AD5424YCPZ [ADI]

High Bandwidth 8-Bit Parallel Interface Multiplying D/A Converter;
AD5424YCPZ
型号: AD5424YCPZ
厂家: ADI    ADI
描述:

High Bandwidth 8-Bit Parallel Interface Multiplying D/A Converter

转换器
文件: 总28页 (文件大小:714K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
8-/10-/12-Bit, High Bandwidth  
Multiplying DACs with Parallel Interface  
Data Sheet  
AD5424/AD5433/AD5445  
FEATURES  
GENERAL DESCRIPTION  
2.5 V to 5.5 V supply operation  
Fast parallel interface (17 ns write cycle)  
Update rate of 20.4 MSPS  
INL of 1 LSB for 12-bit DAC  
10 MHz multiplying bandwidth  
10 V reference input  
The AD5424/AD5433/AD54451 are CMOS 8-, 10-, and 12-bit  
current output digital-to-analog converters (DACs), respectively.  
These devices operate from a 2.5 V to 5.5 V power supply,  
making them suitable for battery-powered applications and  
many other applications. These DACs utilize data readback,  
allowing the user to read the contents of the DAC register via  
the DB pins. On power-up, the internal register and latches are  
Extended temperature range: –40°C to +125°C  
20-lead TSSOP and chip scale (4 mm × 4 mm) packages  
8-, 10-, and 12-bit current output DACs  
Upgrades to AD7524/AD7533/AD7545  
Pin-compatible 8-, 10-, and 12-bit DACs in chip scale  
Guaranteed monotonic  
4-quadrant multiplication  
Power-on reset with brownout detection  
Readback function  
filled with 0s and the DAC outputs are at zero scale.  
As a result of manufacturing with a CMOS submicron process,  
they offer excellent 4-quadrant multiplication characteristics,  
with large signal multiplying bandwidths of up to 10 MHz.  
The applied external reference input voltage (VREF) determines the  
full-scale output current. An integrated feedback resistor (RFB)  
provides temperature tracking and full-scale voltage output  
when combined with an external I-to-V precision amplifier.  
0.4 µA typical power consumption  
While these devices are upgrades of the AD5424/AD5433/  
AD5445 in multiplying bandwidth performance, they have a  
latched interface and cannot be used in transparent mode.  
APPLICATIONS  
Portable battery-powered applications  
Waveform generators  
The AD5424 is available in a small, 20-lead LFCSP and a small,  
16-lead TSSOP, while the AD5433 and AD5445 DACs are available  
in a small, 20-lead LFCSP and a small, 20-lead TSSOP.  
Analog processing  
Instrumentation applications  
Programmable amplifiers and attenuators  
Digitally controlled calibration  
Programmable filters and oscillators  
Composite video  
The EVAL-AD5445SDZ evaluation board is available for  
evaluating DAC performance. For more information, see the  
UG-333 evaluation board user guide.  
Ultrasound  
Gain, offset, and voltage trimming  
1 U.S Patent No. 5,689,257.  
FUNCTIONAL BLOCK DIAGRAM  
V
V
REF  
DD  
R
FB  
AD5424/  
AD5433/  
AD5445  
R
I
I
1
2
OUT  
8-/10-/12-BIT  
R-2R DAC  
OUT  
POWER-ON  
RESET  
DAC REGISTER  
INPUT LATCH  
CS  
R/W  
GND  
DB0  
DB7/DB9/DB11  
DATA  
INPUTS  
Figure 1.  
Rev. E  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2003–2016 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
AD5424/AD5433/AD5445  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Circuit Operation....................................................................... 18  
Bipolar Operation....................................................................... 19  
Single-Supply Applications ....................................................... 20  
Adding Gain................................................................................ 21  
DACs Used as a Divider or Programmable Gain Element... 21  
Reference Selection .................................................................... 22  
Amplifier Selection .................................................................... 22  
Parallel Interface......................................................................... 23  
Microprocessor Interfacing....................................................... 23  
PCB Layout and Power Supply Decoupling................................ 24  
Outline Dimensions....................................................................... 25  
Ordering Guide .......................................................................... 26  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Characteristics..................................................................... 5  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configurations and Function Descriptions ........................... 7  
Typical Performance Characteristics ........................................... 10  
Terminology................................................................................ 17  
Theory of Operation ...................................................................... 18  
REVISION HISTORY  
1/16—Rev. D to Rev. E  
Added EPAD Note to Table 6 and EPAD Note to Figure 8..........9  
Deleted the Evaluation Board for AD5424/AD5433/AD5445  
Section and Power Supplies for Evaluation Board Section....... 23  
Deleted Figure 59; Renumbered Sequentially ............................ 24  
Deleted Figure 60 and Figure 61 .................................................. 25  
Changes to Ordering Guide.......................................................... 26  
Deleted Figure 62 and Table 12; Renumbered Sequentially ..... 26  
Deleted Positive Output Voltage Section and Figure 53;  
Renumbered Sequentially.............................................................. 20  
Changes to Adding Gain Section ................................................. 21  
Changed ADSP-21xx-to-AD5424/AD5433/AD5445 Interface  
Section to ADSP-2191M-to-AD5424/AD5433/AD5445  
Interface Section and ADSP-BF5xx-to-AD5424/AD5433/  
AD5445 Interface Section to Blackfin Processor-to-AD5424/  
AD5433/AD5445 Interface Section ............................................. 23  
Changes to Figure 55 and Figure 57............................................. 23  
Changes to Ordering Guide .......................................................... 26  
8/09—Rev. A to Rev. B  
Updated Outline Dimensions....................................................... 28  
Changes to Ordering Guide.......................................................... 29  
4/13—Rev. C to Rev. D  
3/05—Rev. 0 to Rev. A  
Changes to Figure 4 and Table 4..................................................... 7  
Changes to Figure 6 and Table 5..................................................... 8  
Changes to Figure 8 and Table 6..................................................... 9  
Updated Outline Dimensions ....................................................... 25  
Changes to Ordering Guide .......................................................... 26  
Updated Format..................................................................Universal  
Changes to Specifications.................................................................4  
Changes to Figure 49...................................................................... 17  
Changes to Figure 50...................................................................... 18  
Changes to Figure 51, Figure 52, and Figure 54......................... 19  
Added Microprocessor Interfacing Section................................ 22  
Added Figure 59 ............................................................................. 24  
Added Figure 60 ............................................................................. 25  
12/12—Rev. B to Rev. C  
Changes to General Description Section ...................................... 1  
Added Note 2 to Table 1 .................................................................. 4  
Added EPAD Note to Table 4 and EPAD Note to Figure 4......... 7  
Added EPAD Note to Table 5 and EPAD Note to Figure 6......... 8  
10/03—Initial Version: Revision 0  
Rev. E | Page 2 of 28  
 
Data Sheet  
AD5424/AD5433/AD5445  
SPECIFICATIONS  
VDD = 2.5 V to 5.5 V, VREF = 10 V, IOUT2 = 0 V. Temperature range for Y version: −40°C to +125°C. All specifications TMIN to TMAX, unless  
otherwise noted. DC performance measured with OP177 and ac performance measured with AD8038, unless otherwise noted.  
Table 1.  
Parameter  
Min  
Typ Max  
Unit  
Test Conditions/Comments  
STATIC PERFORMANCE  
AD5424  
Resolution  
8
Bits  
LSB  
LSB  
Relative Accuracy  
Differential Nonlinearity  
AD5433  
0.25  
0.5  
Guaranteed monotonic  
Guaranteed monotonic  
Resolution  
10  
0.5  
1
Bits  
LSB  
LSB  
Relative Accuracy  
Differential Nonlinearity  
AD5445  
Resolution  
12  
Bits  
Relative Accuracy  
Differential Nonlinearity  
Gain Error  
1
LSB  
LSB  
mV  
–1/+2  
10  
Guaranteed monotonic  
Gain Error Temperature Coefficient1  
Output Leakage Current1  
5
ppm FSR/°C  
nA  
nA  
10  
20  
Data = 0×0000, TA = 25°C, IOUT1  
Data = 0×0000, T = −40°C to +125°C, IOUT  
1
REFERENCE INPUT1  
Reference Input Range  
VREF Input Resistance  
RFB Resistance  
10  
10  
10  
V
kΩ  
kΩ  
8
8
12  
12  
Input resistance TC = –50 ppm/°C  
Input resistance TC = –50 ppm/°C  
Input Capacitance  
Code Zero Scale  
Code Full Scale  
3
5
6
8
pF  
pF  
DIGITAL INPUTS/OUTPUT1  
Input High Voltage, VIH  
Input Low Voltage, VIL  
Output High Voltage, VOH  
1.7  
V
V
V
V
V
V
µA  
pF  
0.6  
VDD − 1  
VDD − 0.5  
VDD = 4.5 V to 5 V, ISOURCE = 200 µA  
VDD = 2.5 V to 3.6 V, ISOURCE = 200 µA  
VDD = 4.5 V to 5 V, ISINK = 200 µA  
VDD = 2.5 V to 3.6 V, ISINK = 200 µA  
Output Low Voltage, VOL  
0.4  
0.4  
1
Input Leakage Current, IIL  
Input Capacitance  
4
10  
DYNAMIC PERFORMANCE1  
Reference Multiplying Bandwidth  
Output Voltage Settling Time  
10  
MHz  
VREF = 3.5 V; DAC loaded all 1s  
VREF = 3.5 V, RLOAD = 100 Ω, DAC latch  
alternately loaded with 0s and 1s  
Measured to 16 mV of full scale  
Measured to 4 mV of full scale  
Measured to 1 mV of full scale  
Digital Delay  
10% to 90% Settling Time  
Digital-to-Analog Glitch Impulse  
Multiplying Feedthrough Error  
30  
35  
80  
20  
15  
2
60  
70  
120  
40  
30  
ns  
ns  
ns  
ns  
ns  
nV-s  
Interface delay time  
Rise and fall time, VREF = 10 V, RLOAD = 100 Ω  
1 LSB change around major carry, VREF = 0 V  
DAC latch loaded with all 0s, VREF = 3.5 V  
Reference = 1 MHz  
70  
48  
dB  
dB  
Reference = 10 MHz  
Rev. E | Page 3 of 28  
 
AD5424/AD5433/AD5445  
Data Sheet  
Parameter  
Min  
Typ Max  
Unit  
Test Conditions/Comments  
Output Capacitance  
IOUT  
1
12  
25  
22  
10  
1
17  
30  
25  
12  
pF  
pF  
pF  
pF  
All 0s loaded  
All 1s loaded  
All 0s loaded  
All 1s loaded  
Feedthrough to DAC output with CS high and  
alternate loading of all 0s and all 1s  
VREF = 3.5 V p-p, all 1s loaded, f = 100 kHz  
Clock = 10 MHz, VREF = 3.5 V  
IOUT  
2
Digital Feedthrough  
nV-s  
Analog THD  
Digital THD  
81  
dB  
50 kHz fOUT  
65  
25  
dB  
nV√Hz  
Output Noise Spectral Density2  
SFDR Performance (Wide Band)  
Clock = 10 MHz  
500 kHz fOUT  
At 1 kHz  
AD5445, VREF = 3.5 V  
55  
63  
65  
dB  
dB  
dB  
100 kHz fOUT  
50 kHz fOUT  
Clock = 25 MHz  
500 kHz fOUT  
100 kHz fOUT  
50  
60  
62  
dB  
dB  
dB  
50 kHz fOUT  
SFDR Performance (Narrow Band)  
Clock = 10 MHz  
500 kHz fOUT  
AD5445, VREF = 3.5 V  
73  
80  
82  
dB  
dB  
dB  
100 kHz fOUT  
50 kHz fOUT  
Clock = 25 MHz  
500 kHz fOUT  
100 kHz fOUT  
70  
75  
80  
dB  
dB  
dB  
50 kHz fOUT  
Intermodulation Distortion  
Clock = 10 MHz  
f1 = 400 kHz, f2 = 500 kHz  
f1 = 40 kHz, f2 = 50 kHz  
Clock = 25 MHz  
f1 = 400 kHz, f2 = 500 kHz  
f1 = 40 kHz, f2 = 50 kHz  
POWER REQUIREMENTS  
Power Supply Range  
IDD  
AD5445, VREF = 3.5 V  
65  
72  
dB  
dB  
51  
65  
dB  
dB  
2.5  
5.5  
0.6  
5
V
µA  
µA  
%/%  
TA = 25°C, logic inputs = 0 V or VDD  
Logic inputs = 0 V or VDD, T= −40°C to +125°C  
ΔVDD = 5%  
0.4  
Power Supply Sensitivity  
0.001  
1 Guaranteed by design, not subject to production test.  
2 Specification measured with OP27.  
Rev. E | Page 4 of 28  
Data Sheet  
AD5424/AD5433/AD5445  
TIMING CHARACTERISTICS  
All input signals are specified with tr = tf = 1 ns (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2. VDD = 2.5 V to 5.5 V,  
VREF = 10 V, IOUT2 = 0 V; temperature range for Y version: −40°C to +125°C; all specifications TMIN to TMAX, unless otherwise noted.  
Table 2.  
Parameter1  
VDD = 2.5 V to 5.5 V  
VDD = 4.5 V to 5.5 V  
Unit  
Test Conditions/Comments  
R/W to CS setup time  
R/W to CS hold time  
CS low time (write cycle)  
Data setup time  
Data hold time  
R/W high to CS low  
CS min high time  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
0
0
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns typ  
ns max  
ns typ  
ns max  
0
0
10  
6
0
10  
6
0
5
5
9
7
20  
40  
5
10  
20  
5
Data access time  
t9  
Bus relinquish time  
10  
10  
1 Guaranteed by design, not subject to production test.  
t2  
t2  
t6  
t1  
R/W  
t7  
t3  
t4  
CS  
t9  
t8  
t5  
DATA  
DATA VALID  
DATA VALID  
Figure 2. Timing Diagram  
Rev. E | Page 5 of 28  
 
AD5424/AD5433/AD5445  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Table 3.  
Parameter  
VDD to GND  
VREF, RFB to GND  
Rating  
–0.3 V to +7 V  
–12 V to +12 V  
–0.3 V to +7 V  
IOUT1, IOUT2 to GND  
Logic Inputs and Output1  
Operating Temperature Range  
Extended Industrial (Y Version)  
Storage Temperature Range  
Junction Temperature  
–0.3 V to VDD + 0.3 V  
ESD CAUTION  
–40°C to +125°C  
–65°C to +150°C  
150°C  
16-Lead TSSOP θJA Thermal Impedance  
20-Lead TSSOP θJA Thermal Impedance  
20-Lead LFCSP θJA Thermal Impedance  
Lead Temperature, Soldering (10 sec)  
IR Reflow, Peak Temperature (<20 sec)  
150°C/W  
143°C/W  
135°C/W  
300°C  
235°C  
1
CS  
W
Overvoltages at DBx, , and R/ , are clamped by internal diodes.  
Rev. E | Page 6 of 28  
 
 
Data Sheet  
AD5424/AD5433/AD5445  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
I
1
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
R
OUT  
FB  
I
2
V
OUT  
REF  
DD  
GND  
DB7  
DB6  
V
15 R/W  
GND  
DB7  
DB6  
DB5  
DB4  
1
2
3
4
5
R/W  
CS  
AD5424  
14 CS  
AD5424  
(Not to Scale)  
13 NC  
TOP VIEW  
12 NC  
11 NC  
(Not to Scale)  
DB5  
DB4  
DB3  
DB0 (LSB)  
DB1  
DB2  
NOTES  
1. NC = NO CONNECT.  
2. THE EXPOSED PAD MUST BE CONNECTED TO AGND.  
Figure 4. AD5424 Pin Configuration (LFCSP)  
Figure 3. AD5424 Pin Configuration (TSSOP)  
Table 4. AD5424 Pin Function Descriptions  
Pin No.  
TSSOP  
LFCSP  
19  
20  
Mnemonic Description  
1
2
3
IOUT  
IOUT  
1
2
DAC Current Output.  
DAC Analog Ground. This pin must normally be tied to the analog ground of the system.  
Ground.  
1
GND  
4 to 11  
2 to 9  
DB7 to DB0 Parallel Data Bits 7 to 0.  
10 to 13 NC  
No Internal Connection.  
12  
13  
14  
CS  
Chip Select Input. Active low. Used in conjunction with R/W to load parallel data to the input  
latch or to read data from the DAC register. Rising edge of CS loads data.  
15  
R/W  
Read/Write. When low, use in conjunction with CS to load parallel data. When high, use with CS  
to read back contents of DAC register.  
14  
15  
16  
16  
17  
18  
VDD  
VREF  
RFB  
Positive Power Supply Input. These parts can be operated from a supply of 2.5 V to 5.5 V.  
DAC Reference Voltage Input Terminal.  
DAC Feedback Resistor Pin. Establish voltage output for the DAC by connecting to external  
amplifier output.  
Not applicable  
EPAD  
Exposed Pad. The exposed pad must be connected to AGND.  
Rev. E | Page 7 of 28  
 
AD5424/AD5433/AD5445  
Data Sheet  
I
I
1
2
1
2
3
4
5
6
7
8
9
20  
19  
18  
17  
16  
15  
14  
R
V
OUT  
OUT  
FB  
REF  
DD  
GND  
DB9  
DB8  
V
15 R/W  
14 CS  
13 NC  
12 NC  
11 DB0  
GND  
DB9  
DB8  
DB7  
DB6  
1
2
3
4
5
R/W  
CS  
AD5433  
TOP VIEW  
(Not to Scale)  
AD5433  
(Not to Scale)  
DB7  
DB6  
DB5  
DB4  
NC  
NC  
13 DB0 (LSB)  
12 DB1  
NOTES  
1. NC = NO CONNECT.  
DB3  
10  
11 DB2  
2. THE EXPOSED PAD MUST BE CONNECTED TO AGND.  
NC = NO CONNECT  
Figure 5. AD5433 Pin Configuration (TSSOP)  
Figure 6. AD5433 Pin Configuration (LFCSP)  
Table 5. AD5433 Pin Function Descriptions  
Pin No.  
TSSOP  
LFCSP  
19  
20  
Mnemonic Description  
1
2
3
IOUT  
IOUT  
1
2
DAC Current Output.  
DAC Analog Ground. This pin must normally be tied to the analog ground of the system.  
Ground.  
1
GND  
4 to 13  
14, 15  
16  
2 to 11  
12, 13  
14  
DB9 to DB0 Parallel Data Bits 9 to 0.  
NC  
CS  
Not Internally Connected.  
Chip Select Input. Active low. Use in conjunction with R/W to load parallel data to the input  
latch or to read data from the DAC register. Rising edge of CS loads data.  
17  
15  
R/W  
Read/Write. When low, used in conjunction with CS to load parallel data. When high, use with CS  
to read back contents of DAC register.  
18  
19  
20  
16  
17  
18  
VDD  
VREF  
RFB  
Positive Power Supply Input. These parts can be operated from a supply of 2.5 V to 5.5 V.  
DAC Reference Voltage Input Terminal.  
DAC Feedback Resistor Pin. Establish voltage output for the DAC by connecting to external amplifier  
output.  
Not applicable  
EPAD  
Exposed Pad. The exposed pad must be connected to AGND.  
Rev. E | Page 8 of 28  
Data Sheet  
AD5424/AD5433/AD5445  
I
I
1
2
1
2
3
4
5
6
7
8
9
20  
19  
18  
17  
16  
15  
14  
R
V
OUT  
OUT  
FB  
REF  
DD  
GND  
V
15 R/W  
GND  
DB11  
DB10  
DB9  
1
2
3
4
5
DB11  
DB10  
R/W  
14 CS  
AD5445  
CS  
13 DB0  
AD5445  
TOP VIEW  
(Not to Scale)  
12 DB1  
11 DB2  
(Not to Scale)  
DB9  
DB8  
DB7  
DB6  
DB0 (LSB)  
DB1  
DB8  
13 DB2  
12 DB3  
11 DB4  
NOTES  
DB5  
10  
1. THE EXPOSED PAD MUST BE CONNECTED TO AGND.  
Figure 7. AD5445 Pin Configuration (TSSOP)  
Figure 8. AD5445 Pin Configuration (LFCSP)  
Table 6. AD5445 Pin Function Descriptions  
Pin No.  
TSSOP  
LFCSP  
19  
20  
Mnemonic  
Description  
1
2
3
IOUT  
IOUT  
1
2
DAC Current Output.  
DAC Analog Ground. This pin must normally be tied to the analog ground of the system.  
Ground Pin.  
1
GND  
4 to 15  
16  
2 to 13  
14  
DB11 to DB0  
CS  
Parallel Data Bits 11 to 0.  
Chip Select Input. Active low. Used in conjunction with R/W to load parallel data to the input  
latch or to read data from the DAC register. Rising edge of CS loads data.  
17  
15  
R/W  
Read/Write. When low, use in conjunction with CS to load parallel data. When high, use with  
CS to read back contents of DAC register.  
18  
19  
20  
16  
17  
18  
VDD  
VREF  
RFB  
Positive Power Supply Input. These parts can be operated from a supply of 2.5 V to 5.5 V.  
DAC Reference Voltage Input Terminal.  
DAC Feedback Resistor Pin. Establish voltage output for the DAC by connecting to external  
amplifier output.  
Not applicable  
EPAD  
Exposed Pad. The exposed pad must be connected to AGND.  
Rev. E | Page 9 of 28  
AD5424/AD5433/AD5445  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.20  
0.20  
0.15  
0.10  
0.05  
0
T
= 25°C  
T
= 25°C  
A
A
V
= 10V  
V
V
= 10V  
REF  
= 5V  
REF  
= 5V  
0.15  
0.10  
0.05  
0
V
DD  
DD  
–0.05  
–0.10  
–0.15  
–0.20  
–0.05  
–0.10  
–0.15  
–0.20  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
CODE  
CODE  
Figure 9. INL vs. Code (8-Bit DAC)  
Figure 12. DNL vs. Code (8-Bit DAC)  
0.5  
0.4  
0.5  
0.4  
T
V
V
= 25°C  
T
V
V
= 25°C  
A
A
= 10V  
= 10V  
REF  
= 5V  
REF  
= 5V  
DD  
DD  
0.3  
0.3  
0.2  
0.2  
0.1  
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
CODE  
CODE  
Figure 13. DNL vs. Code (10-Bit DAC)  
Figure 10. INL vs. Code (10-Bit DAC)  
1.0  
0.8  
1.0  
0.8  
T
V
V
= 25°C  
T
V
V
= 25°C  
A
A
= 10V  
= 10V  
REF  
= 5V  
REF  
= 5V  
DD  
DD  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
500  
1000  
1500 2000 2500 3000 3500 4000  
CODE  
0
500  
1000  
1500 2000 2500 3000 3500 4000  
CODE  
Figure 14. DNL vs. Code (12-Bit DAC)  
Figure 11. INL vs. Code (12-Bit DAC)  
Rev. E | Page 10 of 28  
 
Data Sheet  
AD5424/AD5433/AD5445  
0.6  
2.0  
1.5  
0.5  
T
V
V
= 25°C  
A
0.4  
MAX INL  
= 0V  
1.0  
REF  
= 3V  
DD  
MAX INL  
0.3  
0.5  
0.2  
MAX DNL  
T
V
= 25°C  
A
0
= 5V  
DD  
0.1  
–0.5  
–1.0  
–1.5  
–2.0  
0
MIN INL  
MIN DNL  
–0.1  
–0.2  
–0.3  
MIN INL  
2
3
4
5
6
7
8
9
10  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
V
(V)  
REFERENCE VOLTAGE  
BIAS  
Figure 15. INL vs. Reference Voltage, AD5445  
Figure 18. Linearity vs. VBIAS Voltage Applied to IOUT2, AD5445  
4
3
–0.40  
T
V
V
= 25°C  
T
V
= 25°C  
= 5V  
A
A
= 2.5V  
REF  
DD  
MAX DNL  
–0.45  
–0.50  
–0.55  
–0.60  
–0.65  
–0.70  
= 3V  
DD  
2
MAX INL  
1
0
–1  
–2  
–3  
–4  
–5  
MIN DNL  
MIN INL  
MIN DNL  
2
3
4
5
6
7
8
9
10  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
REFERENCE VOLTAGE  
V
(V)  
BIAS  
Figure 16. DNL vs. Reference Voltage, AD5445  
Figure 19. Linearity vs. VBIAS Voltage Applied to IOUT2, AD5445  
0.5  
0.4  
5
4
T
V
V
= 25°C  
A
= 0V  
REF  
= 3V AND 5V  
DD  
0.3  
3
V
= 5V  
DD  
GAIN ERROR  
0.2  
2
0.1  
1
0
0
V
= 2.5V  
DD  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–1  
–2  
–3  
–4  
–5  
OFFSET ERROR  
V
= 10V  
REF  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
V
(V)  
TEMPERATURE (°C)  
BIAS  
Figure 20. Gain and Offset Errors vs. VBIAS Voltage Applied to IOUT  
2
Figure 17. Gain Error vs. Temperature  
Rev. E | Page 11 of 28  
 
AD5424/AD5433/AD5445  
Data Sheet  
0.5  
0.4  
0.3  
8
7
6
5
4
3
2
1
0
0.2  
0.1  
GAIN ERROR  
V
= 5V  
DD  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
OFFSET ERROR  
T
V
V
= 25°C  
A
V
= 3V  
DD  
= 2.5V  
REF  
= 3V AND 5V  
V
= 2.5V  
2.5  
DD  
DD  
0
0.5  
1.0  
1.5  
2.0  
3.0  
3.5  
4.0  
4.5  
5.0  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
VOLTAGE (V)  
V
(V)  
BIAS  
Figure 21. Gain and Offset Errors vs. VBIAS Voltage Applied to IOUT  
2
Figure 24. Supply Current vs. Logic Input Voltage (Driving DB0 to DB11,  
All Other Digital Inputs at Supplies)  
3
1.6  
1.4  
1.2  
T
V
V
= 25°C  
A
MAX INL  
= 0V  
REF  
= 5V  
DD  
2
1
I
V
5V  
OUT1 DD  
1.0  
0.8  
0.6  
0.4  
0.2  
0
MAX DNL  
I
V
3V  
OUT1 DD  
0
–1  
–2  
–3  
MIN INL  
MIN DNL  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
0.5  
1.0  
1.5  
2.0  
2.5  
TEMPERATURE (°C)  
V
(V)  
BIAS  
Figure 22. Linearity vs. VBIAS Voltage Applied to IOUT2, AD5445  
Figure 25. IOUT1 Leakage Current vs. Temperature  
4
3
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
T
V
V
= 25°C  
A
= 2.5V  
REF  
= 5V  
DD  
MAX DNL  
V
= 5V  
DD  
2
1
ALL 0s  
ALL 1s  
0
MAX INL  
–1  
–2  
–3  
–4  
–5  
V
= 2.5V  
DD  
MIN DNL  
ALL 1s  
ALL 0s  
MIN INL  
0.5  
1.0  
1.5  
2.0  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
V
(V)  
BIAS  
TEMPERATURE (°C)  
Figure 23. Linearity vs. VBIAS Voltage Applied to IOUT2, AD5445  
Figure 26. Supply Current vs. Temperature  
Rev. E | Page 12 of 28  
 
Data Sheet  
AD5424/AD5433/AD5445  
14  
3
0
T
= 25°C  
A
T = 25°C  
A
LOADING ZS TO FS  
V
= 5V  
DD  
AD5445  
12  
10  
8
V
= 5V  
DD  
–3  
–6  
–9  
6
V
= 3V  
DD  
4
V
V
V
V
V
= ±2V, AD8038 C 1.47pF  
C
REF  
REF  
REF  
REF  
REF  
V
= 2.5V  
DD  
= ±2V, AD8038 C 1pF  
C
2
= ±0.15V, AD8038 C 1pF  
C
= ±0.15V, AD8038 C 1.47pF  
C
= ±3.51V, AD8038 C 1.8pF  
C
0
1
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 27. Supply Current vs. Update Rate  
Figure 30. Reference Multiplying Bandwidth vs. Frequency and  
Compensation Capacitor  
6
0
–6  
0.045  
ALL ON  
0x7FF TO 0x800  
V
T
V
= 25°C  
= 0V  
REF  
T
= 25°C  
A
A
DB11  
DB10  
DB9  
DB8  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
0.040  
0.035  
0.030  
0.025  
0.020  
0.015  
0.010  
0.005  
0
LOADING  
ZS TO FS  
= 5V  
AD8038 AMPLIFIER  
DD  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
–66  
–72  
–78  
–84  
–90  
–96  
–102  
C
= 1.8pF  
COMP  
V
= 3V  
DD  
0x800 TO 0x7FF  
= 3V  
T
V
= 25°C  
A
V
DD  
= 5V  
DD  
V
= ±3.5V  
INPUT  
= 1.8pF  
REF  
C
COMP  
AD8038 AMPLIFIER  
AD5445 DAC  
ALL OFF  
–0.005  
–0.010  
V
= 5V  
DD  
1
10  
100  
1k  
10k  
100k  
1M  
10M 100M  
0
20  
40  
60  
80  
100 120 140 160 180 200  
TIME (ns)  
FREQUENCY (Hz)  
Figure 28. Reference Multiplying Bandwidth vs. Frequency and Code  
Figure 31. Midscale Transition, VREF = 0 V  
0.2  
0
–1.68  
–1.69  
–1.70  
–1.71  
–1.72  
–1.73  
–1.74  
–1.75  
–1.76  
–1.77  
T
V
= 25°C  
= 3.5V  
A
0x7FF TO 0x800  
= 5V  
REF  
AD8038 AMPLIFIER  
= 1.8pF  
V
DD  
C
COMP  
–0.2  
–0.4  
V
= 3V  
DD  
V
= 5V  
V
DD  
T
V
V
C
= 25°C  
A
= 3V  
DD  
= 5V  
DD  
–0.6  
–0.8  
= ±3.5V  
REF  
= 1.8pF  
COMP  
AD8038 AMPLIFIER  
AD5445 DAC  
0x800 TO 0x7FF  
20 40 60  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
0
80  
100 120 140 160 180 200  
TIME (ns)  
FREQUENCY (Hz)  
Figure 29. Reference Multiplying Bandwidth—All 1s Loaded  
Figure 32. Midscale Transition, VREF = 3.5 V  
Rev. E | Page 13 of 28  
AD5424/AD5433/AD5445  
Data Sheet  
1.8  
100  
80  
60  
40  
20  
0
T
= 25°C  
A
MCLK = 1MHz  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
IH  
MCLK = 200kHz  
V
IL  
MCLK = 0.5MHz  
T
V
= 25°C  
A
= 3.5V  
REF  
AD8038 AMPLIFIER  
AD5445  
2.5  
3.0  
3.5  
4.0  
VOLTAGE (V)  
4.5  
5.0  
5.5  
0
20  
40  
60  
80  
100 120 140 160 180 200  
fOUT (kHz)  
Figure 33. Threshold Voltages vs. Supply Voltage  
Figure 36. Wideband SFDR vs. fOUT Frequency  
20  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
V
= 25°C  
A
= 3V  
DD  
AMP = AD8038  
MCLK = 5MHz  
MCLK = 10MHz  
–20  
–40  
–60  
–80  
–100  
–120  
MCLK = 25MHz  
FULL SCALE  
ZERO SCALE  
T
V
= 25°C  
A
= 3.5V  
REF  
AD8038 AMPLIFIER  
AD5445  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
0
100 200 300 400 500 600 700 800 900 1000  
fOUT (kHz)  
FREQUENCY (Hz)  
Figure 34. Power Supply Rejection vs. Frequency  
Figure 37. Wideband SFDR vs. fOUT Frequency  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
T
V
V
= 25°C  
A
T
V
= 25°C  
= 5V  
A
= 3V  
DD  
DD  
= 3.5V p-p  
REF  
AMP = AD8038  
AD5445  
65k CODES  
1
10  
100  
1k  
10k  
100k  
1M  
0
2
4
6
8
10  
12  
FREQUENCY (Hz)  
FREQUENCY (MHz)  
Figure 35. THD and Noise vs. Frequency  
Figure 38. Wideband SFDR, fOUT = 100 kHz, Clock = 25 MHz  
Rev. E | Page 14 of 28  
Data Sheet  
AD5424/AD5433/AD5445  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
20  
0
T
V
= 25°C  
= 3V  
T
V
= 25°C  
= 5V  
A
A
DD  
DD  
AMP = AD8038  
AD5445  
65k CODES  
AMP = AD8038  
AD5445  
65k CODES  
–20  
–40  
–60  
–80  
–100  
–120  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
50  
60  
70  
80  
90  
100 110 120 130 140 150  
FREQUENCY (MHz)  
FREQUENCY (kHz)  
Figure 39. Wideband SFDR, fOUT = 500 kHz, Clock = 10 MHz  
Figure 42. Narrow-Band SFDR, fOUT = 100 kHz, MCLK = 25 MHz  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
0
T
V
= 25°C  
= 5V  
T
V
= 25°C  
= 3V  
A
A
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
DD  
DD  
AMP = AD8038  
AD5445  
65k CODES  
AMP = AD8038  
AD5445  
65k CODES  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
200 250 300 350 400 450 500 550 600 650 700  
FREQUENCY (MHz)  
FREQUENCY (kHz)  
Figure 40. Wideband SFDR, fOUT = 50 kHz, Clock = 10 MHz  
Figure 43. Narrow-Band IMD, fOUT = 400 kHz, 500 kHz, Clock = 10 MHz  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
T
V
= 25°C  
T = 25°C  
A
A
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
= 3V  
V
= 3V  
DD  
DD  
AMP = AD8038  
AD5445  
65k CODES  
AMP = AD8038  
AD5445  
65k CODES  
250 300 350 400 450 500 550 600 650 700 750  
70  
75  
80  
85  
90  
95  
100 105 110 115 120  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 41. Narrow-Band Spectral Response, fOUT = 500 kHz, Clock = 25 MHz  
Figure 44. Narrow-Band IMD, fOUT = 90 kHz, 100 kHz, Clock = 10 MHz  
Rev. E | Page 15 of 28  
AD5424/AD5433/AD5445  
Data Sheet  
0
–10  
–20  
–30  
–40  
–50  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
T
V
= 25°C  
T
V
= 25°C  
A
A
= 5V  
= 5V  
DD  
DD  
AMP = AD8038  
AD5445  
65k CODES  
AMP = AD8038  
AD5445  
65k CODES  
–60  
MCLK 10MHz  
V
5V  
–70  
–80  
DD  
–90  
–100  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
0
20  
40  
60  
80  
100 120 140 160 180 200  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 45. Narrow-Band IMD, fOUT = 40 kHz, 50 kHz, Clock = 10 MHz  
Figure 47. Wideband IMD, fOUT = 60 kHz, 50 kHz, Clock = 10 MHz  
0
T
V
= 25°C  
A
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
= 5V  
DD  
AMP = AD8038  
AD5445  
65k CODES  
0
50  
100  
150  
200  
250  
300  
350  
400  
FREQUENCY (kHz)  
Figure 46. Wideband IMD, fOUT = 90 kHz, 100 kHz, Clock = 25 MHz  
Rev. E | Page 16 of 28  
Data Sheet  
AD5424/AD5433/AD5445  
TERMINOLOGY  
Digital Feedthrough  
Relative Accuracy  
When the device is not selected, high frequency logic activity  
on the device digital inputs can be capacitively coupled through  
the device to show up as noise on the IOUT pins and  
subsequently in the following circuitry. This noise is called  
digital feedthrough.  
Relative accuracy or endpoint nonlinearity is a measure of the  
maximum deviation from a straight line passing through the  
endpoints of the DAC transfer function. It is measured after  
adjusting zero scale and full scale and is normally expressed in  
LSBs or as a percentage of full-scale reading.  
Multiplying Feedthrough Error  
Differential Nonlinearity  
This is the error due to capacitive feedthrough from the DAC  
reference input to the DAC IOUT1 terminal when all 0s are  
loaded to the DAC.  
Differential nonlinearity is the difference between the measured  
change and the ideal 1 LSB change between any two adjacent  
codes. A specified differential nonlinearity of –1 LSB maximum  
over the operating temperature range ensures monotonicity.  
Total Harmonic Distortion (THD)  
The DAC is driven by an ac reference. The ratio of the rms sum  
of the harmonics of the DAC output to the fundamental value is  
the THD. Usually only the lower order harmonics are included,  
such as second to fifth.  
Gain Error  
Gain error or full-scale error is a measure of the output error  
between an ideal DAC and the actual device output. For these  
DACs, ideal maximum output is VREF – 1 LSB. Gain error of the  
DACs is adjustable to 0 with external resistance.  
2
2
2
2
(
V2 +V3 +V4 +V5  
V1  
Digital Intermodulation Distortion  
)
THD = 20 log  
Output Leakage Current  
Output leakage current is current that flows in the DAC ladder  
switches when these are turned off. For the IOUT1 terminal, it  
can be measured by loading all 0s to the DAC and measuring  
the IOUT1 current. Minimum current flows in the IOUT2 line  
when the DAC is loaded with all 1s.  
Second-order intermodulation distortion (IMD) measurements  
are the relative magnitude of the fa and fb tones generated  
digitally by the DAC and the second-order products at 2fa − fb  
and 2fb − fa.  
Output Capacitance  
Capacitance from IOUT1, or IOUT2, to AGND.  
Spurious-Free Dynamic Range (SFDR)  
SFDR is the usable dynamic range of a DAC before spurious  
noise interferes or distorts the fundamental signal. It is measured  
by the difference in amplitude between the fundamental and the  
largest harmonically or nonharmonically related spur from dc  
to full Nyquist bandwidth (half the DAC sampling rate, or fS/2).  
Narrow-band SFDR is a measure of SFDR over an arbitrary  
window size, in this case, 50% of the fundamental. Digital SFDR  
is a measure of the usable dynamic range of the DAC when the  
signal is a digitally generated sine wave.  
Output Current Settling Time  
This is the amount of time it takes for the output to settle to a  
specified level for a full-scale input change. For these devices, it  
is specified with a 100 Ω resistor to ground.  
The settling time specification includes the digital delay from  
the  
rising edge to the full-scale output change.  
CS  
Digital-to-Analog Glitch Impulse  
The amount of charge injected from the digital inputs to the  
analog output when the inputs change state. This is normally  
specified as the area of the glitch in either pA seconds or nV  
seconds, depending upon whether the glitch is measured as a  
current or voltage signal.  
Rev. E | Page 17 of 28  
 
AD5424/AD5433/AD5445  
Data Sheet  
THEORY OF OPERATION  
The AD5424, AD5433, and AD5445 are 8-, 10-, and 12-bit  
current output DACs consisting of a standard inverting R-2R  
ladder configuration. A simplified diagram for the 8-bit AD5424 is  
shown in Figure 48. The matching feedback resistor RFB has a  
value of R. The value of R is typically 10 kΩ (minimum 8 kΩ  
and maximum 12 kΩ). If IOUT1 and IOUT2 are kept at the same  
potential, a constant current flows in each ladder leg, regardless  
of digital input code. Therefore, the input resistance presented  
at VREF is always constant and nominally of resistance value R.  
The DAC output (IOUT) is code-dependent, producing various  
resistances and capacitances. External amplifier choice must  
take into account the variation in impedance generated by the  
DAC on the amplifiers inverting input node.  
where D is the fractional representation of the digital word loaded  
to the DAC and n is the resolution of the DAC.  
D = 0 to 255 (8-bit AD5424)  
= 0 to 1023 (10-bit AD5433)  
= 0 to 4095 (12-bit AD5445)  
Note that the output voltage polarity is opposite to the VREF  
polarity for dc reference voltages.  
These DACs are designed to operate with either negative or positive  
reference voltages. The VDD power pin is only used by the internal  
digital logic to drive the DAC switches’ on and off states.  
These DACs are also designed to accommodate ac reference  
input signals in the range of –10 V to +10 V.  
R
R
R
V
REF  
With a fixed 10 V reference, the circuit shown in Figure 49 gives  
a unipolar 0 V to –10 V output voltage swing. When VIN is an ac  
signal, the circuit performs 2-quadrant multiplication.  
2R  
S1  
2R  
S2  
2R  
S3  
2R  
S8  
2R  
R
R
A
FB  
OUT  
OUT  
I
I
1
2
Table 7 shows the relationship between digital code and expected  
output voltage for unipolar operation (AD5424, 8-bit device).  
DAC DATA LATCHES  
AND DRIVERS  
Table 7. Unipolar Code Table  
Figure 48. Simplified Ladder  
Digital Input  
1111 1111  
1000 0000  
0000 0001  
0000 0000  
Analog Output (V)  
–VREF (255/256)  
–VREF (128/256) = –VREF/2  
VREF (1/256)  
Access is provided to the VREF, RFB, IOUT1, and IOUT2 terminals of  
the DAC, making the device extremely versatile and allowing it  
to be configured in several different operating modes, for example,  
to provide a unipolar output, 4-quadrant multiplication in bipolar  
mode or in single-supply modes of operation. Note that a matching  
switch is used in series with the internal RFB feedback resistor. If  
users attempt to measure RFB, power must be applied to VDD to  
achieve continuity.  
VREF (0/256) = 0  
V
V
DD  
R2  
C1  
R
DD  
FB  
CIRCUIT OPERATION  
Unipolar Mode  
AD5424/  
AD5433/  
AD5445  
I
I
1
2
OUT  
OUT  
V
V
REF  
A1  
REF  
R1  
V
=
OUT  
0 TO –V  
Using a single op amp, these devices can easily be configured to  
provide 2-quadrant multiplying operation or a unipolar output  
voltage swing, as shown in Figure 49.  
REF  
GND  
R/W CS  
AGND  
DATA  
INPUTS  
When an output amplifier is connected in unipolar mode, the  
output voltage is given by  
NOTES:  
1. R1 AND R2 USED ONLY IF GAIN ADJUSTMENT IS REQUIRED.  
2. C1 PHASE COMPENSATION (1pF TO 2pF) MAY BE REQUIRED  
IF A1 IS A HIGH SPEED AMPLIFIER.  
D
VOUT = −VREF  
×
2n  
Figure 49. Unipolar Operation  
Rev. E | Page 18 of 28  
 
 
 
 
 
Data Sheet  
AD5424/AD5433/AD5445  
R3  
20k  
R2  
C1  
V
DD  
R5  
20kΩ  
V
R
FB  
DD  
R4  
R1  
AD5424/  
AD5433/  
AD5445  
I
1
10kΩ  
OUT  
OUT  
V
REF  
±10V  
A1  
V
REF  
I
2
A2  
V
= –V  
REF  
TO +V  
REF  
OUT  
GND  
R/W CS  
AGND  
DATA  
INPUTS  
NOTES:  
1.  
R1 AND R2 ARE USED ONLY IF GAIN ADJUSTMENT IS REQUIRED.  
ADJUST R1 FOR V = 0V WITH CODE 10000000 LOADED TO DAC.  
OUT  
2.  
3.  
MATCHING AND TRACKING IS ESSENTIAL FOR RESISTOR PAIRS R3 AND R4.  
C1 PHASE COMPENSATION (1pF TO 2pF) MAY BE REQUIRED IF A1/A2 IS  
A HIGH SPEED AMPLIFIER.  
Figure 50. Bipolar Operation (4-Quadrant Multiplication)  
Stability  
BIPOLAR OPERATION  
In the I-to-V configuration, the IOUT of the DAC and the inverting  
node of the op amp must be connected as closely as possible and  
proper PCB layout techniques must be employed. Since every code  
change corresponds to a step function, gain peaking can occur  
if the op amp has limited GBP and there is excessive parasitic  
capacitance at the inverting node. This parasitic capacitance  
introduces a pole into the open-loop response, which can cause  
ringing or instability in closed-loop applications.  
In some applications, it can be necessary to generate full  
4-quadrant multiplying operation or a bipolar output swing.  
This can be easily accomplished by using another external  
amplifier and some external resistors, as shown in Figure 50.  
In this circuit, the second amplifier, A2, provides a gain of 2.  
Biasing the external amplifier with an offset from the reference  
voltage, results in full 4-quadrant multiplying operation. The  
transfer function of this circuit shows that both negative and  
positive output voltages are created as the input data (D) is  
incremented from code zero (VOUT = –VREF) to midscale  
(VOUT = 0 V) to full scale (VOUT = +VREF).  
An optional compensation capacitor, C1, can be added in parallel  
with RFB for stability, as shown in Figure 49 and Figure 50. Too  
small a value of C1 can produce ringing at the output, while too  
large a value can adversely affect the settling time. C1 must be  
found empirically, but 1 pF to 2 pF is generally adequate for  
compensation.  
VOUT  
=
(
VREF ×D /2n1  
VREF  
)
where D is the fractional representation of the digital word  
loaded to the DAC and n is the resolution of the DAC.  
D = 0 to 255 (8-bit AD5424)  
= 0 to 1023 (10-bit AD5433)  
= 0 to 4095 (12-bit AD5445)  
When VIN is an ac signal, the circuit performs 4-quadrant  
multiplication.  
Table 8 shows the relationship between digital code and the  
expected output voltage for bipolar operation (AD5424,  
8-bit device).  
Table 8. Bipolar Code Table  
Digital Input  
1111 1111  
1000 0000  
0000 0001  
0000 0000  
Analog Output (V)  
+VREF (127/128)  
0
–VREF (127/128)  
–VREF (128/128)  
Rev. E | Page 19 of 28  
 
 
 
AD5424/AD5433/AD5445  
Data Sheet  
Voltage Switching Mode of Operation  
SINGLE-SUPPLY APPLICATIONS  
Figure 52 shows these DACs operating in the voltage-switching  
mode. The reference voltage, VIN, is applied to the IOUT1 pin,  
IOUT2 is connected to AGND, and the output voltage is available  
at the VREF terminal. In this configuration, a positive reference  
voltage results in a positive output voltage, making single-supply  
operation possible. The output from the DAC is a voltage at a  
constant impedance (the DAC ladder resistance), thus an op  
amp is necessary to buffer the output voltage. The reference  
input no longer sees a constant input impedance, but one that  
varies with code. Therefore, the voltage input must be driven  
from a low impedance source.  
Current Mode Operation  
The current mode circuit in Figure 51 shows a typical circuit for  
operation with a single 2.5 V to 5 V supply. IOUT2 and therefore  
I
OUT1 is biased positive by the amount applied to VBIAS. In this  
configuration, the output voltage is given by  
V
OUT = [D × (RFB/RDAC) × (VBIAS VIN)] + VBIAS  
As D varies from 0 to 255 (AD5424), 0 to 1023 (AD5433),  
or 0 to 4095 (AD5445), the output voltage varies from  
V
OUT = VBIAS to VOUT = 2VBIAS VIN  
VBIAS must be a low impedance source capable of sinking and  
sourcing all possible variations in current at the IOUT2 terminal.  
V
DD  
R1  
R2  
V
DD  
R
V
FB  
DD  
V
C1  
A1  
I
I
1
2
V
IN  
OUT  
OUT  
OUT  
V
R
V
REF  
DD  
FB  
DAC  
GND  
I
1
2
OUT  
OUT  
V
V
DAC  
A1  
REF  
IN  
I
V
OUT  
GND  
NOTES:  
1.  
2.  
ADDITIONAL PINS OMITTED FOR CLARITY  
C1 PHASE COMPENSATION (1pF TO 2pF) MAY BE REQUIRED  
IF A1 IS A HIGH SPEED AMPLIFIER.  
Figure 52. Single-Supply Voltage-Switching Mode Operation  
V
BIAS  
It is important to note that VIN is limited to low voltages because  
the switches in the DAC ladder no longer have the same source-  
drain drive voltage. As a result, there on resistance differs, which  
degrades the linearity of the DAC. See Figure 18 to Figure 23.  
Also, VIN must not go negative by more than 0.3 V; otherwise, an  
internal diode turns on, exceeding the maximum ratings of the  
device. In this type of application, the full range of multiplying  
capability of the DAC is lost.  
NOTES:  
1.  
2.  
ADDITIONAL PINS OMITTED FOR CLARITY  
C1 PHASE COMPENSATION (1pF TO 2pF) MAY BE REQUIRED  
IF A1 IS A HIGH SPEED AMPLIFIER.  
Figure 51. Single-Supply Current Mode Operation  
It is important to note that VIN is limited to low voltages because  
the switches in the DAC ladder no longer have the same source-  
drain drive voltage. As a result, there on resistance differs and  
the linearity of the DAC degrades.  
Rev. E | Page 20 of 28  
 
 
 
Data Sheet  
AD5424/AD5433/AD5445  
As D is reduced, the output voltage increases. For small values  
of D, it is important to ensure that the amplifier does not saturate  
and that the required accuracy is met.  
ADDING GAIN  
In applications where the output voltage is required to be  
greater than VIN, gain can be added with an additional external  
amplifier or it can be achieved in a single stage. It is important  
to consider the effect of the temperature coefficients of the thin  
film resistors of the DAC. Simply placing a resistor in series with  
the RFB resistor causes mismatches in the temperature coefficients  
and results in larger gain temperature coefficient errors. Instead,  
the circuit shown in Figure 53 is a recommended method of  
increasing the gain of the circuit. R1, R2, and R3 must have  
similar temperature coefficients, but they need not match  
the temperature coefficients of the DAC. This approach is  
recommended in circuits where gains greater than 1 are required.  
Note that RFB >> R2||R3 and take into consideration a gain error  
percentage of 100 × (R2||R3)/RFB.  
For example, in the circuit shown in Figure 54, an 8-bit DAC  
driven with the binary code 0x10 (00010000), that is, 16 decimal,  
must cause the output voltage to be 16 × VIN. However, if the  
DAC has a linearity specification of 0.5 LSB, then D can in fact  
have a weight anywhere in the range 15.5/256 to 16.5/256 so  
that the possible output voltage falls in the range 15.5 VIN to  
16.5 VIN—an error of 3% even though the DAC itself has a  
maximum error of 0.2%.  
V
DD  
V
IN  
R
V
FB  
DD  
I
I
1
2
OUT  
V
REF  
V
OUT  
DD  
GND  
C1  
R
V
FB  
DD  
V
OUT  
R1  
I
I
1
2
OUT  
8-/10-/12-BIT  
DAC  
V
V
IN  
OUT  
V
REF  
OUT  
R3  
R2  
NOTE:  
ADDITIONAL PINS OMITTED FOR CLARITY  
GND  
R2 + R3  
R2  
GAIN =  
R1 =  
Figure 54. Current-Steering DAC Used as a Divider or  
Programmable Gain Element  
NOTES:  
1.  
2.  
R2R3  
R2 + R3  
ADDITIONAL PINS OMITTED FOR CLARITY  
C1 PHASE COMPENSATION (1pF TO 2pF) MAY BE  
REQUIRED IF A1 IS A HIGH SPEED AMPLIFIER.  
DAC leakage current is also a potential error source in divider  
circuits. The leakage current must be counterbalanced by an  
opposite current supplied from the op amp through the DAC.  
Since only a fraction, D, of the current into the VREF terminal is  
routed to the IOUT1 terminal, the output voltage has to change  
as follows:  
Figure 53. Increasing the Gain of the Current Output DAC  
DACS USED AS A DIVIDER OR PROGRAMMABLE  
GAIN ELEMENT  
Current steering DACs are very flexible and lend themselves to  
many different applications. If this type of DAC is connected as  
the feedback element of an op amp and RFB is used as the input  
resistor, as shown in Figure 54, then the output voltage is  
inversely proportional to the digital input fraction, D.  
Output Error Voltage due to DAC Leakage = (Leakage × R)/D  
where R is the DAC resistance at the VREF terminal.  
For a DAC leakage current of 10 nA, R = 10 kΩ, and a gain  
(that is, 1/D) of 16, the error voltage is 1.6 mV.  
For D = 1 – 2–n the output voltage is  
V
OUT = –VIN/D = –VIN/(1 − 2n)  
Rev. E | Page 21 of 28  
 
 
 
 
AD5424/AD5433/AD5445  
Data Sheet  
Table 9. Suitable ADI Precision References  
Device No. Output Voltage (V) Initial Tolerance (%)  
Temp Drift (ppm/°C)  
ISS (mA) Output Noise (µV p-p) Package  
ADR01  
ADR01  
ADR02  
ADR02  
ADR03  
ADR03  
ADR06  
ADR06  
ADR431  
ADR435  
ADR391  
ADR395  
10  
10  
5
0.05  
0.05  
0.06  
0.06  
0.10  
0.10  
0.10  
0.10  
0.04  
0.04  
0.16  
0.10  
3
9
3
9
3
9
3
9
3
3
9
9
1
1
1
1
1
1
1
1
0.8  
0.8  
0.12  
0.12  
20  
20  
10  
10  
6
SOIC  
TSOT-23, SC70  
SOIC  
TSOT-23, SC70  
SOIC  
TSOT-23, SC70  
SOIC  
TSOT-23, SC70  
SOIC  
SOIC  
TSOT-23  
TSOT-23  
5
2.5  
2.5  
3
3
2.5  
5
6
10  
10  
3.5  
8
5
8
2.5  
5
Table 10. Suitable ADI Precision Op Amps  
0.1 Hz to 10 Hz  
Noise (µV p-p)  
Device No. Supply Voltage (V) VOS (Max) (µV)  
IB (Max) (nA)  
Supply Current (µA)  
Package  
SOIC  
MSOP, SOIC  
MSOP, SOIC  
TSOT  
OP97  
2 to 20  
2.5 to 15  
2.7 to 5  
25  
60  
5
0.1  
2
0.05  
0.001  
0.1  
0.5  
0.4  
1
2.3  
0.5  
600  
500  
975  
50  
OP1177  
AD8551  
AD8603  
AD8628  
1.8 to 6  
2.7 to 6  
50  
5
850  
TSOT, SOIC  
Table 11. Suitable ADI High Speed Op Amps  
Device No. Supply Voltage (V) BW at ACL (MHz)  
Slew Rate (V/µs)  
VOS (Max) (µV)  
1500  
1000  
3000  
10000  
IB (Max) (nA)  
6000  
10500  
750  
Package  
AD8065  
AD8021  
AD8038  
AD9631  
5 to 24  
2.5 to 12  
3 to 12  
145  
490  
350  
320  
180  
120  
425  
1300  
SOIC, SOT-23, MSOP  
SOIC, MSOP  
SOIC, SC70-5  
SOIC  
3 to 6  
7000  
AMPLIFIER SELECTION  
REFERENCE SELECTION  
The primary requirement for the current-steering mode is an  
amplifier with low input bias currents and low input offset  
voltage. The input offset voltage of an op amp is multiplied by  
the variable gain (due to the code dependent output resistance  
of the DAC) of the circuit. A change in the noise gain between  
two adjacent digital fractions produces a step change in the output  
voltage due to the amplifiers input offset voltage. This output  
voltage change is superimposed on the desired change in output  
between the two codes and gives rise to a differential linearity  
error, which, if large enough, can cause the DAC to be non-  
monotonic. In general, the input offset voltage must be <1/4  
LSB to ensure monotonic behavior when stepping through codes.  
When selecting a reference for use with the AD5424/AD5433/  
AD5445 family of current output DACs, pay attention to the  
output voltage temperature coefficient specification of the  
reference. This parameter not only affects the full-scale error,  
but can also affect the linearity (INL and DNL) performance.  
The reference temperature coefficient must be consistent with  
the system accuracy specifications. For example, an 8-bit system  
required to hold its overall specification to within 1 LSB over  
the temperature range 0°C to 50°C dictates that the maximum  
system drift with temperature must be less than 78 ppm/°C.  
A 12-bit system with the same temperature range to overall  
specification within 2 LSBs requires a maximum drift of  
10 ppm/°C. By choosing a precision reference with low output  
temperature coefficient this error source can be minimized.  
Table 9 suggests some references available from Analog Devices  
that are suitable for use with this range of current output DACs.  
The input bias current of an op amp also generates an offset at  
the voltage output as a result of the bias current flowing into the  
feedback resistor, RFB. Most op amps have input bias currents  
low enough to prevent significant errors in 12-bit applications.  
Common-mode rejection of the op amp is important in voltage-  
switching circuits, since it produces a code dependent error at  
the voltage output of the circuit. Most op amps have adequate  
common mode rejection for use at 8-, 10-, and 12-bit resolution.  
Rev. E | Page 22 of 28  
 
 
 
Data Sheet  
AD5424/AD5433/AD5445  
Provided the DAC switches are driven from true wideband  
low impedance sources (VIN and AGND), they settle quickly.  
Consequently, the slew rate and settling time of a voltage  
switching DAC circuit is determined largely by the output op  
amp. To obtain minimum settling time in this configuration, it  
is important to minimize capacitance at the VREF node (voltage  
output node in this application) of the DAC. This is done by using  
low inputs capacitance buffer amplifiers and careful board design.  
8xC51-to-AD5424/AD5433/AD5445 Interface  
Figure 56 shows the interface between the AD5424/AD5433/  
AD5445 and the 8xC51 family of DSPs. To facilitate external  
data memory access, the address latch enable (ALE) mode is  
enabled. The low byte of the address is latched with this output  
pulse during access to external memory. AD0 to AD7 are the  
multiplexed low order addresses and data bus and require  
strong internal pull-ups when emitting 1s. During access to  
external memory, A8 to A15 are the high order address bytes.  
Since these ports are open drained, they also require strong  
internal pull-ups when emitting 1s.  
Most single-supply circuits include ground as part of the analog  
signal range, which in turns requires an amplifier that can handle  
rail-to-rail signals. There is a large range of single-supply  
amplifiers available from Analog Devices.  
A8 TO A15  
ADDRESS BUS  
PARALLEL INTERFACE  
Data is loaded to the AD5424/AD5433/AD5445 in the format  
AD5424/  
AD5433/  
AD5445*  
8051*  
of an 8-, 10-, or 12-bit parallel word. Control lines  
and R/  
CS  
allow data to be written to or read from the DAC register. A  
write event takes place when and R/ are brought low, data  
W
ADDRESS  
DECODER  
CS  
CS  
available on the data lines fills the shift register, and the rising  
edge of latches the data and transfers the latched data-word  
W
WR  
R/W  
CS  
to the DAC register. The DAC latches are not transparent, thus  
a write sequence must consist of a falling and rising edge on  
DB0 TO DB11  
8-BIT  
LATCH  
ALE  
CS  
AD0 TO AD7  
DATA BUS  
to ensure that data is loaded to the DAC register and its analog  
equivalent is reflected on the DAC output.  
*ADDITIONAL PINS OMITTED FOR CLARITY  
A read event takes place when R/ is held high and  
is  
CS  
W
Figure 56. 8xC51-to-AD5424/AD5433/AD5445 Interface  
brought low. New data is loaded from the DAC register back to  
the input register and out onto the data line where it can be read  
back to the controller for verification or diagnostic purposes.  
Blackfin Processor-to-AD5424/AD5433/AD5445 Interface  
Figure 57 shows a typical interface between the AD5424/  
AD5433/AD5445 and the Blackfin processor family of DSPs.  
The asynchronous memory write cycle of the processor drives  
MICROPROCESSOR INTERFACING  
ADSP-2191M-to-AD5424/AD5433/AD5445 Interface  
the digital inputs of the DAC. The  
x line is actually four  
AMS  
Figure 55 shows the AD5424/AD5433/AD5445 interfaced to  
the ADSP-2191M as a memory-mapped device. A single wait  
state can be necessary to interface the AD5424/AD5433/  
AD5445 to the ADSP-2191M, depending on the clock speed of  
the DSP. The wait state can be programmed via the data  
memory wait state control register of the ADSP-2191M  
(see the ADSP 21xx Processors: Manuals for details).  
memory select lines. Internal ADDR lines are decoded into  
3-0, these lines are then inserted as chip selects. The rest of  
AMS  
the interface is a standard handshaking operation.  
ADDR TO  
1
ADDRESS BUS  
ADRR  
19  
BLACKFIN  
PROCESSOR  
AD5424/  
AD5433/  
AD5445*  
ADDR TO  
0
ADRR  
ADDRESS BUS  
ADDRESS  
DECODER  
AMSx  
13  
CS  
AD5424/  
AD5433/  
AD5445*  
AWE  
R/W  
ADSP-2191M*  
DB0 TO DB11  
ADDRESS  
DECODER  
DMS  
CS  
WR  
R/W  
DATA 0 TO  
DATA 23  
DATA BUS  
DB0 TO DB11  
*ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 57. Blackfin Processor-to-AD5424/AD5433/AD5445 Interface  
DATA 0 TO  
DATA 23  
DATA BUS  
*ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 55. ADSP-2191M-to-AD5424/AD5433/AD5445 Interface  
Rev. E | Page 23 of 28  
 
 
 
 
 
AD5424/AD5433/AD5445  
Data Sheet  
PCB LAYOUT AND POWER SUPPLY DECOUPLING  
In any circuit where accuracy is important, careful consideration of  
the power supply and ground return layout helps to ensure the  
rated performance. Design the printed circuit board on which  
the AD5424/AD5433/AD5445 is mounted so that the analog  
and digital sections are separated and confined to certain areas  
of the board. If the DAC is in a system where multiple devices  
require an AGND-to-DGND connection, make the connection  
at one point only. Establish the star ground point as close as  
possible to the device.  
Shield fast switching signals such as clocks with digital ground  
to avoid radiating noise to other parts of the board and must  
never be run near the reference inputs.  
Avoid crossover of digital and analog signals. Running traces on  
opposite sides of the board at right angles to each other reduces  
the effects of feedthrough through the board. A microstrip  
technique is by far the best, but not always possible with a  
double-sided board. In this technique, the component side of  
the board is dedicated to the ground plane, while signal traces  
are placed on the solder side.  
These DACs must have ample supply bypassing of 10 µF in  
parallel with 0.1 µF on the supply, located as close to the package  
as possible and ideally right up against the device. The 0.1 µF  
capacitor must have low effective series resistance (ESR) and  
effective series inductance (ESI), like the common ceramic types  
that provide a low impedance path to ground at high frequencies,  
to handle transient currents due to internal logic switching. Low  
ESR 1 µF to 10 µF tantalum or electrolytic capacitors must also be  
applied at the supplies to minimize transient disturbance and filter  
out low frequency ripple.  
It is good practice to employ compact, minimum lead length  
PCB layout design. Ensure that leads to the input are as short as  
possible to minimize IR drops and stray inductance.  
Match the PCB metal traces between VREF and RFB to minimize  
gain error. To maximize high frequency performance, locate the  
I-to-V amplifier as close to the device as possible.  
Table 12. Overview of the AD5424/AD5433/AD5445 and Related Multiplying DACs  
Part No.  
AD5424  
AD5426  
AD5428  
AD5429  
AD5450  
AD5432  
AD5433  
AD5439  
AD5440  
AD5451  
AD5443  
AD5444  
AD5415  
AD5405  
AD5445  
AD5447  
AD5449  
AD5452  
AD5446  
AD5453  
AD5553  
AD5556  
AD5555  
AD5557  
AD5543  
AD5546  
AD5545  
AD5547  
Resolution  
No. DACs  
INL(LSB)  
Interface  
Parallel  
Serial  
Parallel  
Serial  
Serial  
Serial  
Parallel  
Serial  
Parallel  
Serial  
Serial  
Serial  
Serial  
Parallel  
Parallel  
Parallel  
Serial  
Serial  
Serial  
Serial  
Serial  
Parallel  
Serial  
Parallel  
Serial  
Parallel  
Serial  
Parallel  
Package  
RU-16, CP-20  
RM-10  
RU-20  
Features  
8
1
1
2
2
1
1
1
2
2
1
1
1
2
2
2
2
2
1
1
1
1
1
2
2
1
1
2
2
0.25  
0.25  
0.25  
0.25  
0.25  
0.5  
0.5  
0.5  
0.5  
0.25  
1
10 MHz BW, 17 ns CS pulse width  
10 MHz BW, 50 MHz serial  
10 MHz BW, 17 ns CS pulse width  
10 MHz BW, 50 MHz serial  
10 MHz BW, 50 MHz serial  
10 MHz BW, 50 MHz serial  
10 MHz BW, 17 ns CS pulse width  
10 MHz BW, 50 MHz serial  
10 MHz BW, 17 ns CS pulse width  
10 MHz BW, 50 MHz serial  
10 MHz BW, 50 MHz serial  
50 MHz serial interface  
8
8
8
8
RU-10  
RJ-8  
RM-10  
RU-20, CP-20  
RU-16  
10  
10  
10  
10  
10  
12  
12  
12  
12  
12  
12  
12  
12  
14  
14  
14  
14  
14  
14  
16  
16  
16  
16  
RU-24  
RJ-8  
RM-10  
RM-8  
RU-24  
CP-40  
0.5  
1
1
10 MHz BW, 50 MHz serial  
10 MHz BW, 17 ns CS pulse width  
10 MHz BW, 17 ns CS pulse width  
10 MHz BW, 17 ns CS pulse width  
10 MHz BW, 50 MHz serial  
10 MHz BW, 50 MHz serial  
10 MHz BW, 50 MHz serial  
1
RU-20, CP-20  
RU-24  
1
1
0.5  
1
2
1
RU-16  
RJ-8, RM-8  
RM-8  
UJ-8, RM-8  
RM-8  
RU-28  
10 MHz BW, 50 MHz serial  
4 MHz BW, 50 MHz serial clock  
4 MHz BW, 20 ns WR pulse width  
4 MHz BW, 50 MHz serial clock  
4 MHz BW, 20 ns WR pulse width  
4 MHz BW, 50 MHz serial clock  
4 MHz BW, 20 ns WR pulse width  
4 MHz BW, 50 MHz serial clock  
4 MHz BW, 20 ns WR pulse width  
1
1
1
RM-8  
RU-38  
2
2
RM-8  
RU-28  
2
2
RU-16  
RU-38  
Rev. E | Page 24 of 28  
 
Data Sheet  
AD5424/AD5433/AD5445  
OUTLINE DIMENSIONS  
5.10  
5.00  
4.90  
16  
9
8
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
1.20  
MAX  
0.15  
0.05  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
0.65  
BSC  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AB  
Figure 58. 16-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-16)  
Dimensions shown in millimeters  
6.60  
6.50  
6.40  
20  
11  
10  
4.50  
4.40  
4.30  
6.40 BSC  
1
PIN 1  
0.65  
BSC  
1.20 MAX  
0.15  
0.05  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
COPLANARITY  
0.10  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-153-AC  
Figure 59. 20-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-20)  
Dimensions shown in millimeters  
Rev. E | Page 25 of 28  
 
AD5424/AD5433/AD5445  
Data Sheet  
4.10  
4.00 SQ  
3.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
16  
15  
20  
0.50  
BSC  
1
EXPOSED  
PAD  
2.30  
2.10 SQ  
2.00  
11  
5
6
10  
0.65  
0.60  
0.55  
0.20 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WGGD-1.  
Figure 60. 20-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
4 mm × 4 mm Body, Very Thin Quad  
(CP-20-6)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Resolution (Bits)  
INL (LSB)  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.5  
0.5  
0.5  
0.5  
0.5  
Temperature Range  
−40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
Package Description  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
20-Lead LFCSP_WQ  
20-Lead LFCSP_WQ  
20-Lead TSSOP  
20-Lead TSSOP  
20-Lead TSSOP  
20-Lead TSSOP  
20-Lead LFCSP_WQ  
20-Lead TSSOP  
20-Lead TSSOP  
20-Lead TSSOP  
20-Lead TSSOP  
20-Lead LFCSP_WQ  
Evaluation Board  
Package Option  
RU-16  
RU-16  
RU-16  
RU-16  
CP-20-6  
CP-20-6  
RU-20  
RU-20  
RU-20  
RU-20  
CP-20-6  
RU-20  
RU-20  
RU-20  
AD5424YRU  
AD5424YRUZ  
8
8
8
8
8
8
AD5424YRUZ-REEL  
AD5424YRUZ-REEL7  
AD5424YCPZ  
AD5424YCPZ-REEL7  
AD5433YRU  
10  
10  
10  
10  
10  
12  
12  
12  
12  
12  
AD5433YRUZ  
AD5433YRUZ-REEL  
AD5433YRUZ-REEL7  
AD5433YCPZ  
AD5445YRU  
AD5445YRUZ  
AD5445YRUZ-REEL  
AD5445YRUZ-REEL7  
AD5445YCPZ  
1
1
1
1
RU-20  
CP-20-6  
1
EVAL-AD5445SDZ  
1 Z = RoHS Compliant Part.  
Rev. E | Page 26 of 28  
 
Data Sheet  
NOTES  
AD5424/AD5433/AD5445  
Rev. E | Page 27 of 28  
AD5424/AD5433/AD5445  
NOTES  
Data Sheet  
©2003–2016 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D03160-0-1/16(E)  
Rev. E | Page 28 of 28  

相关型号:

AD5424YCPZ-REEL

8-/10-/12-Bit, High Bandwidth Multiplying DACs with Parallel Interface
ADI

AD5424YCPZ-REEL7

8-/10-/12-Bit, High Bandwidth Multiplying DACs with Parallel Interface
ADI

AD5424YRU

8-/10-/12-Bit, High Bandwidth Multiplying DACs with Parallel Interface
ADI

AD5424YRU-REEL

8-/10-/12-Bit, High Bandwidth Multiplying DACs with Parallel Interface
ADI

AD5424YRU-REEL7

8-/10-/12-Bit, High Bandwidth Multiplying DACs with Parallel Interface
ADI

AD5424YRUZ

8-/10-/12-Bit, High Bandwidth Multiplying DACs with Parallel Interface
ADI

AD5424YRUZ-REEL

8-/10-/12-Bit, High Bandwidth Multiplying DACs with Parallel Interface
ADI

AD5424YRUZ-REEL7

8-/10-/12-Bit, High Bandwidth Multiplying DACs with Parallel Interface
ADI

AD5424_1

8-/10-/12-Bit, High Bandwidth Multiplying DACs with Parallel Interface
ADI

AD5425

8-Bit, High Bandwidth Multiplying DAC with Serial Interface
ADI

AD5425BRM

IC SERIAL INPUT LOADING, 0.03 us SETTLING TIME, 8-BIT DAC, PDSO10, MICRO, SOIC-10, Digital to Analog Converter
ADI

AD5425YRM

8-Bit, High Bandwidth Multiplying DAC with Serial Interface
ADI