AD5410ACPZ-REEL7 [ADI]

Single-Channel, 12-Bit, Serial Input, 4 mA to 20 mA, Current Source DAC, HART Connectivity;
AD5410ACPZ-REEL7
型号: AD5410ACPZ-REEL7
厂家: ADI    ADI
描述:

Single-Channel, 12-Bit, Serial Input, 4 mA to 20 mA, Current Source DAC, HART Connectivity

转换器
文件: 总30页 (文件大小:896K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Single-Channel, 12-/16-Bit, Serial Input, 4 mA to  
20 mA, Current Source DAC, HART Connectivity  
Data Sheet  
AD5410/AD5420  
FEATURES  
GENERAL DESCRIPTION  
12-/16-bit resolution and monotonicity  
The AD5410/AD5420 are low cost, precision, fully integrated  
Current output ranges: 4 mA to 20 mA, 0 mA to 20 mA, or  
0 mA to 24 mA  
0.01% FSR typical total unadjusted error (TUE)  
3 ppm/°C typical output drift  
Flexible serial digital interface  
12-/16-bit converters offering a programmable current source  
output designed to meet the requirements of industrial process  
control applications. The output current range is programmable  
at 4 mA to 20 mA, 0 mA to 20 mA, or an overrange function of  
0 mA to 24 mA. The output is open-circuit protected. The device  
operates with a power supply (AVDD) range from 10.8 V to  
60 V. Output loop compliance is 0 V to AVDD − 2.5 V.  
On-chip output fault detection  
On-chip reference (10 ppm/°C maximum)  
Feedback/monitoring of output current  
Asynchronous clear function  
The flexible serial interface is SPI, MICROWIRE™, QSPI™, and  
DSP compatible and can be operated in 3-wire mode to mini-  
mize the digital isolation required in isolated applications.  
Power supply (AVDD) range  
10.8 V to 40 V; AD5410AREZ/AD5420AREZ  
10.8 V to 60 V; AD5410ACPZ/AD5420ACPZ  
Output loop compliance to AVDD − 2.5 V  
Temperature range: −40°C to +85°C  
24-lead TSSOP and 40-lead LFCSP packages  
The device also includes a power-on reset function, ensuring  
that the device powers up in a known state, and an asynchronous  
CLEAR pin that sets the output to the low end of the selected  
current range.  
The total unadjusted error is typically 0.01% FSR.  
APPLICATIONS  
COMPANION PRODUCTS  
Process control  
Actuator control  
PLC  
HART Modem: AD5700, AD5700-1  
HART network connectivity  
FUNCTIONAL BLOCK DIAGRAM  
DV  
CC  
SELECT  
DV  
CAP1  
CAP2  
AV  
DD  
CC  
R3  
SENSE  
AD5410/AD5420  
R2  
R3  
CLEAR  
BOOST  
LATCH  
SCLK  
SDIN  
I
INPUT SHIFT  
OUT  
12/16  
REGISTER  
AND CONTROL  
LOGIC  
12-/16-BIT  
DAC  
FAULT  
SDO  
POWER-  
ON  
RESET  
R
SET  
VREF  
R
SET  
REFOUT  
REFIN  
GND  
Figure 1.  
Rev. J  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2009–2017 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
 
AD5410/AD5420  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
AD5410/AD5420 Features ............................................................ 22  
Fault Alert.................................................................................... 22  
Asynchronous Clear (CLEAR)................................................. 22  
Internal Reference ...................................................................... 22  
External Current Setting Resistor ............................................ 22  
Digital Power Supply.................................................................. 22  
External Boost Function ........................................................... 22  
HART Communication............................................................. 23  
Digital Slew Rate Control.......................................................... 23  
IOUT Filtering Capacitors............................................................ 25  
Feedback/Monitoring of Output Current............................... 25  
Applications Information.............................................................. 27  
Driving Inductive Loads............................................................ 27  
Transient Voltage Protection .................................................... 27  
Layout Guidelines....................................................................... 27  
Galvanically Isolated Interface ................................................. 27  
Microprocessor Interfacing....................................................... 28  
Thermal and Supply Considerations....................................... 28  
Industrial, HART Compatible Analog Output Application. 29  
Outline Dimensions....................................................................... 30  
Ordering Guide .......................................................................... 30  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Companion Products....................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 3  
Specifications..................................................................................... 4  
AC Performance Characteristics................................................ 6  
Timing Characteristics ................................................................ 6  
Absolute Maximum Ratings............................................................ 8  
ESD Caution.................................................................................. 8  
Pin Configurations and Function Descriptions ........................... 9  
Typical Performance Characteristics ........................................... 11  
Terminology .................................................................................... 16  
Theory of Operation ...................................................................... 17  
Architecture................................................................................. 17  
Serial Interface ............................................................................ 17  
Power-On State ........................................................................... 20  
Transfer Function ....................................................................... 20  
Data Register............................................................................... 20  
Control Register.......................................................................... 20  
Reset Register.............................................................................. 21  
Status Register............................................................................. 21  
Rev. J | Page 2 of 30  
Data Sheet  
AD5410/AD5420  
REVISION HISTORY  
11/2017—Rev. I to Rev. J  
11/2011—Rev. B to Rev. C  
Changes to Figure 6...........................................................................9  
Updated Outline Dimensions........................................................30  
Changes to Ordering Guide...........................................................30  
Changes to Table 10 ........................................................................18  
2/2010—Rev. A to Rev. B  
Changes to Figure 46 .....................................................................23  
4/2017—Rev. H to Rev. I  
Changes to Table 4 ............................................................................8  
Changes to Figure 5 and Figure 6....................................................9  
8/2009—Rev. 0 to Rev. A  
Changes to Features and General Description .............................1  
Changes to Table 1 ............................................................................3  
Changes to Table 2 ............................................................................5  
Changes to Introduction to Table 4 and to Table 4 ......................7  
Added Figure 6, Changes to Figure 5 and Table 5 ........................8  
Added Feedback/Monitoring of Output Current Section,  
Including Figure 45 to Figure 47; Renumbered Subsequent  
Figures ..............................................................................................23  
Changes to Thermal and Supply Considerations Section and  
Table 21 .............................................................................................26  
Updated Outline Dimensions........................................................28  
Changes to Ordering Guide...........................................................28  
4/2015—Rev. G to Rev. H  
Changes to Table 3 ............................................................................6  
Changes to Table 5 ............................................................................9  
10/2014—Rev. F to Rev. G  
Changes to Power-On State Section .............................................20  
10/2013—Rev. E to Rev. F  
Moved Revision History...................................................................3  
Changes to Figure 51 ......................................................................27  
Changes to Figure 55 ......................................................................29  
3/2009—Revision 0: Initial Version  
3/2013—Rev. D to Rev. E  
Changes to Table 4 ............................................................................7  
Added Figure 40, Renumbered Sequentially...............................19  
Changes to Table 10 ........................................................................20  
Changes to Thermal and Supply Considerations Section  
and Table 21 .....................................................................................27  
Updated Outline Dimensions........................................................29  
5/2012—Rev. C to Rev. D  
Reorganized Layout ...........................................................Universal  
Changes to Product Title..................................................................1  
Added Companion Products Section; Changes to Features  
Section and Applications Section....................................................1  
Changes to Table 5 ............................................................................9  
Change to Figure 8 ..........................................................................11  
Added HART Communication Section and Figure 41,  
Renumbered Sequentially ..............................................................21  
Changes to Industrial, HART Compatible Analog Output  
Application Section and Figure 54................................................27  
Rev. J | Page 3 of 30  
 
AD5410/AD5420  
SPECIFICATIONS  
Data Sheet  
AVDD = 10.8 V to 26.4 V, GND = 0 V, REFIN = 5 V external; DVCC = 2.7 V to 5.5 V, RLOAD = 300 Ω; all specifications TMIN to TMAX  
,
unless otherwise noted.  
Table 1.  
Parameter1  
Min  
0
0
Typ  
Max  
24  
20  
Unit  
mA  
mA  
mA  
Test Conditions/Comments  
OUTPUT CURRENT RANGES  
4
20  
ACCURACY, INTERNAL RSET  
Resolution  
16  
Bits  
AD5420  
12  
Bits  
AD5410  
Total Unadjusted Error (TUE)  
−0.3  
−0.13  
−0.5  
−0.3  
−0.024  
−0.032  
−1  
+0.3  
+0.13  
+0.5  
% FSR  
% FSR  
% FSR  
% FSR  
% FSR  
% FSR  
LSB  
% FSR  
% FSR  
ppm FSR/°C  
% FSR  
% FSR  
AD5420  
AD5420, TA = 25°C  
AD5410  
AD5410, TA = 25°C  
AD5420  
AD5410  
0.08  
0.15  
+0.3  
Relative Accuracy (INL)2  
+0.024  
+0.032  
+1  
+0.27  
+0.12  
Differential Nonlinearity (DNL)  
Offset Error  
Guaranteed monotonic  
−0.27  
−0.12  
0.08  
16  
TA = 25°C  
Offset Error Temperature Coefficient (TC)3  
Gain Error  
−0.18  
−0.03  
−0.22  
−0.06  
+0.18  
0.006 +0.03  
+0.22  
0.012 +0.06  
10  
AD5420  
AD5420, TA = 25°C  
AD5410  
AD5410, TA = 25°C  
Gain Error Temperature Coefficient (TC)3  
Full-Scale Error  
ppm FSR/°C  
% FSR  
% FSR  
−0.2  
−0.1  
+0.2  
+0.1  
0.08  
12  
TA = 25°C  
Full-Scale Error Temperature Coefficient (TC)3  
ACCURACY, EXTERNAL RSET  
Resolution  
ppm FSR/°C  
Assumes an ideal 15 kΩ resistor  
AD5420  
16  
Bits  
12  
Bits  
AD5410  
Total Unadjusted Error (TUE)  
−0.15  
−0.06  
−0.3  
−0.1  
−0.012  
−0.032  
−1  
+0.15  
+0.06  
+0.3  
% FSR  
% FSR  
% FSR  
% FSR  
% FSR  
% FSR  
LSB  
% FSR  
% FSR  
ppm FSR/°C  
% FSR  
% FSR  
ppm FSR/°C  
% FSR  
% FSR  
ppm FSR/°C  
AD5420  
AD5420, TA = 25°C  
AD5410  
AD5410, TA = 25°C  
0.01  
0.02  
+0.1  
Relative Accuracy (INL)2  
+0.012  
+0.032  
+1  
AD5420  
AD5410  
Guaranteed monotonic  
Differential Nonlinearity (DNL)  
Offset Error  
−0.1  
−0.03  
+0.1  
0.006 +0.03  
TA = 25°C  
TA = 25°C  
TA = 25°C  
Offset Error Temperature Coefficient (TC)3  
Gain Error  
3
−0.08  
−0.05  
+0.08  
0.003 +0.05  
4
Gain Error Temperature Coefficient (TC)3  
Full-Scale Error  
−0.15  
−0.06  
+0.15  
+0.06  
0.01  
7
Full-Scale Error Temperature Coefficient (TC)3  
OUTPUT CHARACTERISTICS3  
Current Loop Compliance Voltage  
Output Current Drift vs. Time  
0
AVDD − 2.5  
V
50  
20  
ppm FSR  
ppm FSR  
Ω
mH  
µA/V  
Internal RSET, drift after 1000 hours at 125°C  
External RSET, drift after 1000 hours at 125°C  
Resistive Load  
Inductive Load  
DC Power Supply Rejection Ratio (PSRR)  
1200  
1
50  
TA = 25°C  
Rev. J | Page 4 of 30  
 
Data Sheet  
AD5410/AD5420  
Parameter1  
Min  
Typ  
50  
Max  
Unit  
MΩ  
Test Conditions/Comments  
Output Impedance  
Output Current Leakage  
R3 Resistor Value  
60  
40  
pA  
Ω
Output disabled  
TA = 25°C  
36  
44  
R3 Resistor Temperature Coefficient (TC)  
IBIAS Current  
IBIAS Current Temperature Coefficient (TC)  
REFERENCE INPUT/OUTPUT  
Reference Input3  
30  
444  
30  
ppm/°C  
µA  
ppm/°C  
399  
489  
Reference Input Voltage  
DC Input Impedance  
Reference Output  
Output Voltage  
Reference TC3, 4  
Output Noise (0.1 Hz to 10 Hz)3  
Noise Spectral Density3  
Output Voltage Drift vs. Time3  
Capacitive Load3  
4.95  
25  
5
30  
5.05  
V
kΩ  
For specified performance  
TA = 25°C  
4.995  
5.000  
1.8  
18  
5.005  
10  
V
ppm/°C  
µV p-p  
nV/√Hz  
ppm  
nF  
100  
50  
At 10 kHz  
Drift after 1000 hours, TA = 125°C  
600  
5
Load Current3  
mA  
Short-Circuit Current3  
Load Regulation3  
7
mA  
95  
ppm/mA  
DIGITAL INPUTS3  
JEDEC compliant  
Input High Voltage, VIH  
Input Low Voltage, VIL  
Input Current  
2
V
V
µA  
pF  
0.8  
+1  
−1  
Per pin  
Per pin  
Pin Capacitance  
10  
DIGITAL OUTPUTS3  
SDO  
Output Low Voltage, VOL  
Output High Voltage, VOH  
High Impedance Leakage Current  
High Impedance Output Capacitance  
FAULT  
0.4  
+1  
V
V
µA  
pF  
Sinking 200 µA  
Sourcing 200 µA  
DVCC − 0.5  
−1  
5
Output Low Voltage, VOL  
Output Low Voltage, VOL  
Output High Voltage, VOH  
POWER REQUIREMENTS  
AVDD  
0.4  
V
V
V
10 kΩ pull-up resistor to DVCC  
2.5 mA load current  
10 kΩ pull-up resistor to DVCC  
0.6  
3.6  
10.8  
10.8  
40  
60  
V
V
TSSOP package  
LFCSP package  
DVCC  
Input Voltage  
Output Voltage  
Output Load Current3  
Short-Circuit Current3  
AIDD  
2.7  
5.5  
V
V
Internal supply disabled  
DVCC can be overdriven up to 5.5 V  
4.5  
5
mA  
mA  
mA  
mA  
mA  
mW  
mW  
20  
3
4
1
Output disabled  
Output enabled  
VIH = DVCC, VIL = GND  
AVDD = 40 V, IOUT = 0 mA  
AVDD = 15 V, IOUT = 0 mA  
DICC  
Power Dissipation  
144  
50  
1 Temperature range: −40°C to +85°C; typical at +25°C.  
2 For 0 mA to 20 mA and 0 mA to 24 mA ranges, INL is measured from Code 256 for the AD5420 and Code 16 for the AD5410.  
3 Guaranteed by design and characterization but not production tested.  
4 The on-chip reference is production trimmed and tested at 25°C and 85°C. It is characterized from −40°C to +85°C.  
Rev. J | Page 5 of 30  
 
 
 
AD5410/AD5420  
Data Sheet  
AC PERFORMANCE CHARACTERISTICS  
AVDD = 10.8 V to 26.4 V, GND = 0 V, REFIN = 5 V external; DVCC = 2.7 V to 5.5 V, RLOAD = 300 Ω; all specifications TMIN to TMAX, unless  
otherwise noted.  
Table 2.  
Parameter1  
Min Typ Max Unit Test Conditions/Comments  
DYNAMIC PERFORMANCE  
Output Current Settling Time2  
10  
40  
−75  
µs  
µs  
dB  
16 mA step, to 0.1% FSR  
16 mA step, to 0.1% FSR, L = 1 mH  
200 mV, 50 Hz/60 Hz sine wave superimposed on power supply voltage  
AC PSRR  
1 Guaranteed by design and characterization; not production tested.  
2 Digital slew rate control feature disabled and CAP1 = CAP2 = open circuit.  
TIMING CHARACTERISTICS  
AVDD = 10.8 V to 26.4 V, GND = 0 V, REFIN = 5 V external; DVCC = 2.7 V to 5.5 V, RLOAD = 300 Ω; all specifications TMIN to TMAX, unless  
otherwise noted.  
Table 3.  
Parameter1, 2, 3  
Limit at TMIN, TMAX  
Unit  
Description  
WRITE MODE  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
33  
13  
13  
13  
5
5
5
40  
20  
5
ns min  
ns min  
ns min  
ns min  
µs min  
ns min  
ns min  
ns min  
ns min  
µs max  
SCLK cycle time  
SCLK low time  
SCLK high time  
LATCH delay time  
LATCH high time  
Data setup time  
Data hold time  
LATCH low time  
CLEAR pulse width  
CLEAR activation time  
t9  
t10  
READBACK MODE  
t11  
t12  
t13  
t14  
t15  
t16  
t17  
t18  
90  
40  
40  
13  
40  
5
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns max  
ns max  
SCLK cycle time  
SCLK low time  
SCLK high time  
LATCH delay time  
LATCH high time  
Data setup time  
Data hold time  
LATCH low time  
5
40  
35  
35  
t19  
t20  
Serial output delay time (CL SDO = 50 pF)4  
LATCH rising edge to SDO tristate  
DAISY-CHAIN MODE  
t21  
t22  
t23  
t24  
t25  
t26  
t27  
t28  
t29  
90  
40  
40  
13  
40  
5
5
40  
35  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns max  
SCLK cycle time  
SCLK low time  
SCLK high time  
LATCH delay time  
LATCH high time  
Data setup time  
Data hold time  
LATCH low time  
Serial output delay time (CL SDO = 50 pF)4  
1 Guaranteed by characterization but not production tested.  
2 All input signals are specified with tR = tF = 5 ns (10% to 90% of DVCC) and timed from a voltage level of 1.2 V.  
3 See Figure 2, Figure 3, and Figure 4.  
4 CLSDO = capacitive load on SDO output.  
Rev. J | Page 6 of 30  
 
 
Data Sheet  
AD5410/AD5420  
t1  
SCLK  
1
2
24  
t2  
t3  
t4  
t5  
LATCH  
t7  
t8  
DB0  
t6  
SDIN  
DB23  
t9  
CLEAR  
t10  
I
OUT  
Figure 2. Write Mode Timing Diagram  
t11  
2
SCLK  
1
9
23  
1
2
24  
22  
24  
8
t13  
t12  
t14  
t15  
LATCH  
t18  
t17  
t16  
SDIN  
SDO  
DB23  
DB0  
DB23  
X
DB0  
NOP CONDITION  
INPUT WORD SPECIFIES  
REGISTER TO BE READ  
t20  
t19  
X
X
X
DB15  
DB0  
UNDEFINED DATA  
FIRST 8 BITS ARE  
DON’T CARE BITS  
SELECTED REGISTER  
DATA CLOCKED OUT  
Figure 3. Readback Mode Timing Diagram  
t21  
26  
48  
25  
SCLK  
1
2
24  
t22  
t23  
t24  
t25  
LATCH  
SDIN  
t27  
t28  
t26  
DB23  
DB0  
DB23  
DB0  
INPUT WORD FOR DAC N  
UNDEFINED  
INPUT WORD FOR DAC N – 1  
t29  
DB23  
DB0  
DB23  
SDO  
DB0  
INPUT WORD FOR DAC N  
Figure 4. Daisy-Chain Mode Timing Diagram  
Rev. J | Page 7 of 30  
 
 
 
AD5410/AD5420  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted. Transient currents of up to  
80 mA do not cause SCR latch-up.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Table 4.  
Parameter  
Rating  
AVDD to GND  
DVCC to GND  
−0.3 V to +60 V  
−0.3 V to +7 V  
Digital Inputs to GND  
−0.3 V to DVCC + 0.3 V or +7 V  
(whichever is less)  
Digital Outputs to GND  
−0.3 V to DVCC + 0.3 V or +7 V  
(whichever is less)  
ESD CAUTION  
REFIN, REFOUT to GND  
IOUT to GND  
−0.3 V to +7 V  
−0.3 V to AVDD  
Operating Temperature Range  
Industrial  
−40°C to +85°C1  
−65°C to +150°C  
125°C  
Storage Temperature Range  
Junction Temperature (TJ max)  
24-Lead TSSOP_EP Package  
Thermal Impedance, θJA  
Thermal Impedance, θJC  
40-Lead LFCSP Package  
Thermal Impedance, θJA  
Thermal Impedance, θJC  
Power Dissipation  
35°C/W2  
9°C/W  
33°C/W2  
4°C/W  
(TJ max − TA)/θJA  
JEDEC industry standard  
J-STD-020  
Lead Temperature  
Soldering  
1 Power dissipated on chip must be derated to keep junction temperature  
below 125°C. The assumption is that the maximum power dissipation  
condition is sourcing 24 mA into ground from AVDD with a 4 mA on-chip  
current.  
2 Thermal impedance simulated values are based on JEDEC 2S2P thermal test  
board with thermal vias. Ref: JEDEC JESD51 documents.  
Rev. J | Page 8 of 30  
 
 
Data Sheet  
AD5410/AD5420  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
GND  
AV  
DD  
DV  
NC  
CC  
FAULT  
CAP2  
CAP1  
BOOST  
NC  
FAULT  
GND  
1
2
3
4
5
6
7
8
9
30 NC  
29 CAP2  
GND  
GND  
28  
CAP1  
27 BOOST  
AD5410/  
AD5420  
GND  
AD5410/AD5420  
CLEAR  
LATCH  
SCLK  
SDIN  
I
OUT  
I
CLEAR  
LATCH  
SCLK  
SDIN  
26  
25  
OUT  
SENSE  
TOP VIEW  
R3  
TOP VIEW  
R3  
(Not to Scale)  
SENSE  
24 NC  
(Not to Scale)  
DV  
NC  
NC  
SELECT  
23  
22  
21  
CC  
NC  
DV  
SDO  
9
SELECT  
NC 10  
CC  
10  
11  
12  
REFIN  
REFOUT  
SDO  
GND  
GND  
R
SET  
NOTES  
1. NC = NO CONNECT.  
NOTES  
1. NC = NO CONNECT.  
2. THE EXPOSED PAD MUST BE CONNECTED TO  
THE GROUND REFERENCE.  
2. THE EXPOSED PAD MUST BE CONNECTED TO  
THE GROUND REFERENCE.  
Figure 5. TSSOP Pin Configuration  
Figure 6. LFCSP Pin Configuration  
Table 5. Pin Function Descriptions  
TSSOP Pin No. LFCSP Pin No.  
Mnemonic  
Description  
1, 4, 5, 11, 12  
2
3
3, 4, 12 to 15, 37 GND  
Ground Reference Pin. These pins must be connected to ground.  
Digital Supply Pin. Voltage ranges from 2.7 V to 5.5 V.  
Fault Alert. This pin is asserted low when an open circuit is detected between IOUT and  
GND or an overtemperature is detected. The FAULT pin is an open-drain output and  
must be connected to DVCC through a pull-up resistor (typically 10 kΩ).  
39  
2
DVCC  
FAULT  
6
7
8
5
6
7
CLEAR  
LATCH  
SCLK  
Active High Input. Asserting this pin sets the output current to the zero-scale value,  
which is either 0 mA or 4 mA, depending on the output range programmed, that is, 0 mA  
to 20 mA, 0 mA to 24 mA, or 4 mA to 20 mA.  
Positive Edge Sensitive Latch. A rising edge parallel loads the input shift register data  
into the relevant register. In the case of the data register, the output current is also  
updated.  
Serial Clock Input. Data is clocked into the input shift register on the rising edge of  
SCLK. This operates at clock speeds of up to 30 MHz.  
9
10  
8
9
SDIN  
SDO  
Serial Data Input. Data must be valid on the rising edge of SCLK.  
Serial Data Output. This pin is used to clock data from the device in daisy-chain or  
readback mode. Data is clocked out on the falling edge of SCLK. See Figure 3 and  
Figure 4.  
13  
14  
16  
17  
RSET  
An external, precision, low drift 15 kΩ current setting resistor can be connected to this  
pin to improve the overall performance of the device. See the Specifications and  
AD5410/AD5420 Features sections.  
Internal Reference Voltage Output. VREFOUT = 5 V 5 mV at TA = 25°C. Typical temperature  
drift is 1.8 ppm/°C.  
REFOUT  
REFIN  
DVCC  
SELECT  
15  
16  
18  
23  
External Reference Voltage Input. VREFIN = 5 V 50 mV for specified performance.  
This pin, when connected to GND, disables the internal supply, and an external supply  
must be connected to the DVCC pin. Leave this pin unconnected to enable the internal  
supply. In this case, it is recommended to connect a 0.1 μF capacitor between DVCC and  
GND. See the AD5410/AD5420 Features section.  
17, 23  
1, 10, 11, 19 to  
22, 24, 30 to 35,  
38, 40  
NC  
Do not connect to these pins.  
Rev. J | Page 9 of 30  
 
AD5410/AD5420  
Data Sheet  
TSSOP Pin No. LFCSP Pin No.  
Mnemonic  
Description  
18  
25  
R3SENSE  
The voltage measured between this pin and the BOOST pin is directly proportional to  
the output current and can be used as a monitor/feedback feature. This should be used  
as a voltage sense output only; current should not be sourced from this pin. See the  
AD5410/AD5420 Features section.  
19  
20  
26  
27  
IOUT  
BOOST  
Current Output Pin.  
Optional External Transistor Connection. Connecting an external transistor reduces the  
power dissipated in the AD5410/AD5420. See the AD5410/AD5420 Features section.  
21  
22  
28  
29  
CAP1  
CAP2  
AVDD  
Connection for Optional Output Filtering Capacitor. See the AD5410/AD5420 Features  
section.  
Connection for Optional Output Filtering Capacitor. See the AD5410/AD5420 Features  
section. Also HART Input Connection, see Device Features Section.  
24  
36  
Positive Analog Supply Pin. Voltage ranges from 10.8 V to 40 V.  
25 (EPAD)  
41 (EPAD)  
Exposed pad The exposed pad must be connected to the ground reference.  
Rev. J | Page 10 of 30  
Data Sheet  
AD5410/AD5420  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.004  
0.002  
0
AV  
= 24V  
EXTERNAL R  
DD  
SET  
0.004  
0mA TO 24mA RANGE  
INTERNAL R  
SET  
EXTERNAL R  
, BOOST TRANSISTOR  
, BOOST TRANSISTOR  
SET  
0.002  
0
INTERNAL R  
SET  
–0.002  
–0.004  
–0.006  
–0.008  
–0.010  
–0.002  
–0.004  
–0.006  
–0.008  
–0.010  
AV = 2.4V  
DD  
T
= 25°C  
A
R
= 250  
LOAD  
0
10,000  
20,000  
30,000  
CODE  
40,000  
50,000  
60,000  
60,000  
60,000  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
Figure 7. Integral Nonlinearity Error vs. Code  
Figure 10. Integral Nonlinearity Error vs. Temperature, Internal RSET  
1.0  
0.8  
0.003  
AV = 24V  
DD  
AV  
= 24V  
DD  
0mA TO 24mA RANGE  
T
R
= 25°C  
A
= 250  
LOAD  
0.002  
0.001  
0
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.001  
–0.002  
–0.003  
EXTERNAL R  
INTERNAL R  
EXTERNAL R  
INTERNAL R  
SET  
SET  
, BOOST TRANSISTOR  
SET  
, BOOST TRANSISTOR  
SET  
0
10,000  
20,000  
30,000  
CODE  
40,000  
50,000  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
Figure 8. Differential Nonlinearity Error vs. Code  
Figure 11. Integral Nonlinearity Error vs. Temperature, External RSET  
0.05  
0.03  
1.0  
AV  
= 24V  
DD  
ALL RANGES  
INTERNAL AND EXTERNAL R  
0.8  
0.6  
SET  
0.01  
–0.01  
–0.03  
–0.05  
–0.07  
–0.09  
–0.11  
–0.13  
–0.15  
0.4  
0.2  
0
AV  
= 24V  
DD  
= 25°C  
T
A
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
R
= 250  
LOAD  
EXTERNAL R  
SET  
INTERNAL R  
SET  
EXTERNAL R  
, BOOST TRANSISTOR  
, BOOST TRANSISTOR  
SET  
INTERNAL R  
SET  
0
10,000 20,000  
30,000  
CODE  
40,000  
50,000  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
Figure 9. Total Unadjusted Error vs. Code  
Figure 12. Differential Nonlinearity Error vs. Temperature  
Rev. J | Page 11 of 30  
 
 
 
 
AD5410/AD5420  
Data Sheet  
0.10  
0.015  
0.010  
0.005  
0
T
= 25°C  
A
0mA TO 24mA RANGE  
0.05  
0
AV  
= 24V  
DD  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
4mA TO 20mA INTERNAL R  
0mA TO 20mA INTERNAL R  
0mA TO 24mA INTERNAL R  
4mA TO 20mA EXTERNAL R  
0mA TO 20mA EXTERNAL R  
0mA TO 24mA EXTERNAL R  
SET  
SET  
SET  
–0.005  
–0.010  
–0.015  
SET  
SET  
SET  
10  
15  
20  
25  
DD  
30  
35  
40  
40  
40  
–40  
–20  
0
20  
40  
60  
80  
AV  
(V)  
TEMPERATURE (°C)  
Figure 16. Integral Nonlinearity Error vs. AVDD, External RSET  
Figure 13. Total Unadjusted Error vs. Temperature  
0.020  
0.10  
0.05  
0.015  
0.010  
0.005  
0
AV  
= 24V  
DD  
T = 25°C  
A
0mA TO 24mA RANGE  
0
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.005  
–0.010  
–0.015  
–0.020  
4mA TO 20mA INTERNAL R  
0mA TO 20mA INTERNAL R  
0mA TO 24mA INTERNAL R  
4mA TO 20mA EXTERNAL R  
0mA TO 20mA EXTERNAL R  
0mA TO 24mA EXTERNAL R  
SET  
SET  
SET  
SET  
SET  
SET  
10  
15  
20  
25  
DD  
30  
35  
–40  
–20  
0
20  
40  
60  
80  
AV  
(V)  
TEMPERATURE (°C)  
Figure 17. Integral Nonlinearity Error vs. AVDD, Internal RSET  
Figure 14. Offset Error vs. Temperature  
1.0  
0.06  
0.04  
T
= 25°C  
0mA TO 24mA RANGE  
0.8  
0.6  
A
AV  
= 24V  
DD  
0.02  
0.4  
0
0.2  
0
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
4mA TO 20mA INTERNAL R  
0mA TO 20mA INTERNAL R  
0mA TO 24mA INTERNAL R  
4mA TO 20mA EXTERNAL R  
0mA TO 20mA EXTERNAL R  
0mA TO 24mA EXTERNAL R  
SET  
SET  
SET  
SET  
SET  
SET  
10  
15  
20  
25  
AV (V)  
30  
35  
–40  
–20  
0
20  
40  
60  
80  
DD  
TEMPERATURE (°C)  
Figure 18. Differential Nonlinearity Error vs. AVDD, External RSET  
Figure 15. Gain Error vs. Temperature  
Rev. J | Page 12 of 30  
 
Data Sheet  
AD5410/AD5420  
1.0  
0.8  
2.5  
2.0  
1.5  
1.0  
0.5  
0
AV  
= 15V  
DD  
= 24mA  
I
OUT  
T
= 25°C  
A
R
= 500  
LOAD  
0.6  
0.4  
0mA TO 24mA RANGE  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
10  
15  
20  
25  
DD  
30  
35  
40  
–40  
–20  
0
20  
40  
60  
80  
AV  
(V)  
TEMPERATURE (°C)  
Figure 19. Differential Nonlinearity Error vs. AVDD, Internal RSET  
Figure 22. Compliance Voltage Headroom vs. Temperature  
0.025  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
T
= 25°C  
A
AV  
= 24V  
DD  
0.020  
0.015  
0.010  
0.005  
0
0mA TO 24mA RANGE  
T
R
= 25°C  
= 250  
A
LOAD  
–0.005  
–0.010  
–0.015  
10  
15  
20  
25  
DD  
30  
35  
40  
0
100  
200  
300  
400  
500  
600  
AV  
(V)  
TIME (µs)  
Figure 20. Total Unadjusted Error vs. AVDD, External RSET  
Figure 23. Output Current vs. Time on Power-Up  
0.05  
20  
10  
0.03  
0.01  
AV  
= 24V  
= 25°C  
DD  
0
–0.01  
–0.03  
–0.05  
–0.07  
–0.09  
–0.11  
–0.13  
–0.15  
T
A
R
= 250  
LOAD  
–10  
–20  
–30  
–40  
–50  
T
= 25°C  
A
0mA TO 24mA RANGE  
10  
15  
20  
25  
AV (V)  
30  
35  
40  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
DD  
TIME (µs)  
Figure 21. Total Unadjusted Error vs. AVDD, Internal RSET  
Figure 24. Output Current vs. Time on Output Enable  
Rev. J | Page 13 of 30  
AD5410/AD5420  
Data Sheet  
900  
T
= 25°C  
800  
700  
600  
500  
400  
300  
200  
100  
0
A
AV  
DD  
DV  
= 5V  
CC  
3
REFERENCE OUTPUT  
DV  
= 3V  
2.5  
CC  
1
CH1 2.00V  
CH3 5.00V  
M200µs  
CH3  
2.1V  
0
0.5  
1.0  
1.5  
2.0  
3.0  
3.5  
4.0  
4.5  
5.0  
LOGIC VOLTAGE (V)  
Figure 28. Reference Turn-on Transient  
Figure 25. DICC vs. Logic Input Voltage  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
T
OUT  
= 25°C  
A
I
= 0mA  
1
10  
15  
20  
25  
AV (V)  
30  
35  
40  
CH1 2µV  
M2.00s  
LINE  
1.8V  
DD  
Figure 29. Reference Noise (0.1 Hz to 10 Hz Bandwidth)  
Figure 26. AIDD vs. AVDD  
9
8
7
6
5
4
3
2
1
0
T
= 25°C  
A
1
CH1 20µV  
M2.00s  
LINE  
0V  
–21 –19 –17 –15 –13 –11 –9  
–7  
–5  
–3  
–1  
1
LOAD CURRENT (mA)  
Figure 30. Reference Noise (100 kHz Bandwidth)  
Figure 27. DVCC Output Voltage vs. Load Current  
Rev. J | Page 14 of 30  
 
Data Sheet  
AD5410/AD5420  
70  
60  
50  
40  
30  
20  
5.0005  
5.0000  
4.9995  
4.9990  
4.9985  
4.9980  
4.9975  
4.9970  
4.9965  
4.9960  
4.9955  
T
AV  
= 25°C  
A
= 24V  
DD  
T
= 25°C  
= 40V  
A
AV  
10  
0
DD  
OUTPUT DISABLED  
–10  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
0
1
2
3
4
5
6
7
8
9
COMPLIANCE VOLTAGE (V)  
LOAD CURRENT (mA)  
Figure 31. Output Leakage Current vs. Compliance Voltage  
Figure 34. Reference Output Voltage vs. Load Current  
5.003  
30  
20  
0x8000 TO 0x7FFF  
0x7FFF TO 0x8000  
50 DEVICES SHOWN  
AV = 24V  
AV  
= 24V  
DD  
= 25°C  
DD  
T
A
5.002  
5.001  
5.000  
4.999  
4.998  
4.997  
R
= 250Ω  
LOAD  
10  
0
–10  
–20  
–30  
–40  
–20  
0
20  
40  
60  
80  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
TIME (µs)  
TEMPERATURE (°C)  
Figure 32. Reference Output Voltage vs. Temperature  
Figure 35. Digital-to-Analog Glitch  
45  
40  
35  
30  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
AV  
= 24V  
DD  
T
AV  
R
= 25°C  
A
= 24V  
DD  
= 300Ω  
LOAD  
0
0
0
1
2
3
4
5
6
7
8
9
10  
–1  
0
1
2
3
4
5
6
7
8
TEMPERATURE COEFFICIENT (ppm/°C)  
TIME (µs)  
Figure 33. Reference Temperature Coefficient Histogram  
Figure 36. 4 mA to 20 mA Output Current Step  
Rev. J | Page 15 of 30  
 
 
AD5410/AD5420  
TERMINOLOGY  
Data Sheet  
Gain Error Temperature Coefficient (TC)  
Relative Accuracy or Integral Nonlinearity (INL)  
This is a measure of the change in gain error with changes in  
temperature. Gain error TC is expressed in ppm FSR/°C.  
For the DAC, relative accuracy, or integral nonlinearity (INL), is  
a measure of the maximum deviation, in % FSR, from a straight  
line passing through the endpoints of the DAC transfer  
function. A typical INL vs. code plot is shown in Figure 7.  
Current Loop Compliance Voltage  
This is the maximum voltage at the IOUT pin for which the  
output current is equal to the programmed value.  
Differential Nonlinearity (DNL)  
Differential nonlinearity (DNL) is the difference between the  
measured change and the ideal 1 LSB change between any two  
adjacent codes. A specified differential nonlinearity of 1 LSB  
maximum ensures monotonicity. This DAC is guaranteed  
monotonic by design. A typical DNL vs. code plot can be seen  
in Figure 8.  
Power Supply Rejection Ratio (PSRR)  
PSRR indicates how the output of the DAC is affected by  
changes in the power supply voltage.  
Voltage Reference Temperature Coefficient (TC)  
Voltage reference TC is a measure of the change in the reference  
output voltage with a change in temperature. The voltage  
reference TC is calculated using the box method, which defines  
the TC as the maximum change in the reference output over a  
given temperature range, expressed in ppm/°C as follows:  
Total Unadjusted Error (TUE)  
Total unadjusted error (TUE) is a measure of the output error  
taking all the various errors into account, namely INL error,  
offset error, gain error, and output drift over supplies and  
temperature. TUE is expressed in % FSR. A typical TUE vs.  
code plot can be seen in Figure 9.  
VREFmax VREFmin  
REFnom ×TempRange  
TC =  
×106  
V
where:  
REFmax is the maximum reference output measured over the  
total temperature range.  
REFmin is the minimum reference output measured over the total  
temperature range.  
REFnom is the nominal reference output voltage, 5 V.  
Monotonicity  
V
A DAC is monotonic if the output either increases or remains  
constant for increasing digital input code. The AD5410/AD5420  
are monotonic over their full operating temperature range.  
V
Full-Scale Error  
V
Full-scale error is a measure of the output error when full-scale  
code is loaded to the data register. Ideally, the output should be  
full-scale − 1 LSB. Full-scale error is expressed as a percentage  
of the full-scale range (% FSR).  
TempRange is the specified temperature range, −40°C to +85°C.  
Reference Load Regulation  
Load regulation is the change in reference output voltage due to  
a specified change in load current. It is expressed in ppm/mA.  
Full-Scale Error Temperature Coefficient (TC)  
This is a measure of the change in full-scale error with changes  
in temperature. Full-scale error TC is expressed in ppm FSR/°C.  
Gain Error  
This is a measure of the span error of the DAC. It is the devia-  
tion in slope of the DAC transfer characteristic from the ideal  
expressed in % FSR. A plot of gain error vs. temperature can be  
seen in Figure 15.  
Rev. J | Page 16 of 30  
 
Data Sheet  
AD5410/AD5420  
THEORY OF OPERATION  
The AD5410/AD5420 are precision digital-to-current loop output  
converters designed to meet the requirements of industrial  
process control applications. They provide a high precision,  
fully integrated, low cost single-chip solution for generating  
current loop outputs. The current ranges available are 0 mA  
to 20 mA, 0 mA to 24 mA, and 4 mA to 20 mA. The desired  
output configuration is user selectable via the control register.  
SCLK. The input shift register consists of eight address bits and  
16 data bits, as shown in Table 6. The 24-bit word is uncondition-  
ally latched on the rising edge of LATCH. Data continues to be  
clocked in irrespective of the state of LATCH. On the rising edge  
of LATCH, the data that is present in the input shift register is  
latched; that is, the last 24 bits to be clocked in before the rising  
edge of LATCH is the data that is latched. The timing diagram  
for this operation is shown in Figure 2.  
ARCHITECTURE  
Standalone Operation  
The DAC core architecture of the AD5410/AD5420 consists of  
two matched DAC sections. A simplified circuit diagram is shown  
in Figure 37. The four MSBs of the 12-bit or 16-bit data-word  
are decoded to drive 15 switches, E1 to E15. Each of these switches  
connects one of 15 matched resistors to either ground or the  
reference buffer output. The remaining 8/12 bits of the data-  
word drive Switch S0 to Switch S7 or Switch S0 to Switch S11 of an  
8-/12-bit voltage mode R-2R ladder network.  
The serial interface works with both a continuous and noncon-  
tinuous SCLK. A continuous SCLK source can be used only if  
LATCH is taken high after the correct number of data bits has  
been clocked in. In gated clock mode, a burst clock containing  
the exact number of clock cycles must be used, and LATCH  
must be taken high after the final clock to latch the data. The  
first rising edge of SCLK that clocks in the MSB of the data-  
word marks the beginning of the write cycle. Exactly 24 rising  
clock edges must be applied to SCLK before LATCH is brought  
high. If LATCH is brought high before the 24th rising SCLK  
edge, the data written is invalid. If more than 24 rising SCLK  
edges are applied before LATCH is brought high, the input data  
is also invalid.  
V
OUT  
2R  
E1  
2R  
E2  
2R  
E15  
2R  
S0  
2R  
S1  
2R  
2R  
S7/S11  
V
REFIN  
Table 6. Input Shift Register Format  
MSB  
8-/12-BIT R-2R LADDER  
FOUR MSBs DECODED INTO  
15 EQUAL SEGMENTS  
LSB  
Figure 37. DAC Ladder Structure  
DB23 to DB16  
DB15 to DB0  
Address byte  
Data-word  
The voltage output from the DAC core is converted to a current  
(see Figure 38) that is then mirrored to the supply rail so that  
the application simply sees a current source output with respect  
to ground.  
Table 7. Address Byte Functions  
Address Byte  
Function  
00000000  
00000001  
No operation (NOP)  
Data register  
AV  
DD  
00000010  
Readback register value as per read address  
(see Table 8)  
R2  
R3  
01010101  
01010110  
Control register  
Reset register  
T2  
A2  
I
12-/16-BIT  
DAC  
T1  
OUT  
Daisy-Chain Operation  
A1  
For systems that contain several devices, the SDO pin can be used  
to daisy-chain several devices together, as shown in Figure 39.  
This daisy-chain mode can be useful in system diagnostics and  
in reducing the number of serial interface lines. Daisy-chain  
mode is enabled by setting the DCEN bit of the control register.  
The first rising edge of SCLK that clocks in the MSB of the data-  
word marks the beginning of the write cycle. SCLK is continuously  
applied to the input shift register. If more than 24 clock pulses  
are applied, the data ripples out of the input shift register and  
appears on the SDO line. This data, having been clocked out on  
the previous falling SCLK edge, is valid on the rising edge of  
SCLK. By connecting the SDO of the first device to the SDIN  
input of the next device in the chain, a multidevice interface is  
constructed. Each device in the system requires 24 clock pulses.  
R
SET  
Figure 38. Voltage-to-Current Conversion Circuitry  
SERIAL INTERFACE  
The AD5410/AD5420 are controlled over a versatile 3-wire  
serial interface that operates at clock rates of up to 30 MHz. They  
are compatible with SPI, QSPI, MICROWIRE, and DSP  
standards.  
Input Shift Register  
The input shift register is 24 bits wide. Data is loaded into the  
device MSB first as a 24-bit word under the control of a serial  
clock input, SCLK. Data is clocked in on the rising edge of  
Rev. J | Page 17 of 30  
 
 
 
 
 
 
AD5410/AD5420  
Data Sheet  
Therefore, the total number of clock cycles must equal 24 × N,  
where N is the total number of AD5410/AD5420 devices in the  
chain. When the serial transfer to all devices is complete,  
LATCH is taken high. This latches the input data in each device  
in the daisy chain. The serial clock can be a continuous or a  
gated clock.  
Readback Operation  
Readback mode is invoked by setting the address byte and read  
address as shown in Table 9 and Table 8 when writing to the  
input shift register. The next write to the AD5410/AD5420  
should be a NOP command, which clocks out the data from the  
previously addressed register, as shown in Figure 3. By default,  
the SDO pin is disabled. After having addressed the AD5410/  
AD5420 for a read operation, a rising edge on LATCH enables  
the SDO pin in anticipation of data being clocked out. After the  
data has been clocked out on SDO, a rising edge on LATCH  
disables (tristate) the SDO pin once again. To read back the  
data register, for example, the following sequence should be  
implemented:  
A continuous SCLK source can be used only if LATCH is taken  
high after the correct number of clock cycles. In gated clock  
mode, a burst clock containing the exact number of clock cycles  
must be used, and LATCH must be taken high after the final  
clock to latch the data. See Figure 4 for a timing diagram.  
AD5410/  
AD5420*  
CONTROLLER  
DATA OUT  
SDIN  
1. Write 0x020001 to the AD5410/AD5420 input shift  
register. This configures the part for read mode with the  
data register selected.  
SERIAL CLOCK  
CONTROL OUT  
SCLK  
LATCH  
2. Follow this with a second write, a NOP condition, 0x000000.  
During this write, the data from the data register is clocked  
out on the SDO line.  
DATA IN  
SDO  
SDIN  
Table 8. Read Address Decoding  
AD5410/  
AD5420*  
Read Address  
Function  
SCLK  
00  
01  
10  
Read status register  
Read data register  
Read control register  
LATCH  
SDO  
SDIN  
AD5410/  
AD5420*  
SCLK  
LATCH  
SDO  
*ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 39. Daisy Chaining the AD5410/AD5420  
Table 9. Input Shift Register Contents for a Read Operation  
MSB  
LSB  
DB0  
Read address  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16  
DB15 to DB2  
DB1  
0
0
0
0
0
0
1
0
X1  
1 X = don’t care.  
Rev. J | Page 18 of 30  
 
 
 
Data Sheet  
AD5410/AD5420  
POWER-ON  
SOFTWARE RESET  
CONTROL REGISTER WRITE (ONE WRITE COMMAND)  
• SELECT R  
EXTERNAL/INTERNAL  
SET  
• SET THE REQUIRED RANGE  
• CONFIGURE THE SLEW RATE CONTROL (IF REQUIRED)  
• CONFIGURE DAISY CHAIN MODE (IF REQUIRED)  
• ENABLE THE OUTPUT  
CONTROL REGISTER WRITE  
• DISABLE OUTPUT  
DATA REGISTER WRITE  
• WRITE REQUIRED CODE TO DATA REGISTER  
R
CONFIGURATION CHANGE  
RANGE CHANGE  
SET  
Figure 40. Programming Sequence to Write/Enable the Output Correctly  
Rev. J | Page 19 of 30  
 
AD5410/AD5420  
Data Sheet  
POWER-ON STATE  
DATA REGISTER  
Upon power-on of the AD5410/AD5420, the power-on reset  
circuit ensures that all registers are loaded with zero code. As  
such, the output is disabled (tristate). Also upon power-on,  
internal calibration registers are read, and the data is applied to  
internal calibration circuitry. For a reliable read operation, there  
must be sufficient voltage on the AVDD supply when the read event  
is triggered by the DVCC power supply powering up. Powering  
up the DVCC supply after the AVDD supply has reached at least 5 V  
ensures this. If DVCC and AVDD are powered up simultaneously,  
then the supplies should be powered up at a rate greater than,  
typically, 5000 V/sec. If the internal DVCC is enabled, the  
supplies should be powered up at a rate greater than, typically,  
2000 V/sec. If this cannot be achieved, simply issue a reset  
command to the AD5410/AD5420 after power-on. This per-  
forms a power-on reset event, reading the calibration registers  
and ensuring specified operation of the AD5410/AD5420. To  
ensure correct calibration and to allow the internal reference to  
settle to its correct trim value, 40 µs should be allowed after a  
successful power on reset.  
The data register is addressed by setting the address byte of the  
input shift register to 0x01. The data to be written to the data  
register is entered in Position DB15 to Position DB4 for the  
AD5410 and in Position DB15 to Position DB0 for the AD5420,  
as shown in Table 12 and Table 13, respectively.  
CONTROL REGISTER  
The control register is addressed by setting the address byte of  
the input shift register to 0x55. The data to be written to the  
control register is entered in Position DB15 to Position DB0,  
as shown in Table 14. The control register bit functions are  
described in Table 10.  
Table 10. Control Register Bit Functions  
Bit  
Description  
REXT  
Setting this bit selects the external current setting  
resistor. See the AD5410/AD5420 Features section  
for further details. When using an external current  
setting resistor, it is recommended to only set REXT  
when also setting the OUTEN bit. Alternately, REXT  
can be set before the OUTEN bit is set, but the range  
(see Table 11) must be changed on the write in which  
the output is enabled. See Figure 40 for best practice.  
TRANSFER FUNCTION  
For the 0 mA to 20 mA, 0 mA to 24 mA, and 4 mA to 20 mA  
current output ranges, the output current is respectively  
expressed as  
OUTEN  
SR Clock  
SR Step  
Output enable. This bit must be set to enable the  
output.  
Digital slew rate control. See the AD5410/AD5420  
Features section.  
Digital slew rate control. See the AD5410/AD5420  
Features section.  
20 mA  
2N  
IOUT  
IOUT  
IOUT  
=
=
=
× D  
SREN  
DCEN  
Digital slew rate control enable.  
Daisy-chain enable.  
24 mA  
2N  
× D  
R2, R1, R0  
Output range select. See Table 11.  
16 mA  
2N  
× D + 4 mA  
Table 11. Output Range Options  
R2  
R1  
R0  
Output Range Selected  
where:  
1
1
1
0
1
1
1
0
1
4 mA to 20 mA current range  
0 mA to 20 mA current range  
0 mA to 24 mA current range  
D is the decimal equivalent of the code loaded to the DAC.  
N is the bit resolution of the DAC.  
Table 12. Programming the AD5410 Data Register  
MSB  
LSB  
DB0  
X1  
DB15  
DB14  
DB13  
DB12  
DB11  
DB10  
DB9  
DB8  
DB8  
DB7  
DB6  
DB5  
DB4  
DB4  
DB3  
DB2  
DB1  
12-bit data-word  
X1  
X1  
X1  
1 X = don’t care.  
Table 13. Programming the AD5420 Data Register  
MSB  
LSB  
DB0  
DB15  
DB14  
DB13  
DB12  
DB11  
DB10  
DB9  
DB7  
DB6  
DB5  
DB3  
DB2  
DB1  
16-bit data-word  
Table 14. Programming the Control Register  
MSB  
LSB  
DB2 DB1 DB0  
R2 R1 R0  
DB15  
DB14  
DB13 DB12  
REXT OUTEN  
DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4  
SR clock SR step SREN  
DB3  
DCEN  
0
0
Rev. J | Page 20 of 30  
 
 
 
 
 
 
 
 
 
Data Sheet  
AD5410/AD5420  
Table 15. Status Register Bit Functions  
RESET REGISTER  
Bit  
Description  
The reset register is addressed by setting the address byte of the  
input shift register to 0x56. The reset register contains a single  
reset bit at Position DB0, as shown in Table 16. Writing a logic  
high to this bit performs a reset operation, restoring the part to  
its power-on state.  
IOUT Fault  
Slew Active  
This bit is set if a fault is detected on the IOUT pin.  
This bit is set while the output value is slewing  
(slew rate control enabled).  
Overtemp  
This bit is set if the AD5410/AD5420 core  
temperature exceeds approximately 150°C.  
STATUS REGISTER  
The status register is a read-only register. The status register bit  
functionality is shown in Table 15 and Table 17.  
Table 16. Programming the Reset Register  
MSB  
LSB  
DB0  
Reset  
DB15  
DB14  
DB13  
DB12  
DB11  
DB10  
DB9  
DB8  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
Reserved  
Table 17. Decoding the Status Register  
MSB  
LSB  
DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2  
DB1  
DB0  
Reserved IOUT fault Slew active Overtemp  
Rev. J | Page 21 of 30  
 
 
 
 
 
AD5410/AD5420  
Data Sheet  
AD5410/AD5420 FEATURES  
FAULT ALERT  
EXTERNAL CURRENT SETTING RESISTOR  
In Figure 38, RSET is an internal sense resistor as part of the  
voltage-to-current conversion circuitry. The stability of the  
output current over temperature is dependent on the stability of  
the value of RSET. An external precision 15 kΩ low drift resistor  
can be connected from the RSET pin of the AD5410/AD5420 to  
ground; this improves the overall performance of the AD5410/  
AD5420. The external resistor is selected via the control  
register. See Table 14.  
FAULT  
The AD5410/AD5420 are equipped with a  
an open-drain output allowing several AD5410/AD5420  
devices to be connected together to one pull-up resistor for  
pin, which is  
FAULT  
global fault detection. The  
pin is forced active by any  
one of the following fault scenarios:  
The voltage at IOUT attempts to rise above the compliance  
range, due to an open-loop circuit or insufficient power  
supply voltage. The IOUT current is controlled by a PMOS  
transistor and internal amplifier, as shown in Figure 38.  
The internal circuitry that develops the fault output avoids  
using a comparator with window limits because this requires  
DIGITAL POWER SUPPLY  
By default, the DVCC pin accepts a power supply of 2.7 V to  
5.5 V. Alternatively, via the DVCC SELECT pin, an internal 4.5 V  
power supply can be output on the DVCC pin for use as a digital  
power supply for other devices in the system or as a termination  
for pull-up resistors. This facility offers the advantage of not  
having to bring a digital supply across an isolation barrier. The  
internal power supply is enabled by leaving the DVCC SELECT  
pin unconnected. To disable the internal supply, DVCC SELECT  
should be tied to 0 V. DVCC is capable of supplying up to 5 mA  
of current. See Figure 27 for a load regulation graph.  
FAULT  
an actual output error before the  
output becomes  
active. Instead, the signal is generated when the internal  
amplifier in the output stage has less than approximately  
1 V of remaining drive capability (when the gate of the  
output PMOS transistor nearly reaches ground). Thus, the  
FAULT  
output activates slightly before the compliance limit is  
reached. Because the comparison is made within the feed-  
back loop of the output amplifier, the output accuracy is  
maintained by its open-loop gain and an output error does  
EXTERNAL BOOST FUNCTION  
FAULT  
not occur before the  
output becomes active.  
The addition of an external boost transistor, as shown in Figure 41,  
reduces the power dissipated in the AD5410/AD5420 by reducing  
the current flowing in the on-chip output transistor (dividing it  
by the current gain of the external circuit). A discrete NPN  
transistor with a breakdown voltage, BVCEO, greater than 40 V  
can be used.  
If the core temperature of the AD5410/AD5420 exceeds  
approximately 150°C.  
The IOUT fault and overtemp bits of the status register are used  
FAULT  
FAULT  
in conjunction with the  
fault condition caused the  
and Table 15.  
pin to inform the user which  
pin to be asserted. See Table 17  
The external boost capability allows the AD5410/AD5420 to be  
used at the extremes of the supply voltage, load current, and  
temperature range. The boost transistor can also be used to  
reduce the amount of temperature-induced drift in the part.  
This minimizes the temperature-induced drift of the on-chip  
voltage reference, which improves drift and linearity.  
ASYNCHRONOUS CLEAR (CLEAR)  
CLEAR is an active high clear that clears the current output to  
the bottom of its programmed range. It is necessary to maintain  
CLEAR high for a minimum amount of time (see Figure 2) to  
complete the operation. When the CLEAR signal is returned  
low, the output remains at the cleared value. The preclear value  
can be restored by pulsing the LATCH signal low without  
clocking any data. A new value cannot be programmed until the  
CLEAR pin is returned low.  
MJD31C  
OR  
2N3053  
BOOST  
AD5410/  
AD5420  
I
OUT  
1kΩ  
INTERNAL REFERENCE  
0.022µF  
R
L
The AD5410/AD5420 contain an integrated +5 V voltage  
reference with initial accuracy of 5 mV maximum and a  
temperature drift coefficient of 10 ppm/°C maximum. The  
reference voltage is buffered and externally available for use  
elsewhere within the system. See Figure 34 for a load regulation  
graph of the integrated reference.  
Figure 41. External Boost Configuration  
Rev. J | Page 22 of 30  
 
 
 
 
 
 
 
 
Data Sheet  
AD5410/AD5420  
HART COMMUNICATION  
Table 18. Slew Rate Update Clock Values  
The AD5410/AD5420 contain a CAP2 pin, into which a HART  
signal can be coupled. The HART signal appears on the current  
output if the output is enabled. To achieve a 1 mA p-p current, the  
signal amplitude at the CAP2 pin must be 48 mV p-p. Assuming  
that the modem output amplitude is 500 mV p-p, its output  
must be attenuated by 500/48 = 10.42. If this voltage is used, the  
current output should meet the HART amplitude specifications.  
Figure 42 shows the recommended circuit for attenuating and  
coupling in the HART signal.  
SR Clock  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Update Clock Frequency (Hz)  
257,730  
198,410  
152,440  
131,580  
115,740  
69,440  
37,590  
25,770  
20,160  
16,030  
10,290  
8280  
AVDD  
C2  
CAP2  
C1  
HART MODEM  
OUTPUT  
6900  
5530  
4240  
3300  
Figure 42. Coupling HART Signal  
In determining the absolute values of the capacitors, ensure that  
the FSK output from the modem is passed undistorted. Thus,  
the bandwidth presented to the modem output signal must pass  
1200 Hz and 2200 Hz frequencies. The recommended values  
are C1 = 2.2 nF and C2 = 22 nF. Digitally controlling the slew  
rate of the output is necessary to meet the analog rate of change  
requirements for HART.  
Table 19. Slew Rate Step Size Options  
SR Step AD5410 Step Size (LSB)  
AD5420 Step Size (LSB)  
000  
001  
010  
011  
100  
101  
110  
111  
1/16  
1/8  
1/4  
1/2  
1
1
2
4
8
16  
32  
64  
128  
DIGITAL SLEW RATE CONTROL  
The slew rate control feature of the AD5410/AD5420 allows the  
user to control the rate at which the output current changes.  
With the slew rate control feature disabled, the output current  
changes at a rate of approximately 16 mA in 10 μs (see Figure 36).  
This varies with load conditions. To reduce the slew rate, enable  
the slew rate control feature. With the feature enabled via the  
SREN bit of the control register (see Table 14), the output, instead  
of slewing directly between two values, steps digitally at a rate  
defined by two parameters accessible via the control register, as  
shown in Table 14. The parameters are SR clock and SR step.  
SR clock defines the rate at which the digital slew is updated,  
SR step defines by how much the output value changes at each  
update. Both parameters together define the rate of change of  
the output current. Table 18 and Table 19 outline the range of  
values for both the SR clock and SR step parameters. Figure 43  
shows the output current changing for ramp times of 10 ms,  
50 ms, and 100 ms.  
2
4
8
25  
20  
15  
10  
5
T
= 25°C  
A
AV  
= 24V  
DD  
R
= 300  
LOAD  
10ms RAMP, SR CLOCK = 0x1, SR STEP = 0x5  
50ms RAMP, SR CLOCK = 0xA, SR STEP = 0x7  
100ms RAMP, SR CLOCK = 0x8, SR STEP = 0x5  
0
–10  
0
10 20 30 40 50 60 70 80 90 100 110  
TIME (ms)  
Figure 43. Output Current Slewing Under Control of the Digital Slew Rate  
Control Feature  
Rev. J | Page 23 of 30  
 
 
 
 
 
 
AD5410/AD5420  
Data Sheet  
The time it takes for the output current to slew over a given  
output range can be expressed as follows:  
value with a write to the control register. To avoid halting the  
output slew, the slew active bit can be read to check that the  
slew has completed before writing to any of the AD5410/  
AD5420 registers (see Table 17). The update clock frequency for  
any given value is the same for all output ranges. The step size,  
however, varies across output ranges for a given value of step  
size because the LSB size is different for each output range.  
Table 20 shows the range of programmable slew times for a full-  
scale change on any of the output ranges. The values in Table 20  
were obtained using Equation 1. The digital slew rate control  
feature results in a staircase formation on the current output, as  
shown in Figure 47. Figure 47 also shows how the staircase can  
be removed by connecting capacitors to the CAP1 and CAP2  
pins, as described in the IOUT Filtering Capacitors section.  
Slew Time =  
Output Change  
(1)  
Step Size×Update Clock Frequency ×LSB Size  
where:  
Slew Time is expressed in seconds.  
Output Change is expressed in amps.  
When the slew rate control feature is enabled, all output  
changes change at the programmed slew rate. If the CLEAR  
pin is asserted, the output slews to the zero-scale value at the  
programmed slew rate. The output can be halted at its current  
Table 20. Programmable Slew Time Values in Seconds for a Full-Scale Change on Any Output Range  
Step Size (LSBs)  
Update Clock Frequency (Hz)  
1
2
4
8
16  
32  
64  
128  
257,730  
198,410  
152,440  
131,580  
115,740  
69,440  
37,590  
25,770  
20,160  
16,030  
10,290  
8280  
0.25  
0.33  
0.43  
0.50  
0.57  
0.9  
1.7  
2.5  
3.3  
4.1  
6.4  
7.9  
9.5  
12  
0.13  
0.17  
0.21  
0.25  
0.28  
0.47  
0.87  
1.3  
1.6  
2.0  
3.2  
4.0  
0.06  
0.08  
0.11  
0.12  
0.14  
0.24  
0.44  
0.64  
0.81  
1.0  
1.6  
2.0  
2.4  
3.0  
3.9  
5.0  
0.03  
0.04  
0.05  
0.06  
0.07  
0.12  
0.22  
0.32  
0.41  
0.51  
0.80  
1.0  
0.016  
0.021  
0.027  
0.031  
0.035  
0.06  
0.11  
0.16  
0.20  
0.26  
0.40  
0.49  
0.59  
0.74  
0.97  
1.24  
0.008  
0.010  
0.013  
0.016  
0.018  
0.03  
0.05  
0.08  
0.10  
0.13  
0.20  
0.25  
0.30  
0.37  
0.48  
0.62  
0.004  
0.005  
0.007  
0.008  
0.009  
0.015  
0.03  
0.04  
0.05  
0.06  
0.10  
0.12  
0.15  
0.19  
0.24  
0.31  
0.0020  
0.0026  
0.0034  
0.0039  
0.0044  
0.007  
0.014  
0.020  
0.025  
0.03  
0.05  
0.06  
0.07  
0.09  
0.12  
0.16  
6900  
5530  
4240  
3300  
4.8  
5.9  
7.7  
9.9  
1.2  
1.5  
1.9  
2.5  
15  
20  
Rev. J | Page 24 of 30  
 
Data Sheet  
AD5410/AD5420  
6.8  
6.7  
6.6  
6.5  
6.4  
6.3  
6.2  
6.1  
IOUT FILTERING CAPACITORS  
T
AV  
R
= 25°C  
A
= 24V  
Capacitors can be placed between CAP1 and AVDD, and CAP2  
and AVDD, as shown in Figure 44.  
DD  
= 300  
LOAD  
AV  
DD  
C1  
C2  
AV  
DD  
CAP1  
CAP2  
AD5410/  
AD5420  
I
NO EXTERNAL CAPS  
10nF ON CAP1  
10nF ON CAP2  
OUT  
GND  
–1  
0
1
2
3
4
5
6
7
8
Figure 44. IOUT Filtering Capacitors  
TIME (ms)  
The capacitors form a filter on the current output circuitry, as  
shown in Figure 45, reducing the bandwidth and the slew rate  
of the output current. Figure 46 shows the effect the capacitors  
have on the slew rate of the output current. To achieve significant  
reductions in the rate of change, very large capacitor values are  
required, which may not be suitable in some applications. In  
this case, the digital slew rate control feature should be used.  
The capacitors can be used in conjunction with the digital slew  
rate control feature as a means of smoothing out the steps caused  
by the digital code increments, as shown in Figure 47.  
C1  
Figure 47. Smoothing Out the Steps Caused by the Digital Slew Rate Control  
Feature  
FEEDBACK/MONITORING OF OUTPUT CURRENT  
For feedback or monitoring of the output current value, a sense  
resistor can be placed in series with the IOUT output pin and the  
voltage drop across it measured. As well as being an additional  
component, the resistor increases the compliance voltage required.  
An alternative method is to use a resistor that is already in place.  
R3 is such a resistor and is internal to the AD5410/AD5420, as  
shown in Figure 48. By measuring the voltage between the R3SENSE  
and BOOST pins, the value of the output current can be calculated  
as follows:  
C2  
AV  
DD  
CAP1  
CAP2  
VR3  
(2)  
IOUT  
IBIAS  
40  
R3  
BOOST  
4kΩ  
where:  
VR3 is the voltage drop across R3 measured between the R3SENSE  
and BOOST pins.  
DAC  
12.5kΩ  
I
IBIAS is a constant bias current flowing through R3 with a typical  
OUT  
value of 444 μA.  
R3 is the resistance value of resistor R3 with a typical value of 40 Ω.  
R
SET  
AV  
DD  
Figure 45. IOUT Filter Circuitry  
R
METAL  
R3  
SENSE  
25  
R3  
40  
BOOST  
20  
15  
10  
5
I
OUT  
T
AV  
R
= 25°C  
A
I
444µA  
BIAS  
= 24V  
DD  
= 300  
LOAD  
NO CAPACITOR  
10nF ON CAP1  
10nF ON CAP2  
47nF ON CAP1  
47nF ON CAP2  
Figure 48. Structure of Current Output Circuit  
0
–0.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
TIME (ms)  
Figure 46. Slew Controlled 4 mA to 20 mA Output Current Step Using  
External Capacitors on the CAP1 and CAP2 Pins  
Rev. J | Page 25 of 30  
 
 
 
 
 
 
 
AD5410/AD5420  
Data Sheet  
R3 and IBIAS both have a tolerance of 10% and a temperature  
coefficient of 30 ppm/°C. Connecting to R3SENSE rather than  
AVDD avoids incorporating into R3 internal metal connections  
that have large temperature coefficients and result in large  
errors. See Figure 49 for a plot of R3 vs. ambient temperature  
and Figure 50 for a plot of R3 vs. output current.  
40.98  
To eliminate errors due to the tolerances of R3 and IBIAS, a two-  
measurement calibration can be performed as the following  
example illustrates:  
1. Program code 0x1000 and measure IOUT and VR3. In this  
example, the measured values are  
I
OUT = 1.47965 mA  
VR3 = 79.55446 mV  
I
= 12mA  
OUT  
R3 = V /(12mA + 444µA)  
40.96  
40.94  
40.92  
40.90  
40.88  
40.86  
40.84  
40.82  
40.80  
40.78  
2. Program Code 0xF000 and measure IOUT and VR3 again.  
The measured values this time are  
R3  
I
V
OUT = 22.46754 mA  
R3 = 946.39628 mV  
Using this information and Equation 2, two simultaneous  
equations can be generated from which the values of R3 and  
I
BIAS can be calculated as follows:  
VR3  
IOUT  
=
IBIAS  
R3  
VR3  
IBIAS  
=
IOUT  
–40  
–20  
0
20  
40  
60  
80  
100  
R3  
AMBIENT TEMPERATURE (°C)  
Figure 49. R3 Resistor Value vs. Temperature  
Simultaneous Equation 1  
42.0  
41.8  
41.6  
41.4  
41.2  
41.0  
40.8  
40.6  
40.4  
40.2  
40.0  
T
= 25°C  
A
0.07955446  
R3 = V /(I  
R3 OUT  
+ 444µA)  
IBIAS  
=
0.00147965  
0.02246754  
R3  
Simultaneous Equation 2  
0.94639628  
IBIAS  
=
R3  
From these two equations,  
R3 = 41.302 Ω and IBIAS = 446.5 μA  
And Equation 2 becomes  
VR3  
IOUT  
=
– 446.5 µA  
41.302  
0
5
10  
15  
20  
25  
I
(mA)  
OUT  
Figure 50. R3 Resistor Value vs. IOUT  
Rev. J | Page 26 of 30  
 
 
Data Sheet  
AD5410/AD5420  
APPLICATIONS INFORMATION  
capacitor should have low effective series resistance (ESR) and  
low effective series inductance (ESI), such as the common ceramic  
types, which provide a low impedance path to ground at high  
frequencies to handle transient currents due to internal logic  
switching.  
DRIVING INDUCTIVE LOADS  
When driving inductive or poorly defined loads, connect a 0.01 μF  
capacitor between IOUT and GND. This ensures stability with  
loads beyond 50 mH. There is no maximum capacitance limit.  
The capacitive component of the load may cause slower settling.  
Alternatively, the capacitor can be connected from CAP1 and/or  
CAP2 to AVDD to reduce the slew rate of the current. The digital  
slew rate control feature may also prove useful in this situation.  
The power supply lines of the AD5410/AD5420 should use as  
large a trace as possible to provide low impedance paths and to  
reduce the effects of glitches on the power supply line. Fast-  
switching signals such as clocks should be shielded with digital  
ground to avoid radiating noise to other parts of the board and  
should never be run near the reference inputs. A ground line  
routed between the SDIN and SCLK lines helps reduce crosstalk  
between them (not required on a multilayer board that has a  
separate ground plane, but separating the lines helps). It is  
essential to minimize noise on the REFIN line because noise  
can couple through to the DAC output.  
TRANSIENT VOLTAGE PROTECTION  
The AD5410/AD5420 contain ESD protection diodes that prevent  
damage from normal handling. The industrial control environ-  
ment can, however, subject I/O circuits to much higher transients.  
To protect the AD5410/AD5420 from excessively high voltage  
transients, external power diodes and a surge current limiting  
resistor may be required, as shown in Figure 51. The constraint  
on the resistor value is that during normal operation, the output  
level at IOUT must remain within its voltage compliance limit of  
AVDD − 2.5 V, and the two protection diodes and resistor must  
have appropriate power ratings. Further protection can be pro-  
vided with transient voltage suppressors (TVS), or transorbs.  
These are available as both unidirectional suppressors (protect  
against positive high voltage transients) and bidirectional  
suppressors (protect against both positive and negative high  
voltage transients) and are available in a wide range of standoff  
and breakdown voltage ratings. It is recommended that all field  
connected nodes be protected.  
Avoid crossover of digital and analog signals. Traces on  
opposite sides of the board should run at right angles to each  
other. This reduces the effects of feedthrough on the board.  
A microstrip technique is by far the best method but is not  
always possible with a double-sided board. In this technique,  
the component side of the board is dedicated to the ground  
plane, and signal traces are placed on the solder side.  
GALVANICALLY ISOLATED INTERFACE  
In many process control applications, it is necessary to provide  
an isolation barrier between the controller and the unit being  
controlled to protect and isolate the controlling circuitry from  
any hazardous common-mode voltages that may occur. The  
iCoupler® family of products from Analog Devices, Inc., provides  
voltage isolation in excess of 2.5 kV. The serial loading structure  
of the AD5410/AD5420 is ideal for isolated interfaces because  
the number of interface lines is kept to a minimum. Figure 52  
shows a 4-channel isolated interface to the AD5410/AD5420  
using an ADuM1400. For further information, visit  
AV  
DD  
AV  
DD  
R
AD5410/  
AD5420  
P
I
OUT  
R
L
GND  
www.analog.com.  
Figure 51. Output Transient Voltage Protection  
CONTROLLER  
ADuM1400*  
LAYOUT GUIDELINES  
In any circuit where accuracy is important, careful consideration  
of the power supply and ground return layout helps to ensure  
the rated performance. The printed circuit board (PCB) on  
which the AD5410/AD5420 are mounted should be designed so  
that the analog and digital sections are separated and confined  
to certain areas of the board. If the AD5410/AD5420 are in a  
system where multiple devices require an AGND-to-DGND  
connection, the connection should be made at one point only.  
The star ground point should be established as close as possible  
to the device.  
SERIAL  
CLOCK  
OUT  
V
V
V
V
V
V
V
V
IA  
IB  
IC  
ID  
OA  
OB  
OC  
OD  
TO  
SCLK  
ENCODE  
ENCODE  
ENCODE  
ENCODE  
DECODE  
DECODE  
DECODE  
DECODE  
SERIAL  
DATA  
OUT  
TO  
SDIN  
SYNC  
OUT  
TO  
LATCH  
TO  
CLEAR  
CONTROL  
OUT  
*ADDITIONAL PINS OMITTED FOR CLARITY.  
The AD5410/AD5420 should have ample supply bypassing of  
10 μF in parallel with 0.1 μF on each supply, located as close to  
the package as possible, ideally right up against the device.  
The 10 μF capacitors are the tantalum bead type. The 0.1 μF  
Figure 52. Isolated Interface  
Rev. J | Page 27 of 30  
 
 
 
 
 
 
 
AD5410/AD5420  
Data Sheet  
2.5  
2.0  
1.5  
1.0  
0.5  
0
MICROPROCESSOR INTERFACING  
Microprocessor interfacing to the AD5410/AD5420 is via a serial  
bus that uses a protocol compatible with microcontrollers and  
DSP processors. The communication channel is a 3-wire (mini-  
mum) interface consisting of a clock signal, a data signal, and a  
latch signal. The AD5410/AD5420 require a 24-bit data-word  
with data valid on the rising edge of SCLK.  
LFCSP  
TSSOP  
For all interfaces, the DAC output update is initiated on the  
rising edge of LATCH. The contents of the registers can be read  
using the readback function.  
THERMAL AND SUPPLY CONSIDERATIONS  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
The AD5410/AD5420 are designed to operate at a maximum  
junction temperature of 125°C. It is important that the device  
not be operated under conditions that cause the junction tempera-  
ture to exceed this value. Excessive junction temperature can  
occur if the AD5410/AD5420 are operated from the maximum  
AVDD, while driving the maximum current (24 mA) directly to  
ground. In this case, the ambient temperature should be controlled  
or AVDD should be reduced.  
AMBIENT TEMPERATURE (°C)  
Figure 53. Maximum Power Dissipation vs. Ambient Temperature  
65  
LFCSP  
60  
55  
50  
45  
At the maximum ambient temperature of 85°C, the 24-lead  
TSSOP can dissipate 1.14 W, and the 40-Lead LFCSP can  
dissipate 1.21 W.  
TSSOP  
40  
35  
30  
25  
To ensure that the junction temperature does not exceed 125°C  
while driving the maximum current of 24 mA directly into  
ground (also adding an on-chip current of 4 mA), AVDD should  
be reduced from the maximum rating to ensure that the package  
is not required to dissipate more power than previously stated  
(see Table 21, Figure 53, and Figure 54).  
25  
35  
45  
55  
65  
75  
85  
AMBIENT TEMPERATURE (°C)  
Figure 54. Maximum Supply Voltage vs. Ambient Temperature  
Table 21. Thermal and Supply Considerations  
Consideration  
TSSOP  
LFCSP  
TJmax TA  
125 85  
TJ max TA 125 85  
Maximum Allowed Power  
Dissipation When Operating at an  
Ambient Temperature of 85°C  
1.21 W  
1.14 W  
θJA  
35  
θJA  
33  
TJmax PD θJA 125   
40 0.028  
35 86C  
TJmax  
PD θJA  
125 600.028 33 70C  
   
Maximum Allowed Ambient  
Temperature When Operating  
from a Supply of 40 V/60 V and  
Driving 24 mA Directly to Ground  
T max TA  
T max TA  
J
Maximum Allowed Supply Voltage  
When Operating at an Ambient  
Temperature of 85°C and Driving  
24 mA Directly to Ground  
12585  
12585  
J
40 V  
43 V  
AIDD θJA 0.02835  
AIDD θJA 0.02833  
Rev. J | Page 28 of 30  
 
 
 
 
 
Data Sheet  
AD5410/AD5420  
supply connections. A 24 V TVS is placed on the IOUT connection,  
and a 36 V TVS is placed on the field supply input. For added  
protection, clamping diodes are connected from the IOUT pin to the  
AVDD and GND power supply pins. The recommended external  
band-pass filter for the AD5700 HART modem includes a 150 kΩ  
resistor, which limits current to a sufficiently low level to adhere  
to intrinsic safety requirements. In this case, the input has higher  
transient voltage protection and should, therefore, not require  
additional protection circuitry, even in the most demanding of  
industrial environments.  
INDUSTRIAL, HART COMPATIBLE ANALOG  
OUTPUT APPLICATION  
Many industrial control applications have requirements for  
accurately controlled current output signals, and the AD5410/  
AD5420 are ideal for such applications. Figure 55 shows the  
AD5410/AD5420 in a circuit design for an output module spe-  
cifically for use in an industrial control application. The design  
provides for a HART-enabled current output, with the HART  
capability provided by the AD5700/AD5700-1 HART modem, the  
industrys lowest power and smallest footprint HART-compliant IC  
modem. For additional space-savings, the AD5700-1 offers a 0.5%  
precision internal oscillator. The HART_OUT signal from the  
AD5700 is attenuated and ac-coupled into the CAP2 pin of the  
AD5420. Further information on this configuration can be found  
in Application Note AN-1065. An alternative method of coupling  
the HART signal into the RSET pin (only applicable of the external  
RSET is used), is available in Circuit Note CN-0270. Use of  
either configuration results in the AD5700 HART modem output  
modulating the 4 mA to 20 mA analog current without affecting  
the dc level of the current. This circuit adheres to the HART  
physical layer specifications as defined by the HART  
Isolation between the AD5410/AD5420 and the backplane  
circuitry is provided with the ADuM1400 and ADuM1200  
iCoupler digital isolators; further information on iCoupler  
products is available at www.analog.com. The internally generated  
digital power supply of the AD5410/AD5420 powers the field  
side of the digital isolators, removing the need to generate a  
digital power supply on the field side of the isolation barrier.  
The AD5410/AD5420 digital supply out-put supplies up to 5 mA,  
which is more than enough to supply the 2.8 mA requirement  
of the ADuM1400 and ADuM1200 operating at a logic signal  
frequency of up to 1 MHz. To reduce the number of isolators  
required, nonessential signals such as CLEAR can be connected  
Communication Foundation.  
FAULT  
to GND and  
, and SDO can be left unconnected, reducing  
The module is powered from a field supply of 24 V. This supplies  
AVDD directly. For transient overvoltage protection, transient  
voltage suppressors (TVS) are placed on both the IOUT and field  
the isolation requirements to just three signals. Doing so,  
however, disables the fault alert features of the part.  
24V  
FIELD  
SUPPLY  
10µF  
SMAJ36CA  
36V  
FIELD  
GROUND  
0.1µF  
BACKPLANE SUPPLY  
0.1µF  
0.1µF  
C3  
ADuM1400  
10kΩ  
V
NC  
V
V
V
V
GND  
GND  
V
DD1  
DD2  
E2  
MICROCONTROLLER  
AV  
CAP1  
V
DV  
CC  
DV  
DD  
CC  
SELECT  
V
V
V
V
GND  
GND  
OA  
OB  
OC  
OD  
IA  
DIGITAL  
OUTPUTS  
IB  
AD5410/AD5420  
IC  
ID  
CLEAR  
I
OUT  
2
2
1
1
18Ω  
LATCH  
SCLK  
SDIN  
I
OUT  
V
V
V
V
DD1  
DD2  
OA  
V
V
UART  
DIGITAL  
IA  
FAULT  
SDO  
INTERFACE INTPUTS  
OB  
IB  
GND  
GND  
2
1
CAP2  
GND REFOUT REFIN  
ADuM1200  
C1  
2.2nF  
C2  
22nF  
0.1µF  
0.1µF  
AV  
DD  
ADuM1402  
V
CC  
V
V
V
V
DD1  
DD2  
E2  
HART_OUT  
E1  
TXD  
RTS  
RXD  
CD  
V
V
V
V
V
OA  
OB  
IA  
V
V
V
IB  
IC  
ID  
OC  
OC  
GND  
GND  
GND  
GND  
2
2
1
1
AD5700/AD5700-1  
REF  
1µF  
1.2MΩ  
150kΩ  
ADC_IP  
AGND DGND  
300pF  
1.2MΩ  
150pF  
Figure 55. AD5410/AD5420 in an Industrial Analog Output Application  
Rev. J | Page 29 of 30  
 
 
AD5410/AD5420  
Data Sheet  
OUTLINE DIMENSIONS  
5.02  
5.00  
4.95  
7.90  
7.80  
7.70  
24  
13  
12  
4.50  
4.40  
4.30  
3.25  
3.20  
3.15  
EXPOSED  
PAD  
(Pins Up)  
6.40 BSC  
1
BOTTOM VIEW  
TOP VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
1.05  
1.00  
0.80  
1.20 MAX  
8°  
0°  
SECTION OF THIS DATA SHEET.  
0.20  
0.09  
0.15  
0.05  
0.30  
0.19  
0.65  
BSC  
0.75  
0.60  
0.45  
SEATING  
PLANE  
0.10 COPLANARITY  
COMPLIANT TO JEDEC STANDARDS MO-153-ADT  
Figure 56. 24-Lead Thin Shrink Small Outline Package, Exposed Pad [TSSOP_EP]  
(RE-24)  
Dimensions shown in millimeters  
6.10  
6.00 SQ  
0.60 MAX  
5.90  
0.60 MAX  
PIN 1  
INDICATOR  
31  
30  
40  
1
5.85  
5.75 SQ  
5.65  
0.50  
BSC  
PIN 1  
INDICATOR  
4.25  
4.10 SQ  
3.95  
EXPOSED  
PAD  
(BOTTOM VIEW)  
10  
11  
21  
20  
0.50  
0.40  
0.30  
0.20 MIN  
TOP VIEW  
4.50 REF  
0.80 MAX  
0.65 TYP  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
12° MAX  
1.00  
0.85  
0.80  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.20 REF  
0.30  
0.23  
0.18  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VJJD-2  
Figure 57. 40-Lead Lead Frame Chip Scale Package [LFCSP]  
6 mm × 6 mm Body and 0.85 mm Package Height  
(CP-40-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1, 2  
AD5410AREZ  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Resolution  
12 Bits  
12 Bits  
12 Bits  
12 Bits  
16 Bits  
16 Bits  
16 Bits  
16 Bits  
TUE (%)  
Package Description  
24-Lead TSSOP_EP  
24-Lead TSSOP_EP  
40-Lead LFCSP  
Package Option  
RE-24  
RE-24  
CP-40-1  
CP-40-1  
RE-24  
RE-24  
CP-40-1  
CP-40-1  
0.3 maximum  
0.3 maximum  
0.3 maximum  
0.3 maximum  
0.15 maximum  
0.15 maximum  
0.15 maximum  
0.15 maximum  
AD5410AREZ-REEL7  
AD5410ACPZ-REEL  
AD5410ACPZ-REEL7  
AD5420AREZ  
AD5420AREZ-REEL7  
AD5420ACPZ-REEL  
AD5420ACPZ-REEL7  
EVAL-AD5420EBZ  
40-Lead LFCSP  
24-Lead TSSOP_EP  
24-Lead TSSOP_EP  
40-Lead LFCSP  
40-Lead LFCSP  
Evaluation Board  
1 Z = RoHS Compliant Part.  
2 The EVAL-AD5420EBZ evaluation board can be used to evaluate the AD5410 with the units installed in place of the AD5420.  
©2009–2017 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07027-0-11/17(J)  
Rev. J | Page 30 of 30  
 
 

相关型号:

AD5410AREZ

Single Channel, 16-Bit, Serial Input, Current Source DAC
ADI

AD5410AREZ-REEL7

Single-Channel, 12-Bit, Serial Input, 4 mA to 20 mA, Current Source DAC, HART Connectivity
ADI

AD5410BREZ

IC SERIAL INPUT LOADING, 12-BIT DAC, PDSO24, MO-153ADT, TSSOP-24, Digital to Analog Converter
ADI

AD5410_08

Single Channel, 16-Bit, Serial Input, Current Source DAC
ADI

AD5412

Single Channel, 16-Bit, Serial Input, Current Source DAC
ADI

AD5412ACPZ

Single Channel, 12/16-Bit, Serial Input, Current Source & Voltage Output DAC
ADI

AD5412ACPZ-REEL

Single Channel, 12-/16-Bit, Serial Input, Current Source and Voltage Output DACs
ADI

AD5412ACPZ-REEL7

Single Channel, 12-/16-Bit, Serial Input, Current Source and Voltage Output DACs
ADI

AD5412AREZ

Single Channel, 12-/16-Bit, Serial Input, Current Source and Voltage Output DACs
ADI

AD5412AREZ-REEL7

Single Channel, 12-/16-Bit, Serial Input, Current Source and Voltage Output DACs
ADI

AD5412BCPZ

Single Channel, 12/16-Bit, Serial Input, Current Source & Voltage Output DAC
ADI

AD5412BREZ

Single Channel, 12/16-Bit, Serial Input, Current Source & Voltage Output DAC
ADI