AD5443YRMZ-REEL7 [ADI]

8-/10-/12-Bit High Bandwidth Multiplying DACs with Serial Interface; 8位/ 10位/ 12位,高带宽乘法数模转换器,串行接口
AD5443YRMZ-REEL7
型号: AD5443YRMZ-REEL7
厂家: ADI    ADI
描述:

8-/10-/12-Bit High Bandwidth Multiplying DACs with Serial Interface
8位/ 10位/ 12位,高带宽乘法数模转换器,串行接口

转换器 数模转换器 光电二极管
文件: 总24页 (文件大小:754K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
8-/10-/12-Bit High Bandwidth  
Multiplying DACs with Serial Interface  
Data Sheet  
AD5426/AD5432/AD5443  
FEATURES  
GENERAL DESCRIPTION  
2.5 V to 5.5 V supply operation  
50 MHz serial interface  
10 MHz multiplying bandwidth  
2.5 MSPS update rate  
INL of 1 LSB for 12-bit DAC  
10 V reference input  
Low glitch energy < 2 nV-s  
Extended temperature range −40°C to +125°C  
10-lead MSOP package  
Pin-compatible 8-, 10-, and 12-bit current output DACs  
Guaranteed monotonic  
4-quadrant multiplication  
Power-on reset with brownout detection  
Daisy-chain mode  
The AD5426/AD5432/AD54431 are CMOS 8-, 10-, and 12-bit  
current output digital-to-analog converters (DACs), respectively.  
These devices operate from a 2.5 V to 5.5 V power supply,  
making them suitable for battery-powered applications and  
many other applications.  
These DACs use a double buffered, 3-wire serial interface that is  
compatible with SPI, QSPI™, MICROWIRE™, and most DSP  
interface standards. In addition, a serial data out pin (SDO)  
allows for daisy-chaining when multiple packages are used.  
Data readback allows the user to read the contents of the DAC  
register via the SDO pin. On power-up, the internal shift register  
and latches are filled with 0s and the DAC outputs are at zero scale.  
As a result of manufacturing on a CMOS submicron process,  
the parts offer excellent 4-quadrant multiplication characteristics  
with large signal multiplying bandwidths of 10 MHz. The applied  
external reference input voltage, VREF, determines the full-scale  
output current. An integrated feedback resistor, RFB, provides  
temperature tracking and full-scale voltage output when combined  
with an external current to voltage precision amplifier.  
Readback function  
0.4 µA typical power consumption  
APPLICATIONS  
Portable battery-powered applications  
Waveform generators  
Analog processing  
The AD5426/AD5432/AD5443 DACs are available in small,  
10-lead MSOP packages.  
Instrumentation  
Programmable amplifiers and attenuators  
Digitally controlled calibration  
Programmable filters and oscillators  
Composite video  
The EV-AD5443/46/53SDZ evaluation board is available for  
evaluating DAC performance. For more information, see the  
UG-327 evaluation board user guide.  
Ultrasound  
Gain, offset, and voltage trimming  
FUNCTIONAL BLOCK DIAGRAM  
V
V
DD  
REF  
R
AD5426/  
AD5432/  
AD5443  
R
I
FB  
1
2
8-/10-/12-BIT  
R-2R DAC  
OUT  
I
OUT  
DAC REGISTER  
INPUT LATCH  
POWER-ON  
RESET  
SYNC  
SCLK  
SDIN  
CONTROL LOGIC AND  
INPUT SHIFT REGISTER  
SDO  
GND  
Figure 1.  
1 U.S. Patent No. 5,689,257.  
Rev. G  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2004–2013 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
AD5426/AD5432/AD5443  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Circuit Operation....................................................................... 15  
Single-Supply Applications ....................................................... 17  
Positive Output Voltage............................................................. 17  
Adding Gain................................................................................ 18  
DACs Used as a Divider or Programmable Gain Element... 18  
Reference Selection .................................................................... 18  
Amplifier Selection .................................................................... 18  
Serial Interface ............................................................................ 20  
PCB Layout and Power Supply Decoupling................................ 22  
Overview of AD54xx and AD55xx Devices ............................... 23  
Outline Dimensions....................................................................... 24  
Ordering Guide .......................................................................... 24  
Applications....................................................................................... 1  
General Description ......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Characteristics ................................................................ 5  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 8  
Terminology .................................................................................... 14  
Theory of Operation ...................................................................... 15  
REVISION HISTORY  
6/13—Rev. F to Rev. G  
Change to General Description Section........................................ 1  
Changes to Ordering Guide .......................................................... 24  
Deleted Evaluation Board for the AD5426/AD5432/AD5443  
Series of DACs Section, Operating the Evaluation Board  
Section, and Power Supplies Section ........................................... 23  
Deleted Figure 59 and Figure 60................................................... 24  
Updated Outline Dimensions....................................................... 24  
Changes to Ordering Guide.......................................................... 24  
Deleted Figure 61............................................................................ 25  
Deleted Figure 62............................................................................ 26  
7/12—Rev. E to Rev. F  
No Change to Content, Changed VDD Values in 7/12 Revision  
History Only...................................................................................... 2  
7/12—Rev. D to Rev. E  
Changed VDD = 3 V to VDD = 2.5 V ............................. Throughout  
Changes to Table 2............................................................................ 4  
Changes to Table 4............................................................................ 7  
Change to Daisy-Chain Mode Section ........................................ 20  
Change to Ordering Guide............................................................ 24  
2/09—Rev. B to Rev. C  
Changes to Low Power Serial Interface Section and Daisy-  
Chain Mode Section....................................................................... 20  
Updated Outline Dimensions....................................................... 28  
11/08—Rev. A to Rev. B  
4/12—Rev. C to Rev. D  
Changes to Ordering Guide.......................................................... 28  
Changed VDD = 2.5 V to VDD = 3 V ............................. Throughout  
Changes to General Description Section ...................................... 1  
Deleted Microprocessor Interface Section, ADSP-21xx to  
AD5426/AD5432/AD5443 Interface Section, Figure 51,  
Figure 52, Table 11, ADSP-BF5x to AD5426/AD5432/AD5443  
Interface Section, Figure 53 and Figure 54; Renumbered  
Sequentially ..................................................................................... 21  
Deleted 80C51/80L51 to AD5426/AD5432/AD5443 Interface  
Section, Figure 55, MC68HC11 Interface to AD5426/AD5432/  
AD5443 Interface Section, Figure 56, MICROWIRE to  
AD5426/AD5432/AD5443 Interface Section, Figure 57,  
PIC16C6x/7x to AD5426/AD5432/AD5443, and Figure 58 .... 22  
5/05—Rev. 0 to Rev. A  
Updated Format..................................................................Universal  
Changes to Specifications.................................................................3  
Changes to Figure 42...................................................................... 16  
Change to Figure 45 ....................................................................... 17  
Change to Figure 46 ....................................................................... 18  
Changes to Table 7, Table 8, and Table 9..................................... 19  
Additions to Microprocessor Interface Section.......................... 21  
2/04—Revision 0: Initial Version  
Rev. G | Page 2 of 24  
 
Data Sheet  
AD5426/AD5432/AD5443  
SPECIFICATIONS  
VDD = 2.5 V to 5.5 V, VREF = 10 V, IOUT2 = 0 V; temperature range for Y version: −40°C to +125°C; all specifications TMIN to TMAX, unless  
otherwise noted; dc performance measured with OP177; ac performance with AD8038, unless otherwise noted.  
Table 1.  
Parameter  
Min  
Typ Max  
Unit  
Test Conditions/Comments  
STATIC PERFORMANCE  
AD5426  
Resolution  
8
Bits  
LSB  
LSB  
Relative Accuracy  
Differential Nonlinearity  
AD5432  
0.25  
0.5  
Guaranteed monotonic  
Guaranteed monotonic  
Resolution  
10  
0.5  
1
Bits  
LSB  
LSB  
Relative Accuracy  
Differential Nonlinearity  
AD5443  
Resolution  
12  
1
Bits  
LSB  
Relative Accuracy  
Differential Nonlinearity  
Gain Error  
−1/+2 LSB  
10  
Guaranteed monotonic  
mV  
Gain Error Temperature Coefficient1  
Output Leakage Current  
5
ppm FSR/°C  
nA  
nA  
10  
20  
Data = 0x0000, TA = 25°C, IOUT1  
Data = 0x0000, T = −40°C to 125°C, IOUT  
1
REFERENCE INPUT1  
Reference Input Range  
VREF Input Resistance  
RFB Resistance  
10  
10  
10  
V
kΩ  
kΩ  
8
8
12  
12  
Input resistance TC = −50 ppm/°C  
Input resistance TC = −50 ppm/°C  
Input Capacitance  
Code Zero Scale  
Code Full Scale  
3
5
6
8
pF  
pF  
DIGITAL INPUT/OUTPUT1  
Input High Voltage, VIH  
Input Low Voltage, VIL  
Output High Voltage, VOH  
1.7  
V
V
V
V
V
V
µA  
pF  
0.6  
VDD − 1  
VDD − 0.5  
VDD = 4.5 V to 5 V, ISOURCE = 200 µA  
VDD = 2.5 V to 3.6 V, ISOURCE = 200 µA  
VDD = 4.5 V to 5 V, ISINK = 200 µA  
VDD = 2.5 V to 3.6 V, ISINK = 200 µA  
Output Low Voltage, VOL  
0.4  
0.4  
1
Input Leakage Current, IIL  
Input Capacitance  
4
10  
DYNAMIC PERFORMANCE1  
Reference Multiplying Bandwidth  
Output Voltage Settling Time  
10  
MHz  
VREF = 3.5 V; DAC loaded all 1s  
VREF = 10 V; RLOAD = 100 Ω, DAC latch alternately  
loaded with 0s and 1s  
Measured to 16 mV of FS  
Measured to 4 mV of FS  
Measured to 1 mV of FS  
Digital Delay  
10% to 90% Rise/Fall Time  
Digital-to-Analog Glitch Impulse  
Multiplying Feedthrough Error  
50  
55  
90  
40  
15  
2
100  
110  
160  
75  
ns  
ns  
ns  
ns  
ns  
nV-s  
Interface delay time  
30  
Rise and fall time, VREF = 10 V, RLOAD = 100 Ω  
1 LSB change around major carry, VREF = 0 V  
DAC latch loaded with all 0s, VREF = 3.5  
1 MHz  
70  
48  
dB  
dB  
10 MHz  
Rev. G | Page 3 of 24  
 
AD5426/AD5432/AD5443  
Data Sheet  
Parameter  
Min  
Typ Max  
Unit  
Test Conditions/Comments  
Output Capacitance  
IOUT  
1
12  
10  
22  
10  
0.1  
17  
12  
25  
12  
pF  
pF  
pF  
pF  
All 0s loaded  
All 1s loaded  
All 0s loaded  
All 1s loaded  
IOUT  
2
Digital Feedthrough  
nV-s  
SYNC  
high and  
Feedthrough to DAC output with  
alternate loading of all 0s and all 1s  
Analog THD  
81  
dB  
VREF = 3.5 V p-p, all 1s loaded, f = 1 kHz  
Digital THD  
Clock = 1 MHz, VREF = 3.5 V, CCOMP = 1.8 pF  
50 kHz fOUT  
20 kHz fOUT  
Output Noise Spectral Density  
SFDR Performance (Wide Band)  
50 kHz fOUT  
73  
74  
25  
dB  
dB  
nV/√Hz  
@ 1 kHz  
Clock = 1 MHz, VREF = 3.5 V  
75  
76  
dB  
dB  
20 kHz fOUT  
SFDR Performance (Narrow Band)  
50 kHz fOUT  
20 kHz fOUT  
Intermodulation Distortion  
POWER REQUIREMENTS  
Power Supply Range  
IDD  
Clock = 1 MHz, VREF = 3.5 V  
87  
87  
78  
dB  
dB  
dB  
Clock = 1 MHz, f1 = 20 kHz, f2 = 25 kHz, VREF = 3.5 V  
2.5  
5.5  
0.6  
5
V
µA  
µA  
%/%  
TA = 25°C, logic inputs = 0 V or VDD  
T = −40°C to +125°C , logic inputs = 0 V or VDD  
∆VDD = 5%  
0.4  
Power Supply Sensitivity1  
0.001  
1 Guaranteed by design and characterization, not subject to production testing.  
Rev. G | Page 4 of 24  
 
Data Sheet  
AD5426/AD5432/AD5443  
TIMING CHARACTERISTICS  
All input signals are specified with tr = tf = 1 ns (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2. VDD = 2.5 V to 5.5 V,  
REF = 10 V, IOUT2 = 0 V; temperature range for Y version: −40°C to +125°C; all specifications TMIN to TMAX, unless otherwise noted.  
V
Table 2.  
Parameter  
2.5 V to 5.5 V  
4.5 V to 5.5 V  
Unit  
Test Conditions/Comments  
Max clock frequency  
SCLK cycle time  
SCLK high time  
SCLK low time  
SYNC falling edge to SCLK active edge setup time  
Data setup time  
Data hold time  
SYNC rising edge to SCLK active edge  
Minimum SYNC high time  
SCLK active edge to SDO valid  
fSCLK  
t1  
t2  
50  
20  
8
8
13  
5
50  
20  
8
8
13  
5
MHz max  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns typ  
ns max  
t3  
t4  
1
t5  
t6  
t7  
t8  
3
5
3
5
30  
80  
120  
30  
45  
65  
2, 3  
t9  
1 Falling or rising edge as determined by control bits of serial word.  
2 Daisy-chain and readback modes cannot operate at maximum clock frequency. SDO timing specifications measured with load circuit, as shown in Figure 4.  
3 SDO operates with a VDD of 3.0 V to 5.5 V.  
t1  
SCLK  
t2  
t3  
t8  
t4  
t7  
SYNC  
DIN  
t6  
t5  
DB15  
DB0  
ALTERNATIVELY, DATA MAY BE CLOCKED INTO INPUT SHIFT REGISTER ON RISING EDGE OF  
SCLK AS DETERMINED BY CONTROL BITS. TIMING AS PER ABOVE, WITH SCLK INVERTED.  
Figure 2. Standalone Mode Timing Diagram  
t1  
SCLK  
SYNC  
t2  
t3  
t7  
t4  
t8  
t6  
t6  
t5  
DB15  
(N + 1)  
DB0  
(N + 1)  
SDIN  
SDO  
DB15 (N)  
DB0 (N)  
t9  
DB15(N)  
DB0(N)  
ALTERNATIVELY, DATA MAY BE CLOCKED INTO INPUT SHIFT REGISTER ON RISING EDGE OF SCLK AS  
DETERMINED BY CONTROL BITS. IN THIS CASE, DATA WOULD BE CLOCKED OUT OF SDO ON FALLING  
EDGE OF SCLK. TIMING AS PER ABOVE, WITH SCLK INVERTED.  
Figure 3. Daisy-Chain and Readback Modes Timing Diagram  
Rev. G | Page 5 of 24  
 
 
AD5426/AD5432/AD5443  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Transient currents of up to 100 mA do not cause SCR latch-up.  
TA = 25°C, unless otherwise noted.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 3.  
Parameter  
Rating  
VDD to GND  
VREF, RFB to GND  
IOUT1, IOUT2 to GND  
Logic Inputs and Output1  
Operating Temperature Range  
Extended Industrial (Y Version)  
Storage Temperature Range  
Junction Temperature  
−0.3 V to +7 V  
−12 V to +12 V  
−0.3 V to VDD + 0.3 V  
−0.3 V to VDD + 0.3 V  
200µA  
I
OL  
−40°C to +125°C  
−65°C to +150°C  
150°C  
V
+ V  
2
OH (MIN)  
OL (MAX)  
TO OUTPUT PIN  
C
L
20pF  
10-lead MSOP θJA Thermal Impedance  
Lead Temperature, Soldering (10 sec)  
IR Reflow, Peak Temperature (<20 sec)  
206°C/W  
300°C  
235°C  
200µA  
I
OH  
Figure 4. Load Circuit for SDO Timing Specifications  
1
SYNC  
, and DIN are clamped by internal diodes.  
Overvoltages at SCLK,  
ESD CAUTION  
Rev. G | Page 6 of 24  
 
 
 
Data Sheet  
AD5426/AD5432/AD5443  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
I
I
1
2
1
2
3
4
5
10  
9
R
FB  
OUT  
OUT  
AD5426/  
AD5432/  
AD5443  
TOP VIEW  
(Not to Scale)  
V
V
REF  
DD  
GND  
8
SCLK  
SDIN  
7
SDO  
6
SYNC  
Figure 5. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2
3
4
IOUT  
IOUT  
GND  
SCLK  
1
2
DAC Current Output.  
DAC Analog Ground. This pin should normally be tied to the analog ground of the system.  
Digital Ground Pin.  
Serial Clock Input. By default, data is clocked into the input shift register on the falling edge of the serial clock  
input. Alternatively, by means of the serial control bits, the device may be configured such that data is clocked into  
the shift register on the rising edge of SCLK. The device can accommodate clock rates up to 50 MHz.  
5
6
7
SDIN  
SYNC  
SDO  
Serial Data Input. Data is clocked into the 16-bit input register on the active edge of the serial clock input. By  
default, on power-up, data is clocked into the shift register on the falling edge of SCLK. The control bits allow the  
user to change the active edge to rising edge.  
Active Low Control Input. This is the frame synchronization signal for the input data. When SYNC goes low, it  
powers on the SCLK and DIN buffers, and the input shift register is enabled. Data is loaded to the mode, the serial  
interface counts clocks, and data is latched to the shift register on the 16th active clock edge.  
Serial Data Output. This allows a number of parts to be daisy-chained. By default, data is clocked into the shift  
register on the falling edge and out via SDO on the rising edge of SCLK. Data is always clocked out on the  
alternate edge to loading data to the shift register. Writing the readback control word to the shift register makes  
the DAC register contents available for readback on the SDO pin, clocked out on the opposite edges to the active  
clock edge. SDO operates with a VDD of 3.0 V to 5.5 V.  
8
9
10  
VDD  
VREF  
RFB  
Positive Power Supply Input. These parts can be operated from a supply of 2.5 V to 5.5 V.  
DAC Reference Voltage Input.  
DAC Feedback Resistor Pin. Establish voltage output for the DAC by connecting to external amplifier output.  
Rev. G | Page 7 of 24  
 
AD5426/AD5432/AD5443  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.20  
0.20  
0.15  
0.10  
0.05  
0
T
= 25°C  
T = 25°C  
A
A
V
= 10V  
V
= 10V  
REF  
= 5V  
REF  
= 5V  
DD  
0.15  
0.10  
0.05  
0
V
V
DD  
–0.05  
–0.10  
–0.15  
–0.20  
–0.05  
–0.10  
–0.15  
–0.20  
0
0
0
50  
100  
150  
200  
250  
0
0
0
50  
100  
150  
200  
250  
CODE  
CODE  
Figure 6. INL vs. Code (8-Bit DAC)  
Figure 9. DNL vs. Code (8-Bit DAC)  
0.5  
0.4  
0.5  
0.4  
T
V
V
= 25°C  
T
V
V
= 25°C  
= 10V  
A
A
= 10V  
REF  
= 5V  
REF  
= 5V  
DD  
DD  
0.3  
0.3  
0.2  
0.2  
0.1  
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
200  
400  
600  
800  
10000  
200  
400  
600  
800  
1000  
CODE  
CODE  
Figure 7. INL vs. Code (10-Bit DAC)  
Figure 10. DNL vs. Code (10-Bit DAC)  
1.0  
0.8  
1.0  
0.8  
T
V
V
= 25°C  
T
V
V
= 25°C  
A
A
= 10V  
= 10V  
REF  
= 5V  
REF  
= 5V  
DD  
DD  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
500  
1000 1500 2000 2500 3000 3500 4000  
CODE  
500  
1000 1500 2000 2500 3000 3500 4000  
CODE  
Figure 8. INL vs. Code (12-Bit DAC)  
Figure 11. DNL vs. Code (12-Bit DAC)  
Rev. G | Page 8 of 24  
 
Data Sheet  
AD5426/AD5432/AD5443  
0.6  
0.5  
0.4  
0.3  
0.2  
2.0  
1.5  
MAX INL  
MAX INL  
1.0  
T
V
V
= 25°C  
A
= 0V  
REF  
= 3V  
0.5  
DD  
AD5443  
T
= 25°C  
= 5V  
A
0
MAX DNL  
MIN INL  
V
DD  
AD5443  
0.1  
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.1  
–0.2  
–0.3  
MIN INL  
MIN DNL  
2
3
4
5
6
7
8
9
10  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
REFERENCE VOLTAGE  
V
(V)  
BIAS  
Figure 12. INL vs. Reference Voltage  
Figure 15. Linearity vs. VBIAS Voltage Applied to IOUT2  
–0.40  
–0.45  
–0.50  
–0.55  
–0.60  
–0.65  
–0.70  
4
3
T
= 25°C  
= 5V  
T
V
V
= 25°C  
A
A
MAX DNL  
V
= 2.5V  
DD  
AD5443  
REF  
= 3V  
DD  
AD5443  
2
MAX INL  
1
0
–1  
–2  
–3  
–4  
–5  
MIN DNL  
MIN INL  
MIN DNL  
2
3
4
5
6
7
8
9
10  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
REFERENCE VOLTAGE  
V
(V)  
BIAS  
Figure 13. DNL vs. Reference Voltage  
Figure 16. Linearity vs. VBIAS Voltage Applied to IOUT2  
5
4
0.5  
0.4  
T
V
V
= 25°C  
= 0V  
V
= 10V  
A
REF  
REF  
= 3V AND 5V  
DD  
3
0.3  
V
= 5V  
DD  
2
0.2  
1
0.1  
GAIN ERROR  
0
0
V
= 3V  
DD  
OFFSET ERROR  
–1  
–2  
–3  
–4  
–5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
TEMPERATURE (°C)  
V
(V)  
BIAS  
Figure 14. Gain Error vs. Temperature  
Figure 17. Gain and Offset Errors vs. VBIAS Voltage Applied to IOUT2  
Rev. G | Page 9 of 24  
 
AD5426/AD5432/AD5443  
Data Sheet  
0.5  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
T
V
V
= 25°C  
T = 25°C  
A
A
= 2.5V  
REF  
= 3V AND 5V  
0.4  
0.3  
DD  
GAIN ERROR  
0.2  
V
= 5V  
DD  
0.1  
OFFSET ERROR  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
V
= 3V  
2
DD  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
0
1
3
4
5
V
(V)  
INPUT VOLTAGE (V)  
BIAS  
Figure 18. Gain and Offset Errors vs. VBIAS Voltage Applied to IOUT2  
SYNC  
Figure 21. Supply Current vs. Logic Input Voltage,  
(SCLK), DATA = 0  
3
1.6  
1.4  
T
V
V
= 25°C  
A
= 0V  
REF  
= 5V  
MAX INL  
DD  
2
1
AD5443  
1.2  
I
1 V 5V  
OUT DD  
1.0  
0.8  
0.6  
0.4  
0.2  
0
MAX DNL  
0
–1  
–2  
–3  
MIN INL  
I
1 V 3V  
DD  
OUT  
MIN DNL  
0.5  
1.0  
1.5  
2.0  
2.5  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
V
(V)  
TEMPERATURE (°C)  
BIAS  
Figure 22. IOUT1 Leakage Current vs. Temperature  
Figure 19. Linearity vs. VBIAS Voltage Applied to IOUT2  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
4
3
T
V
V
= 25°C  
A
= 2.5V  
REF  
= 5V  
DD  
AD5443  
2
V
= 5V  
DD  
MAX DNL  
1
ALL 0s  
ALL 1s  
0
MAX INL  
MIN DNL  
–1  
–2  
–3  
–4  
–5  
V
= 3V  
DD  
ALL 1s  
ALL 0s  
MIN INL  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
0.5  
1.0  
1.5  
2.0  
TEMPERATURE (°C)  
V
(V)  
BIAS  
Figure 23. Supply Current vs. Temperature  
Figure 20. Linearity vs. VBIAS Voltage Applied to IOUT2  
Rev. G | Page 10 of 24  
 
Data Sheet  
AD5426/AD5432/AD5443  
3.5  
3
0
T
= 25°C  
A
V
= ±0.15V, AD8038 C 1pF  
C
REF  
AD5443  
LOADING 010101010101  
3.0  
2.5  
2.0  
1.5  
1
V
= ±2V, AD8038 C 1pF  
REF  
C
V
= ±3.51V, AD8038 C 1.8pF  
C
REF  
V
= ±2V, AD8038 C 1.47pF  
C
REF  
–3  
–6  
–9  
V
= ±0.15V, AD8038 C 1.47pF  
C
REF  
V
= 5V  
CC  
V
= 3V  
CC  
0.5  
0
T
V
= 25°C  
A
= 5V  
DD  
AD8038 AMPLIFIER  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 24. Supply Current vs. Update Rate  
Figure 27. Reference Multiplying Bandwidth vs. Frequency and  
Compensation Capacitor  
6
0
–6  
0.060  
0.050  
0.040  
0.030  
0.020  
0.010  
0
T
V
= 25°C  
= 0V  
LOADING  
ZS TO FS  
V
5V, 0V REF  
ALL ON  
DB11  
DB10  
DB9  
DB8  
DB7  
DB6  
DB5  
DB4  
DB3  
A
DD  
NRG = 2.049nVs  
0x7FF TO 0x800  
REF  
AD8038 AMPLIFIER  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
–66  
–72  
–78  
–84  
–90  
–96  
–102  
C
= 1.8pF  
COMP  
AD5443  
V
3V, 0V REF  
DD  
NRG = 0.088nVs  
0x800 TO 0x7FF  
V
3V, 0V REF  
NRG = 1.877nVs  
0x7FF TO 0x800  
DD  
DB2  
DB1  
DB0  
T
V
= 25°C  
A
= 5V  
DD  
V
5V, 0V REF  
DD  
V
= ±3.5V  
= 1.8pF  
–0.010  
–0.020  
REF  
NRG = 0.119nVs,  
0x800 TO 0x7FF  
ALL OFF  
C
COMP  
AD8038 AMPLIFIER  
1
10  
100  
1k  
10k  
100k  
1M 10M 100M  
0
50  
100  
150  
200  
250  
300  
FREQUENCY (Hz)  
TIME (ns)  
Figure 25. Reference Multiplying Bandwidth vs. Frequency and Code  
Figure 28. Midscale Transition VREF = 0 V  
0.2  
0
–1.70  
–1.71  
–1.72  
–1.73  
–1.74  
–1.75  
–1.76  
T
V
= 25°C  
= 3.5V  
V
5V, 3.5V REF  
A
DD  
NRG = 1.184nVs  
0x7FF TO 0x800  
REF  
AD8038 AMPLIFIER  
= 1.8pF  
C
COMP  
AD5443  
V
3V, 3.5V REF  
DD  
–0.2  
–0.4  
NRG = 1.433nVs  
0x7FF TO 0x800  
V
3V, 3.5V REF  
DD  
NRG = 0.647nVs  
0x800 TO 0x7FF  
T
V
V
= 25°C  
= 5V  
A
–0.6  
–0.8  
DD  
= ±3.5V  
REF  
V
5V, 3.5V REF, NRG = 0.364nVs,  
C
= 1.8pF  
DD  
0x800 TO 0x7FF  
COMP  
AD8038 AMPLIFIER  
1
10 100  
1k  
10k  
100k  
1M  
10M  
100M  
0
50  
100  
150  
200  
250  
300  
FREQUENCY (Hz)  
TIME (ns)  
Figure 26. Reference Multiplying Bandwidth—All 1s Loaded  
Figure 29. Midscale Transition VREF = 3.5 V  
Rev. G | Page 11 of 24  
AD5426/AD5432/AD5443  
Data Sheet  
20  
100  
80  
60  
40  
20  
0
T
V
= 25°C  
= 3V  
A
DD  
AMPLIFIER = AD8038  
MCLK = 200kHz  
0
–20  
MCLK = 500kHz  
MCLK = 1MHz  
–40  
–60  
FULL SCALE  
–80  
ZERO SCALE  
T
= 25°C  
A
–100  
–120  
V
= 3.5V  
REF  
AD8038 AMP  
AD5443  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
0
10  
20  
30  
40  
50  
FREQUENCY (Hz)  
fOUT (kHz)  
Figure 30. Power Supply Rejection vs. Frequency  
Figure 33. Wideband SFDR vs. fOUT Frequency (AD5443)  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
80  
60  
40  
20  
0
T
V
V
= 25°C  
A
MCLK = 500kHz  
= 3V  
DD  
= 3.5V p-p  
REF  
MCLK = 1MHz  
MCLK = 200kHz  
T
V
= 25°C  
A
= 3.5V  
REF  
AD8038 AMP  
AD5426  
1
10  
100  
1k  
10k  
100k  
1M  
0
10  
20  
30  
40  
50  
FREQUENCY (Hz)  
fOUT (kHz)  
Figure 34. Wideband SFDR vs. fOUT Frequency (AD5426)  
Figure 31. THD and Noise vs. Frequency  
0
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
T
V
= 25°C  
A
T
= 25°C  
A
= 3.5V  
REF  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
AD8038 AMPLIFIER  
AD5443  
V
IH  
V
IL  
0
50  
100 150 200 250 300 350 400 450 500  
FREQUENCY (Hz)  
2.5  
3.0  
3.5  
4.0  
VOLTAGE (V)  
4.5  
5.0  
5.5  
Figure 35. Wideband SFDR fOUT = 50 kHz, Update = 1 MHz  
Figure 32. Threshold Voltages vs. Supply Voltage  
Rev. G | Page 12 of 24  
Data Sheet  
AD5426/AD5432/AD5443  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
T
V
= 25°C  
T = 25°C  
A
A
= 3.5V  
V
= 3.5V  
REF  
REF  
AD8038 AMPLIFIER  
AD5443  
AD8038 AMPLIFIER  
AD5443  
0
50  
100 150 200 250 300 350 400 450 500  
FREQUENCY (Hz)  
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
FREQUENCY (Hz)  
Figure 36. Wideband SFDR fOUT = 20 kHz, Update = 1 MHz  
Figure 38. Narrowband ( 50%) SFDR fOUT = 20 kHz, Update = 1 MHz  
0
0
T
V
= 25°C  
A
T
V
= 25°C  
A
= 3.5V  
REF  
= 3.5V  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
REF  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
AD8038 AMPLIFIER  
AD5443  
AD8038 AMPLIFIER  
AD5443  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
10  
15  
20  
25  
30  
35  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 37. Narrowband ( 50%) SFDR fOUT = 50 kHz, Update = 1 MHz  
Figure 39. Narrowband ( 50%) IMD fOUT = 20 kHz, 25 kHz, Update = 1 MHz  
Rev. G | Page 13 of 24  
AD5426/AD5432/AD5443  
Data Sheet  
TERMINOLOGY  
Relative Accuracy  
Digital Feedthrough  
Relative accuracy or endpoint nonlinearity is a measure of the  
maximum deviation from a straight line passing through the  
endpoints of the DAC transfer function. It is measured after  
adjusting for 0 and full scale and is normally expressed in LSBs  
or as a percentage of full-scale reading.  
When the device is not selected, high frequency logic activity  
on the device digital inputs may be capacitively coupled to show  
up as noise on the IOUT pins and subsequently into the following  
circuitry. This noise is digital feedthrough.  
Multiplying Feedthrough Error  
Differential Nonlinearity  
This is the error due to capacitive feedthrough from the DAC  
reference input to the DAC IOUT1 terminal, when all 0s are  
loaded to the DAC.  
Differential nonlinearity is the difference between the measured  
change and the ideal 1 LSB change between any two adjacent  
codes. A specified differential nonlinearity of −1 LSB maximum  
over the operating temperature range ensures monotonicity.  
Total Harmonic Distortion (THD)  
The DAC is driven by an ac reference. The ratio of the rms sum  
of the harmonics of the DAC output to the fundamental value is  
the THD. Usually only the lower order harmonics are included,  
such as second to fifth.  
Gain Error  
Gain error or full-scale error is a measure of the output error  
between an ideal DAC and the actual device output. For these  
DACs, ideal maximum output is VREF − 1 LSB. Gain error of the  
DACs is adjustable to 0 with external resistance.  
2
2
2
2
(
V2 + V3 + V4 + V5  
V1  
Digital Intermodulation Distortion  
)
THD = 20 log  
Output Leakage Current  
Output leakage current is current that flows in the DAC ladder  
switches when these are turned off. For the IOUT1 terminal, it  
can be measured by loading all 0s to the DAC and measuring  
the IOUT1 current. Minimum current flows in the IOUT2 line  
when the DAC is loaded with all 1s.  
Second-order intermodulation distortion (IMD) measurements  
are the relative magnitude of the fa and fb tones generated  
digitally by the DAC and the second-order products at 2fa − fb  
and 2fb − fa.  
Output Capacitance  
Spurious-Free Dynamic Range (SFDR)  
Capacitance from IOUT1 or IOUT2 to AGND.  
SFDR is the usable dynamic range of a DAC before spurious  
noise interferes or distorts the fundamental signal. It is the mea-  
sure of the difference in amplitude between the fundamental  
and the largest harmonically or nonharmonically related spur  
from dc to full Nyquist bandwidth (half the DAC sampling rate,  
or fS/2). Narrow band SFDR is a measure of SFDR over an  
arbitrary window size, in this case 50% of the fundamental.  
Digital SFDR is a measure of the usable dynamic range of the  
DAC when the signal is a digitally generated sine wave.  
Output Current Settling Time  
This is the amount of time it takes for the output to settle to a  
specified level for a full-scale input change. For these devices, it  
is specified with a 100 Ω resistor to ground.  
The settling time specification includes the digital delay from  
rising edge to the full-scale output charge.  
SYNC  
Digital-to-Analog Glitch Impulse  
The amount of charge injected from the digital inputs to the  
analog output when the inputs change state. This is normally  
specified as the area of the glitch in either pA-s or nV-s  
depending upon whether the glitch is measured as a current  
or voltage signal.  
Rev. G | Page 14 of 24  
 
Data Sheet  
AD5426/AD5432/AD5443  
THEORY OF OPERATION  
The AD5426, AD5432, and AD5443 are 8-, 10-, and 12-bit  
current output DACs consisting of a standard inverting R-2R  
ladder configuration. A simplified diagram for the 8-bit AD5426 is  
shown in Figure 40. The matching feedback resistor, RFB, has a  
value of R. The value of R is typically 10 kΩ (minimum 8 kΩ  
and maximum 12 kΩ). If IOUT1 and IOUT2 are kept at the same  
potential, a constant current flows in each ladder leg, regardless  
of digital input code. Therefore, the input resistance presented  
at VREF is always constant and nominally of value R. The DAC  
output (IOUT) is code-dependent, producing various resistances  
and capacitances. External amplifier choice should take into  
account the variation in impedance generated by the DAC on  
the amplifiers inverting input node.  
Note that the output voltage polarity is opposite to the VREF  
polarity for dc reference voltages.  
These DACs are designed to operate with either negative or  
positive reference voltages. The VDD power pin is used by only the  
internal digital logic to drive the DAC switches’ on and off states.  
These DACs are also designed to accommodate ac reference  
input signals in the range of −10 V to +10 V.  
With a fixed 10 V reference, the circuit shown in Figure 41 gives  
a unipolar 0 V to −10 V output voltage swing. When VIN is an ac  
signal, the circuit performs 2-quadrant multiplication. Table 5  
shows the relationship between digital code and expected output  
voltage for unipolar operation (AD5426, 8-bit device).  
R
R
R
V
REF  
Table 5. Unipolar Code Table  
2R  
S1  
2R  
S2  
2R  
S3  
2R  
S8  
2R  
Digital Input  
1111 1111  
1000 0000  
0000 0001  
0000 0000  
Analog Output (V)  
R
−VREF (255/256)  
−VREF (128/256) = −VREF/2  
−VREF (1/256)  
R
I
A
1
FB  
OUT  
OUT  
I
2
DAC DATA LATCHES  
AND DRIVERS  
−VREF (0/256) = 0  
Figure 40. Simplified Ladder  
V
R2  
DD  
Access is provided to the VREF, RFB, IOUT1, and IOUT2 terminals of  
the DAC, making the device extremely versatile and allowing it  
to be configured in several different operating modes. For example,  
it can be configured to provide a unipolar output, 4-quadrant  
multiplication in bipolar or single-supply modes of operation.  
Note that a matching switch is used in series with the internal  
RFB feedback resistor. If users attempt to measure RFB, power  
must be applied to VDD to achieve continuity.  
C1  
V
R
DD  
FB  
AD5426/  
AD5432/  
AD5443  
I
I
1
2
OUT  
A1  
V
V
REF  
REF  
V
= 0  
R1  
OUT  
OUT  
TO –V  
REF  
SYNC SCLK SDIN GND  
MICROCONTROLLER  
AGND  
NOTES  
CIRCUIT OPERATION  
Unipolar Mode  
1. R1 AND R2 USED ONLY IF GAIN ADJUSTMENT IS REQUIRED.  
2. C1 PHASE COMPENSATION (1pF TO 2pF) MAY BE REQUIRED  
IF A1 IS A HIGH SPEED AMPLIFIER.  
Using a single op amp, these devices can easily be configured to  
provide 2-quadrant multiplying operation or a unipolar output  
voltage swing, as shown in Figure 41.  
Figure 41. Unipolar Operation  
When an output amplifier is connected in unipolar mode, the  
output voltage is given by  
D
VOUT VREF   
2n  
where D is the fractional representation of the digital word  
loaded to the DAC, and n is the number of bits.  
D = 0 to 255 (8-bit AD5426)  
= 0 to 1023 (10-bit AD5432)  
= 0 to 4095 (12-bit AD5443)  
Rev. G | Page 15 of 24  
 
 
 
 
 
AD5426/AD5432/AD5443  
Data Sheet  
Bipolar Operation  
Table 6. Bipolar Code Table  
Digital Input  
1111 1111  
1000 0000  
0000 0001  
0000 0000  
Analog Output (V)  
In some applications, it may be necessary to generate full  
4-quadrant multiplying operation or a bipolar output swing.  
This can easily be accomplished by using another external  
amplifier and some external resistors, as shown in Figure 42.  
In this circuit, the second amplifier, A2, provides a gain of 2.  
Biasing the external amplifier with an offset from the reference  
voltage results in full 4-quadrant multiplying operation. The  
transfer function of this circuit shows that both negative and  
positive output voltages are created as the input data, D, which  
is incremented from code zero (VOUT = −VREF) to midscale  
(VOUT = 0 V) to full scale (VOUT = +VREF).  
+VREF (127/128)  
0
−VREF (127/128)  
−VREF (128/128)  
Stability  
In the I-to-V configuration, the IOUT of the DAC and the inverting  
node of the op amp must be connected as close as possible and  
proper PCB layout techniques must be employed. Since every  
code change corresponds to a step function, gain peaking may  
occur if the op amp has limited gain bandwidth product (GBP)  
and there is excessive parasitic capacitance at the inverting node.  
This parasitic capacitance introduces a pole into the open-loop  
response that can cause ringing or instability in closed-loop  
applications.  
D
VOUT = V  
×
V  
REF  
REF  
2n 1  
where D is the fractional representation of the digital word  
loaded to the DAC and n is the resolution of the DAC.  
An optional compensation capacitor, C1, can be added in parallel  
with RFB for stability, as shown in Figure 41 and Figure 42. Too  
small a value of C1 can produce ringing at the output, while  
too large a value can adversely affect the settling time. C1 should  
be found empirically, but 1 pF to 2 pF is generally adequate for  
compensation.  
D = 0 to 255 (8-bit AD5426)  
= 0 to 1023 (10-bit AD5432)  
= 0 to 4095 (12-bit AD5443)  
When VIN is an ac signal, the circuit performs 4-quadrant  
multiplication.  
Table 6 shows the relationship between digital code and the  
expected output voltage for bipolar operation (AD5426,  
8-bit device).  
R3  
20k  
R5  
20kΩ  
V
R2  
DD  
C1  
V
R
FB  
DD  
R4  
10kΩ  
AD5426/  
REF AD5432/  
AD5443  
I
1
OUT  
A1  
V
V
REF  
±10V  
I
2
OUT  
R1  
A2  
V
= –V  
REF  
SYNC SCLK SDIN GND  
OUT  
TO +V  
REF  
MICROCONTROLLER  
AGND  
NOTES  
1. R1 AND R2 ARE USED ONLY IF GAIN ADJUSTMENT IS REQUIRED. ADJUST R1 FOR  
= 0V WITH CODE 10000000 LOADED TO DAC.  
V
OUT  
2. MATCHING AND TRACKING IS ESSENTIAL FOR RESISTOR PAIRS R3 AND R4.  
3. C1 PHASE COMPENSATION (1pF TO 2pF) MAY BE REQUIRED IF A1/A2 IS A HIGH  
SPEED AMPLIFIER.  
Figure 42. Bipolar Operation  
Rev. G | Page 16 of 24  
 
 
Data Sheet  
AD5426/AD5432/AD5443  
V
DD  
R1  
R2  
SINGLE-SUPPLY APPLICATIONS  
Current Mode Operation  
R
V
FB  
DD  
These DACs are specified and tested to guarantee operation  
in single-supply applications. In the current mode circuit of  
Figure 43, IOUT2 and hence IOUT1 is biased positive by an amount  
V
OUT  
V
I
1
V
IN  
OUT  
REF  
GND  
applied to VBIAS  
.
V
V
DD  
NOTES  
1. ADDITIONAL PINS OMITTED FOR CLARITY.  
2. C1 PHASE COMPENSATION (1pF TO 2pF) MAY BE REQUIRED  
IF A1 IS A HIGH SPEED AMPLIFIER.  
C1  
R
DD  
FB  
I
1
2
OUT  
A1  
V
V
V
REF  
OUT  
IN  
Figure 44. Single-Supply Voltage Switching Mode Operation  
I
OUT  
GND  
It is important to note that VIN is limited to low voltages because  
the switches in the DAC ladder no longer have the same source  
drain drive voltage. As a result, their on resistance differs, which  
degrades the linearity of the DAC.  
A2  
V
BIAS  
Also, VIN must not go negative by more than 0.3 V or an  
internal diode turns on, exceeding the maximum ratings of the  
device. In this type of application, the full range of multiplying  
capability of the DAC is lost.  
NOTES  
1. ADDITIONAL PINS OMITTED FOR CLARITY.  
2. C1 PHASE COMPENSATION (1pF TO 2pF) MAY BE  
REQUIRED IF A1 IS A HIGH SPEED AMPLIFIER.  
Figure 43. Single-Supply Current Mode Operation  
POSITIVE OUTPUT VOLTAGE  
In this configuration, the output voltage is given by  
OUT = {D × (RFB/RDAC) × (VBIAS − VIN)} + VBIAS  
Note that the output voltage polarity is opposite to the VREF  
polarity for dc reference voltages. To achieve a positive voltage  
output, an applied negative reference to the input of the DAC  
is preferred over the output inversion through an inverting  
amplifier because of the resistor’s tolerance errors. To generate  
a negative reference, the reference can be level shifted by an  
op amp such that the VOUT and GND pins of the reference  
become the virtual ground and −2.5 V, respectively, as shown  
in Figure 45.  
V
As D varies from 0 to 255 (AD5426), 1023 (AD5432) or 4095  
(AD5443), the output voltage varies from  
V
OUT = VBIAS to VOUT = 2 VBIAS − VIN  
VBIAS should be a low impedance source capable of sinking and  
sourcing all possible variations in current at the IOUT2 terminal  
without any problems.  
V
= 5V  
DD  
ADR03  
It is important to note that VIN is limited to low voltages because  
the switches in the DAC ladder no longer have the same source  
drain drive voltage. As a result, their on resistance differs, which  
degrades the linearity of the DAC. See Figure 15 to Figure 20.  
V
V
IN  
OUT  
GND  
C1  
+5V  
V
DD  
R
FB  
Voltage Switching Mode of Operation  
I
1
2
OUT  
V
REF  
V
= 0V  
I
–2.5V  
Figure 44 shows these DACs operating in the voltage switching  
mode. The reference voltage, VIN, is applied to the IOUT1 pin,  
OUT  
TO +2.5V  
OUT  
GND  
–5V  
I
OUT2 is connected to AGND, and the output voltage is available  
at the VREF terminal. In this configuration, a positive reference  
voltage results in a positive output voltage, making single-  
supply operation possible. The output from the DAC is voltage  
at a constant impedance (the DAC ladder resistance), thus an  
op amp is necessary to buffer the output voltage. The reference  
input no longer sees a constant input impedance, but one that  
varies with code. Therefore, the voltage input should be driven  
from a low impedance source.  
NOTES  
1. ADDITIONAL PINS OMITTED FOR CLARITY.  
2. C1 PHASE COMPENSATION (1pF TO 2pF) MAY BE REQUIRED IF A1 IS  
A HIGH SPEED AMPLIFIER.  
Figure 45. Positive Voltage Output with Minimum of Components  
Rev. G | Page 17 of 24  
 
 
 
 
 
AD5426/AD5432/AD5443  
Data Sheet  
DAC leakage current is also a potential error source in divider  
circuits. The leakage current must be counterbalanced by an  
opposite current supplied from the op amp through the DAC.  
Since only a fraction D of the current into the VREF terminal is  
routed to the IOUT1 terminal, the output voltage has to change  
as follows:  
ADDING GAIN  
In applications where the output voltage is required to be greater  
than VIN, gain can be added with an additional external amplifier or  
it can be achieved in a single stage. It is important to consider the  
effect of temperature coefficients of the thin film resistors of the  
DAC. Simply placing a resistor in series with the RFB resistor causes  
mismatches in the temperature coefficients, resulting in larger  
gain temperature coefficient errors. Instead, the circuit shown  
in Figure 46 is a recommended method of increasing the gain of  
the circuit. R1, R2, and R3 should all have similar temperature  
coefficients, but they need not match the temperature coefficients  
of the DAC. This approach is recommended in circuits where  
gains of greater than 1 are required.  
Output Error Voltage due to DAC Leakage = (Leakage × R)/D  
where R is the DAC resistance at the VREF terminal. For a DAC  
leakage current of 10 nA, R = 10 kΩ, and a gain (that is, 1/D) of 16,  
the error voltage is 1.6 mV.  
V
DD  
V
IN  
R
V
FB  
DD  
V
DD  
I
I
1
OUT  
V
REF  
2
OUT  
C1  
GND  
V
R
DD  
FB  
I
1
2
OUT  
R1  
V
V
V
REF  
OUT  
IN  
I
OUT  
R3  
R2  
GND  
V
OUT  
GAIN = R2 + R3  
R2  
R1 = R2R3  
R2 + R3  
ADDITIONAL PINS OMITTED FOR CLARITY.  
NOTES  
1. ADDITIONAL PINS OMITTED FOR CLARITY.  
2. C1 PHASE COMPENSATION (1pF TO 2pF) MAY BE REQUIRED  
IF A1 IS A HIGH SPEED AMPLIFIER.  
Figure 47. Current Steering DAC as a Divider or Programmable Gain Element  
REFERENCE SELECTION  
Figure 46. Increasing Gain of Current Output DAC  
When selecting a reference for use with the AD5426 series of  
current output DACs, pay attention to the references output  
voltage temperature coefficient specification. This parameter not  
only affects the full-scale error, but can also affect the linearity (INL  
and DNL) performance. The reference temperature coefficient  
should be consistent with the system accuracy specifications. For  
example, an 8-bit system required to hold its overall specification to  
within 1 LSB over the temperature range 0°C to 50°C dictates  
that the maximum system drift with temperature should be less  
than 78 ppm/°C. A 12-bit system with the same temperature  
range to overall specification within 2 LSBs requires a maximum  
drift of 10 ppm/°C. By choosing a precision reference with low  
output temperature coefficient this error source can be minimized.  
Table 7 suggests some references available from Analog Devices  
that are suitable for use with this range of current output DACs.  
DACS USED AS A DIVIDER OR PROGRAMMABLE  
GAIN ELEMENT  
Current-steering DACs are very flexible and lend themselves to  
many different applications. If this type of DAC is connected as  
the feedback element of an op amp and RFB is used as the input  
resistor as shown in Figure 47, then the output voltage is inversely  
proportional to the digital input fraction, D.  
For D = 1 − 2−n the output voltage is  
V
OUT = −VIN/D = −VIN/(1 − 2−N  
)
As D is reduced, the output voltage increases. For small values  
of D, it is important to ensure that the amplifier does not saturate  
and also that the required accuracy is met. For example, an 8-bit  
DAC driven with the binary code 0x10 (00010000), that is, 16  
decimal, in the circuit of Figure 47 should cause the output  
voltage to be 16 × VIN. However, if the DAC has a linearity  
specification of 0.5 LSB, then D can in fact have the weight  
anywhere in the range 15.5/256 to 16.5/256 so that the possible  
output voltage will be in the range 15.5 VIN to 16.5 VIN—an error of  
+3% even though the DAC itself has a maximum error of 0.2%.  
AMPLIFIER SELECTION  
The primary requirement for the current-steering mode is an  
amplifier with low input bias currents and low input offset  
voltage. The input offset voltage of an op amp is multiplied by  
the variable gain (due to the code-dependent output resistance  
of the DAC) of the circuit. A change in this noise gain between  
two adjacent digital fractions produces a step change in the  
output voltage due to the amplifier’s input offset voltage. This  
output voltage change is superimposed on the desired change in  
output between the two codes and gives rise to a differential  
linearity error, which, if large enough, could cause the DAC to  
be nonmonotonic. In general, the input offset voltage should be  
Rev. G | Page 18 of 24  
 
 
 
 
 
 
Data Sheet  
AD5426/AD5432/AD5443  
a fraction (~ <1/4) of an LSB to ensure monotonic behavior  
when stepping through codes.  
Provided the DAC switches are driven from true wideband low  
impedance sources (VIN and AGND), they settle quickly.  
Consequently, the slew rate and settling time of a voltage switching  
DAC circuit is determined largely by the output op amp.  
The input bias current of an op amp also generates an offset at  
the voltage output as a result of the bias current flowing in the  
feedback resistor, RFB. Most op amps have input bias currents low  
enough to prevent any significant errors in 12-bit applications.  
To obtain minimum settling time in this configuration, it is  
important to minimize capacitance at the VREF of the DAC. This  
is done by using low input capacitance buffer amplifiers and  
careful board design. Most single-supply circuits include ground as  
part of the analog signal range, which in turn requires an amplifier  
that can handle rail-to-rail signals,. There is a large range of  
single-supply amplifiers available from Analog Devices.  
Common-mode rejection of the op amp is important in voltage  
switching circuits since it produces a code-dependent error at  
the voltage output of the circuit. Most op amps have adequate  
common-mode rejection at an 8-, 10-, or 12-bit resolution.  
Table 7. Suitable ADI Precision References  
Part No.  
ADR01  
ADR01  
ADR02  
ADR02  
ADR03  
ADR03  
ADR06  
ADR06  
ADR431  
ADR435  
ADR391  
ADR395  
Output Voltage (V)  
Initial Tolerance (%) Temp Drift (ppm/°C) ISS (mA)  
Output Noise µV p-p Package  
10  
10  
5
0.05  
0.05  
0.06  
0.06  
0.10  
0.10  
0.10  
0.10  
0.04  
0.04  
0.16  
0.10  
3
9
3
9
3
9
3
9
3
3
9
9
1
1
1
1
1
1
1
1
0.8  
0.8  
0.12  
0.12  
20  
20  
10  
10  
6
SOIC-8  
TSOT-23, SC70  
SOIC-8  
TSOT-23, SC70  
SOIC-8  
5
2.5  
2.5  
3
3
2.5  
5
6
TSOT-23, SC70  
SOIC-8  
TSOT-23, SC70  
SOIC-8  
10  
10  
3.5  
8
SOIC-8  
2.5  
5
5
TSOT-23  
8
TSOT-23  
Table 8. Suitable ADI Precision Op Amps  
0.1 Hz to 10 Hz  
Noise (µV p-p) Supply Current (µA) Package  
Part No.  
OP97  
OP1177  
AD8551  
AD8603  
AD8628  
Supply Voltage (V)  
2 to 20  
2.5 to 15  
2.7 to 5  
1.8 to 6  
2.7 to 6  
VOS (Max) (µV)  
IB (Max) (nA)  
25  
60  
5
50  
5
0.1  
2
0.05  
0.001  
0.1  
0.5  
0.4  
1
2.3  
0.5  
600  
500  
975  
50  
SOIC-8  
MSOP, SOIC-8  
MSOP, SOIC-8  
TSOT  
850  
TSOT, SOIC-8  
Table 9. Suitable ADI High Speed Op Amps  
Part No.  
AD8065  
AD8021  
AD8038  
AD9631  
Supply Voltage (V)  
BW @ ACL (MHz)  
Slew Rate (V/µs)  
VOS (Max) (µV) IB (Max) (nA)  
Package  
5 to 24  
2.5 to 12  
3 to 12  
145  
490  
350  
320  
180  
100  
425  
1,300  
1,500  
1,000  
3,000  
10,000  
6,000  
10,500  
750  
SOIC-8, SOT-23, MSOP  
SOIC-8, MSOP  
SOIC-8, SC70-5  
SOIC-8  
2 to 6  
7,000  
Rev. G | Page 19 of 24  
 
AD5426/AD5432/AD5443  
Data Sheet  
DB15 (MSB)  
DB0 (LSB)  
SERIAL INTERFACE  
C3  
C2  
C1  
C0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
DATA BITS  
X
X
X
X
The AD5426/AD5432/AD5443 have an easy to use 3-wire inter-  
face that is compatible with SPI/QSPI/MICROWIRE and DSP  
interface standards. Data is written to the device in 16 bit words.  
This 16-bit word consists of 4 control bits and either 8 , 10 , or 12  
data bits as shown in Figure 48, Figure 49, and Figure 50. The  
AD5443 uses all 12 bits of DAC data. The AD5432 uses 10 bits  
and ignores the 2 LSBs, while the AD5426 uses 8 bits and ignores  
the last 4 bits.  
CONTROL BITS  
Figure 48. AD5426 8-Bit Input Shift Register Contents  
DB15 (MSB)  
DB0 (LSB)  
C3  
C2  
C1  
C0 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
DATA BITS  
X
X
CONTROL BITS  
Figure 49. AD5432 10-Bit Input Shift Register Contents  
DB15 (MSB)  
DB0 (LSB)  
C3  
C2  
C1  
C0 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
DATA BITS  
Low Power Serial Interface  
CONTROL BITS  
To minimize the power consumption of the device, the interface  
powers up fully only when the device is being written to, that is,  
Figure 50. AD5443 12-Bit Input Shift Register Contents  
SYNC  
on the falling edge of  
. The SCLK and DIN input buffers  
SYNC SYNC  
Function  
SYNC  
are powered down on the rising edge of  
. The  
of  
SYNC  
is an edge-triggered input that acts as a frame synchro-  
the AD5426/AD5432/AD5443 needs to be synchronous with  
the microprocessor control. Unfinished data frames are latched  
into the part and will affect the output.  
nization signal and chip enable. Data can be transferred into the  
device only while is low. To start the serial data transfer,  
SYNC  
should be taken low observing the minimum  
SYNC  
SYNC  
DAC Control Bits C3 to C0  
falling to SCLK falling edge setup time, t4.  
Control Bits C3 to C0 allow control of various functions of  
the DAC, as seen in Table 10. Default settings of the DAC on  
power-on are as follows: Data is clocked into the shift register  
on falling clock edges and daisy-chain mode is enabled.  
Device powers on with zero-scale load to the DAC register  
and IOUT lines.  
Daisy-Chain Mode  
Daisy-chain is the default power-on mode. Note that the SDO  
line operates with a VDD of 3.0 V to 5.5 V. To disable the daisy  
chain function, write 1001 to the control word. In daisy-chain  
mode, the internal gating on SCLK is disabled. The SCLK is  
continuously applied to the input shift register when  
is  
SYNC  
The DAC control bits allow the user to adjust certain features  
on power-on, for example, daisy-chaining may be disabled if  
not in use, active clock edge may be changed to rising edge, and  
DAC output may be cleared to either zero scale or midscale.  
The user may also initiate a readback of the DAC register  
contents for verification purposes.  
low. If more than 16 clock pulses are applied, the data ripples  
out of the shift register and appears on the SDO line. This data  
is clocked out on the rising edge of SCLK (this is the default, use  
the control word to change the active edge) and is valid for the  
next device on the falling edge (default). By connecting this line  
to the DIN input on the next device in the chain, a multidevice  
interface is constructed. Sixteen clock pulses are required for  
each device in the system. Therefore, the total number of clock  
cycles must equal 16 N where N is the total number of devices  
in the chain. See the timing diagram in Figure 4.  
Table 10. DAC Control Bits  
C3 C2 C1 C0 Function Implemented  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
No operation (power-on default)  
Load and update  
Initiate readback  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Daisy-chain disable  
Clock data to shift register on rising edge  
Clear DAC output to zero scale  
Clear DAC output to midscale  
Reserved  
When the serial transfer to all devices is complete,  
should be taken high. This prevents any further data being  
clocked into the input shift register. A burst clock containing  
the exact number of clock cycles may be used and  
high some time later. After the rising edge of  
SYNC  
taken  
SYNC  
, data is  
SYNC  
automatically transferred from each devices input shift register  
to the addressed DAC.  
When control bits = 0000, the device is in no operation mode.  
This may be useful in daisy-chain applications where the user  
does not want to change the settings of a particular DAC in the  
chain. Simply write 0000 to the control bits for that DAC and  
the following data bits will be ignored. To re-enable the daisy-  
chain mode, if disabled, a power recycle is required.  
Reserved  
Reserved  
Rev. G | Page 20 of 24  
 
 
 
 
 
Data Sheet  
AD5426/AD5432/AD5443  
Standalone Mode  
After the falling edge of the 16th SCLK pulse, data is auto-  
matically transferred from the input shift register to the DAC.  
For another serial transfer to take place, the counter must be  
After power-on, write 1001 to the control word to disable daisy-  
chain mode. The first falling edge of  
counts the number of serial clocks, ensuring the correct number  
of bits are shifted in and out of the serial shift registers. A rising  
resets a counter that  
SYNC  
reset by the falling edge of  
.
SYNC  
edge on  
during a write causes the write cycle to be aborted.  
SYNC  
Rev. G | Page 21 of 24  
AD5426/AD5432/AD5443  
Data Sheet  
PCB LAYOUT AND POWER SUPPLY DECOUPLING  
In any circuit where accuracy is important, careful consideration of  
the power supply and ground return layout helps to ensure the  
rated performance. The printed circuit board on which the  
AD5426/AD5432/AD5443 is mounted should be designed so  
that the analog and digital sections are separated and confined  
to certain areas of the board. If the DAC is in a system where  
multiple devices require an AGND-to-DGND connection, the  
connection should be made at one point only. The star ground  
point should be established as close to the device as possible.  
Fast switching signals such as clocks should be shielded with  
digital ground to avoid radiating noise to other parts of the  
board and should never be run near the reference inputs.  
Avoid crossover of digital and analog signals. Traces on opposite  
sides of the board should run at right angles to each other. This  
reduces the effects of feedthrough through the board. A micro-  
strip technique is by far the best, but not always possible with a  
double-sided board. In this technique, the component side of the  
board is dedicated to ground plane while signal traces are placed  
on the solder side.  
The DAC should have ample supply bypassing of 10 µF in parallel  
with 0.1 µF on the supply located as close to the package as  
possible, ideally right up against the device. The 0.1 µF capacitor  
should have low effective series resistance (ESR) and effective  
series inductance (ESI), like the common ceramic types that  
provide a low impedance path to ground at high frequencies to  
handle transient currents due to internal logic switching. Low  
ESR, 1 µF to 10 µF tantalum or electrolytic capacitors should  
also be applied at the supplies to minimize transient disturbance  
and filter out low frequency ripple.  
It is good practice to employ compact, minimum lead length  
PCB layout design. Leads to the input should be as short as  
possible to minimize IR drops and stray inductance.  
The PCB metal traces between VREF and RFB should also be  
matched to minimize gain error. To maximize on high frequency  
performance, the I-to-V amplifier should be located as close to  
the device as possible.  
Rev. G | Page 22 of 24  
 
Data Sheet  
AD5426/AD5432/AD5443  
OVERVIEW OF AD54xx AND AD55xx DEVICES  
Table 11.  
Part No.  
AD5424  
AD5426  
AD5428  
AD5429  
AD5450  
AD5432  
AD5433  
AD5439  
AD5440  
AD5451  
AD5443  
AD5444  
AD5415  
AD5405  
AD5445  
AD5447  
AD5449  
AD5452  
AD5446  
AD5453  
AD5553  
AD5556  
AD5555  
AD5557  
AD5543  
AD5546  
AD5545  
AD5547  
Resolution  
No. DACs  
INL (LSB)  
Interface  
Parallel  
Serial  
Parallel  
Serial  
Serial  
Serial  
Parallel  
Serial  
Parallel  
Serial  
Serial  
Serial  
Serial  
Parallel  
Parallel  
Parallel  
Serial  
Serial  
Serial  
Serial  
Serial  
Parallel  
Serial  
Parallel  
Serial  
Parallel  
Serial  
Parallel  
Package  
RU-16, CP-20  
RM-10  
RU-20  
Features  
8
1
1
2
2
1
1
1
2
2
1
1
1
2
2
2
2
2
1
1
1
1
1
2
2
1
1
2
2
0.25  
0.25  
0.25  
0.25  
0.25  
0.5  
0.5  
0.5  
0.5  
0.25  
1
10 MHz BW, 17 ns CS pulse width  
10 MHz BW, 50 MHz serial  
10 MHz BW, 17 ns CS pulse width  
10 MHz BW, 50 MHz serial  
10 MHz BW, 50 MHz serial  
10 MHz BW, 50 MHz serial  
10 MHz BW, 17 ns CS pulse width  
10 MHz BW, 50 MHz serial  
10 MHz BW, 17 ns CS pulse width  
10 MHz BW, 50 MHz serial  
10 MHz BW, 50 MHz serial  
50 MHz serial interface  
8
8
8
8
RU-10  
RJ-8  
RM-10  
RU-20, CP-20  
RU-16  
10  
10  
10  
10  
10  
12  
12  
12  
12  
12  
12  
12  
12  
14  
14  
14  
14  
14  
14  
16  
16  
16  
16  
RU-24  
RJ-8  
RM-10  
RM-8  
RU-24  
CP-40  
0.5  
1
1
10 MHz BW, 50 MHz serial  
10 MHz BW, 17 ns CS pulse width  
10 MHz BW, 17 ns CS pulse width  
10 MHz BW, 17 ns CS pulse width  
10 MHz BW, 50 MHz serial  
10 MHz BW, 50 MHz serial  
10 MHz BW, 50 MHz serial  
1
RU-20, CP-20  
RU-24  
1
1
0.5  
1
2
1
RU-16  
RJ-8, RM-8  
RM-8  
UJ-8, RM-8  
RM-8  
RU-28  
10 MHz BW, 50 MHz serial  
4 MHz BW, 50 MHz serial clock  
4 MHz BW, 20 ns WR pulse width  
4 MHz BW, 50 MHz serial clock  
4 MHz BW, 20 ns WR pulse width  
4 MHz BW, 50 MHz serial clock  
4 MHz BW, 20 ns WR pulse width  
4 MHz BW, 50 MHz serial clock  
4 MHz BW, 20 ns WR pulse width  
1
1
1
RM-8  
RU-38  
2
2
RM-8  
RU-28  
2
2
RU-16  
RU-38  
Rev. G | Page 23 of 24  
 
AD5426/AD5432/AD5443  
OUTLINE DIMENSIONS  
Data Sheet  
3.10  
3.00  
2.90  
10  
1
6
5
5.15  
4.90  
4.65  
3.10  
3.00  
2.90  
PIN 1  
IDENTIFIER  
0.50 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.70  
0.55  
0.40  
0.15  
0.05  
0.23  
0.13  
6°  
0°  
0.30  
0.15  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-BA  
Figure 51. 10-Lead Mini Small Outline Package [MSOP]  
(RM-10)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Resolution (Bit) INL (LSB) Temperature Range  
Package Description Package Option Branding  
AD5426YRM  
8
8
8
8
8
8
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.5  
0.5  
0.5  
0.5  
1
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
Evaluation Board  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
D1Q  
D1Q  
D1Q  
D6W  
D6W  
D6W  
D1R  
D1R#  
D1R#  
D1R#  
D1S  
D1S  
D1S  
D1S#  
D1S#  
D1S#  
AD5426YRM-REEL  
AD5426YRM-REEL7  
AD5426YRMZ  
AD5426YRMZ-REEL  
AD5426YRMZ-REEL7  
AD5432YRM  
10  
10  
10  
10  
12  
12  
12  
12  
12  
12  
AD5432YRMZ  
AD5432YRMZ-REEL  
AD5432YRMZ-REEL7  
AD5443YRM  
AD5443YRM-REEL  
AD5443YRM-REEL7  
AD5443YRMZ  
AD5443YRMZ-REEL  
AD5443YRMZ-REEL7  
EV-AD5443/46/53SDZ  
1
1
1
1
1
1 Z = RoHS Compliant Part, # denotes RoHS compliant product may be top or bottom marked.  
©2004–2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D03162-0-6/13(G)  
Rev. G | Page 24 of 24  
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY