device) for monitoring purposes. Any of the signals applied to the MON_IN  
pins along with the output channels can be switched to the MON_OUT pin via software. An external ADC, for example,  
can be used to monitor these signals.  
SYNC/AD0  
DCEN/AD1  
Serial Interface Pin. This is the frame synchronization input signal for the serial interface. When taken low, the internal  
counter is enabled to count the required number of clocks before the addressed register is updated.  
In I2C mode, AD0 acts as a hardware address pin.  
Interface Control Pin. Operation is determined by the interface select bit SPI/I2C.  
Serial Interface Mode: Daisy-Chain Select Input (level-sensitive, active high). When high, this pin enables daisy-chain  
operation to allow a number of devices to be cascaded together.  
I2C Mode: This pin acts as a hardware address pin used in conjunction with AD0 to determine the software address for  
this device on the I2C bus.  
SDO  
Serial Data Output. Three-state CMOS output. SDO can be used for daisy-chaining a number of devices together. Data is  
clocked out on SDO on the rising edge of SCLK and is valid on the falling edge of SCLK.  
BUSY  
Digital CMOS Output. BUSY goes low during internal calculations of the data (x2) loaded to the DAC data register. During  
this time, the user can continue writing new data to further the x1, c, and m registers (these are stored in a FIFO), but no  
further updates to the DAC registers and DAC outputs can take place. If LDAC is taken low while BUSY is low, this event is  
stored. BUSY also goes low during power-on reset and when the RESET pin is low. During this time the interface is  
disabled and any events on LDAC are ignored. A CLR operation also brings BUSY low.  
LDAC  
Load DAC Logic Input (active low). If LDAC is taken low while BUSY is inactive (high), the contents of the input registers  
are transferred to the DAC registers and the DAC outputs are updated. If LDAC is taken low while BUSY is active and  
internal calculations are taking place, the LDAC event is stored and the DAC registers are updated when BUSY goes  
inactive. However, any events on LDAC during power-on reset or RESET are ignored.  
CLR  
Asynchronous Clear Input. The CLR input is falling edge sensitive. While CLR is low, all LDAC pulses are ignored.  
When CLR is activated, all channels are updated with the data contained in the CLR code register. BUSY is low for a  
duration of 20 µs (AD5390/AD5391) and 15 µs (AD5392) while all channels are being updated with the CLR code.  
RESET  
Asynchronous Digital Reset Input (falling edge sensitive). The function of this pin is equivalent to that of the power-on  
reset generator. When this pin is taken low, the state machine initiates a reset sequence to digitally reset the x1, m, c, and  
x2 registers to their default power-on values. This sequence takes 270 µs maximum. This falling edge of RESET initiates  
the RESET process and BUSY goes low for the duration, returning high when RESET is complete. While BUSY is low, all  
interfaces are disabled and all LDAC pulses are ignored. When BUSY returns high, the part resumes normal operation  
and the status of the RESET pin is ignored until the next falling edge is detected.  
Rev. F | Page 16 of 44  
Data Sheet  
AD5390/AD5391/AD5392  
Mnemonic  
Function  
PD  
Power-Down (level-sensitive, active high). Used to place the device in low power mode, in which the device consumes  
1 µA analog current and 20 µA digital current. In power-down mode, all internal analog circuitry is placed in low power  
mode; the analog output is configured as high impedance outputs or provides a 100 kΩ load to ground, depending on  
how the power-down mode is configured. The serial interface remains active during power-down.  
SPI/I2C  
Interface Select Input Pin. When this input is low, I2C mode is selected. When this input is high, SPI mode is selected.  
SCLK/SCL  
Interface Clock Input Pin. In SPI-compatible serial interface mode, this pin acts as a serial clock input. It operates at clock  
speeds up to 50 MHz.  
I2C mode: In I2C mode, this pin performs the SCL function, clocking data into the device. Data transfer rate in I2C mode is  
compatible with both 100 kHz and 400 kHz operating modes.  
DIN/SDA  
Interface Data Input Pin.  
SPI/I2C = 1: This pin acts as the serial data input. Data must be valid on the falling edge of SCLK.  
SPI/I2C = 0, I2C mode: In I2C mode, this pin is the serial data pin (SDA) operating as an open drain input/output.  
TEST  
NC  
Test pin (AD5392 only). This pin is used for production testing. For normal operation, this pin should not be connected.  
No Connect. These pins have no internal connection.  
Exposed Pad  
(LFCSP only)  
This pad should be connected to the ground plane.  
Rev. F | Page 17 of 44  
AD5390/AD5391/AD5392  
Data Sheet  
TERMINOLOGY  
Relative Accuracy or Endpoint Linearity (INL)  
A measure of the maximum deviation from a straight line  
passing through the endpoints of the DAC transfer function.  
It is measured after adjusting for zero-scale error and full-scale  
error and is expressed in least significant bits (LSBs).  
DC Output Impedance  
The effective output source resistance. It is dominated by  
package lead resistance.  
Output Voltage Settling Time  
The amount of time it takes for the output of a DAC to settle  
to a specified level for a ¼ to ¾ full-scale input change. It is  
Differential Nonlinearity (DNL)  
The difference between the measured change and the ideal  
1 LSB change between any two adjacent codes. A specified  
differential nonlinearity of 1 LSB maximum ensures mono-  
tonicity.  
measured from the rising edge of  
.
BUSY  
Digital-to-Analog Glitch Energy  
The amount of energy injected into the analog output at the  
major code transition. It is specified as the area of the glitch in  
nV-s. It is measured by toggling the DAC register data between  
0x1FFF and 0x2000.  
Zero-Scale Error  
The error in the DAC output voltage when all 0s are loaded  
into the DAC register. Ideally, with all 0s loaded to the DAC  
and m = all 1s, c = 2n1, VOUT(Zero-Scale) = 0 V.  
DAC-to-DAC Crosstalk  
The glitch impulse that appears at the output of one DAC due to  
both the digital change and subsequent analog output change at  
another DAC. The victim channel is loaded with midscale, and  
DAC-to-DAC crosstalk is specified in nV-s.  
Zero-scale error is a measure of the difference between VOUT  
(actual) and VOUT (ideal) expressed in mV. It is mainly caused  
by offsets in the output amplifier.  
Offset Error  
Digital Crosstalk  
A measure of the difference between VOUT (actual) and VOUT  
(ideal) expressed in mV in the linear region of the transfer  
function. Offset error is measured on the AD5390-5/AD5391-5/  
AD5392-5 with code 32 loaded in the DAC register and with  
code 64 loaded in the DAC register on the AD5390-3/AD5391-3/  
AD5392-3.  
The glitch impulse transferred to the output of one converter  
due to a change in the DAC register code of another converter  
is defined as the digital crosstalk and is specified in nV-s.  
Digital Feedthrough  
When the device is not selected, high frequency logic activity  
on the device’s digital inputs can be capacitively coupled both  
across and through the device to show up as noise on the VOUT  
pins. It can also be coupled along the supply and ground lines.  
This noise is digital feedthrough.  
Gain Error  
The deviation in slope of the DAC transfer characteristic from  
ideal and is expressed in % FSR with the DAC output unloaded.  
Gain error is specified in the linear region of the output range  
between VOUT = 10 mV and VOUT = AVDD 50 mV.  
Output Noise Spectral Density  
This is a measure of internally generated random noise. Random  
noise is characterized as a spectral density (voltage per Hz).  
It is measured by loading all DACs to midscale and measuring  
noise at the output. It is measured in nV/(Hz)1/2 in a 1 Hz  
bandwidth at 10 kHz.  
DC Crosstalk  
The dc change in the output level of one DAC at midscale in  
response to a full-scale code (all 0s to all 1s and vice versa) and  
the output change of all other DACs. It is expressed in LSBs.  
Rev. F | Page 18 of 44  
 
Data Sheet  
AD5390/AD5391/AD5392  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.00  
0.75  
0.50  
0.25  
0
2.0  
AV  
= DV = 5.5V  
DD  
DD  
VREF = 2.5V  
= 25°C  
1.5  
T
A
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.25  
–0.50  
–0.75  
–1.00  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
0
4096  
8192  
12288  
16384  
INPUT CODE  
INPUT CODE  
Figure 14. Typical AD5391-5 INL Plot  
Figure 11. AD5390-5/AD5392-5 Typical INL Plot  
1.00  
0.75  
0.50  
0.25  
0
2.0  
AV  
= DV = 3V  
DD  
DD  
VREF = 1.25V  
1.5  
1.0  
T
= 25°C  
A
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.25  
–0.50  
–0.75  
–1.00  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
0
4096  
8192  
12288  
16384  
INPUT CODE  
INPUT CODE  
Figure 12. AD5390-3/AD5392-3 INL Plot  
Figure 15. Typical AD5391-3 INL Plot  
40  
AV  
= 5V  
DD  
14  
12  
10  
8
AV  
= 5.5V  
DD  
REFOUT = 2.5V  
TEMP. RANGE = 25°C TO 85°C  
SAMPLE SIZE = 162  
REFIN = 2.5V  
= 25°C  
35  
30  
25  
20  
15  
10  
5
T
A
6
4
2
0
0
–5.0 –4.0 –3.0 –2.0 –1.0  
0
1.0 2.0 3.0 4.0 5.0  
–2  
–1  
0
1
2
–4.5 –3.5 –2.5 –1.5 –0.5 0.5 1.5 2.5 3.5 4.5  
REFERENCE DRIFT (ppm/°C)  
INL ERROR DISTRIBUTION (LSB)  
Figure 13. AD5390/AD5392 INL Histogram Plot  
Figure 16. AD5390/AD5391/AD5392 REFOUT Temperature Coefficient  
Rev. F | Page 19 of 44  
 
AD5390/AD5391/AD5392  
Data Sheet  
6
5
FULL SCALE  
AV  
= DV = 5V  
DD  
DD  
BUSY  
VREF = 2.5V  
3/4 SCALE  
T
= 25°C  
4
A
MIDSCALE  
3
2
1/4 SCALE  
VOUT  
AV  
1
ZERO SCALE  
= DV = 5V  
DD  
DD  
0
VREF = 2.5V  
= 25°C  
T
A
–1  
–40 –20 –10  
–5  
–2  
0
2
5
10  
20  
40  
CURRENT (mA)  
Figure 17. AD5390/AD5391/AD5392 Exiting Soft Power-Down  
Figure 20. AD5390-5/AD5391-5/AD5392-5 Source and Sink Capability  
0.20  
AV  
= 5V  
DD  
VREF = 2.5V  
= 25°C  
0.15  
0.10  
0.05  
0
T
A
PD  
ERROR AT ZERO SINKING CURRENT  
–0.05  
–0.10  
–0.15  
–0.20  
(V –VOUT) AT FULL-SCALE SOURCING CURRENT  
DD  
VOUT  
AV  
= DV = 5V  
DD  
DD  
VREF = 2.5V  
T
= 25°C  
A
0
0.25  
0.50  
0.75  
1.00  
/I  
1.25  
1.50  
1.75  
2.00  
I
(mA)  
SOURCE SINK  
Figure 18. AD5390/AD5391/AD5392 Exiting Hardware Power-Down  
Figure 21. Headroom at Rails vs. Source/Sink Current  
2.510  
2.505  
2.500  
2.995  
2.990  
AV  
= DV = 5V  
DD  
DD  
VREF = 2.5V  
= 25°C  
T
A
VDD  
VOUT  
0
2
4
6
8
10  
12  
TIME (µs)  
Figure 19. AD5390/AD5391/AD5392 Power-Up Transient  
Figure 22. AD5390-5/AD5391-5/AD5392-5 Glitch Impulse Energy  
Rev. F | Page 20 of 44  
Data Sheet  
AD5390/AD5391/AD5392  
1.260  
DVDD = 5.5V  
V
V
T
= DVDD  
= DGND  
= 25°C  
IH  
IL  
A
10  
8
1.255  
1.250  
1.245  
6
4
2
1.240  
0
2
4
6
8
10  
12  
0
0.5  
0.6  
0.7  
DI  
0.8  
0.9  
1.0  
TIME (µs)  
(mA)  
DD  
Figure 23. AD5390-3/AD5391-3/AD5392-3 Glitch Impulse  
Figure 26. AD5390/AD5391/AD5392 DIDD Histogram  
2.456  
2.455  
2.454  
2.453  
2.452  
2.451  
2.450  
2.449  
AV  
= DV = 5V  
DD  
DD  
VREF = 2.5V  
T
= 25°C  
A
LDAC  
14ns/SAMPLE NUMBER  
VOUT  
AV  
= DV = 5V  
DD  
DD  
VREF = 2.5V  
T
= 25°C  
A
0
50 100 150 200 250 300 350 400 450 500 550  
SAMPLE NUMBER  
Figure 24. AD5390/AD5391/AD5392 Slew Rate Boost Off  
Figure 27. AD5390/AD5391/AD5392 Adjacent Channel Crosstalk  
600  
AV  
= 5V  
DD  
= 25°C  
T
A
REFOUT DECOUPLED  
WITH 100nF CAPACITOR  
LDAC  
500  
400  
300  
200  
100  
0
REFOUT = 2.5V  
VOUT  
REFOUT = 1.25V  
AV  
= DV = 5V  
DD  
DD  
VREF = 2.5V  
T
= 25°C  
A
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 25. AD5390/AD5391/AD5392 Slew Rate Boost On  
Figure 28. AD5390/AD5391/AD5392 REFOUT Noise Spectral Density  
Rev. F | Page 21 of 44  
AD5390/AD5391/AD5392  
Data Sheet  
6
5
AV  
= DV = 3V  
DD  
AV  
= DV = 5V  
DD  
DD  
DD  
= 25°C  
VREF = 1.25V  
T
A
T
= 25°C  
DAC LOADED WITH MIDSCALE  
EXTERNAL REFERENCE  
Y AXIS = 5µV/DIV  
A
X AXIS = 100ms/DIV  
4
3/4 SCALE  
FULL SCALE  
3
MIDSCALE  
2
1
0
ZERO SCALE  
–5  
1/4 SCALE  
–1  
–40 –20 –10  
–2  
0
2
5
10  
20  
40  
CURRENT (mA)  
Figure 30. AD5390-3/AD5391-3/AD5392-3 Source and Sink Current Capability  
Figure 29. 0.1 Hz to 10 Hz Output Noise Plot  
Rev. F | Page 22 of 44  
Data Sheet  
AD5390/AD5391/AD5392  
FUNCTIONAL DESCRIPTION  
The digital input transfer function for each DAC can be  
represented as  
DAC ARCHITECTURE  
The AD5390/AD5391 are complete single-supply, 16-channel,  
voltage output DACs offering a resolution of 14 bits and 12 bits,  
respectively. The AD5392 is a complete single-supply, 8-channel,  
voltage output DAC offering 14-bit resolution. All devices are  
available in a 64-lead LFCSP and 52-lead LQFP, and feature  
serial interfaces. This family includes an internal select-able  
1.25 V/2.5 V, 10 ppm/°C reference that can be used to drive the  
buffered reference inputs (alternatively, an external reference  
can be used to drive these inputs). All channels have an on-chip  
output amplifier with rail-to-rail output capable of driving a  
5 kΩ load in parallel with a 200 pF capacitance.  
x2 =  
where:  
(
(
m+2  
)
/2n  
)
×x1+  
(
c 2n1  
)
x2 is the data-word loaded to the resistor-string DAC.  
x1 is the 12-bit and 14-bit data-word written to the DAC input  
register.  
m is the 12-bit and 14-bit gain coefficient (default is all 0x3FFE  
on the AD5390/AD5392 and 0xFFE on the AD5391). The LSB  
of the gain coefficient is zero.  
n = DAC resolution (n = 14 for the AD5390/AD5392 and  
n = 12 for the AD5391).  
The architecture of a single DAC channel consists of a 12-bit  
and 14-bit resistor-string DAC followed by an output buffer  
amplifier operating at a gain of 2. This resistor-string architecture  
guarantees DAC monotonicity. The 12-bit and 14-bit binary  
digital code loaded to the DAC register determines at what  
node on the string the voltage is tapped off before being fed to  
the output amplifier. Each channel on these devices contains  
independent offset and gain control registers, allowing the user  
to digitally trim offset and gain.  
c is the 12-bit and 14-bit offset coefficient (default is 0x2000 on  
the AD5390/AD5392 and 0x800 on the AD5391).  
The complete transfer function for these devices can be  
represented as  
VOUT = 2×VREF × x2/2n  
where:  
x2 is the data-word loaded to the resistor-string DAC.  
VREF is the reference voltage applied to the REFIN/REFOUT pin  
AVDD  
VREF  
on the DAC when an external reference is used (2.5 V for specified  
performance on the AD5390-5/AD5391-5/AD5392-5 and 1.25 V  
on the AD5390-3/AD5391-3/AD5392-3).  
x1 INPUT  
REG  
DAC  
REG  
14-BIT  
DAC  
INPUT  
DATA  
m REG  
c REG  
x2  
VOUT  
R
R
Figure 31. Single-Channel Architecture  
These registers let the user calibrate out errors in the complete  
signal chain including the DAC using the internal m and c  
registers, which hold the correction factors. All channels are  
double-buffered, allowing synchronous updating of all channels  
using the  
pin. Figure 31 shows a block diagram of a  
LDAC  
single channel on the AD5390/AD5391/AD5392.  
Rev. F | Page 23 of 44  
 
 
 
AD5390/AD5391/AD5392  
Data Sheet  
AD5391  
DATA DECODING  
The AD5391 contains an internal 12-bit data bus. The input  
data is decoded depending on the value loaded to the REG1 and  
REG0 bits of the input serial register. The input data from the  
serial input register is loaded into the addressed DAC input  
register, offset (c) register, or gain (m) register. The format data  
and the offset (c) and gain (m) register contents are shown in  
Table 13 to Table 15.  
AD5390/AD5392  
The AD5390/AD5392 contain an internal 14-bit data bus.  
The input data is decoded depending on the data loaded to  
the REG1 and REG0 bits of the input serial register. This is  
shown in Table 9.  
Data from the serial input register is loaded into the addressed  
DAC input register, offset (c) register, or gain (m) register. The  
format data, and the offset (c) and gain (m) register contents  
are shown in Table 10 to Table 12.  
Table 13. AD5391 DAC Data Format (REG1 = 1, REG0 = 1)  
DB11 to DB0  
DAC Output (V)  
2 VREF × (4095/4096)  
2 VREF × (4094/4096)  
2 VREF × (2049/4096)  
2 VREF × (2048/4096)  
2 VREF × (2047/4096)  
2 VREF × (1/4096)  
0
1111  
1111  
1111  
0000  
0000  
1111  
0000  
0000  
1111  
1110  
0001  
0000  
1111  
0001  
0000  
Table 9. Register Selection  
1111  
REG1  
REG0  
Register Selected  
1000  
1
1
0
0
1
0
1
0
Input data register (x1)  
Offset register (c)  
Gain register (m)  
1000  
0111  
0000  
Special function registers (SFRs)  
0000  
Table 10. AD5390/AD5392 DAC Data Format  
(REG1 = 1, REG0 = 1)  
Table 14. AD5391 Offset Data Format (REG1 = 1, REG0 = 0)  
DB11 to DB0  
Offset (LSB)  
+2047  
+2046  
+1  
DB13 to DB0  
DAC Output (V)  
1111  
1111  
1111  
0000  
0000  
1111  
0000  
0000  
1111  
1110  
0001  
0000  
1111  
0001  
0000  
11 1111  
11 1111  
10 0000  
10 0000  
01 1111  
00 0000  
00 0000  
1111  
1111  
1110  
0001  
0000  
1111  
0001  
0000  
2 VREF × (16383/16384)  
2 VREF × (16382/16384)  
2 VREF × (8193/16384)  
2 VREF × (8192/16384)  
2 VREF × (8191/16384)  
2 VREF × (1/16384)  
0
1111  
1111  
0000  
0000  
1111  
0000  
0000  
1000  
1000  
+0  
0111  
–1  
0000  
0000  
–2047  
–2048  
Table 15. AD5391 Gain Data Format (REG1 = 0, REG0 = 1)  
Table 11. AD5390/AD5392 Offset Data Format  
(REG1 = 1, REG0 = 0)  
DB11 to DB0  
Gain Factor  
1111  
1011  
0111  
0011  
1111  
1111  
1111  
1111  
0000  
1110  
1110  
1110  
1110  
0000  
1
DB13 to DB0  
Offset (LSB)  
+8191  
+8190  
+1  
0.75  
0.5  
0.25  
0
111111  
111111  
100000  
1111  
1111  
0000  
0000  
1111  
0000  
0000  
1111  
1110  
0001  
0000  
1111  
0001  
0000  
0000  
100000  
+0  
011111  
–1  
000000  
000000  
–8191  
–8192  
Table 12. AD5390/AD5392 Gain Data Format  
(REG1 = 0, REG0 = 1)  
DB13 to DB0  
Gain Factor  
11 1111  
10 1111  
01 1111  
00 1111  
1111  
1111  
1111  
1111  
0000  
1110  
1110  
1110  
1110  
0000  
1
0.75  
0.5  
0.25  
0
00 0000  
Rev. F | Page 24 of 44  
 
 
 
 
 
 
Data Sheet  
AD5390/AD5391/AD5392  
INTERFACES  
The AD5390/AD5391/AD5392 contain a serial interface that  
Logic 1 pin to configure this mode of operation. The serial  
interface control pins are described in Table 16.  
can be programmed to be DSP-, SPI-, and MICROWIRE-  
compatible, or I2C-compatible. The SPI/  
the interface mode.  
pin is used to select  
2
I C  
Table 16. Serial Interface Control Pins  
Pin  
Description  
To minimize both the power consumption of the device and the  
on-chip digital noise, the interface fully powers up only when the  
device is being written to, that is, on the falling edge of  
SYNC, DIN, SCLK Standard 3-wire interface pins.  
DCEN  
SDO  
Selects standalone mode or daisy-chain mode.  
Data out pin for daisy-chain mode.  
.
SYNC  
DSP-, SPI-, AND MICROWIRE-COMPATIBLE SERIAL  
INTERFACE  
Figure 2 to Figure 4 show timing diagrams for a serial write to  
the AD5390/AD5391/AD5392 in both standalone and daisy-  
chain mode. The 24-bit data-word format for the serial interface  
is shown in Table 17 to Table 19. Descriptions of the bits follow  
in Table 20.  
The serial interface can be operated with a minimum of three  
wires in standalone mode or four wires in daisy-chain mode.  
Daisy-chaining allows many devices to be cascaded together to  
2
increase system channel count. The SPI/  
pin is tied to a  
I C  
Table 17. AD5390 16-Channel, 14-Bit DAC Serial Input Register Configuration  
MSB  
LSB  
A
/B  
W
R/  
0
0
A3 A2 A1 A0 REG1 REG0 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
Table 18. AD5391 16-Channel, 12-Bit DAC Serial Input Register Configuration  
MSB  
LSB  
A
/B  
W
R/  
0
0
A3 A2 A1 A0 REG1 REG0 DB11  
DB10  
DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
X
X
Table 19. AD5392 8-Channel, 14-Bit DAC Serial Input Register Configuration  
MSB  
LSB  
A
/B  
W
R/  
0
0
0
A2 A1 A0 REG1 REG0 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
Table 20. Serial Input Register Configuration Bit Descriptions  
Bit  
Description  
A/B  
When toggle mode is enabled, this bit selects whether the data write is to the A or B register. With toggle mode disabled, this  
bit should be set to zero to select the A data register.  
R/W  
The read or write control bit.  
A3 to A0  
Used to address the input channels.  
REG1 and  
REG0  
Select the register to which data is written, as outlined in Table 9.  
DB13 to  
DB0  
X
Contain the input data-word.  
Don’t care condition.  
Rev. F | Page 25 of 44  
 
 
 
 
 
 
AD5390/AD5391/AD5392  
Data Sheet  
Standalone Mode  
The serial clock can be either a continuous or a gated clock. A  
continuous SCLK source can be used only if the  
held low for the correct number of clock cycles. In gated clock  
mode, a burst clock containing the exact number of clock cycles  
can be  
SYNC  
By connecting the daisy-chain enable (DCEN) pin low, stand-  
alone mode is enabled. The serial interface works with both a  
continuous and a noncontinuous serial clock. The first falling  
must be used and  
taken high after the final clock to latch  
SYNC  
edge of  
starts the write cycle and resets a counter that  
SYNC  
the data.  
counts the number of serial clocks to ensure that the correct  
number of bits is shifted into the serial shift register. Any  
Readback Mode  
further edges on  
(except for a falling edge) are ignored  
SYNC  
Readback mode is invoked by setting the R/ bit = 1 in the serial  
W
until 24 bits are clocked in. Once 24 bits have been shifted in,  
the SCLK is ignored. For another serial transfer to take place,  
input register write sequence. With R/ = 1, Bit A3 to Bit A0  
W
in association with Bits REG1 and REG0 select the register to  
be read. The remaining data bits in the write sequence are don’t  
care bits. During the next SPI write, the data appearing on the  
SDO output contains the data from the previously addressed  
register. For a read of a single register, the NOP command can be  
used in clocking out the data from the selected register on SDO.  
the counter must be reset by the falling edge of  
.
SYNC  
Daisy-Chain Mode  
For systems that contain several devices, the SDO pin can be  
used to daisy-chain the devices together. This daisy-chain mode  
can be useful in system diagnostics and for reducing the number  
of serial interface lines.  
The readback diagram in Figure 32 shows the readback sequence.  
For example, to read back the m register of Channel 0 on the  
AD5390/AD5391/AD5392, the following sequence should be  
implemented:  
By connecting the DCEN pin high, daisy-chain mode is  
enabled. The first falling edge of  
starts the write cycle.  
SYNC  
The SCLK is continuously applied to the input shift register  
when is low. If more than 24 clock pulses are applied,  
SYNC  
First, write 0x404XXX to the AD5390/AD5391/AD5392 input  
register. This configures the AD5390/AD5391/AD5392 for read  
mode with the m register of Channel 0 selected. Note that all  
data bits, DB13 to DB0, are don’t care bits.  
the data ripples out of the shift register and appears on the  
SDO line. This data is clocked out on the rising edge of SCLK  
and is valid on the falling edge. By connecting the SDO of the  
first device to the DIN input on the next device in the chain,  
a multidevice interface is constructed. For each device in the  
system, 24 clock pulses are required. Therefore, the total  
number of clock cycles must equal 24N where N is the total  
number of AD5390/AD5391/AD5392 devices in the chain.  
Follow this with a second write, a NOP condition, and 0x000000.  
During this write, the data from the m register is clocked out on  
the DOUT line, that is, data clocked out contains the data from  
the m register in Bit DB13 to Bit DB0, and the top 10 bits con-  
tain the address information as previously written. In readback  
mode, the  
signal must frame the data. Data is clocked out  
SYNC  
When the serial transfer to all devices is complete,  
is  
SYNC  
on the rising edge of SCLK and is valid on the falling edge of  
the SCLK signal. If the SCLK idles high between the write and  
read operations of a readback, the first bit of data is clocked out  
taken high. This latches the input data in each device in the  
daisy chain and prevents any further data from being clocked  
into the input shift register.  
on the falling edge of  
.
SYNC  
If  
is taken high before 24 clocks are clocked into the part,  
SYNC  
it is considered a bad frame and the data is discarded.  
SCLK  
24  
48  
SYNC  
DIN  
DB23  
DB0  
DB23  
DB0  
INPUT WORD SPECIFIES REGISTER TO BE READ  
NOP CONDITION  
SDO  
DB23  
DB0  
DB23  
DB0  
UNDEFINED  
SELECTED REGISTER DATA CLOCKED OUT  
Figure 32. Readback Operation  
Rev. F | Page 26 of 44  
 
Data Sheet  
AD5390/AD5391/AD5392  
I2C SERIAL INTERFACE  
Repeated START Condition  
The AD5390/AD5391/AD5392 feature an I2C-compatible  
2-wire interface consisting of a serial data line (SDA) and a  
serial clock line (SCL). SDA and SCL facilitate communication  
between the DACs and the master at rates up to 400 kHz.  
Figure 6 shows the 2-wire interface timing diagram.  
A repeated START (Sr) condition may indicate a change of data  
direction on the bus. Sr may be used when the bus master is  
writing to several I2C devices and does not want to relinquish  
control of the bus.  
Acknowledge Bit (ACK)  
When selecting the I2C operating mode by configuring the  
The acknowledge bit (ACK) is the ninth bit attached to any 8-bit  
data-word. An ACK is always generated by the receiving device.  
The AD5390/AD5391/AD5392 devices generate an ACK when  
receiving an address or data by pulling SDA low during the  
ninth clock period.  
2
SPI/  
pin to Logic 0, the device is connected to the I2C bus  
I C  
as a slave device, that is, no clock is generated by the device.  
The AD5390/AD5391/AD5392 have a 7-bit slave address 1010 1  
(AD1)(AD0). The five MSBs are hard-coded and the two LSBs  
are determined by the state of the AD1 and AD0 pins. The  
hardware configuration facility for the AD1 and AD0 pins  
allows four of these devices to be configured on the bus.  
Monitoring the ACK allows for detection of unsuccessful data  
transfers. An unsuccessful data transfer occurs if a receiving  
device is busy or if a system fault has occurred. In the event of  
an unsuccessful data transfer, the bus master should reattempt  
communication.  
I2C Data Transfer  
One data bit is transferred during each SCL clock cycle. The  
data on SDA must remain stable during the high period of the  
SCL clock pulse. Changes in SDA while SCL is high are control  
signals that configure START and STOP conditions. Both SDA  
and SCL are pulled high by the external pull-up resistors when  
the I2C bus is not busy.  
AD5390/AD5391/AD5392 Slave Addresses  
A bus master initiates communication with a slave device by  
issuing a START condition followed by the 7-bit slave address.  
When idle, the AD5390/AD5391/AD5392 device waits for a  
START condition followed by its slave address. The LSB of the  
START and STOP Conditions  
address word is the read/write (R/ ) bit. The AD5390/  
W
AD5391/AD5392 devices are receive devices only and R/ = 0  
W
A master device initiates communication by issuing a START  
condition. A START condition is a high-to-low transition on  
SDA with SCL high. A STOP condition is a low-to-high trans-  
ition on SDA, while SCL is high. A START condition from the  
master signals the beginning of a transmission to the  
AD5390/AD5391/AD5392. The STOP condition frees the bus.  
If a repeated START condition (Sr) is generated instead of a  
STOP condition, the bus remains active.  
when communicating with them. After receiving the proper  
address 1010 1(AD1) (AD0), the AD5390/AD5391/AD5392  
issues an ACK by pulling SDA low for one clock cycle. The  
AD5390/AD5391/AD5392 has four user-programmable  
addresses determined by the AD1 and AD0 bits.  
Rev. F | Page 27 of 44  
 
AD5390/AD5391/AD5392  
Data Sheet  
I2C WRITE OPERATION  
There are three specific modes in which data can be written to  
the AD5390/AD5391/AD5392 DACs.  
is also acknowledged by the DAC. Address Bits A3 to A0  
address all channels on the AD5390/AD5391. Address Bits A2  
to A0 address all channels on the AD5392. Address Bit A3 is a  
zero on the AD5392. Two bytes of data are then written to the  
DAC, as shown in Figure 33. A STOP condition follows. This  
lets the user update a single channel within the AD5390/  
AD5391/AD5392 at any time and requires four bytes of data to  
be transferred from the master.  
4-BYTE MODE  
When writing to the AD5390/AD5391/AD5392 DACs, begin  
W
with an address byte (R/ = 0), after which the DAC  
acknowledges that it is prepared to receive data by pulling SDA  
low. The address byte is followed by the pointer byte. This  
addresses the specific channel in the DAC to be addressed and  
SCL  
AD1  
AD0  
R/W  
A/B  
0
0
0
A3  
A2  
A1  
A0  
1
0
1
0
1
SDA  
START  
ACK  
BY  
MSB  
ACK  
BY  
CONVERTER  
CONDITION  
BY  
ADDRESS BYTE  
POINTER BYTE  
CONVERTER  
MASTER  
SCL  
SDA  
REG1 REG0 DB13 DB12 DB11 DB10 DB9  
MOST SIGNIFICANT DATA BYTE  
DB8  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
ACK  
BY  
ACK  
BY  
STOP  
CONDITION  
BY  
LEAST SIGNIFICANT DATA BYTE  
CONVERTER  
CONVERTER  
MASTER  
Figure 33. AD5390/AD5392 4-Byte Mode I2C Write Operation  
SCL  
SDA  
AD1  
AD0  
R/W  
A/B  
0
0
0
A3  
A2  
A1  
A0  
1
0
1
0
1
START  
ACK  
BY  
MSB  
ACK  
BY  
CONVERTER  
CONDITION  
BY  
ADDRESS BYTE  
POINTER BYTE  
CONVERTER  
MASTER  
SCL  
SDA  
REG1 REG0 DB11 DB10  
DB9  
DB8  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
0
0
ACK  
BY  
CONVERTER  
ACK  
BY  
CONVERTER  
STOP  
MOST SIGNIFICANT DATA BYTE  
LEAST SIGNIFICANT DATA BYTE  
CONDITION  
BY  
MASTER  
Figure 34. AD5391 4-Byte Mode I2C Write Operation  
Rev. F | Page 28 of 44  
 
 
 
Data Sheet  
AD5390/AD5391/AD5392  
3-BYTE MODE  
The 3-byte mode lets the user update more than one channel in  
a write sequence without having to write the device address byte  
each time. The device address byte is required only once and  
subsequent channel updates require the pointer byte and the  
data bytes. In 3-byte mode, the user begins with an address byte  
AD5392. Address Bit A3 is a zero on the AD5392. This is then  
followed by the two data bytes. REG1 and REG0 determine the  
register to be updated.  
If a STOP condition is not sent following the data bytes,  
another channel can be updated by sending a new pointer  
byte followed by the data bytes. This mode requires only three  
bytes to be sent to update any channel once the device has  
been initially addressed and reduces the software overhead in  
updating the AD5390/AD5391/AD5392 channels. A STOP  
condition at any time exits this mode. Figure 35 shows a typical  
configuration.  
(R/ = 0) after which the DAC acknowledges that it is prepared  
W
to receive data by pulling SDA low. The address byte is followed  
by the pointer byte; this addresses the specific channel in the  
DAC to be addressed and is also acknowledged by the DAC.  
Address Bits A3 to A0 address all channels on the AD5390/  
AD5391. Address Bits A2 to A0 address all channels on the  
SCL  
1
0
1
0
1
AD1  
AD0  
R/W  
A/B  
0
0
0
A3  
A2  
A1  
A0  
SDA  
START  
ACK  
BY  
MSB  
ACK  
BY  
CONVERTER  
CONDITION  
BY  
ADDRESS BYTE  
POINTER BYTE FOR CHANNEL N  
CONVERTER  
MASTER  
SCL  
SDA  
REG1 REG0 MSB  
LSB  
MSB  
LSB  
ACK  
BY  
CONVERTER  
ACK  
BY  
CONVERTER  
MOST SIGNIFICANT DATA BYTE  
LEAST SIGNIFICANT DATA BYTE  
DATA FOR CHANNEL N  
SCL  
SDA  
0
0
0
0
A3  
A2  
A1  
A0  
MSB  
ACK  
BY  
CONVERTER  
POINTER BYTE FOR CHANNEL NEXT CHANNEL  
SCL  
SDA  
REG1 REG0 MSB  
MOST SIGNIFICANT DATA BYTE  
LSB  
MSB  
LSB  
ACK  
BY  
ACK  
BY  
STOP  
CONDITION  
BY  
LEAST SIGNIFICANT DATA BYTE  
CONVERTER  
CONVERTER  
MASTER  
DATA FOR CHANNEL NEXT CHANNEL  
Figure 35. 3-Byte Mode I2C Write Operation  
Rev. F | Page 29 of 44  
 
 
AD5390/AD5391/AD5392  
Data Sheet  
2-BYTE MODE  
The 2-byte mode lets the user update channels sequentially  
following initialization of this mode. The device address byte is  
required only once and the address pointer is configured for  
autoincrement or burst mode.  
The REG0 and REG1 bits in the data byte determine the register  
to be updated. In this mode, following the initialization, only  
the two data bytes are required to update a channel. The  
channel address automatically increments from Address 0 to  
the final address and then returns to the normal 3-byte mode  
of operation. This mode allows transmission of data to all  
channels in one block and reduces the software overhead in  
configuring all channels. A STOP condition at any time exits  
this mode. Toggle mode of operation is not supported in  
2-byte mode. Figure 36 shows a typical configuration.  
The user must begin with an address byte (R/ = 0), after  
W
which the DAC acknowledges that it is prepared to receive data  
by pulling SDA low. The address byte is followed by a specific  
pointer byte (0xFF), which initiates the burst mode of opera-  
tion. The address pointer initializes to Channel 0 and the data  
following the pointer is loaded to Channel 0. The address  
pointer automatically increments to the next address.  
SCL  
1
0
1
0
1
AD1  
AD0  
R/W  
A7 = 1 A6 = 1 A5 = 1 A4 = 1 A3 = 1 A2 = 1 A1 = 1 A0 = 1  
SDA  
START  
CONDITION  
BY  
ACK  
BY  
MSB  
ACK  
BY  
CONVERTER  
ADDRESS BYTE  
POINTER BYTE  
CONVERTER  
MASTER  
SCL  
SDA  
REG1 REG0 MSB  
MOST SIGNIFICANT DATA BYTE  
LSB  
MSB  
LSB  
ACK  
BY  
ACK  
BY  
CONVERTER  
LEAST SIGNIFICANT DATA BYTE  
CONVERTER  
CHANNEL 0 DATA  
SCL  
SDA  
REG1 REG0 MSB  
MOST SIGNIFICANT DATA BYTE  
LSB  
MSB  
LSB  
ACK  
BY  
ACK  
BY  
CONVERTER  
LEAST SIGNIFICANT DATA BYTE  
CONVERTER  
CHANNEL 1 DATA  
SCL  
SDA  
REG1 REG0 MSB  
MOST SIGNIFICANT DATA BYTE  
LSB  
MSB  
LSB  
ACK  
BY  
ACK  
BY  
CONVERTER  
STOP  
CONDITION  
BY  
LEAST SIGNIFICANT DATA BYTE  
CONVERTER  
MASTER  
CHANNEL N DATA FOLLOWED BY STOP  
Figure 36. 2-Byte Mode I2C Write Operation  
Rev. F | Page 30 of 44  
 
 
Data Sheet  
AD5390/AD5391/AD5392  
Soft Power-Down  
REG1 = REG0 = 0, A3 to A0 = 1000  
DB13 to DB0 = Don’t Care  
AD5390/AD5391/AD5392 ON-CHIP SPECIAL  
FUNCTION REGISTERS  
The AD5390/AD5391/AD5392 contain a number of special  
function registers (SFRs) as shown in Table 21. SFRs are  
addressed with REG1 = 0 and REG0 = 0 and are decoded using  
Address Bit A3 to Bit A0.  
Executing this instruction performs a global power-down,  
which puts all channels into a low power mode, reducing analog  
current to 1 µA maximum and digital power consumption to  
20 µA maximum. In power-down mode, the output amplifier  
can be configured as a high impedance output or can provide a  
100 kΩ load to ground. The contents of all internal registers are  
retained in power-down mode.  
Table 21. SFR Register Functions (REG1 = 0, REG0 = 0)  
R/  
A3  
A2  
A1  
A0  
Function  
W
X
0
0
0
0
0
1
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
1
1
0
1
0
0
1
0
0
0
0
1
1
0
1
0
0
1
0
0
0
1
NOP (no operation)  
Write CLR code  
Soft CLR  
Soft power-down  
Soft power-up  
Control register write  
Control register read  
Monitor channel  
Soft reset  
Soft Power-Up  
REG1 = REG0 = 0, A3 to A0 =1001  
DB13 to DB0 = Don’t Care  
This instruction is used to power up the output amplifiers and  
the internal references. The time to exit power-down mode is  
8 µs. The hardware power-down and software functions are  
internally combined in a digital OR function.  
Soft Reset  
REG1 = REG0 = 0, A5 to A0 = 001111  
DB13 to DB0 = Don’t Care  
SFR Commands  
NOP (No Operation)  
This instruction is used to implement a software reset. All  
internal registers are reset to their default values, which  
correspond to m at full scale and c at zero scale. The contents  
of the DAC registers are cleared, setting all analog outputs to  
0 V. The soft reset activation time is 135 µs maximum. Only  
perform a soft reset when the AD5390/AD5391/AD5392 is not  
in power-down mode.  
REG1 = REG0 = 0, A3 to A0 = 0000  
Performs no operation, but is useful in readback mode to clock  
out data on SDO for diagnostic purposes.  
during a NOP operation.  
outputs a low  
BUSY  
Write CLR Code  
REG1 = REG0 = 0, A3 to A0 = 0001  
DB13 to DB0 = Contain the CLR data  
Monitor Channel  
Bringing the  
line low or exercising the soft clear function  
CLR  
REG1 = REG0 = 0, A3 to A0 = 01010  
DB13 to DB8 = Contain data to address the channel to be  
monitored  
loads the contents of the DAC registers with the data contained  
in the user-configurable CLR register and sets VOUT 0 to  
VOUT 15, accordingly. This can be very useful not only for  
setting up a specific output voltage in a clear condition but for  
calibration purposes. For calibration, the user can load full scale  
or zero scale to the clear code register and then issue a hardware  
or software clear to load this code to all DACs, removing the  
need for individual writes to all DACs. Default on power-up  
is all zeros.  
A monitor function is provided on all devices. This feature,  
consisting of a multiplexer addressed via the interface, allows  
any channel output to be routed to the MON_OUT pin for  
monitoring using an external ADC. In addition to monitoring  
all output channels, two external inputs are also provided,  
allowing the user to monitor signals external to the AD5390/  
AD5391/AD5392. The channel monitor function must be  
enabled in the control register before any channels are routed to  
the MON_OUT pin. On the AD5390 and AD5392 14-bit parts,  
DB13 to DB8 contain the channel address for the monitored  
channel. On the AD5391 12-bit part, DB11 to DB6 contain the  
channel address for the channel to be monitored. Selecting  
Address 63 three-states the MON_OUT pin.  
Soft CLR  
REG1 = REG0 = 0, A3 to A0 = 0010  
DB13 to DB0 = Don’t Care  
Executing this instruction performs the CLR, which is  
functionally the same as that provided by the external CLR pin.  
The DAC outputs are loaded with the data in the CLR code  
register. The time taken to execute fully the SOFT CLR is  
20 µs on the AD5390/AD5391 and 15 µs on the AD5392. It  
The channel monitor decoding for the AD5390/AD5392 is  
shown in Table 22 and the monitor decoding for the AD5391 is  
shown in Table 23.  
is indicated by the  
low time.  
BUSY  
Rev. F | Page 31 of 44  
 
 
AD5390/AD5391/AD5392  
Data Sheet  
Table 22. AD5390/AD5392 Channel Monitor Decoding  
MON_OUT MON_OUT  
REG1 REG0 A3  
A2  
A1  
A0  
DB13 DB12 DB11 DB10 DB9  
DB8  
DB7 to DB0  
(AD5390)  
(AD5392)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
VOUT 0  
VOUT 1  
VOUT 2  
VOUT 3  
VOUT 4  
VOUT 5  
VOUT 6  
VOUT 7  
VOUT 8  
VOUT 9  
VOUT 10  
VOUT 11  
VOUT 12  
VOUT 13  
VOUT 14  
VOUT 15  
MON_IN 1  
MON_IN 2  
VOUT 0  
VOUT 1  
VOUT 2  
VOUT 3  
VOUT 4  
VOUT 5  
VOUT 6  
VOUT 7  
MON_IN 1  
MON_IN 2  
Three-state Three-state  
Table 23. AD5391 Channel Monitor Decoding  
REG1 REG0 A3 DB11 DB10 DB9  
A2  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
A1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
A0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DB8  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
.
DB7  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
.
DB6  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
.
DB5 to DB0  
MON_OUT (AD5391)  
VOUT 0  
VOUT 1  
VOUT 2  
VOUT 3  
VOUT 4  
VOUT 5  
VOUT 6  
VOUT 7  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
.
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
VOUT 8  
VOUT 9  
VOUT 10  
VOUT 11  
VOUT 12  
VOUT 13  
VOUT 14  
VOUT 15  
MON_IN 1  
MON_IN 2  
Undefined  
Undefined  
Undefined  
Three-state  
1
1
1
1
1
1
0
1
Rev. F | Page 32 of 44  
 
 
Data Sheet  
AD5390/AD5391/AD5392  
CONTROL REGISTER WRITE  
Table 24 shows the control register contents for the AD5390 and the AD5392. Table 25 provides bit descriptions. Note that REG1 = REG0 =  
0, A3 to A0 = 1100, and DB13 to DB0 contain the control register data.  
Table 24. AD5390/AD5392 Control Register Contents  
MSB  
LSB  
CR13  
CR12  
CR11  
CR10  
CR9  
CR8  
CR7  
CR6  
CR5  
CR4  
CR3  
CR2  
CR1  
CR0  
Table 25. AD5390 and AD5392 Bit Descriptions  
Bit  
Description  
CR13  
Power-Down Status. This bit is used to configure the output amplifier state in power–down mode.  
CR13 = 1: Amplifier output is high impedance (default on power-up).  
CR13 = 0: Amplifier output is 100 kΩ to ground.  
CR12  
CR11  
REF Select. This bit selects the operating internal reference for the AD5390/AD5391/AD5392. CR12 is programmed as  
follows:  
CR12 = 1: Internal reference is 2.5 V (AD5390-5/AD5392-5 default). Recommended operating reference for AD5390-5/  
AD5391-5/AD5392-5.  
CR12 = 0: Internal reference is 1.25 V (AD5390-3/AD5392-3 default). Recommended operating reference for AD5390-3 and  
AD5392-3.  
Current Boost Control. This bit is used to boost the current in the output amplifier, thus altering its slew rate and is  
configured as follows:  
CR11 = 1: Boost mode on. This maximizes the bias current in the output amplifier, optimizing its slew rate but increasing  
the power dissipation.  
CR11 = 0: Boost mode off (default on power-up). This reduces the bias current in the output amplifier and reduces the  
overall power consumption.  
CR10  
CR9  
Internal/External Reference. This bit determines if the DAC uses its internal reference or an external reference.  
CR10 = 1: Internal reference enabled. Reference output depends on data loaded to CR12.  
CR10 = 0: External reference selected (default on power-up).  
Channel Monitor Enable (see Table 22).  
CR9 = 1: Monitor enabled (default on power-up). This enables the channel monitor function. Following a write to the  
monitor channel in the SFR register, the selected channel output is routed to the MON_OUT pin.  
CR9 = 0: Monitor disabled. When monitor is disabled, the MON_OUT pin is three-stated.  
CR8  
Thermal Monitor Function. When enabled, this function is used to monitor the internal die temperature of the  
AD5390/AD5392. The thermal monitor powers down the output amplifiers when the temperature exceeds 130°C. This  
function can be used to protect the device when the power dissipation of the device may be exceeded, if a number of  
output channels are simultaneously short circuited. A soft power-up re-enables the output amplifiers if the die  
temperature has dropped below 130°C.  
CR8 = 1: Thermal monitor enabled.  
CR8 = 0: Thermal monitor disabled (default on power-up).  
CR7 to CR4  
CR3 to CR2  
Don’t Care.  
Toggle Function Enable. This function lets the user toggle the output between two codes loaded to the A and B register  
for each DAC. Control Register Bits CR3 and CR2 are used to enable individual groups of eight channels for operation in  
toggle mode on the AD5390 and AD5392, as follows:  
CR3  
CR2  
Group 1 Channel 8 to Channel 15  
Group 0 Channel 0 to Channel 7  
CR2 is the only active bit on the AD5392. Logic 1 written to any bit enables a group of channels and Logic 0 disables a  
group. LDAC is used to toggle between the two registers.  
CR1 to CR0  
Don’t Care.  
Rev. F | Page 33 of 44  
 
 
 
AD5390/AD5391/AD5392  
Data Sheet  
Table 26 shows the control register contents of the AD5391. Table 27 provides bit descriptions. Note that REG1 = REG0 = 0,  
A3 to A0 = 1100, and DB13 to DB0 contain the control register data.  
Table 26. AD5391 Control Register Contents  
MSB  
LSB  
CR11  
CR10  
CR9  
CR8  
CR7  
CR6  
CR5  
CR4  
CR3  
CR2  
CR1  
CR0  
Table 27. AD5391 Bit Descriptions  
Bit  
Description  
CR11  
Power-Down Status. This bit is used to configure the output amplifier state in power-down mode.  
CR11 = 1: Amplifier output is high impedance (default on power-up).  
CR11 = 0: Amplifier output is 100 kΩ to ground.  
CR10  
CR9  
REF Select. This bit selects the operating internal reference for the AD5391. CR10 is programmed as follows:  
CR10 = 1: Internal reference is 2.5 V (AD5391-5 default). Recommended operating reference for AD5391-5.  
CR10 = 0: Internal reference is 1.25 V (AD5391-3 default). Recommended operating reference for AD5391-3.  
Current Boost Control. This bit is used to boost the current in the output amplifier, thus altering its slew rate. This bit is  
configured as follows:  
CR9 = 1: Boost mode on. This maximizes the bias current in the output amplifier, optimizing its slew rate but increasing  
the power dissipation.  
CR9 = 0: Boost mode off (default on power-up). This reduces the bias current in the output amplifier and reduces the overall  
power consumption.  
CR8  
CR7  
Internal/External Reference. This bits determines if the DAC uses its internal reference or an external reference.  
CR8 = 1: Internal reference enabled. Reference output depends on data loaded to CR10.  
CR8 = 0: External reference selected (default on power-up).  
Channel Monitor Enable (see Table 23).  
CR7 = 1: Monitor enabled. This enables the channel monitor function. Following a write to the monitor channel in  
the SFR register, the selected channel output is routed to the MON_OUT pin.  
CR7 = 0: Monitor disabled (default on power-up). When monitor is disabled, the MON_OUT pin is three-stated.  
CR6  
Thermal Monitor Function. When enabled, this function is used to monitor the internal die temperature of the AD5391,  
when enabled. The thermal monitor powers down the output amplifiers when the temperature exceeds 130°C. This function  
can be used to protect the device in cases where the power dissipation of the device may be exceeded, if a number of  
output channels are simultaneously short circuited. A soft power-up re-enables the output amplifiers if the die temperature  
has dropped below 130°C.  
CR6 = 1: Thermal monitor enabled.  
CR6 = 0: Thermal monitor disabled (default on power-up).  
CR5 to CR2  
CR1 to CR0  
Don’t Care.  
Toggle Function Enable. This function lets the user toggle the output between two codes loaded to the A and B register for  
each DAC. Control Register Bit CR1 and Bit CR0 are used to enable individual groups of eight channels for operation in  
toggle mode on the AD5391, as follows:  
CR1  
CR0  
Group 1 Channel 8 to Channel 15  
Group 0 Channel 0 to Channel 7  
Logic 1 written to any bit enables a group of channels and Logic 0 disables a group. LDAC is used to toggle between the two  
registers.  
Rev. F | Page 34 of 44  
 
 
Data Sheet  
AD5390/AD5391/AD5392  
HARDWARE FUNCTIONS  
RESET FUNCTION  
POWER-ON RESET  
Bringing the  
registers to their power-on reset state.  
sensitive input. The default corresponds to m at full scale and  
c at zero scale. The contents of all DAC registers are cleared by  
setting the outputs to 0 V. This sequence takes 270 μs maximum.  
line low resets the contents of all internal  
The AD5390/AD5391/AD5392 contain a power-on reset  
generator and state machine. The power-on reset resets all  
registers to a predefined state, and the analog outputs are  
RESET  
is a negative edge-  
RESET  
configured as high impedance outputs. The  
pin goes low  
BUSY  
during the power-on reset sequence, preventing data writes to  
the device.  
The falling edge of  
initiates the reset process.  
goes  
RESET  
BUSY  
low for the duration, returning high when  
is complete.  
RESET  
is low, all interfaces are disabled and all  
POWER-DOWN  
While  
BUSY  
LDAC  
The AD5390/AD5391/AD5392 contain a global power-down  
feature that puts all channels into a low power mode, reducing  
the analog power consumption to 1 μA maximum and the  
digital power consumption to 20 μA maximum. In power-down  
mode, the output amplifier can be configured as a high  
impedance output or to provide a 100 kΩ load to ground. The  
contents of all internal registers are retained in power-down  
mode. When exiting power-down, the settling time of the  
amplifier elapses before the outputs settle to their correct value.  
pulses are ignored. When  
normal operation, and the status of the  
until the next falling edge is detected. Only perform a hardware  
reset when the AD5390/AD5391/AD5392 is not in power-down  
mode.  
returns high, the part resumes  
BUSY  
pin is ignored  
RESET  
ASYNCHRONOUS CLEAR FUNCTION  
is negative-edge-triggered and  
goes low for the  
CLR  
BUSY  
duration of the  
execution. Bringing the  
line low  
CLR  
CLR  
clears the contents of the DAC registers to the data contained in  
the user-configurable register and sets the analog outputs  
MICROPROCESSOR INTERFACING  
AD5390/AD5391/AD5392 to MC68HC11  
CLR  
The serial peripheral interface (SPI) on the MC68HC11 is  
configured for master mode (MSTR = 1), clock polarity bit  
(CPOL) = 0, and the clock phase bit (CPHA) = 1. The SPI is  
configured by writing to the SPI control register (SPCR)—see  
the 68HC11 User Manual. SCK of the MC68HC11 drives the  
SCLK of the AD5390/AD5391/AD5392, the MOSI output  
drives the serial data line (DIN) of the AD5390/AD5391/  
accordingly. This function can be used in system calibration  
to load zero scale and full scale to all channels together. The  
execution time for a  
is 20 μs on the AD5390/AD5391 and  
CLR  
15 μs on the AD5392.  
AND  
FUNCTIONS  
LDAC  
BUSY  
is a digital CMOS output indicating the status of the  
BUSY  
AD5392, and the MISO input is driven from DOUT. The  
SYNC  
signal is derived from a port line (PC7). When data is being  
transmitted to the AD5390/AD5391/AD5392, the line is  
AD5390/AD5391/AD5392 devices.  
goes low during  
BUSY  
internal calculations of x2 data. If  
is taken low while  
LDAC  
SYNC  
is low, this event is stored. The user can hold the  
BUSY  
input permanently low and, in this case, the DAC outputs  
update immediately after goes high. also goes low  
LDAC  
taken low (PC7). Data appearing on the MOSI output is valid  
on the falling edge of SCK. Serial data from the MC8HC11 is  
trans-mitted in 8-bit bytes with only eight falling clock edges  
occurring in the transmit cycle.  
BUSY  
during a power-on reset and when a falling edge is detected on  
the pin. During this time, all interfaces are disabled and  
BUSY  
RESET  
any events on  
are ignored.  
LDAC  
DV  
DD  
AD539x  
MC68HC11  
The AD5390/AD5391/AD5392 contain an extra feature  
whereby a DAC register is not updated unless its x2 register has  
RESET  
been written to since the last time  
was brought low.  
LDAC  
MISO  
SDO  
DIN  
Normally, when  
is brought low, the DAC registers are  
LDAC  
filled with the contents of the x2 registers. However, these  
devices update the DAC register only if the x2 data has changed,  
thereby removing unnecessary digital crosstalk.  
MOSI  
SCK  
PC7  
SCLK  
SYNC  
2
SPI/I C  
Figure 37. AD5390/AD5391/AD5392 to MC68HC11 Interface  
Rev. F | Page 35 of 44  
 
 
 
 
 
 
 
AD5390/AD5391/AD5392  
Data Sheet  
AD5390/AD5391/AD5392 to PIC16C6x/7x  
DV  
DD  
AD539x  
The PIC16C6x/7x synchronous serial port (SSP) is configured  
as an SPI master with the clock polarity bit = 0. This is done  
by writing to the synchronous serial port control register  
(SSPCON)—see the PIC16/17 Microcontroller User Manual.  
8xC51  
RESET  
2
SPI/I C  
DV  
DD  
In Figure 38, I/O port RA1 is used to pulse  
and enable  
SYNC  
the serial port of the AD5390/AD5391/AD5392. This  
microcontroller transfers only eight bits of data during each  
serial transfer operation; therefore, three consecutive read/write  
operations are needed, depending on the mode. Figure 38  
shows the connection diagram.  
SDO  
RxD  
DIN  
TxD  
P1.1  
SCLK  
SYNC  
DV  
DD  
Figure 39. AD5390/AD5391/AD5392 to 8051 Interface  
AD539x  
PIC16C6x/7x  
AD5390/AD5391/AD5392 to ADSP-BF527  
RESET  
Figure 40 shows a serial interface between the AD5390/  
AD5391/AD5392 and the ADSP-BF527. The ADSP-BF527  
should be set up to operate in SPORT transmit alternate  
framing mode. The ADSP-BF527 SPORT is programmed  
through the SPORT control register and should be configured  
as follows: internal clock operation, active low framing, and 16-  
bit word length. Transmission is initiated by writing a word to  
the Tx register after the SPORT has been enabled.  
2
SPI/I C  
SDI/RC4  
SDO/RC5  
SCK/RC3  
RA1  
SDO  
DIN  
SCLK  
SYNC  
DV  
DD  
ADSP-BF527  
AD539x  
Figure 38. AD5390/AD5391/AD5392 to PIC16C6x/7x Interface  
AD5390/AD5391/AD5392 to 8051  
RESET  
2
SPI/I C  
The AD5390/AD5391/AD5392 requires a clock synchronized  
to the serial data. The 8051 serial interface must, therefore, be  
operated in Mode 0. In this mode, serial data enters and exits  
through RxD and a shift clock is output on TxD. Figure 39  
shows how the 8051 is connected to the AD5390/AD5391/  
AD5392. Because the AD5390/AD5391/AD5392 shifts data out  
on the rising edge of the shift clock and latches data in on the  
falling edge, the shift clock must be inverted. The AD5390/  
AD5391/AD5392 requires its data with the MSB first. Because  
the 8051 outputs the LSB first, the transmit routine must take  
this into account.  
DR  
DT  
SDO  
DIN  
SCK  
SCLK  
TFS  
RFS  
SYNC  
Figure 40. AD5390/AD5391/AD5392 to ADSP-BF527 Interface  
Rev. F | Page 36 of 44  
 
 
 
Data Sheet  
AD5390/AD5391/AD5392  
APPLICATION INFORMATION  
The power supply lines of the AD5390/AD5391/AD5392  
should use as large a trace as possible to provide low impedance  
paths and reduce the effects of glitches on the power supply  
line. Fast switching signals such as clocks should be shielded  
with digital ground to avoid radiating noise to other parts of the  
board, and should never run near the reference inputs. A  
ground line routed between the DIN and SCLK lines helps  
reduce crosstalk between them (not required on a multilayer  
board, because there is a separate ground plane, but separating  
the lines helps).  
POWER SUPPLY DECOUPLING  
In any circuit where accuracy is important, careful  
consideration of the power supply and ground return layout  
helps to ensure the rated performance. The printed circuit  
board on which the AD5390/AD5391/AD5392 is mounted  
should be designed so that the analog and digital sections are  
separated and confined to certain areas of the board. If the  
AD5390/AD5391/AD5392 is in a system where multiple devices  
require an AGND-to-DGND connection, the connection  
should be made at one point only. The star ground point should  
be established as close as possible to the device.  
Avoid crossover of digital and analog signals. Traces on  
opposite sides of the board should run at right angles to each  
other. This reduces the effects of feedthrough through the  
board. A micro-strip technique is by far the best, but not always  
possible with a double-sided board. In this technique, the  
component side of the board is dedicated to ground plane,  
while signal traces are placed on the soldered side.  
For supplies with multiple pins (AVDD, AVCC), it is recom-  
mended to tie those pins together. The AD5390/AD5391/  
AD5392 should have ample supply bypassing of 10 µF in  
parallel with 0.1 µF on each supply located as close to the  
package as possible—ideally right up against the device. The  
10 µF capacitors are the tantalum bead type. The 0.1 µF  
capacitor should have low effective series resistance (ESR) and  
effective series inductance (ESI), such as the common ceramic  
types that provide a low impedance path to ground at high  
frequencies, to handle transient currents due to internal logic  
switching.  
Rev. F | Page 37 of 44  
 
 
AD5390/AD5391/AD5392  
Data Sheet  
AVDD ≥ 3V  
DVDD = 3V  
POWER SUPPLY SEQUENCING  
SD103C OR  
For proper operation, apply DVDD first and AVDD simultane-  
ously or within 10 ms of DVDD. This ensures that the power on  
reset circuitry sets the registers to their default values and keeps  
the analog outputs at 0 V until a valid write operation takes  
place. When AVDD cannot be applied within 10 ms of DVDD  
issue a hardware reset. This will trigger the power on reset  
EQUIVALENT  
AV  
DV  
DD  
DD  
AD5390/  
AD5391/  
AD5392  
,
circuitry and load the default register values. In cases where the  
initial power supply has the same or a lower voltage than the  
second power supply, a Schottky diode can be used to tempo-  
rarily supply power until the second power supply turns on.  
Table 28 lists power supply sequences and the recommended  
diode connections. Alternatively, a load switch such as the  
ADP196 can be used to delay the first power supply until the  
second power supply turns on. Figure 43 shows a typical  
configuration using the ADP196. In this case, the AVDD is  
applied first. This voltage does not appear at the AVDD pin of  
the AD5390/AD5391/AD5392 until the DVDD is applied and  
brings the EN pin high. The result is that the AVDD and DVDD  
are both applied to the AD5390/AD5391/AD5392 at the same  
time.  
DAC  
GND  
SIGNAL  
GND  
AGND DGND  
Figure 42. DVDD first followed by AVDD  
ADP196  
AVDD  
DVDD  
VIN1  
VIN2  
VOUT1  
VOUT2  
AVDD  
AD5390/  
AD5391/  
AD5392  
EN AGND  
DVDD  
AGND DGND  
Figure 43. AVDD Power Supply Controlled by a Load Switch  
ADP196  
Table 28. Power Supply Sequencing  
DVDD  
AVDD  
VIN1  
VIN2  
VOUT1  
VOUT2  
DVDD  
Second  
Power  
Supply  
First Power  
Supply  
AD5390/  
AD5391/  
AD5392  
EN AGND  
Recommended Operation  
See Figure 41.  
AVDD = 3 V  
DVDD = 3 V  
AVDD = DVDD  
DVDD ≥ 3 V  
AVDD ≥ 3 V  
DVDD = AVDD  
See Figure 42.  
AVDD  
AGND DGND  
See Figure 41; assumes separate  
analog and digital supplies.  
DVDD = AVDD  
AVDD = DVDD  
See Figure 42; assumes separate  
analog and digital supplies  
Figure 44. DVDD Power Supply Controlled by a Load Switch  
AVDD = 5 V  
DVDD = 5 V  
DVDD = 3 V  
AVDD = 3 V  
See Figure 43  
Hardware reset or see Figure 44  
AVDD = 3V  
DVDD ≥ 3V  
SD103C OR  
EQUIVALENT  
AV  
DV  
DD  
DD  
AD5390/  
AD5391/  
AD5392  
DAC  
GND  
SIGNAL  
GND  
AGND DGND  
Figure 41. AVDD first followed by DVDD  
Rev. F | Page 38 of 44  
 
 
 
 
 
 
Data Sheet  
AD5390/AD5391/AD5392  
Figure 46 shows a typical configuration when using the internal  
reference. On power-up, the AD5390/AD5391/AD5392 defaults  
to an external reference; therefore, the internal reference needs to  
be configured and turned on via a write to the AD5390/  
AD5391/AD5392 control register. On the AD5390/AD5392,  
Control Register Bit CR12 lets the user choose the reference  
voltage; Bit CR10 is used to select the internal reference. It is  
recommended to use the 2.5 V reference when AVDD = 5 V, and  
the 1.25 V reference when AVDD = 3 V. On the AD5391, Control  
Register Bit CR10 lets the user choose the reference voltage;  
Bit CR8 is used to select the internal reference.  
TYPICAL CONFIGURATION CIRCUIT  
Figure 45 shows a typical configuration for the AD5390/  
AD5391/AD5392 when configured for use with an external  
reference. In the circuit shown, all AGND, SIGNAL_GND, and  
DAC_GND pins are tied together to a common AGND. AGND  
and DGND are connected together at the AD5390/AD5391/  
AD5392 device. On power-up, the AD5390/AD5391/AD5392  
defaults to external reference operation. All AVDD lines are  
connected together and driven from the same 5 V source. It is  
recommended to decouple close to the device with a 0.1 µF  
ceramic and a 10 µF tantalum capacitor. In this application, the  
reference for the AD5390-5/AD5391-5/AD5392-5 is provided  
externally from either an ADR421 or ADR431 2.5 V reference.  
AV  
DV  
DD  
DD  
0.1µF  
Suitable external references for the AD5390-3/AD5391-3/  
AD5392-3 include the ADR280 1.2 V reference. The reference  
should be decoupled at the REFOUT/REFIN pin of the device  
with a 0.1 µF capacitor.  
10µF  
0.1µF  
AV  
DV  
DD  
DD  
AV  
DV  
DD  
DD  
REFOUT/REFIN  
VOUT 0  
0.1µF  
0.1µF  
AD539x  
REF_GND  
10µF  
0.1µF  
VOUT 15  
ADR431/  
ADR421  
DAC_GND SIGNAL_GND AGND DGND  
AV  
DV  
DD  
DD  
REFOUT/REFIN  
VOUT 0  
Figure 46. Typical Configuration with Internal Reference.  
(Digital Connections Omitted for Clarity)  
0.1µF  
AD539x  
REF_GND  
The AD5390/AD5391/AD5392 contains an internal power-on  
reset circuit with a 10 ms brown-out time. If the power supply  
ramp rate exceeds 10 ms, the user should reset the AD5390/  
AD5391/AD5392 as part of the initialization process to ensure  
the calibration data is loaded correctly into the device.  
VOUT 15  
DAC_GND SIGNAL_GND AGND DGND  
Figure 45. Typical Configuration with External Reference  
Rev. F | Page 39 of 44  
 
 
 
AD5390/AD5391/AD5392  
Data Sheet  
AD5390/AD5391/AD5392 MONITOR FUNCTION  
The AD5390 contains a channel monitor function consisting  
of a multiplexer addressed via the interface, allowing any  
channel output to be routed to this pin for monitoring using  
an external ADC. The channel monitor function must be  
enabled in the control register before any channels are routed  
to the MON_OUT pin.  
3. Load data to all B registers.  
4. Apply  
.
LDAC  
The  
is used to switch between the A and B registers in  
LDAC  
determining the analog output. The first  
configures the  
LDAC  
output to reflect the data in the A registers. This mode offers  
significant advantages if the user wants to generate a square  
wave at the output on all channels, as could be required to drive  
a liquid-crystal-based, variable optical attenuator.  
Table 22 and Table 23 contain the decoding information  
required to route any channel on the AD5390, AD5391, and  
AD5392 to the MON_OUT pin. Selecting Channel Address 63  
three-states the MON_OUT pin. The AD5390/AD5391/  
AD5392 also contains two monitor input pins called MON_IN  
1 and MON_IN 2. The user can connect external signals to  
these pins, which under software control can be multiplexed to  
MON_OUT for monitoring purposes. Figure 47 shows a typical  
monitoring circuit implemented using a 12-bit SAR ADC in a  
6-lead SOT package. The external reference input is connected  
to MON_IN 1 to allow it to be easily monitored. The controller  
output port selects the channel to be monitored, and the input  
port reads the converted data from the ADC.  
Configuring the AD5390, for example, the user writes to the  
control register and sets CR3 = 1 and CR2 = 1, enabling the two  
groups of eight for toggle mode operation. The user must then  
load data to all 16 A registers and B registers. Toggling the  
LDAC  
sets the output values to reflect the data in the A and B registers,  
and the frequency of the determines the frequency of the  
LDAC  
square wave output. The first  
loads the contents of the A  
LDAC  
registers to the DAC registers. Toggle mode is disabled via the  
control register; the first following the disabling of the  
LDAC  
toggle mode updates the outputs with the data contained in the  
A registers.  
AV  
DD  
DIN  
SYNC  
SCLK  
REFOUT/REFIN  
AD780/  
ADR431  
DATA  
REGISTER  
A
OUTPUT PORT  
AD5390  
AV  
DD  
MON_IN1  
AD7476 CS  
SCLK  
DAC  
REGISTER  
VOUT  
14-BIT DAC  
INPUT PORT  
VOUT 0  
MON_OUT  
VIN  
SDATA  
GND  
DATA  
REGISTER  
B
INPUT  
REGISTER  
CONTROLLER  
INPUT  
DATA  
AGND  
VOUT 15  
DAC_GND SIGNAL_GND  
LDAC  
CONTROL INPUT  
A/B  
Figure 48. Toggle Mode Function  
Figure 47. Typical Channel Monitoring Circuit  
THERMAL MONITOR FUNCTION  
TOGGLE MODE FUNCTION  
The AD5390/AD5391/AD5392 have a temperature shutdown  
function to protect the chip in case multiple outputs are  
shorted. The short-circuit current of each output amplifier is  
typically 40 mA. Operating the AD5390/AD5391/AD5392 at  
5 V leads to a power dissipation of 200 mW/shorted amplifier.  
With five channels shorted, this leads to an extra watt of power  
dissipation. For the 52-lead LQFP, the θJA is typically 44°C/W.  
The toggle mode function allows an output signal to be  
generated using the LDAC control signal that switches between  
two DAC data registers. This function is configured using the  
SFR control register, as follows: A write with REG1 = REG0 = 0,  
A3 to A0 = 1100 specifies a control register write. The toggle  
mode function is enabled in groups of eight channels using Bit  
CR3 and Bit CR2 in the AD5390/AD5392 control register and  
using Bit CR1 and Bit CR0 in the AD5391 control register. (See  
the Control Register Write section.) Figure 48 shows a block  
diagram of the toggle mode implementation. Each DAC  
channel on the AD5390/AD5391/AD5392 contains an A and a  
B data register. Note that the B registers can be loaded only  
when toggle mode is enabled.  
The thermal monitor is enabled by the user using CR8 in the  
AD5390/AD5392 control register and CR6 in the AD5391  
control register. The output amplifiers on the AD5390/  
AD5391/AD5392 are automatically powered down if the die  
temperature exceeds approximately 130°C. After a thermal  
shutdown has occurred, the user can re-enable the part by  
executing a soft power-up if the temperature has dropped below  
130°C or by turning off the thermal monitor function via the  
control register.  
To configure the AD5390/AD5391/AD5392 for toggle mode of  
operation, the sequence of events is as follows:  
1. Enable toggle mode for the required channels via the  
control register.  
2. Load data to all A registers.  
Rev. F | Page 40 of 44  
 
 
 
 
 
Data Sheet  
AD5390/AD5391/AD5392  
Power Amplifier Control  
0.1µF  
Multistage power amplifier designs require a large number of  
setpoints in the operation and control of the output stage. The  
AD5390/AD5391/AD5392 are ideal for these applications  
because of their small size (LFCSP) and the integration of 8 and  
16 channels, offering 12- and 14-bit resolution. Figure 49 shows  
a typical transmitter architecture, in which the AD5390/  
AD5391/AD5392 DACs can be used in the following control  
circuits: IBIAS control, average power control (APC), peak power  
control (PPC), transmit gain control (TGC), and audio level  
control (ALC). DACs are also required for variable voltage  
attenuators, phase shifter control, and dc-setpoint control in the  
overall amplifier design.  
2.5V  
REFERENCE  
2R  
4R  
±10V  
RANGE  
R
R
±5V  
RANGE  
R
VOUT 3  
VOUT 0  
1/4 OP747/  
1/4 OP4177  
1/4 OP747/  
1/4 OP4177  
R
4R  
AD539x-5  
2R  
0V TO 5V  
RANGE  
0V TO 10V  
RANGE  
VOUT 1  
VOUT 4  
1/4 OP747/  
1/4 OP4177  
I SINK  
R
VOUT 2  
R
1/4 OP747/  
1/4 OP4177  
PHASE  
SHIFT  
R1  
I
BIAS  
Figure 50. Output Configurations for Process Control Applications  
Optical Transceivers  
The AD5390-3/AD5391-3/AD5392-3 are ideally suited to optical  
transceiver applications. In 300-pin MSA applications, for  
example, digital-to-analog converters are required to control the  
laser power, APD bias, and modulator amplitude. Diagnostic  
information is required as analog outputs from the module. The  
AD5390-3/AD5391-3/AD5392-3 offer a combination of 8/16  
channels, a resolution of 12/14 bits in a 64-lead LFCSP, and  
operate from a supply voltage of 2.7 V to 5.5 V supply with  
internal reference. The AD5390-3/AD5391-3/AD5392-3 also  
feature I2C-compatible and SPI inter-faces, making them ideal  
components for use in these applications. Figure 51 shows a  
typical configuration in an optical transceiver application.  
POWER  
AMPLIFIER  
AUDIO  
SOURCE  
50  
LOAD  
EXCITER  
ALC  
PPC  
APC  
TGC  
Figure 49. Multistage Power Amplifier Control  
Process Control Applications  
The AD5390-5/AD5391-5/AD5392-5 are ideal for process  
control applications because it offers a combination of 8 and 16  
channels and 12-bit and 14-bit resolution. These applications  
generally require output voltage ranges of 0 V to 5 V 5 V, 0 V  
to 10 V 10 V, and current sink and source functions. The  
AD5390-5/AD5391-5/AD5392-5 operate from a single 5 V  
supply and, therefore, require external signal conditioning to  
achieve the output ranges described here. Figure 50 shows  
configurations to achieve these output ranges. The key  
advantages of using AD5390-5/AD5391-5/AD5392-5 in these  
applications are small package size, pin compatibility with the  
ability to upgrade from 12 to 14 bits, integrated on-chip 2.5 V  
reference with 10 ppm/°C maximum temperature coefficient,  
and excellent accuracy specifications. The AD5390-5/AD5391-5/  
AD5392-5 contain an offset and gain register for each channel,  
so users can perform system-level calibration on a per-channel  
basis.  
3V  
CONTROLLER  
SDA  
SCL  
DV  
AV  
DD  
DD  
SDA  
2
I
C
BUS  
SCL  
VLSRBIAS  
VLSRPWRMON  
VXLOPMON  
REFOUT/REFIN  
AD539x-3  
PIN/APD IRXP  
AND TIA  
AV  
REFIN  
DD  
IMODMON  
IMPD  
IBIASMON  
I
BIAS  
10G LDD  
AND  
LASER  
AIN  
MUX  
12-BIT  
ADC  
IMOD  
AD7994  
TIAs  
Figure 51. Optical Transceiver using the AD5390-3/AD5391-3/AD5392-3  
Rev. F | Page 41 of 44  
 
 
AD5390/AD5391/AD5392  
OUTLINE DIMENSIONS  
Data Sheet  
9.10  
9.00 SQ  
8.90  
0.60 MAX  
0.60  
MAX  
PIN 1  
INDICATOR  
64  
49  
1
48  
PIN 1  
INDICATOR  
8.85  
8.75 SQ  
8.65  
EXPOSED  
PAD  
0.50  
BSC  
7.25  
7.10 SQ  
6.95  
0.50  
0.40  
0.30  
33  
32  
16  
17  
0.25 MIN  
BOTTOM VIEW  
7.50 REF  
TOP VIEW  
0.80 MAX  
0.65 TYP  
12° MAX  
1.00  
0.85  
0.80  
0.05 MAX  
0.02 NOM  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.30  
0.23  
0.18  
SEATING  
PLANE  
0.20 REF  
SECTION OF THIS DATA SHEET.  
COMPLIANT TO JEDEC STANDARDS MO-220-VMMD-4  
Figure 52. 64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
9 mm x 9 mm Body, Very Thin Quad  
(CP-64-3)  
Dimensions shown in millimeters  
12.20  
12.00 SQ  
11.80  
0.75  
0.60  
0.45  
1.60  
MAX  
52  
40  
39  
1
PIN 1  
10.20  
10.00 SQ  
9.80  
TOP VIEW  
(PINS DOWN)  
1.45  
1.40  
1.35  
0.20  
0.09  
7°  
13  
27  
3.5°  
0°  
0.15  
0.05  
14  
26  
SEATING  
PLANE  
0.10  
COPLANARITY  
0.38  
0.32  
0.22  
VIEW A  
0.65  
BSC  
LEAD PITCH  
VIEW A  
ROTATED 90° CCW  
COMPLIANT TO JEDEC STANDARDS MS-026-BCC  
Figure 53. 52-Lead Low Profile Quad Flat Package [LQFP]  
(ST-52)  
Dimensions shown in millimeters  
Rev. F | Page 42 of 44  
 
Data Sheet  
AD5390/AD5391/AD5392  
ORDERING GUIDE  
Temperature  
Range  
Output  
Channels Error (LSBs)  
Linearity  
Package  
Description  
Package  
Option  
Model1  
Resolution AVDD  
2.7 V to 3.6 V  
AD5390BCPZ-3  
AD5390BCPZ-3-REEL  
AD5390BCPZ-3-REEL7  
AD5390BCPZ-5  
AD5390BCPZ-5-REEL  
AD5390BCPZ-5-REEL7  
AD5390BSTZ-3  
14-bit  
14-bit  
14-bit  
14-bit  
14-bit  
14-bit  
14-bit  
14-bit  
12-bit  
12-bit  
12-bit  
12-bit  
12-bit  
12-bit  
14-bit  
14-bit  
14-bit  
14-bit  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
8
4
4
4
3
3
3
4
3
1
1
1
1
1
1
4
3
4
3
64-Lead LFCSP_VQ  
64-Lead LFCSP_VQ  
64-Lead LFCSP_VQ  
64-Lead LFCSP_VQ  
64-Lead LFCSP_VQ  
64-Lead LFCSP_VQ  
52-Lead LQFP  
CP-64-3  
CP-64-3  
CP-64-3  
CP-64-3  
CP-64-3  
CP-64-3  
ST-52  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
2.7 V to 3.6 V  
2.7 V to 3.6 V  
4.5 V to 5.5 V  
4.5 V to 5.5 V  
4.5 V to 5.5 V  
2.7 V to 3.6 V  
4.5 V to 5.5 V  
2.7 V to 3.6 V  
4.5 V to 5.5 V  
4.5 V to 5.5 V  
4.5 V to 5.5 V  
2.7 V to 3.6 V  
4.5 V to 5.5 V  
2.7 V to 3.6 V  
4.5 V to 5.5 V  
2.7 V to 3.6 V  
4.5 V to 5.5 V  
AD5390BSTZ-5  
52-Lead LQFP  
ST-52  
AD5391BCPZ-3  
AD5391BCPZ-5  
AD5391BCPZ-5-REEL  
AD5391BCPZ-5-REEL7  
AD5391BSTZ-3  
64-Lead LFCSP_VQ  
64-Lead LFCSP_VQ  
64-Lead LFCSP_VQ  
64-Lead LFCSP_VQ  
52-Lead LQFP  
CP-64-3  
CP-64-3  
CP-64-3  
CP-64-3  
ST-52  
AD5391BSTZ-5  
52-Lead LQFP  
ST-52  
AD5392BCPZ-3  
AD5392BCPZ-5  
AD5392BSTZ-3  
64-Lead LFCSP_VQ  
64-Lead LFCSP_VQ  
52-Lead LQFP  
CP-64-3  
CP-64-3  
ST-52  
8
8
AD5392BSTZ-5  
8
52-Lead LQFP  
ST-52  
EVAL–AD5390SDZ  
EVAL–AD5392SDZ  
Evaluation Board  
Evaluation Board  
1 Z = RoHS Compliant Part.  
Rev. F | Page 43 of 44  
 
AD5390/AD5391/AD5392  
NOTES  
Data Sheet  
Purchase of licensed I2C components of Analog Devices or one of its sublicensed Associated Companies conveys a license for the purchaser under the Philips I2C Patent  
Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips.  
©2004–2014 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D03773-0-6/14(F)  
Rev. F | Page 44 of 44  

相关型号:

AD5392

8-/16-Channel, 3 V/5 V, Serial Input, Single- Supply, 12-/14-Bit Voltage Output DACs
ADI

AD5392BCP

IC SERIAL INPUT LOADING, 8 us SETTLING TIME, 14-BIT DAC, QCC64, 9 X 9 MM, LFCSP-64, Digital to Analog Converter
ADI

AD5392BCP-3

8-/16-Channel, 3 V/5 V, Serial Input, Single- Supply, 12-/14-Bit Voltage Output DACs
ADI

AD5392BCP-3-REEL

8-/16-Channel, 3 V/5 V, Serial Input, Single- Supply, 12-/14-Bit Voltage Output DACs
ADI

AD5392BCP-3-REEL7

8-/16-Channel, 3 V/5 V, Serial Input, Single- Supply, 12-/14-Bit Voltage Output DACs
ADI

AD5392BCP-5

8-/16-Channel, 3 V/5 V, Serial Input, Single- Supply, 12-/14-Bit Voltage Output DACs
ADI

AD5392BCP-5-REEL

8-/16-Channel, 3 V/5 V, Serial Input, Single- Supply, 12-/14-Bit Voltage Output DACs
ADI

AD5392BCP-5-REEL7

8-/16-Channel, 3 V/5 V, Serial Input, Single- Supply, 12-/14-Bit Voltage Output DACs
ADI

AD5392BCPZ-3

40-Channel, 3 V/5 V, Single-Supply 12-Bit, denseDAC
ADI

AD5392BCPZ-5

40-Channel, 3 V/5 V, Single-Supply 12-Bit, denseDAC
ADI

AD5392BST-3

8-/16-Channel, 3 V/5 V, Serial Input, Single- Supply, 12-/14-Bit Voltage Output DACs
ADI

AD5392BST-3-REEL

8-/16-Channel, 3 V/5 V, Serial Input, Single- Supply, 12-/14-Bit Voltage Output DACs
ADI