AD5432BRM-REEL7 [ADI]

IC IC,D/A CONVERTER,SINGLE,10-BIT,CMOS,TSSOP,10PIN, Digital to Analog Converter;
AD5432BRM-REEL7
型号: AD5432BRM-REEL7
厂家: ADI    ADI
描述:

IC IC,D/A CONVERTER,SINGLE,10-BIT,CMOS,TSSOP,10PIN, Digital to Analog Converter

转换器 数模转换器
文件: 总10页 (文件大小:133K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY TECHNICAL DATA  
HighBandwidthCMOS8/10/12-Bit  
a
SerialInterfaceMultiplyingDACs  
AD5426/AD5432/AD5443*  
Preliminary Technical Data  
FEATURES  
+2.5 V to +5.5 V Supply Operation  
50MHz Serial Interface  
F U NC T IO NAL B LO C K D IAG RAM  
10MHz Multiplying Bandw idth  
±10V Reference Input  
V
V
REF  
DD  
10-Lead µSOIC Package  
Pin Com patible 8, 10 and 12 Bit Current Output DACs  
Guaranteed Monotonic  
Four Quadrant Multiplication  
Pow er On Reset  
R
FB  
R
AD5426/  
AD5432/  
AD5443  
8/10/12  
BIT  
R-2R DAC  
I
OUT1  
I
OUT2  
Daisy Chain Mode  
Readback Function  
5µA typical Pow er Consum ption  
DAC REGISTER  
INPUT LATCH  
Power On  
Reset  
APPLICATIONS  
Portable Battery Pow ered Applications  
Waveform Generators  
Analog Processing  
SYNC  
SCLK  
SDIN  
CONTROL LOGIC &  
INPUT SHIFT REGISTER  
SDO  
Instrum entation Applications  
Program m able Am plifiers and Attenuators  
Digitally-Controlled Calibration  
Program m able Filters and Oscillators  
Com posite Video  
GND  
Ultrasound  
Gain, offset and Voltage Trim m ing  
G E NE R AL D E S C R IP T IO N  
characteristics, with large signal multiplying bandwidths  
of 10M H z.  
T he AD5426/AD5432/AD5443 are CMOS 8, 10 and  
12-bit Current Output digital-to-analog converters  
respectively.  
T he applied external reference input voltage (VREF  
)
determines the full scale output current. An integrated  
feedback resistor (RFB) provides temperature tracking and  
full scale voltage output when combined with an external  
Current to Voltage precision amplifier.  
T hese devices operate from a +2.5 V to 5.5 V power sup-  
ply, making them suited to battery powered applications  
and many other applications.  
T hese DACs utilize double buffered 3-wire serial interface  
that is compatible with SPIT M, QSPIT M, MICROWIRET M  
and most DSP interface standards. In addition, a serial  
data out pin (SDO) allows for daisy chaining when  
T he AD 5426/AD 5432/AD 5443 D ACs are available in  
small 10-lead µSOIC packages.  
multiple packages are used. Data readback allows the user  
to read the contents of the DAC register via the SDO pin.  
On power-up, the internal shift register and latches are  
filled with zeros and the DAC outputs are at zero scale.  
P R O D U C T H IG H LIG H T S  
1. 10M H z M ultiplying Bandwidth  
2. 3mm x 5mm 10-lead µSOIC package  
As a result of manufacture on a CMOS sub micron  
process, they offer excellent four quadrant multiplication  
3. Low Voltage, Low Power Current Output DACs.  
*US Patent N umber 5,689,257  
SPI and QSPI are trademarks of Motorola, Inc.  
M ICROWIRE is a trademark of N ational Semiconductor Corporation.  
REV. PrI Feb, 2003  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A.  
Tel: 781/ 329-4700  
World Wide Web Site: http:/ / w w w.analog.com  
Analog Devices, Inc., 2003  
Fax: 781/ 326-8703  
PRELIMINARY TECHNICAL DATA  
1
AD5426/AD5432/AD5443–SPECIFICATIONS  
(V = 2.5 V to 5.5 V, V = +10 V, IOUTx = O V. All specifications TMIN to TMAX unless otherwise noted. DC performance measured with  
DD  
REF  
OP1177, AC performance with AD9631 unless otherwise noted.)  
P ar am eter  
Min  
Typ  
Max  
Units  
Conditions  
ST AT IC PERFORMANCE  
AD 5426  
Resolution  
8
Bits  
LSB  
LSB  
Relative Accuracy  
Differential Nonlinearity  
AD 5432  
±0.5  
±1  
Guaranteed Monotonic  
Guaranteed Monotonic  
Guaranteed Monotonic  
Resolution  
10  
±1  
±1  
Bits  
LSB  
LSB  
Relative Accuracy  
Differential Nonlinearity  
AD 5443  
Resolution  
12  
±2  
±1  
±2  
Bits  
LSB  
LSB  
m V  
Relative Accuracy  
Differential Nonlinearity  
Gain Error  
Gain Error T emp Coefficient2  
Output Leakage Current  
±5  
ppm FSR/°C  
±10  
±50  
nA  
nA  
V
Data = 0000H, T A = 25°C, IOUT 1  
Data = 0000H, IOUT 1  
Output Voltage Compliance Range  
T BD  
REFERENCE INPUT 2  
Reference Input Range  
VREF Input Resistance  
±10  
10  
V
k  
8
12  
Input resistance T C = -50ppm/°C  
DIGITAL INPUTS/OUTPUT2  
Input High Voltage, VIH  
Input Low Voltage, VIL  
1.7  
V
V
V
µA  
pF  
VDD = 2.5 V to 5.5 V  
VDD = 2.7 V to 5.5 V  
VDD = 2.5 V to 2.7 V  
0.8  
0.7  
1
Input Leakage Current, IIL  
Input Capacitance  
10  
VDD = 4.5 V to 5.5 V  
Output Low Voltage, VOL  
Output High Voltage, VOH  
VDD = 2.5 V to 3.6 V  
Output Low Voltage, VOL  
Output High Voltage, VOH  
0.4  
0.4  
V
V
ISINK = 200 µA  
ISOURCE = 200 µA  
VDD - 1  
V
V
ISINK = 200 µA  
ISOURCE = 200 µA  
VDD - 0.5  
DYNAMIC PERFORMANCE2  
Reference Multiplying BW  
10  
T BD  
MH z  
MH z  
VREF = 100 mV rms, DAC loaded all 1s  
VREF = 6 V rms, DAC loaded all 1s  
Output Voltage Settling T ime  
AD5426  
AD5432  
AD5443  
Slew Rate  
Digital to Analog Glitch Impulse  
Multiplying Feedthrough Error  
Output Capacitance  
30  
35  
40  
100  
3
T BD  
T BD  
T BD  
ns  
ns  
ns  
V/µs  
nV-s  
dB  
pF  
Measured to ½ LSB. RLOAD = 100, CLOAD = 15pF.  
DAC latch alternately loaded with 0s and 1s.  
1 LSB change around Major Carry  
DAC latch loaded with all 0s. Reference = 10kHz.  
DAC Latches Loaded with all 0s  
-75  
2
4
pF  
DAC Latches Loaded with all 1s  
Digital Feedthrough  
5
nV-s  
Feedthrough to DAC output with SYNC high  
and Alternate Loading of all 0s and all 1s.  
VREF = 6 V rms, All 1s loaded, f = 1kHz  
VREF = 5 V, Sinewave generated from digital code.  
@ 1kHz  
T otal Harmonic Distortion  
-85  
-85  
25  
72  
T BD  
dB  
dB  
Output Noise Spectral Density  
SFDR performance  
Intermodulation D istortion  
nV/  
dB  
d B  
H z  
POWER REQUIREMENT S  
Power Supply Range  
IDD  
Power Supply Sensitivity2  
2.5  
5.5  
10  
0.001  
V
µA  
%/%  
Logic Inputs = 0 V or VDD  
VDD = ±5%  
NOTES  
1T emperature range is as follows: B Version: –40°C to +105°C.  
2Guaranteed by design and characterisation, not subject to production test.  
Specifications subject to change without notice.  
–2–  
REV. PrI  
PRELIMINARY TECHNICAL DATA  
Single Supply Operation (Biased Mode)  
AD5426/AD5432/AD5443  
(V = 2.5 V to 5.5 V, V = + 2V, IOUT2 = +1 V. All specifications TMIN to TMAX unless otherwise noted. DC performance measured with  
DD  
REF  
OP1177, AC performance with AD9631 unless otherwise noted.)  
P ar am eter  
Min  
Typ  
Max  
Units  
Conditions  
ST AT IC PERFORMANCE  
AD 5426  
Resolution  
8
Bits  
LSB  
LSB  
Relative Accuracy  
Differential Nonlinearity  
AD 5432  
±0.5  
±1  
Guaranteed Monotonic  
Guaranteed Monotonic  
Guaranteed Monotonic  
Resolution  
10  
±1  
±1  
Bits  
LSB  
LSB  
Relative Accuracy  
Differential Nonlinearity  
AD 5443  
Resolution  
12  
±2  
±1  
±2  
Bits  
LSB  
LSB  
m V  
Relative Accuracy  
Differential Nonlinearity  
Gain Error  
Gain Error T emp Coefficient2  
Output Leakage Current  
±5  
ppm FSR/°C  
±10  
±50  
nA  
nA  
V
Data = 0000H, TA = 25°C, IOUT 1  
Data = 0000H, IOUT 1  
Output Voltage Compliance Range  
T BD  
REFERENCE INPUT 2  
Reference Input Range  
VREF Input Resistance  
tbd  
10  
V
kΩ  
8
12  
Input resistance T C = -50ppm/°C  
DIGITAL INPUTS/OUTPUT2  
Input High Voltage, VIH  
Input Low Voltage, VIL  
1.7  
V
V
V
µA  
pF  
VDD = 2.5 V to 5.5 V  
VDD = 2.7 V to 5.5 V  
VDD = 2.5 V to 2.7 V  
0.8  
0.7  
1
Input Leakage Current, IIL  
Input Capacitance  
10  
VDD = 4.5 V to 5.5 V  
Output Low Voltage, VOL  
Output High Voltage, VOH  
VDD = 2.5 V to 3.6 V  
Output Low Voltage, VOL  
Output High Voltage, VOH  
0.4  
0.4  
V
V
ISINK = 200 µA  
ISOURCE = 200 µA  
VDD - 1  
V
V
ISINK = 200 µA  
ISOURCE = 200 µA  
VDD - 0.5  
DYNAMIC PERFORMANCE2  
Reference Multiplying BW  
10  
T BD  
MH z  
MH z  
VREF = 100 mV rms, DAC loaded all 1s  
VREF = 1 V, DAC loaded all 1s  
Output Voltage Settling T ime  
AD5426  
AD5432  
AD5443  
Slew Rate  
Digital to Analog Glitch Impulse  
Multiplying Feedthrough Error  
Output Capacitance  
30  
35  
40  
100  
3
T BD  
T BD  
T BD  
ns  
ns  
ns  
V/µs  
nV-s  
dB  
pF  
Measured to ½ LSB. RLOAD = 100, CLOAD = 15pF.  
VREF = 0V,DAC latch alternately loaded with 0s & 1s.  
1 LSB change around Major Carry  
DAC latch loaded with all 0s. Reference = 10kHz.  
DAC Latches Loaded with all 0s  
-75  
2
4
pF  
DAC Latches Loaded with all 1s  
Digital Feedthrough  
5
nV-s  
Feedthrough to DAC output with SYNC high  
and Alternate Loading of all 0s and all 1s.  
VREF = 2 Vp-p, 1V Bias, All 1s loaded, f = 1kHz  
VREF = 2 V, Sinewave generated from digital code.  
@ 1kHz  
T otal Harmonic Distortion  
-85  
-85  
25  
72  
T BD  
dB  
dB  
Output Noise Spectral Density  
SFDR performance  
Intermodulation D istortion  
nV/  
dB  
d B  
H z  
POWER REQUIREMENT S  
Power Supply Range  
IDD  
Power Supply Sensitivity2  
2.5  
5.5  
10  
0.001  
V
µA  
%/%  
Logic Inputs = 0 V or VDD  
VDD = ±5%  
NOTES  
1T emperature range is as follows: B Version: –40°C to +105°C.  
2Guaranteed by design and characterisation, not subject to production test.  
Specifications subject to change without notice.  
REV. PrI  
–3–  
PRELIMINARY TECHNICAL DATA  
1
AD5426/AD5432/AD5443–SPECIFICATIONS  
(V = 2.5 V to 5.5 V, V = +5 V, I 2 = O V. All specifications TMIN to TMAX unless  
1
DD  
REF  
OUT  
TIMINGCHARACTERISTICS  
otherwise noted.)  
P ar am eter  
Lim it at TMIN, TMAX  
Units  
Conditions/Com m ents  
fSCLK  
t1  
t2  
50  
20  
8
8
13  
5
4.5  
5
30  
25  
M H z max  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
M ax Clock frequency  
SCLK Cycle time  
SCLK H igh T ime  
SCLK Low T ime  
SYNC falling edge to SCLK active edge setup time  
Data Setup T ime  
Data H old T ime  
SYNC rising edge to SCLK active edge  
M inimum SYNC high time  
SCLK Active edge to SDO valid  
t3  
t4  
2
t5  
t6  
t7  
t83  
t9  
NOTES  
1See Figures 1 & 2. T emperature range is as follows: B Version: –40°C to +105°C. Guaranteed by design and characterisation, not subject to production test. All input  
signals are specified with tr =tf = 5ns (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH )/2.  
2Falling or Rising edge as determined by control bits of Serial word.  
3Daisychain and Readback modes cannot operate at max clock frequency. SDO timing specifications measured with load circuit as shown in Figure 3.  
Specifications subject to change without notice.  
t
1
SCLK  
t
t
2
3
t
8
t
7
t
4
SYNC  
DIN  
t
6
t
5
DB15  
DB0  
ALTERNATIVELY, DATA MAY BE CLOCKED INTO INPUT SHIFT REGISTER ON  
RISING EDGE OF SCLK AS  
DETERMINED BY CONTROL BITS. TIMING AS PER ABOVE WITH SCLK INVERTED  
,
.
Figure 1. Stand Alone Mode Tim ing Diagram .  
t
1
SCLK  
t
t
2
t
3
7
t
8
t
4
SYNC  
t
6
t
5
SDIN  
SDO  
DB15 (N)  
DB0 (N) DB15 (N+1)  
DB0 (N+1)  
DB0(N)  
t
9
DB15(N)  
A
LTERNATIVELY, DATA MAY BE CLOCKED INTO INPUT SHIFT REGISTER ON  
R
ISING  
E
DGE OF SCLK AS  
ALLING  
DETERMINED BY CONTROL BITS. IN THIS CASE, DATA WOULD BE CLOCKED OUT OF SDO ON  
DGE OF SCLK. TIMING AS PER ABOVE WITH SCLK INVERTED  
F
E
,
.
Figure 2. Daisy Chain and Readback Modes Tim ing Diagram  
–4–  
REV. PrI  
PRELIMINARY TECHNICAL DATA  
AD5426/AD5432/AD5443  
2
ABSO LUT E MAXIMUM RAT INGS1,  
(T A = +25°C unless otherwise noted)  
VDD to GND  
VREF, RFB to GND  
–0.3 V to +7 V  
–12 V to +12 V  
–0.3 V to +7 V  
±10 mA  
I
200uA  
OL  
TO  
OUTPUT  
PIN  
I
OUT 1, IOUT2 to GND  
V
+ V  
2
OH (MIN)  
OL (MAX)  
Input Current to any pin except supplies  
C
L
Logic Inputs & Output3  
Operating T emperature Range  
Industrial (B Version)  
-0.3V to VDD +0.3 V  
50pF  
I
200uA  
OH  
–40°C to +105°C  
–65°C to +150°C  
+ 150°C  
Storage T emperature Range  
Junction T emperature  
10 lead µSOIC θJA T hermal Impedance  
Lead T emperature, Soldering (10seconds)  
IR Reflow, Peak T emperature (<20 seconds)  
Figure 3. Load Circuit for SDO Tim ing Specifications  
206°C /W  
300°C  
+ 235°C  
NOTES  
1Stressesabove those listed under “Absolute Maximum Ratings” maycause permanent  
damage to the device. Thisisa stressratingonlyand functionaloperation ofthe device  
at these or any other conditions above those listed in the operational sections of this  
specification is not implied. Exposure to absolute maximum rating conditions for  
extended periodsmayaffect device reliability. Onlyone absolute maximum ratingmay  
be applied at any one time.  
2 T ransient currents of up to 100mA will not cause SCR latchup.  
3Overvoltages at SCLK, SYNC, DIN, will be clamped by internal diodes. Current  
should be limited to the maximum ratings given.  
O R D E R ING G U ID E  
Model  
Tem perature Range  
P ackage D escription  
Br an din g  
P ackage O ption  
AD 5426BRM  
AD 5432BRM  
AD 5443BRM  
-40 oC to +105 oC  
-40 oC to +105 oC  
-40 oC to +105 oC  
µSO IC  
µSO IC  
µSO IC  
D 01  
D 02  
D 03  
RM -10  
RM -10  
RM -10  
C AUTIO N  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD5426/AD5432/AD5443 features proprietary ESD protection circuitry, permanent  
damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
REV. PrI  
–5–  
PRELIMINARY TECHNICAL DATA  
AD5426/AD5432/AD5443  
P IN F U NC T IO N D E SC R IP T IO N  
P in  
Mnem onic F u n ction  
1
2
3
4
I
I
O U T 1  
OUT2  
DAC Current Output.  
DAC Analog Ground. T his pin should normally be tied to the analog ground of the system.  
Ground Pin.  
G N D  
SC L K  
Serial Clock Input. By default, data is clocked into the input shift register on the falling edge of  
the serial clock input. Alternatively, by means of the serial control bits, the device may be  
configured such that data is clocked into the shift register on the rising edge of SCLK.  
5
6
SD IN  
Serial Data Input. Data is clocked into the 16-bit input register on the active edge of the serial  
clock input. By default, on power up, data is clocked into the shift register on the falling edge of  
SCLK. T he control bits allow the user to change the active edge to rising edge.  
SYN C  
Active Low Control Input. T his is the frame synchronization signal for the input data. When  
SYNC goes low, it powers on the SCLK and DIN buffers and the input shift register is  
enabled. Data is loaded to the shift register on the active edge of the following clocks. In  
stand alone mode, the serial interface counts clocks and data is latched to the shift register on the  
16th active clock edge.  
7
8
S D O  
Serial Data Output. T his allows a number of parts to be daisychained. By default, data is clocked  
into the shift register on the falling edge and out via SDO on the rising edge of SCLK. Data will  
always be clocked out on the alternate edge to loading data to the shift register. Writing the  
Readback control word to the shift register makes the DAC register contents available for  
readback on the SDO pin, clocked out on the opposite edges to the active clock edge.  
Positive power supply input. T hese parts can be operated from a supply of +2.5 V to +5.5 V.  
VDD  
9
10  
VREF  
RFB  
DAC reference voltage input pin.  
DAC feedback resistor pin. Establish voltage output for the DAC by connecting to external  
amplifier output.  
P IN C O NF IG U R AT IO N  
µS O I C  
IOUT1  
IOUT2  
GND  
10  
9
RFB  
1
2
3
4
5
VREF  
VDD  
AD5426/  
AD5432/  
AD5443  
8
7
6
SCLK  
SDIN  
SDO  
(Not to Scale)  
SYNC  
–6–  
REV. PrI  
PRELIMINARY TECHNICAL DATA  
AD5426/AD5432/AD5443  
T E R M I N O L O G Y  
In t er m od u la t ion D ist or t ion  
Rela tive Accu r a cy  
T he DAC is driven by two combinded sine waves  
references of frequencies fa and fb. Distortion products are  
produced at sum and difference frequencies of mfa±nfb  
where m, n = 0, 1, 2, 3... Intermodulation terms are those  
for which m or n is not equal to zero. T he second order  
terms include (fa +fb) and (fa - fb) and the third order  
terms are (2fa + fb), (2fa -fb), (f+2fa + 2fb) and (fa -  
2fb). IMD is defined as  
Relative accuracy or endpoint nonlinearity is a measure of  
the maximum deviation from a straight line passing  
through the endpoints of the DAC transfer function. It is  
measured after adjusting for zero and full scale and is  
normally expressed in LSBs or as a percentage of full  
scale reading.  
D iffer en t ia l Non lin ea r it y  
Differential nonlinearity is the difference between the  
measured change and the ideal 1 LSB change between any  
two adjacent codes. A specified differential nonlinearity of  
±1 LSB max over the operating temperature range  
ensures monotonicity.  
IMD = 20log (rms sum of the sum and diff distortion products)  
rms amplitude of the fundamental  
C om p lia n ce Volta ge Ra n ge  
T he maximum range of (output) terminal voltage for  
which the device will provide the specified characteristics.  
G a in E r r or  
Gain error or full-scale error is a measure of the output  
error between an ideal DAC and the actual device output.  
For these DACs, ideal maximum output is VREF – 1 LSB.  
Gain error of the DACs is adjustable to zero with external  
resistance.  
G E NE R AL D E S C R IP T IO N  
D AC S E C T IO N  
T he AD5426, AD5432 and AD5443 are 8, 10 and 12 bit  
current output DACs consisting of a standard inverting R-  
2R ladder configuration. A simplified diagram for the 8-  
Bit AD54246 is shown in Figure 4. T he feedback resistor  
RFB has a value of R. T he value of R is typically 10kΩ  
(minimum 8kand maximum 12k). If IOUT 1 and IOUT 2  
are kept at the same potential, a constant current flows in  
each ladder leg, regardless of digital input code.  
T herefore, the input resistance presented at VREF is always  
constant.  
O u tp u t Lea ka ge C u r r en t  
Output leakage current is current which flows in the DAC  
ladder switches when these are turned off. For the IOUT 1  
terminal, it can be measured by loading all 0s to the DAC  
and measuring the IOUT 1 current. Minimum current will  
flow in the IOUT 2 line when the DAC is loaded with all 1s  
O u t p u t C a p a cit a n ce  
Capacitance from IOUT 1 or IOUT 2 to AGND.  
R
R
R
V
O u tp u t C u r r en t Settlin g T im e  
REF  
2R  
S1  
2R  
S2  
2R  
S3  
2R  
S8  
2R  
T his is the amount of time it takes for the output to settle  
to a specified level for a full scale input change. For these  
devices, it is specifed with a 100 resistor to ground.  
R
R
A
FB  
I
OUT1  
I
OUT 2  
D igital to Analog Glitch lm pulse  
DAC DATA LATCHES  
AND DRIVERS  
T he amount of charge injected from the digital inputs to  
the analog output when the inputs change state. T his is  
normally specified as the area of the glitch in either  
pA-secs or nV-secs depending upon whether the glitch is  
measured as a current or voltage signal.  
Figure 4. Sim plified Ladder  
Access is provided to the VREF, RFB, IOUT 1 and IOUT 2  
terminals of the DAC, making the device extremely  
versatile and allowing it to be configured in several  
different operating modes, for example, to provide a  
unipolar output, bipolar output or in single supply modes  
of operation. in unipolar mode or four quadrant  
multiplication in bipolar mode.  
D igit a l F eed t h r ou gh  
When the device is not selected, high frequency logic  
activity on the device digital inputs is capacitivelly coupled  
through the device to show up as noise on the IOUT pins  
and subsequently into the following circuitry. T his noise is  
digital feedthrough.  
Un ipolar M ode  
M u ltip lyin g F eed th r ou gh E r r or  
Using a single op amp, these devices can easily be  
configured to provide 2 quadrant multiplying operation or  
a unipolar output voltage swing as shown in Figure 5.  
T his is the error due to capacitive feedthrough from the  
DAC reference input to the DAC IOUT 1 terminal, when all  
0s are loaded to the DAC.  
When an output amplifier is connected in unipolar mode,  
the output voltage is given by:  
H a r m on ic D ist or t ion  
T he DAC is driven by an ac reference. T he ratio of the  
rms sum of the harmonics of the DAC output to the  
fundamental value is the T HD. Usually only the lower  
order harmonices are included, such as second to fifth.  
VOUT = -D/2^n x VREF  
Where D is the fractional representation of the digital  
word loaded to the DAC, and n is the number of bits.  
2
2
2
2
T HD = 20log  
(V2 + V3 + V4 + V5  
)
V1  
REV. PrI  
–7–  
PRELIMINARY TECHNICAL DATA  
AD5426/AD5432/AD5443  
When VIN is an ac signal, the circuit performs four-  
quadrant multiplication.  
D = 0 to 256 (8-Bit AD5426)  
= 0 to 1024 (10-Bit AD5432)  
= 0 to 4096 (12-Bit AD5443)  
T able II. shows the relationship between digital code and  
the expected output voltage for bipolar operation  
(AD 5426, 8-Bit device).  
V
DD  
R
2
Table II. Bipolar Code Table  
C
1
RFB  
IOUT1  
IOUT2  
SCLK SDIN GND  
V
DD  
D igital Input Analog O utput (V)  
V
REF  
V
A1  
REF AD5426/32/43  
R
1
1111 1111  
1000 0000  
0000 0001  
0000 0000  
+ VREF (127/128)  
0
-VREF (127/128)  
-VREF (128/128)  
V
= 0 to -V  
REF  
OUT  
SYNC  
uController  
AGND  
NOTES:  
1
SE RIAL INT E RF AC E  
R1 AND R2 USED ONLY IF GAIN ADJUSTMENT IS REQUIRED.  
2
C1 PHASE COMPENSATION (1pF - 5pF) MAY BE REQUIRED  
IF A1 IS A HIGH SPEED AMPLIFIER.  
T he AD5426/AD5432/AD5443 have an easy to use 3-wire  
interface which is compatible with SPI/QSPI/M icroWire  
and DSP interface standards. Data is written to the device  
in 16 bit words. T his 16-bit word consists of 4 control bits  
and either 8, 10 or 12 data bits as shown in Figure 6.T he  
AD5443 uses all 12 bits of DAC data. T he AD5432 uses  
ten bits and ignores the two LSBs, while the AD5426  
uses eight bits and ignores the last four bits. As good  
programming practice, these ignored LSB’s should be set  
to 0.  
Figure 5. Unipolar Operation  
With a fixed 10 V reference, the circuit shown above will  
give an unipolar 0V to -10V output voltage swing. When  
VIN is an ac signal, the circuit performs two-quadrant  
multiplication.  
T he following table shows the relationship between digital  
code and expected output voltage for unipolar operation.  
(AD 5426, 8-Bit device).  
Low P ower Ser ial Inter face  
T o minimize the power consumption of the device, the  
interface only powers up fully when the device is being  
written to, i.e., on the falling edge of SYNC. T he SCLK  
and DIN input buffers are powered down on the rising  
edge of SYN C .  
Table I. Unipolar Code Table  
D igital Input Analog O utput (V)  
1111 1111  
1000 0000  
0000 0001  
0000 0000  
-VREF (255/256)  
-VREF (128/256) = -VREF/2  
-VREF (1/256)  
D AC C ontr ol Bits C 3 - C 0  
Control bits C3 to C0 allow control of various functions  
of the DAC as can be seen in T able 3. Default settings of  
the DAC on power on are as follows :  
-VREF (0/256) = 0  
Data clocked into shift register on falling clock edges;  
Daisy chain mode is enabled. Device powers on with  
zeroscale load to the DAC register and IOUT lines.  
T he DAC control bits allow the user to adjust certain  
features on power on, for example, Daisy chaining may be  
disabled if not in use, active clock edge may be changed to  
rising edge and DAC output may be cleared to either zero  
B ip ola r O p er a tion  
In some applications, it may be necessary to generate full  
4-Quadrant multplying operation or a bipolar output  
swing. T his can be easily accomplished by using another  
external amplifier and some external resistors as shown in  
Figure 6.  
R3  
10k  
R2  
C1  
V
DD  
R5  
20kΩ  
RFB  
IOUT1  
IOUT2  
GND  
V
DD  
R4  
10kΩ  
R1  
V
AD5426/32/43  
A1  
REF  
± 10V  
V
REF  
A2  
V
= -V  
to +V  
REF  
OUT  
REF  
SYNC SCLK SDIN  
uController  
AGND  
R1 AND R2 ARE USED ONLY IF GAIN ADJUSTMENT IS REQUIRED.  
ADJUST R1 FOR V = 0V WITH CODE 10000000 LOADED TO DAC.  
MATCHING AND TRACKING IS ESSENTIAL FOR RESISTOR PAIRS  
R3 AND R4.  
NOTES:  
1
OUT  
2
3
C1 PHASE COMPENSATION (1pF-5pF) MAY BE REQUIRED  
IF A1/A2 IS A HIGH SPEED AMPLIFIER.  
Figure 6. Bipolar Operation (4 Quadrant Multiplication)  
–8–  
REV. PrI  
PRELIMINARY TECHNICAL DATA  
AD5426/AD5432/AD5443  
shift register when SYNC is low. If more than 16 clock  
pulses are applied, the data ripples out of the shift register  
and appears on the SDO line. T his data is clocked out on  
the rising edge of SCLK (this is the default, use the  
control word to change the active edge) and is valid for  
the next device on the falling edge (default). By  
or midscale. T he user may also initiate a readback of the  
DAC register contents for verification purposes.  
TABLE 3. D AC CO NTRO L BITS  
C 3 C 2 C 1 C 0 Funtion Im plem ented  
connecting this line to the DIN input on the next device  
in the chain, a multidevice interface is constructed. 16  
clock pulses are required for each device in the system.  
T herefore, the total number of clock cycles must equal  
16N where N is the total number of devices in the chain.  
See the timing diagram in Figure 3.  
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
No Operation (Power On Default)  
Load and Update  
Initiate Readback  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
D aisy Chain D isable  
Clock Data to shift register On Rising  
Ed ge  
Clear DAC output to Zero  
Clear DAC output to Midscale  
Reserved  
When the serial transfer to all devices is complete, SYNC  
should be taken high. T his prevents any further data being  
clocked into the input shift register. A burst clock  
containing the exact number of clock cycles may be used  
and SYNC taken high some time later. After the rising  
edge of SYNC, data is automatically transferred from each  
device’s input shift register to the addressed DAC.  
When control bits = “0000”, the device is in No  
Operation mode. T his may be useful in daisy-chain  
applications where the user does not wish to change the  
settings of a particular DAC in the chain. Simply write  
“0000” to the Control bits for that DAC and the  
following data bits will be ignored.  
1
1
1
1
1
0
1
1
1
1
1
0
0
1
1
1
0
1
0
1
Reserved  
Reserved  
SYN C F u n ct ion  
SYNC is an edge-triggered input that acts as a frame  
synchronization signal and chip enable. Data can only be  
transferred into the device while SYNC is low. T o start  
the serial data transfer, SYNC should be taken low ob-  
serving the minimum SYNC falling to SCLK falling  
edge setup time, t4.  
Stand alone Mode  
After power on, write “1001” to control word to disable  
Daisy Chain Mode. T he first falling edge of SYNC resets  
a counter that counts the number of serial clocks to ensure  
the correct number of bits are shifted in and out of the  
serial shift registers. Any further edges on SYNC are  
ignored until the correct number of bits are shifted in or  
out.  
After the falling edge of the 16th SCLK pulse, data will  
automatically be transferred from the input shift register to  
the DAC. In order for another serial transfer to take place  
the counter must be reset by the falling edge of SYNC.  
D aisy C h ain Mode  
Daisy Chain is the default power on mode. T o disable the  
daisy chain function, write “1001” to control word. In  
Daisy-Chain Mode the internal gating on SCLK is  
disabled. T he SCLK is continuously applied to the input  
DB15 (MSB)  
DB0 (LSB)  
C3  
C2  
C1  
C0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
DATA BITS  
0
0
0
0
CONTROL BITS  
Figure 6a. AD5426 8 bit Input Shift Register Contents  
DB15 (MSB)  
C3 C2  
CONTROL BITS  
DB0 (LSB)  
C1  
C0 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
DATA BITS  
0
0
Figure 6b. AD5432 10 bit Input Shift Register Contents  
DB15 (MSB)  
C3 C2  
CONTROL BITS  
DB0 (LSB)  
DB1 DB0  
DB3 DB2  
C1  
C0  
DB9 DB8 DB7 DB6 DB5 DB4  
DATA BITS  
DB11 DB10  
Figure 6c. AD5443 12 bit Input Shift Register Contents  
REV. PrI  
–9–  
PRELIMINARY TECHNICAL DATA  
AD5426/AD5432/AD5443  
O ver view of AD 54xx devices  
P ar t #  
R esolu t ion # D AC s I N L t S  
In ter fa ce P a cka ge  
F ea tu r es  
AD 5 4 2 4 8  
AD 5 4 2 5 8  
AD 5 4 2 6 8  
AD 5 4 2 8 8  
AD 5 4 2 9 8  
AD 5 4 3 2 1 0  
AD 5 4 3 3 1 0  
AD 5 4 3 9 1 0  
AD 5 4 4 0 1 0  
AD 5 4 4 3 1 2  
AD 5 4 4 5 1 2  
AD 5 4 4 7 1 2  
AD 5 4 6 9 1 2  
1
1
1
2
2
1
1
2
2
1
1
2
2
± 0.5 30n s  
± 0.5 30n s  
± 0.5 30n s  
± 0.5 30n s  
± 0.5 30n s  
P arallel  
S er ia l  
S er ia l  
P arallel  
S er ia l  
S er ia l  
P arallel  
S er ia l  
P arallel  
S er ia l  
P arallel  
P arallel  
S er ia l  
RU -16, C P -20 10 MH z BW, 10 ns C S Pulse Width  
R M - 1 0  
R M - 1 0  
R U - 2 0  
R U - 1 0  
R M - 1 0  
Byte Load,10 M H z BW, 50 M H z Serial  
10 M H z BW, 50 M H z Serial  
10 M H z BW, 10 ns C S Pulse Width  
10 M H z BW, 50 M H z Serial  
± 1  
± 1  
± 1  
± 1  
± 2  
± 2  
± 2  
± 2  
35n s  
35n s  
35n s  
35n s  
40n s  
40n s  
40n s  
40n s  
10 M H z BW, 50 M H z Serial  
RU -20, C P -20 10 MH z BW, 10 ns C S Pulse Width  
R U - 1 6  
R U - 2 4  
R M - 1 0  
10 M H z BW, 50 M H z Serial  
10 M H z BW, 10 ns C S Pulse Width  
10 M H z BW, 50 M H z Serial  
RU -20, C P -20 10 M H z BW, 10 ns CS Pulse Width  
R U - 2 4  
R U - 1 6  
10 M H z BW, 10 ns CS Pulse Width  
10 M H z BW, 10 ns CS Pulse Width  
O U T LINE D IM E NS IO NS  
D imensions shown in inches and (mm).  
10 Lead µSO IC  
(RM - 10)  
0.122 (3.10)  
0.114 (2.90)  
10  
6
5
0.199 (5.05)  
0.187 (4.75)  
0.122 (3.10)  
0.114 (2.90)  
1
PIN 1  
0.0197 (0.50) BSC  
0.120 (3.05)  
0.112 (2.85)  
0.120 (3.05)  
0.112 (2.85)  
0.037 (0.94)  
0.031 (0.78)  
0.043 (1.10)  
MAX  
6؇  
0؇  
SEATING  
PLANE  
0.006 (0.15) 0.012 (0.30)  
0.002 (0.05) 0.006 (0.15)  
0.028 (0.70)  
0.016 (0.40)  
0.009 (0.23)  
0.005 (0.13)  
REV. PrI  
–10–  

相关型号:

AD5432YRM

8-/10-/12-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI

AD5432YRM-REEL

8-/10-/12-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI

AD5432YRM-REEL7

8-/10-/12-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI

AD5432YRMZ

8-/10-/12-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI

AD5432YRMZ-REEL

8-/10-/12-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI

AD5432YRMZ-REEL7

8-/10-/12-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI

AD5433

Dual 8-,10-,12-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI

AD5433BCP

IC PARALLEL, WORD INPUT LOADING, 0.035 us SETTLING TIME, 10-BIT DAC, QCC20, 4 X 4 MM, CSP-20, Digital to Analog Converter
ADI

AD5433BRU

IC PARALLEL, WORD INPUT LOADING, 0.035 us SETTLING TIME, 10-BIT DAC, PDSO20, TSSOP-20, Digital to Analog Converter
ADI

AD5433YCP

8-/10-/12-Bit, High Bandwidth Multiplying DACs with Parallel Interface
ADI

AD5433YCP-REEL

8-/10-/12-Bit, High Bandwidth Multiplying DACs with Parallel Interface
ADI

AD5433YCP-REEL7

8-/10-/12-Bit, High Bandwidth Multiplying DACs with Parallel Interface
ADI