AD5399SRM-REEL7 [ADI]

IC SERIAL INPUT LOADING, 0.8 us SETTLING TIME, 12-BIT DAC, PDSO10, MICRO, SOIC-10, Digital to Analog Converter;
AD5399SRM-REEL7
型号: AD5399SRM-REEL7
厂家: ADI    ADI
描述:

IC SERIAL INPUT LOADING, 0.8 us SETTLING TIME, 12-BIT DAC, PDSO10, MICRO, SOIC-10, Digital to Analog Converter

输入元件 光电二极管 转换器
文件: 总12页 (文件大小:233K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Twos Complement, Dual 12-Bit DAC  
with Internal REF and Fast Settling Time  
AD5399  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
2-channel 12-bit DAC  
V
TP  
V
(V ) = 2V  
BZ REF  
Twos complement facilitates bipolar applications  
Bipolar zero with 2 V dc offset  
Built-in 2.000 V precision reference with 10 ppm/°C typ TC  
Buffered voltage output: 0 V to 4 V  
Single-supply operation: 4.5 V to 5.5 V  
Fast 0.8 µs settling time typ  
AD5399  
V
DD  
×2  
V
+ 2V = 4V  
V
BZ  
OUTA  
V
2V  
REF  
V
– 2V = 0V  
BZ  
×2  
V
OUTB  
DECODER SW  
DRIVER A  
DECODER SW  
DRIVER B  
Ultracompact MSOP-10 package  
Monotonic DNL < 1 LSB  
AGND  
12  
12  
Optimized accuracy at zero scale  
Power-on reset to VREF  
3-wire serial data input  
CS  
ADDR  
DECODE  
DAC A  
REGISTER  
DAC B  
REGISTER  
EN  
CLK  
12  
A0  
16-BIT  
Extended temperature range: –40°C to +105°C  
SDI  
POWER-ON  
RESET  
D15...D0  
DGND  
APPLICATIONS  
Figure 1.  
Single-supply bipolar converter operations  
General-purpose DSP applications  
Digital gain and offset controls  
Instrumentation level settings  
Disk drive control  
V
OUT = ((D – 2ꢀ48)/4ꢀ96 × 4 V) + 2 V for ꢀ ≤ D ≤ 4ꢀ95, where D  
is the decimal code.  
Table 1. Examples of Twos Complement Codes  
Precision motor control  
Twos Complement  
D
Scale  
VOUT (V)  
4.000  
3.999  
2.001  
2.000  
1.999  
0.001  
0.000  
2047  
2046  
1
4095  
4094  
2049  
2048  
2047  
1
+FS  
GENERAL DESCRIPTION  
+FS – 1 LSB  
BZS + 1 LSB  
BZS  
BZS – 1 LSB  
–FS + 1 LSB  
–FS  
The AD5399 is the industry-first dual 12-bit digital-to-analog  
converter that accepts twos complement digital coding with 2 V  
dc offset for single-supply operation. Augmented with a built-in  
precision reference and a solid buffer amplifier, the AD5399 is  
the smallest self-contained 12-bit precision DAC that fits many  
general-purpose as well as DSP specific applications. The twos  
complement programming facilitates the natural coding  
implementation commonly found in DSP applications, and  
allows operation in single supply. The AD5399 provides a 2 V  
reference output, VREF, for bipolar zero monitoring. It can also  
be used for other on-board components that require a precision  
reference. The device is specified for operation from 5 V 1ꢀ0  
single supply with bipolar output swing from ꢀ V to 4 V  
centered at 2 V.  
0
4095  
2049  
2048  
0
FS = Full Scale, BZS = Bipolar Zero Scale.  
4.0  
3.5  
3.0  
V
= [(0 – 2048)/4096 × 4V] + 2V  
OUT  
2.5  
2.0  
1.5  
1.0  
0.5  
0
The AD5399 is available in the compact 1.1 mm low profile  
MSOP-1ꢀ package. All parts are guaranteed to operate over the  
extended industrial temperature range of –4ꢀ°C to +1ꢀ5°C.  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
TWOS COMPLEMENT CODE  
Figure 2. Output vs. Twos Complement Code  
Rev. D  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
AD5399  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
Electrical Characteristics............................................................. 3  
Absolute Maximum Ratings............................................................ 4  
ESD Caution.................................................................................. 4  
Pin Configuration and Function Descriptions............................. 5  
Timing Characteristics..................................................................... 6  
Typical Performance Characteristics ..............................................7  
Operation......................................................................................... 1ꢀ  
Power-Up/Power-Down Sequence .......................................... 1ꢀ  
Outline Dimensions....................................................................... 12  
Ordering Guide .......................................................................... 12  
REVISION HISTORY  
6/04—Data sheet changed from Rev. C to Rev. D  
Correction to Table 7 Caption ...................................................... 11  
3/04—Data sheet changed from Rev. B to Rev. C  
Changes to Specifications................................................................ 3  
Changes to Table 4............................................................................ 5  
Replaced Figures 4 and 5 ................................................................. 6  
Changes to Operation Section...................................................... 1ꢀ  
Changes to Table 6.......................................................................... 1ꢀ  
11/03—Data sheet changed from Rev. A to Rev. B  
Changes to Table 5 notes ................................................................. 5  
Changes to Figures 8 and 9.............................................................. 7  
Changes to Figure 12........................................................................ 8  
Added Power-Up/Power-Down section...................................... 1ꢀ  
3/03—Data sheet changed from Rev. 0 to Rev. A  
Change to Table 1 ............................................................................. 1  
2/03—Revision 0: Initial Version  
Rev. D | Page 2 of 12  
AD5399  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
VDD = 5 V 1ꢀ0, –4ꢀ°C < TA < +1ꢀ5°C, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Conditions  
Min  
Typ1  
Max  
Unit  
DC CHARACTERISTICS  
Resolution  
N
12  
Bits  
Differential Nonlinearity Error  
DNL  
–1  
0.5  
0.5  
0.02  
–0.15  
–0.15  
–0.15  
+1  
LSB  
LSB  
%FS  
%FS  
%FS  
%FS  
Codes 2048 to 2052, due to int. op amp offset  
–1.2  
–0.4  
–0.75  
–0.75  
–0.75  
+1.2  
+0.4  
+0.75  
+0.75  
+0.75  
Integral Nonlinearity Error  
Positive Full-Scale Error  
Bipolar Zero-Scale Error  
Negative Full-Scale Error  
ANALOG OUTPUTS  
INL  
V+FSE  
VBZSE  
V–FSE  
Code = 0xF  
Code = 0x000  
Code = 0x800  
Nominal Positive Full-Scale  
Positive Full-Scale Tempco2  
VOUTA/B  
TCVOUTA/B  
Code = 0x7FF  
Code = 0x7FF, TA = 0°C to 70°C  
Code = 0xFF, TA = –40°C to +105°C  
4
V
–40  
–60  
1.995  
10  
10  
2.000  
1
+40  
+60  
2.004  
ppm/°C  
ppm/°C  
V
Nominal VBZ Output Voltage  
Bipolar Zero Output Resistance2  
VBZ Output Voltage Tempco  
VBZ  
RBZ  
TCVBZ  
TA = 0°C to 70°C  
TA = –40°C to +105°C  
Code 0x7FF to Code 0x800  
–40  
–60  
10  
10  
4
+40  
+60  
ppm/°C  
ppm/°C  
V
Nominal Peak-to-Peak Output Swing  
DIGITAL INPUTS  
|V+FS| + |V–FS|  
Input Logic High  
Input Logic Low  
Input Current  
Input Capacitance2  
VIH  
VIL  
IIL  
VDD = 5 V  
VDD = 5 V  
VIN = 0 V or 5 V, VDD = 5 V  
2.4  
4.5  
V
V
µA  
pF  
0.8  
1
CIL  
5
POWER SUPPLIES  
Power Supply Range  
Supply Current  
VDD RANGE  
IDD  
IDD_SHDN  
5.5  
2.6  
100  
500  
13  
V
VIH = VDD or VIL = 0 V  
1.8  
10  
100  
9
mA  
µA  
µA  
mW  
Supply Current in Shutdown  
VIH = VDD or VIL = 0 V, B14 = 0, TA = 0°C to 105°C  
VIH = VDD or VIL = 0 V, B14 = 0, TA = –40°C to 0°C  
VIH = VDD or VIL = 0 V, VDD = 5.5 V  
∆VDD = 5 V 10%  
Power Dissipation3  
PDISS  
PSS  
Power Supply Sensitivity  
DYNAMIC CHARACTERISTICS2  
Settling Time  
–0.006 +0.003 +0.006 %/%  
tS  
Q
G
0.1% error band  
No oscillation  
0.8  
10  
10  
µs  
Digital Feedthrough  
nV-s  
nV-s  
pF  
Bipolar Zero-Scale Glitch  
Capacitive Load Driving Capability  
INTERFACE TIMING CHARACTERISTICS2, 4  
SCLK Cycle Frequency  
SCLK Clock Cycle Time  
Input Clock Pulse Width  
Data Setup Time  
CL  
1000  
33  
tCYC  
t1  
t2, t3  
t4  
MHz  
ns  
ns  
30  
15  
5
Clock level low or high  
ns  
Data Hold Time  
t5  
0
ns  
CS  
to SCLK Active Edge Setup Time  
CS  
t6  
5
ns  
SCLK to Hold Time  
t7  
0
ns  
CS  
Repeat Programming, High Time  
t8  
30  
ns  
1 Typical values represent average readings at 25°C and VDD = 5 V.  
2 Guaranteed by design and not subject to production test.  
3 PDISS is calculated from (IDD × VDD). CMOS logic level inputs result in minimum power dissipation.  
4 See timing diagram (Figure 5) for location of measured values. All input control voltages are specified with tR = tF = 2 ns (10% to 90% of 3 V) and timed from a voltage  
level of 1.5 V. Switching characteristics are measured using VDD = 5 V. Input logic should have a 1 V/µs minimum slew rate.  
Rev. D | Page 3 of 12  
 
 
 
 
 
 
AD5399  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Table 3.  
Parameter  
Rating  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
VDD to GND  
VOUTA, VOUTB, VBZ to GND  
–0.3 V, +7.5 V  
0 V, VDD  
0 V, VDD + 0.3 V  
–40°C to +105°C  
150°C  
–65°C to +150°C  
300°C  
(TJ MAX – TA)/θJA  
206°C/W  
Digital Input Voltages to GND  
Operating Temperature Range  
Maximum Junction Temperature (TJ MAX  
Storage Temperature  
Lead Temperature (Soldering, 10 sec)  
Package Power Dissipation  
Thermal Resistance, θJA, MSOP-10  
)
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. D | Page 4 of 12  
 
AD5399  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
CLK  
SDI  
1
2
3
4
5
10 CS  
V
V
9
8
7
6
TP  
AD5399  
DGND  
TOP VIEW  
DD  
(Not to Scale)  
V
AGND  
OUTB  
V
V
BZ  
OUTA  
Figure 3. MSOP-10 Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2
3
4
5
6
7
8
CLK  
SDI  
DGND  
VOUTB  
VOUTA  
VBZ  
AGND  
VDD  
VTP  
Serial Clock Input. Positive edge triggered.  
Serial Data Input. MSB first format.  
Digital Ground.  
DAC B Voltage Output (A0 = Logic 1).  
DAC A Voltage Output (A0 = Logic 0).  
2 V, Virtual Bipolar Zero (Active Output).  
Analog Ground.  
Positive Power Supply. Specified for operation at 5 V.  
Connect to VDD. Reserved for factory testing.  
9
10  
CS  
Chip Select (Frame Sync Input). Allows clock and data to shift into the shift register when CS goes from high to low.  
After the 16th clock pulse, it is not necessary to bring CS high to shift the data to the output. However, CS should be  
brought high any time after the 16th clock positive edge in order to allow the next programming cycle.  
Table 5. Serial Data-Word Format  
ADDR  
DATA  
B11  
B15  
A0  
B14  
X
B13  
SD  
B12  
0
B10  
D10  
B3  
B2  
B1  
B0  
D11  
D3  
D2  
D1  
D0  
LSB  
MSB  
Aꢀ  
Address Bit. Logic low selects DAC A and logic high selects DAC B.  
Both channels are shut down when the SD bit is high. However, the Aꢀ bit must be at the same state for shutdown  
activation and deactivation. See the Shutdown Function section.  
X
Don’t Care.  
SD  
Shutdown Bit. Logic high puts both DAC outputs and VBZ into high impedance. Aꢀ bit must be at the same state for  
shutdown activation and deactivation.  
B12 must be ꢀ.  
Data Bits.  
Dꢀ–D11  
Rev. D | Page 5 of 12  
 
AD5399  
TIMING CHARACTERISTICS  
1
SDI  
SCLK  
CS  
A0  
X
SD  
0
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
1
0
1
0
Figure 4. Timing Diagram  
1
SDI  
0
Dx  
Dx  
Dx  
Dx  
t5  
t4  
1
t2  
SCLK  
t3  
t7  
0
1
t1  
t6  
CS  
0
t8  
tS  
±1LSB  
1
ERROR  
BAND  
V
OUT  
0
Figure 5. Detailed Timing Diagram  
Rev. D | Page 6 of 12  
 
 
AD5399  
TYPICAL PERFORMANCE CHARACTERISTICS  
10  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
V
= 5V  
V
= 5V  
DD  
= 25°C  
DD  
T
A
8
6
DAC B  
4
2
0
–2  
–4  
–6  
–8  
–10  
DAC A  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
CODE (Decimal)  
TEMPERATURE (°C)  
Figure 6. Integral Nonlinearity Errors  
Figure 9. Supply Current vs. Temperature  
1.00  
0.75  
0.50  
0.25  
0
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
V
T
= 5V  
= 25°C  
V
= 5V  
= 25°C  
DD  
DD  
T
A
A
DAC A, B  
–0.25  
–0.50  
–0.75  
–1.00  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
2
3
4
5
6
7
CODE (Decimal)  
DIGITAL INPUT VOLTAGE, V (V)  
IH  
Figure 7. Differential Nonlinearity Errors  
Figure 10. Supply Current vs. Digital Input Voltage  
1.96  
1.92  
1.88  
1.84  
1.80  
1.76  
4.5  
T
= 25°C  
V
= 5V  
DD  
= 25°C  
A
T
A
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
CODE = 0x555  
CODE = 0x7FF  
CODE = 0x000  
2
3
4
5
6
7
10k  
100k  
1M  
10M  
100M  
SUPPLY VOLTAGE (V)  
CLOCK FREQUENCY (Hz)  
Figure 8. Supply Current vs. Supply Voltage  
Figure 11. Supply Current vs. Clock Frequency  
Rev. D | Page 7 of 12  
 
AD5399  
1000  
70  
60  
50  
40  
30  
20  
10  
0
V
= 5V  
SS = 345  
25°C to 85°C  
DD  
100  
10  
1
0.1  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
–4540–35–30–25–20–15–10 –5  
0
5 10 15 20 25 30 35 40  
SHUTDOWN TEMPERATURE (°C)  
TEMPCO (ppm/°C)  
Figure 12. Shutdown Current vs. Temperature  
Figure 15. VBZ Temperature Coefficient (TA = 25°C to 85°C)  
20  
100  
SS = 345  
25°C to 105°C  
V
T
= 5V  
= 25°C  
DD  
CURRENT SINKING  
CODE = 0x000 = 2V  
A
18  
16  
14  
12  
10  
8
80  
60  
40  
20  
0
CURRENT SOURCING  
CODE = 0x000 = 2V  
6
4
CURRENT SINKING  
CODE = 0x800 = 0V  
2
0
–6  
–4  
–2  
0
2
4
6
8
10  
–15 –10 –5  
0
5
10 15 20 25 30 35 40 45 50  
TEMPCO (ppm/°C)  
V  
(mV)  
OUT  
Figure 13. Load Current vs. Voltage Drop  
Figure 16. VBZ Temperature Coefficient (TA = 25°C to 105°C)  
40  
0.5  
SS = 345  
V
= 5V  
DD  
–40°C to +25°C  
BURN-IN TEMPERATURE = 125°C  
0.4  
0.3  
35  
30  
25  
20  
15  
10  
5
0.2  
V
+FS  
0.1  
0
V
–FS  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
V
V
BZ  
BZS  
0
0
200  
400  
600  
800  
1000  
1200  
–4540353025201510 –5  
0
5 10 15 20 25 30 35 40  
HOURS OF OPERATION  
TEMPCO (ppm/°C)  
Figure 14. Long-Term Drift  
Figure 17. VBZ Temperature Coefficient (TA = –40°C to +25°C)  
Rev. D | Page 8 of 12  
AD5399  
VOUT: 0.5V/DIV  
100  
90  
100  
90  
VOUT: 1V/DIV  
TRACE 1: NO LOAD  
TRACE 2 (WITH RINGING):  
CL = 2nF  
RL = 1k  
CLK: 5V/DIV  
CLK: 5V/DIV  
10  
10  
0%  
0%  
Figure 18. Large Signal Settling (0.5 µs/DIV)  
Figure 20. Capacitive Load Output Performance (2 µs/DIV)  
100  
90  
CS: 5V/DIV  
VOUT: 50mV/DIV  
10  
0%  
Figure 19. Midscale Glitch and Digital Feedthrough (2 µs/DIV)  
Rev. D | Page 9 of 12  
AD5399  
OPERATION  
The AD5399 provides a 12-bit, twos complement, dual voltage  
output, digital-to-analog converter (DAC). It has an internal  
reference with 2 V bipolar zero dc offset, where ꢀ ≤ VOUT ≤ 4 V.  
1k  
LOGIC  
Figure 21. Equivalent ESD Protection Circuit  
The output transfer equation is  
5V  
V
V
DD  
V
OUT = ((D – 2ꢀ48)/4ꢀ96 × 4 V) + 2 V  
C1  
10µF  
C2  
0.1µF  
TP  
AD5399  
V
)
OUTA  
CS  
where:  
(D–2048)/4096 × 4V + 2V  
V
(V  
CLK  
SDI  
BZ REF  
2V  
D is the 12-bit decimal code and not the twos complement code.  
OUT is with respect to ground.  
DGND AGND  
V
In data programming, the data is loaded MSB first on the  
Figure 22. Basic Connection  
positive clock edge (SCLK) after chip select ( ) goes from high  
CS  
POWER-UP/POWER-DOWN SEQUENCE  
to low. The digital word is 16 bits wide, with the MSB, B15, as an  
address bit (DAC A: Aꢀ = ꢀ; DAC B: Aꢀ = 1). B14 is don’t care,  
B13 is a shutdown bit, B12 must be logic low, and the last 12 bits  
are data bits. An internal counter allows data transferred from  
the shift register to the output after the 16th positive clock edge  
Like most CMOS devices, it is recommended to power VDD and  
ground prior to any digital signals. The ideal power-up  
sequence is GND, VDD, and digital signals. The reverse sequence  
applies to the power-down condition.  
while  
stays low (see Figure 5). After the 16th clock pulse, it is  
CS  
Layout and Power Supply Bypassing  
not necessary to bring  
high to shift the data to the output.  
CS  
It is a good practice to employ compact, minimum lead-length  
layout design. The input leads should be as direct as possible  
with a minimum conductor length. Ground paths should have  
low resistance and low inductance.  
However, should be brought high anytime after the 16th clock  
CS  
positive edge in order to allow the next programming cycle.  
Table 6. Input Logic Control Truth Table  
Similarly, it is also good practice to bypass the power supplies  
with quality capacitors for optimum stability. Supply leads to the  
device should be bypassed with ꢀ.ꢀ1 µF to ꢀ.1 µF disc or chip  
ceramic capacitors. Low ESR 1 µF to 1ꢀ µF tantalum or electro-  
lytic capacitors should also be applied at VDD to minimize any  
transient disturbance and to filter any low frequency ripple (see  
Figure 23). Users should not apply switching regulators for VDD  
due to the power supply rejection ratio degradation over  
frequency.  
CLK  
CS  
Register Activity  
L
H
P
16th  
H
H
L
No Shift Register Effect  
No Shift Register Effect  
Shift One SDI Bit into the SR  
Transfer SR Data into DAC Register and Update  
the Output  
P
L
P = Positive Edge, X = Don't Care, SR = Shift Register.  
The data setup and data hold times in the Specifications table  
determine the timing requirements. The internal power-on reset  
circuit clears the serial input registers to all ꢀs, and sets the two  
DAC registers to a VBZ (zero code) of 2 V.  
AD5399  
V
V
DD  
DD  
+
C2  
C1  
Software shutdown B13 turns off the internal REF and  
amplifiers. The output is close to zero potential, and the digital  
circuitry remains active such that new data can be written.  
Therefore, the DAC register is refreshed with the new data once  
the shutdown bit is deactivated.  
10µF  
0.1µF  
AGND  
DGND  
Figure 23. Power Supply Bypassing and Grounding Connection  
All digital inputs are ESD protected with a series input resistor  
and parallel Zener, as shown in Figure 21, that apply to digital  
Grounding  
input pins CLK, SDA, and . The basic connection is shown in  
CS  
The DGND and AGND pins of the AD5399 refer to the digital  
and analog ground references. To minimize the digital ground  
bounce, the DGND terminal should be joined remotely at a  
single point to the analog ground plane, as shown in Figure 23.  
Figure 22.  
Rev. D | Page 10 of 12  
 
 
 
 
AD5399  
Shutdown Function  
The AD5399 shutdown function allows both DACs to be  
shutdown simultaneously. However, the Aꢀ and SD bits work in  
tandem, and the Aꢀ logic state must be the same for shutdown  
activation and deactivation (see Table 7).  
For users whose logic signals may be in three-state (random  
levels) during power-up initialization, it is recommended to put  
a pull-up resistor at the pin to disable chip select (Figure 24).  
This avoids inadvertent shutdown as well as the inability to  
deactivate shutdown due to an unknown Aꢀ state. The resistor  
value depends on the digital controllers output impedance.  
CS  
Table 7. Shutdown Activation and Deactivation Sequence.  
Sequence Data-Word  
5V  
V
of Events  
in Binary  
Shutdown Status  
DD  
C1  
10µF  
C2  
0.1µF  
R1  
300kΩ  
V
TP  
AD5399  
1
0X10 XXXX  
XXXX XXXX  
Activate shutdown on both DACs.  
V
OUTA  
CS  
CLK  
SDI  
(D–2048)/4096 × 4V + V  
BZ  
V
(V  
)
BZ REF  
2V  
2
3
1X00 XXXX  
XXXX XXXX  
0X00 XXXX  
XXXX XXXX  
Both DACs remain at shutdown.  
DGND AGND  
Deactivate shutdown. Both DACs  
resume normal operation.  
CS  
Figure 24. Disable for Random Logic Mode  
The A0 bit (MSB) must be in the same state when activating and deactivating  
shutdown.  
Rev. D | Page 11 of 12  
 
 
AD5399  
OUTLINE DIMENSIONS  
3.00 BSC  
10  
6
4.90 BSC  
3.00 BSC  
PIN 1  
1
5
0.50 BSC  
0.95  
0.85  
0.75  
1.10 MAX  
0.80  
0.60  
0.40  
8°  
0°  
0.15  
0.00  
0.27  
0.17  
SEATING  
PLANE  
0.23  
0.08  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187BA  
Figure 25. 10-Lead Mini Small Outline Package [MSOP]  
(RM-10)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Models  
AD5399YRM  
AD5399YRM-REEL7  
Temperature Range  
Package Description  
Package Option  
Branding  
DSB  
DSB  
Ordering Quantity  
–40°C to +105°C  
–40°C to +105°C  
MSOP  
MSOP  
RM-10  
RM-10  
50  
1,000  
©
2004 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C03469–0–6/04(D)  
Rev. D | Page 12 of 12  
 

相关型号:

AD5399YRM

Twos Complement, Dual 12-Bit DAC with Internal REF and Fast Settling Time
ADI

AD5399YRM-REEL7

Twos Complement, Dual 12-Bit DAC with Internal REF and Fast Settling Time
ADI

AD5399YRMZ

Twos Complement, Dual 12-Bit DAC with Internal REF and Fast Settling Time
ADI

AD539J

Wideband Dual-Channel Linear Multiplier/Divider
ADI

AD539JCHIP

Wideband Dual-Channel Linear Multiplier/Divider
ADI

AD539JCHIPS

AD539JCHIPS
ADI

AD539JD

Wideband Dual-Channel Linear Multiplier/Divider
ADI

AD539JDZ

Wideband Dual-Channel Linear Multiplier/Divider
ADI

AD539JN

Wideband Dual-Channel Linear Multiplier/Divider
ADI

AD539JNZ

Wideband Dual-Channel Linear Multiplier/Divider
ADI

AD539K

Wideband Dual-Channel Linear Multiplier/Divider
ADI

AD539KD

Wideband Dual-Channel Linear Multiplier/Divider
ADI