AD5445BCP [ADI]

IC PARALLEL, WORD INPUT LOADING, 0.04 us SETTLING TIME, 12-BIT DAC, QCC20, 4 X 4 MM, CSP-20, Digital to Analog Converter;
AD5445BCP
型号: AD5445BCP
厂家: ADI    ADI
描述:

IC PARALLEL, WORD INPUT LOADING, 0.04 us SETTLING TIME, 12-BIT DAC, QCC20, 4 X 4 MM, CSP-20, Digital to Analog Converter

输入元件
文件: 总12页 (文件大小:144K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY TECHNICAL DATA  
HighBandwidthCMOS8-/10-/12-Bit  
a
ParallelInterfaceMultiplyingDACs  
AD5424/AD5433/AD5445*  
Preliminary Technical Data  
FEATURES  
F U NC T IO NAL B LO C K D IAG RAM  
+2.5 V to +5.5 V Supply Operation  
Fast Parallel Interface (10ns WR cycle)  
10MHz Multiplying Bandw idth  
±10V Reference Input  
V
V
REF  
DD  
20-Lead TSSOP and Chip Scale (4 x4m m ) Packages  
8, 10 and 12 Bit Current Output DACs  
Pin com patible 8, 10 & 12 Bit DACs in Chip Scale  
Guaranteed Monotonic  
R
FB  
AD5424/  
AD5433/  
AD5445  
R
8/10/12  
BIT  
R-2R DAC  
I
OUT1  
I
OUT2  
Four Quadrant Multiplication  
Pow er On Reset  
Readback Function  
Power On  
Reset  
DAC REGISTER  
INPUT LATCH  
5µA typical Pow er Consum ption  
CS  
R/W  
APPLICATIONS  
Portable Battery Pow ered Applications  
Waveform Generators  
Analog Processing  
Instrum entation Applications  
Program m able Am plifiers and Attenuators  
Digitally-Controlled Calibration  
Program m able Filters and Oscillators  
Com posite Video  
DB7/DB9/DB11  
DB0  
GND  
DATA  
INPUTS  
Ultrasound  
Gain, offset and Voltage Trim m ing  
T he applied external reference input voltage (VREF  
)
G E NE R AL D E S C R IP T IO N  
determines the full scale output current. An integrated  
feedback resistor (RFB) provides temperature tracking and  
full scale voltage output when combined with an external  
I-toV precision amplifier.  
T he AD5424/AD5433/AD5445 are CMOS 8, 10 and  
12-bit current output digital-to-analog converters (DACs)  
respectively.  
T hese devices operate from a +2.5 V to 5.5 V power sup-  
ply, making them suited to battery powered applications  
and many other applications.  
T he AD5424 is available in small 20 lead CSP and 16  
lead T SSOP packages, while the AD5433/AD5445 DACs  
are available in small 20-lead CSP and T SSOP packages.  
T hese DACs utilize Data readback allowing the user to  
read the contents of the DAC register via the DB pins. On  
power-up, the internal register and latches are filled with  
zeros and the DAC outputs are at zero scale.  
P R O D U C T H IG H LIG H T S  
1. 10M H z M ultiplying Bandwidth  
As a result of manufacture on a CMOS sub micron  
process, they offer excellent four quadrant multiplication  
characteristics, with large signal multiplying bandwidths  
of up to 10MHz.  
2. 4mm x 4mm Chip Scale Packages and small  
T SSOP packages.  
3. Low Voltage, Low Power Current Output DACs.  
*US Patent N umber 5,689,257  
REV. PrI Feb 2003  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A.  
Tel: 781/ 329-4700  
World Wide Web Site: http:/ / w w w.analog.com  
Analog Devices, Inc., 2003  
Fax: 781/ 326-8703  
PRELIMINARY TECHNICAL DATA  
1
AD5424/AD5433/AD5445–SPECIFICATIONS  
(V = 2.5 V to 5.5 V, V = +10 V, IOUT2 = O V. All specifications TMIN to TMAX unless otherwise noted. DC performance measured with  
DD  
REF  
OP1177, AC performance with AD9631 unless otherwise noted.)  
P ar am eter  
M in  
T yp  
Max  
Units  
C onditions  
ST AT IC PERFORMANCE  
AD 5424  
Resolution  
8
Bits  
LSB  
LSB  
Relative Accuracy  
Differential Nonlinearity  
AD 5433  
±0.5  
±1  
Guaranteed Monotonic  
Guaranteed Monotonic  
Guaranteed Monotonic  
Resolution  
10  
±1  
±1  
Bits  
LSB  
LSB  
Relative Accuracy  
Differential Nonlinearity  
AD 5445  
Resolution  
12  
±2  
±1  
±2  
Bits  
LSB  
LSB  
m V  
Relative Accuracy  
Differential Nonlinearity  
Gain Error  
Gain Error T emp Coefficient2  
Output Leakage Current  
±5  
ppm FSR/°C  
±10  
±50  
nA  
nA  
V
Data = 0000H, TA = 25°C, IOUT 1  
Data = 0000H, IOUT 1  
Output Voltage Compliance Range  
T BD  
REFERENCE INPUT 2  
Reference Input Range  
VREF Input Resistance  
±10  
10  
V
k  
8
12  
Input resistance T C = -50ppm/°C  
DIGITAL INPUTS/OUTPUT2  
Input High Voltage, VIH  
Input Low Voltage, VIL  
1.7  
V
V
V
µA  
pF  
VDD = 2.5 V to 5.5 V  
VDD = 2.7 V to 5.5 V  
VDD = 2.5 V to 2.7 V  
0.8  
0.7  
1
Input Leakage Current, IIL  
Input Capacitance  
10  
VDD = 4.5 V to 5.5 V  
Output Low Voltage, VOL  
Output High Voltage, VOH  
VDD = 2.5 V to 3.6 V  
Output Low Voltage, VOL  
Output High Voltage, VOH  
0.4  
0.4  
V
V
ISINK = 200 µA  
ISOURCE = 200 µA  
VDD - 1  
V
V
ISINK = 200 µA  
ISOURCE = 200 µA  
VDD - 0.5  
DYNAMIC PERFORMANCE2  
Reference Multiplying BW  
10  
T BD  
MH z  
MH z  
VREF = 100 mV rms, DAC loaded all 1s  
VREF = 6 V rms, DAC loaded all 1s  
Output Voltage Settling T ime  
AD5424  
30  
35  
40  
100  
3
T BD  
T BD  
T BD  
ns  
ns  
ns  
V/µs  
nV-s  
dB  
Measured to ½ LSB. RLOAD = 100, CLOAD =  
15pF. DAC latch alternately loaded with  
0s and 1s.  
AD5433  
AD5445  
Slew Rate  
Digital to Analog Glitch Impulse  
Multiplying Feedthrough Error  
1 LSB change around Major Carry  
DAC latch loaded with all 0s. Reference =  
10kH z.  
-75  
Output Capacitance  
2
4
pF  
pF  
nV-s  
DAC Latches Loaded with all 0s  
DAC Latches Loaded with all 1s  
Feedthrough to DAC output with CS high  
and Alternate Loading of all 0s and all 1s.  
VREF = 6 V rms, All 1s loaded, f = 1kHz  
Digital Feedthrough  
5
T otal Harmonic Distortion  
-85  
-85  
25  
72  
T BD  
dB  
dB  
nV/  
dB  
d B  
VREF = 5 V, Sinewave generated from digital code.  
@ 1kHz  
Output Noise Spectral Density  
SFDR performance  
Intermodulation D istortion  
H z  
POWER REQUIREMENT S  
Power Supply Range  
IDD  
Power Supply Sensitivity2  
2.5  
5.5  
10  
0.001  
V
µA  
%/%  
Logic Inputs = 0 V or VDD  
VDD = ±5%  
NOTES  
1T emperature range is as follows: B Version: –40°C to +105°C.  
2Guaranteed by design, not subject to production test.  
Specifications subject to change without notice.  
–2–  
REV. PrI  
PRELIMINARY TECHNICAL DATA  
Single Supply Operation (Biased Mode)  
AD5424/AD5433/AD5445  
(V = 2.5 V to 5.5 V, V = +2 V, IOUT2 = 1 V. All specifications TMIN to TMAX unless otherwise noted. DC performance measured with OP1177,  
DD  
REF  
AC performance with AD9631 unless otherwise noted.)  
P ar am eter  
M in  
T yp  
Max  
Units  
C onditions  
ST AT IC PERFORMANCE  
AD 5424  
Resolution  
8
Bits  
LSB  
LSB  
Relative Accuracy  
Differential Nonlinearity  
AD 5433  
±0.5  
±1  
Guaranteed Monotonic  
Guaranteed Monotonic  
Guaranteed Monotonic  
Resolution  
10  
±1  
±1  
Bits  
LSB  
LSB  
Relative Accuracy  
Differential Nonlinearity  
AD 5445  
Resolution  
12  
±2  
±1  
±2  
Bits  
LSB  
LSB  
m V  
Relative Accuracy  
Differential Nonlinearity  
Gain Error  
Gain Error T emp Coefficient2  
Output Leakage Current  
±5  
ppm FSR/°C  
±10  
±50  
nA  
nA  
V
Data = 0000H, T A = 25°C, IOUT 1  
Data = 0000H, IOUT 1  
Output Voltage Compliance Range  
T BD  
REFERENCE INPUT 2  
Reference Input Range  
VREF Input Resistance  
tbd  
10  
V
kΩ  
8
12  
Input resistance T C = -50ppm/°C  
DIGITAL INPUTS/OUTPUT2  
Input High Voltage, VIH  
Input Low Voltage, VIL  
1.7  
V
V
V
µA  
pF  
VDD = 2.5 V to 5.5 V  
VDD = 2.7 V to 5.5 V  
VDD = 2.5 V to 2.7 V  
0.8  
0.7  
1
Input Leakage Current, IIL  
Input Capacitance  
10  
VDD = 4.5 V to 5.5 V  
Output Low Voltage, VOL  
Output High Voltage, VOH  
VDD = 2.5 V to 3.6 V  
Output Low Voltage, VOL  
Output High Voltage, VOH  
0.4  
0.4  
V
V
ISINK = 200 µA  
ISOURCE = 200 µA  
VDD - 1  
V
V
ISINK = 200 µA  
ISOURCE = 200 µA  
VDD - 0.5  
DYNAMIC PERFORMANCE2  
Reference Multiplying BW  
10  
T BD  
MH z  
MH z  
VREF = 100 mV rms, DAC loaded all 1s  
VREF = 1 V rms, DAC loaded all 1s  
Output Voltage Settling T ime  
AD5424  
30  
35  
40  
100  
3
T BD  
T BD  
T BD  
ns  
ns  
ns  
V/µs  
nV-s  
dB  
Measured to ½ LSB. RLOAD = 100, CLOAD =  
15pF. DAC latch alternately loaded with  
0s and 1s.  
AD5433  
AD5445  
Slew Rate  
Digital to Analog Glitch Impulse  
Multiplying Feedthrough Error  
1 LSB change around Major Carry  
DAC latch loaded with all 0s. Reference =  
10kH z.  
-75  
Output Capacitance  
2
4
pF  
pF  
nV-s  
DAC Latches Loaded with all 0s  
DAC Latches Loaded with all 1s  
Feedthrough to DAC output with CS high  
and Alternate Loading of all 0s and all 1s.  
Digital Feedthrough  
5
T otal Harmonic Distortion  
-85  
-85  
25  
72  
T BD  
dB  
dB  
nV/  
dB  
d B  
VREF = 2 Vp-p, 1V Bias, All 1s loaded, f = 1kHz  
VREF = 2 V, Sinewave generated from digital code.  
@ 1kHz  
Output Noise Spectral Density  
SFDR performance  
Intermodulation D istortion  
H z  
POWER REQUIREMENT S  
Power Supply Range  
IDD  
Power Supply Sensitivity2  
2.5  
5.5  
10  
0.001  
V
µA  
%/%  
Logic Inputs = 0 V or VDD  
VDD = ±5%  
NOTES  
1T emperature range is as follows: B Version: –40°C to +105°C.  
2Guaranteed by design, not subject to production test.  
Specifications subject to change without notice.  
–3–  
REV. PrI  
PRELIMINARY TECHNICAL DATA  
1
AD5424/AD5433/AD5445–SPECIFICATIONS  
1,2  
(V = 2.5 V to 5.5 V, V = +5 V, IOUT2 = O V. All specifications TMIN to TMAX unless  
DD  
REF  
TIMINGCHARACTERISTICS  
otherwise noted.)  
P ar am eter  
Lim it at TMIN, TMAX  
Units  
Conditions/Com m ents  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
0
0
10  
6
0
5
7
5
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns typ  
R/W to CS Setup T ime  
R/W to CS Hold T ime  
CS Low T ime (Write Cycle)  
Data Setup T ime  
Data H old T ime  
R/W high to CS low  
CS Min H igh T ime  
Data Acess T ime  
25  
5
ns max  
ns typ  
t9  
Bus Relinquish T ime  
10  
ns max  
NOTES  
1See Figure 1. T emperature range is as follows: B Version: –40°C to +105°C. Guaranteed by design and characterisation, not subject to production test.  
2All input signals are specified with tr =tf = 5ns (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH )/2. Digital Output timing measured with Load circuit in  
Figure 2.  
Specifications subject to change without notice.  
t6  
t2  
t2  
t1  
R/W  
t7  
t3  
t4  
DATA VALID  
CS  
t8  
t9  
t5  
DATA  
DATA VALID  
Figure 1. Tim ing Diagram .  
I
200uA  
OL  
TO  
OUTPUT  
PIN  
V
+ V  
2
OH (MIN)  
OL (MAX)  
C
50pF  
L
I
200uA  
OH  
Figure 2. Load Circuit for Data Output Tim ing Specifications  
–4–  
REV. PrI  
PRELIMINARY TECHNICAL DATA  
AD5424/AD5433/AD5445  
AB SO LUT E M AXIM UM RAT ING S1  
(T A = +25°C unless otherwise noted)  
VD D to GN D  
VREF, RFB to GND  
–0.3 V to +7 V  
–12 V to +12 V  
I
OUT 1, IOUT 2 to GND  
–0.3 V to +7 V  
-0.3V to VDD +0.3 V  
Logic Inputs & Output2  
Operating T emperature Range  
Industrial (B Version)  
–40°C to +105°C  
–65°C to +150°C  
+ 150°C  
Storage T emperature Range  
Junction T emperature  
16 lead T SSOP θJA T hermal Impedance  
20 lead T SSOP θJA T hermal Impedance  
20 lead CSP θJA T hermal Impedance  
Lead T emperature, Soldering (10seconds)  
IR Reflow, Peak T emperature (< 20 seconds)  
150°C /W  
143°C /W  
135°C /W  
300°C  
+ 235°C  
NOTES  
1Stressesabove those listed under “Absolute Maximum Ratings” maycause permanent  
damage to the device. Thisisa stressratingonlyand functionaloperation ofthe device  
at these or any other conditions above those listed in the operational sections of this  
specification is not implied. Exposure to absolute maximum rating conditions for  
extended periodsmayaffect device reliability. Onlyone absolute maximum ratingmay  
be applied at any one time.  
2Overvoltagesat DBx, CS and W/R, willbe clamped byinternaldiodes. Current should  
be limited to the maximum ratings given.  
O R D E R ING G U ID E  
P ackage D escription  
Model  
Tem perature Range  
P ackage O ption  
AD 5424BRU  
AD 5424BC P  
AD 5433BRU  
AD 5433BC P  
AD 5445BRU  
AD 5445BC P  
-40 oC to +105 oC  
-40 oC to +105 oC  
-40 oC to +105 oC  
-40 oC to +105 oC  
-40 oC to +105 oC  
-40 oC to +105 oC  
T SSOP (T hin Shrink Small Outline Package)  
CSP (Chip Scale Package)  
T SSOP (T hin Shrink Small Outline Package)  
CSP (Chip Scale Package)  
T SSOP (T hin Shrink Small Outline Package)  
CSP (Chip Scale Package)  
RU -16  
C P-20  
RU -20  
C P-20  
RU -20  
C P-20  
C AUTIO N  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD5424/AD5433/AD5445 features proprietary ESD protection circuitry, permanent  
damage may occur on devices subjected to high energy electrostatic discharges. T herefore, proper  
ESD precautions are recommended to avoid performance degradation or loss of functionality.  
REV. PrI  
–5–  
PRELIMINARY TECHNICAL DATA  
AD5424/AD5433/AD5445  
AD 5424 P IN F UNC T IO N D E SC RIP T IO N  
P in  
Mnem onic Function  
TSSO P  
C S P  
1
2
19  
20  
I
I
OUT1  
OUT2  
DAC Current Output.  
DAC Analog Ground. T his pin should normally be tied to the analog ground of the  
system.  
3
1
G N D  
Ground Pin.  
4-11  
2-9  
10-13  
14  
D B7-D B0 Parallel Data Bits 7 through 0.  
N C  
No internal connection  
12  
13  
14  
C S  
Chip Select Input. Active Low. Used in conjunction with R/W to load parallel data to  
the input latch or to read data from the DAC register.  
Read/Write. When low, used in conjunction with CS to load parallel data. When  
high, used in conjunction with CS to readback contents of DAC Register.  
Positive power supply input. T hese parts can be operated from a supply of +2.5 V to  
+5.5 V.  
15  
16  
R /W  
VDD  
15  
16  
17  
18  
VREF  
RFB  
DAC reference voltage input terminal.  
DAC feedback resistor pin. Establish voltage output for the DAC by connecting to  
external amplifier output.  
P IN C O NF IG U R AT IO NS  
TSSO P & CSP  
IOUT1  
IOUT2  
GND  
1
2
3
4
5
6
7
8
RFB  
16  
15  
VREF  
VDD  
14  
13  
GND  
DB7  
DB6  
DB5  
DB4  
1
2
3
4
5
AD5424  
DB7  
R/W  
15 R/W  
14 CS  
13 NC  
12 NC  
11 NC  
PIN 1  
INDICATOR  
DB6  
DB5  
CS  
(Not to Scale) 12  
11  
AD5424  
TOP VIEW  
DB0(LSB)  
DB4  
DB3  
10  
9
DB1  
DB2  
–6–  
REV. PrI  
PRELIMINARY TECHNICAL DATA  
AD5424/AD5433/AD5445  
AD 5433 P IN F UNC T IO N D E SC RIP T IO N  
P in  
Mnem onic Function  
TSSO P  
C S P  
1
2
19  
20  
IOUT  
IOUT  
1
2
DAC Current Output.  
DAC Analog Ground. T his pin should normally be tied to the analog ground of the  
system.  
3
1
G N D  
Ground Pin.  
4-13  
14, 15  
16  
2-11  
D B9-D B0 Parallel Data Bits 7 through 0.  
12, 13 N C  
Not internally connected.  
14  
15  
16  
C S  
Chip Select Input. Active Low. Used in conjunction with R/W to load parallel data to  
the input latch or to read data from the DAC register.  
Read/Write. When low, used in conjunction with CS to load parallel data. When high,  
used in conjunction with CS to readback contents of DAC Register.  
Positive power supply input. T hese parts can be operated from a supply of +2.5 V to  
+5.5 V.  
17  
18  
R /W  
VDD  
19  
20  
17  
18  
VREF  
RFB  
DAC reference voltage input terminal.  
DAC feedback resistor pin. Establish voltage output for the DAC by connecting to  
external amplifier output.  
P IN C O NF IG U R AT IO NS  
TSSO P & CSP  
IOUT1  
1
2
3
4
5
6
7
RFB  
20  
19  
IOUT2  
GND  
DB9  
VREF  
VDD  
18  
17  
GND  
DB9  
DB8  
DB7  
DB6  
1
2
3
4
5
15 R/W  
14 CS  
13 NC  
12 NC  
11 DB0  
PIN 1  
INDICATOR  
AD5433  
R/W  
AD5433  
TOP VIEW  
CS  
NC  
(Not to Scale) 16  
15  
DB8  
DB7  
DB6  
DB5  
14  
13  
12  
11  
NC  
8
9
DB0(LSB)  
DB1  
DB4  
DB3  
10  
DB2  
REV. PrI  
–7–  
PRELIMINARY TECHNICAL DATA  
AD5424/AD5433/AD5445  
AD 5445 P IN F UNC T IO N D E SC RIP T IO N  
P in  
Mnem onic  
Function  
TSSO P  
C S P  
1
2
19  
20  
I
I
OUT1  
OUT2  
DAC Current Output.  
DAC Analog Ground. T his pin should normally be tied to the analog ground of the  
system.  
3
1
G N D  
Ground Pin.  
4-15  
16  
2-13  
14  
D B11-D B0  
C S  
Parallel Data Bits 7 through 0.  
Chip Select Input. Active Low. Used in conjunction with R/W to load parallel data  
to the input latch or to read data from the DAC register.  
Read/Write. When low, used in conjunction with CS to load parallel data. When  
high, used in conjunction with CS to readback contents of DAC Register.  
Positive power supply input. T hese parts can be operated from a supply of +2.5 V to  
+5.5 V.  
17  
18  
15  
16  
R /W  
VDD  
19  
20  
17  
18  
VREF  
RFB  
DAC reference voltage input terminal.  
DAC feedback resistor pin. Establish voltage output for the DAC by connecting to  
external amplifier output.  
P IN C O NF IG U R AT IO NS  
TSSO P & CSP  
IOUT1  
1
RFB  
20  
19  
IOUT2  
GND  
VREF  
VDD  
2
3
4
5
6
7
8
9
18  
17  
GND  
DB11  
DB10  
DB9  
1
2
3
4
5
AD5445  
15 R/W  
14 CS  
13 DB0  
12 DB1  
11 DB2  
PIN 1  
R/W  
DB11  
INDICATOR  
CS  
DB10  
DB9  
(Not to Scale) 16  
15  
AD5445  
TOP VIEW  
DB0(LSB)  
DB8  
DB8  
DB7  
14  
13  
12  
11  
DB1  
DB2  
DB3  
DB4  
DB6  
DB5 10  
–8–  
REV. PrI  
PRELIMINARY TECHNICAL DATA  
AD5424/AD5433/AD5445  
T E R M I N O L O G Y  
In t er m od u la t ion D ist or t ion  
Rela tive Accu r a cy  
T he DAC is driven by two combinded sine waves  
references of frequencies fa and fb. Distortion products are  
produced at sum and difference frequencies of mfa±nfb  
where m, n = 0, 1, 2, 3... Intermodulation terms are those  
for which m or n is not equal to zero. T he second order  
terms include (fa +fb) and (fa - fb) and the third order  
terms are (2fa + fb), (2fa -fb), (f+2fa + 2fb) and (fa -  
2fb). IMD is defined as  
Relative accuracy or endpoint nonlinearity is a measure of  
the maximum deviation from a straight line passing  
through the endpoints of the DAC transfer function. It is  
measured after adjusting for zero and full scale and is  
normally expressed in LSBs or as a percentage of full scale  
reading.  
D iffer en t ia l Non lin ea r it y  
Differential nonlinearity is the difference between the  
measured change and the ideal 1 LSB change between any  
two adjacent codes. A specified differential nonlinearity of  
±1 LSB max over the operating temperature range ensures  
monotonicity.  
IMD = 20log (rms sum of the sum and diff distortion products)  
rms amplitude of the fundamental  
C om p lia n ce Volta ge Ra n ge  
T he maximum range of (output) terminal voltage for  
which the device will provide the specified characteristics.  
G a in E r r or  
Gain error or full-scale error is a measure of the output  
error between an ideal DAC and the actual device output.  
For these DACs, ideal maximum output is VREF – 1 LSB.  
Gain error of the DACs is adjustable to zero with external  
resistance.  
G E NE R AL D E S C R IP T IO N  
D AC Section  
T he AD5424, AD5433 and AD5445 are 8, 10 and 12 bit  
current output DACs consisting of a standard inverting R-  
2R ladder configuration. A simplified diagram for the 8-  
Bit AD5424 is shown in Figure 3. T he feedback resistor  
RFB has a value of R. T he value of R is typically 10kΩ  
(minimum 8kand maximum 12k). If IOUT 1 and IOUT 2  
are kept at the same potential, a constant current flows in  
each ladder leg, regardless of digital input code.  
T herefore, the input resistance presented at VREF is always  
constant.  
O u tp u t Lea ka ge C u r r en t  
Output leakage current is current which flows in the DAC  
ladder switches when these are turned off. For the IOUT 1  
terminal, it can be measured by loading all 0s to the DAC  
and measuring the IOUT 1 current. Minimum current will  
flow in the IOUT 2 line when the DAC is loaded with all 1s  
O u t p u t C a p a cit a n ce  
Capacitance from IOUT 1 or IOUT 2 to AGND.  
O u tp u t C u r r en t Settlin g T im e  
T his is the amount of time it takes for the output to settle  
to a specified level for a full scale input change. For these  
devices, it is specifed with a 100 resistor to ground.  
R
R
R
V
REF  
2R  
S1  
2R  
S2  
2R  
S3  
2R  
S8  
2R  
D igital to Analog Glitch lm pulse  
R
R
A
FB  
T he amount of charge injected from the digital inputs to  
the analog output when the inputs change state. T his is  
normally specified as the area of the glitch in either  
pA-secs or nV-secs depending upon whether the glitch is  
measured as a current or voltage signal.  
I
OUT1  
I
OUT 2  
DAC DATA LATCHES  
AND DRIVERS  
Figure 3. Sim plified Ladder  
D igit a l F eed t h r ou gh  
Access is provided to the VREF, RFB, IOUT 1 and IOUT 2  
terminals of the DAC, making the device extremely  
versatile and allowing it to be configured in several  
different operating modes, for example, to provide a  
unipolar output, bipolar output or in single supply modes  
of operation. in unipolar mode or four quadrant  
multiplication in bipolar mode.  
When the device is not selected, high frequency logic  
activity on the device digital inputs is capacitivelly coupled  
through the device to show up as noise on the IOUT pins  
and subsequently into the following circuitry. T his noise is  
digital feedthrough.  
M u ltip lyin g F eed th r ou gh E r r or  
T his is the error due to capacitive feedthrough from the  
DAC reference input to the DAC IOUT 1 terminal, when all  
o0s are loaded to the DAC.  
Un ipolar M ode  
Using a single op amp, these devices can easily be  
configured to provide 2 quadrant multiplying operation or  
a unipolar output voltage swing as shown in Figure 4.  
H a r m on ic D ist or t ion  
T he DAC is driven by an ac reference. T he ratio of the  
rms sum of the harmonics of the DAC output to the  
fundamental value is the T HD. Usually only the lower  
order harmonices are included, such as second to fifth.  
When an output amplifier is connected in unipolar mode,  
the output voltage is given by:  
VOUT = -D/2^n x VREF  
2
2
2
2
T HD = 20log  
(V2 + V3 + V4 + V5  
)
Where D is the fractional representation of the digital  
word loaded to the DAC and n is the resolution of the  
D AC .  
V1  
REV. PrI  
–9–  
PRELIMINARY TECHNICAL DATA  
AD5424/AD5433/AD5445  
B ip ola r O p er a tion  
D = 0 to 256 (8-Bit AD5424)  
= 0 to 1024 (10-Bit AD5433)  
= 0 to 4096 (12-Bit AD5445)  
In some applications, it may be necessary to generate full  
4-Quadrant multplying operation or a bipolar output  
swing. T his can be easily accomplished by using another  
external amplifier and some external resistors as shown in  
Figure 5.  
V
DD  
R
2
When VIN is an ac signal, the circuit performs four-  
quadrant multiplication.  
C
1
RFB  
IOUT1  
IOUT2  
GND  
V
DD  
V
REF  
V
REF  
T able II. shows the relationship between digital code and  
the expected output voltage for bipolar operation  
(AD 5426, 8-Bit device).  
AD5424/33/45  
R
1
V
= 0V to -V  
REF  
OUT  
CS  
R/W  
Table II. Bipolar Code Table  
AGND  
DATA  
INPUTS  
NOTES:  
1
D igital Input Analog O utput (V)  
R1 AND R2 USED ONLY IF GAIN ADJUSTMENT IS REQUIRED.  
2
C1 PHASE COMPENSATION (1pF-5pF) MAY BE REQUIRED  
IF A1 IS A HIGH SPEED AMPLIFIER.  
1111 1111  
1000 0000  
0000 0001  
0000 0000  
+ VREF (127/128)  
0
-VREF (127/128)  
-VREF (128/128)  
Figure 4. Unipolar Operation  
With a fixed 10 V reference, the circuit shown above will  
give an unipolar 0V to -10V output voltage swing. When  
VIN is an ac signal, the circuit performs two-quadrant  
multiplication.  
T he following table shows the relationship between digital  
code and expected output voltage for unipolar operation.  
(AD 5424, 8-Bit device).  
Table I. Unipolar Code Table  
D igital Input Analog O utput (V)  
1111 1111  
1000 0000  
0000 0001  
0000 0000  
-VREF (255/256)  
-VREF (128/256) = -VREF/2  
-VREF (1/256)  
-VREF (0/256) = 0  
R3  
10k  
R2  
C1  
V
DD  
R5  
20kΩ  
RFB  
V
DD  
R4  
10kΩ  
R1  
IOUT1  
IOUT2  
V
A1  
REF  
± 10V  
V
AD5424/33/45  
REF  
A2  
V
= -V  
to +V  
REF  
OUT  
REF  
GND  
CS  
R/W  
AGND  
R1 AND R2 ARE USED ONLY IF GAIN ADJUSTMENT IS REQUIRED.  
ADJUST R1 FOR V = 0V WITH CODE 10000000 LOADED TO DAC.  
NOTES:  
1
DATA  
INPUTS  
OUT  
2
MATCHING AND TRACKING IS ESSENTIAL FOR RESISTOR PAIRS  
R3 AND R4.  
3
C1 PHASE COMPENSATION (1pF-5pF) MAY BE REQUIRED  
IF A1/A2 IS A HIGH SPEED AMPLIFIER.  
Figure 5. Bipolar Operation (4 Quadrant Multiplication)  
–10–  
REV. PrI  
PRELIMINARY TECHNICAL DATA  
AD5424/AD5433/AD5445  
O ver view of AD 54xx devices  
P ar t #  
R esolu t ion # D AC s I N L t S  
In ter fa ce P a cka ge  
F ea tu r es  
AD 5 4 2 4 8  
AD 5 4 2 5 8  
AD 5 4 2 6 8  
AD 5 4 2 8 8  
AD 5 4 2 9 8  
AD 5 4 3 2 1 0  
AD 5 4 3 3 1 0  
AD 5 4 3 9 1 0  
AD 5 4 4 0 1 0  
AD 5 4 4 3 1 2  
AD 5 4 4 5 1 2  
AD 5 4 4 7 1 2  
AD 5 4 6 9 1 2  
1
1
1
2
2
1
1
2
2
1
1
2
2
± 0.5 30n s  
± 0.5 30n s  
± 0.5 30n s  
± 0.5 30n s  
± 0.5 30n s  
P arallel  
S er ia l  
S er ia l  
P arallel  
S er ia l  
S er ia l  
P arallel  
S er ia l  
P arallel  
S er ia l  
P arallel  
P arallel  
S er ia l  
RU -16, C P -20 10 MH z BW, 10 ns C S Pulse Width  
R M - 1 0  
R M - 1 0  
R U - 2 0  
R U - 1 0  
R M - 1 0  
Byte Load,10 M H z BW, 50 M H z Serial  
10 M H z BW, 50 M H z Serial  
10 M H z BW, 10 ns C S Pulse Width  
10 M H z BW, 50 M H z Serial  
± 1  
± 1  
± 1  
± 1  
± 2  
± 2  
± 2  
± 2  
35n s  
35n s  
35n s  
35n s  
40n s  
40n s  
40n s  
40n s  
10 M H z BW, 50 M H z Serial  
RU -20, C P -20 10 MH z BW, 10 ns C S Pulse Width  
R U - 1 6  
R U - 2 4  
R M - 1 0  
10 M H z BW, 50 M H z Serial  
10 M H z BW, 10 ns C S Pulse Width  
10 M H z BW, 50 M H z Serial  
RU -20, C P -20 10 M H z BW, 10 ns CS Pulse Width  
R U - 2 4  
R U - 1 6  
10 M H z BW, 10 ns CS Pulse Width  
10 M H z BW, 10 ns CS Pulse Width  
REV. PrI  
–11–  
PRELIMINARY TECHNICAL DATA  
AD5424/AD5433/AD5445  
O U T LINE D IM E NS IO NS  
D imensions shown in inches and (mm).  
20 Lead CSP  
(C P - 20)  
0.024 (0.60)  
0.017 (0.42)  
0.009 (0.24)  
0.024 (0.60)  
0.010 (0.25)  
MIN  
0.157 (4.0)  
BSC SQ  
BOTTOM  
VIEW  
0.017 (0.42)  
0.009 (0.24)  
16  
15  
20  
1
PIN 1  
0.012 (0.30)  
0.009 (0.23)  
0.007 (0.18)  
0.030 (0.75)  
0.024 (0.60)  
0.020 (0.50)  
0.080 (2.25)  
0.083 (2.10) SQ  
0.077 (1.95)  
INDICATOR  
0.148 (3.75)  
BSC SQ  
TOP  
VIEW  
11  
10  
5
6
0.028 (0.70) MAX  
0.026 (0.65) NOM  
12o MAX  
0.080 (2.00)  
REF  
0.035 (0.90) MAX  
0.033 (0.85) NOM  
0.002 (0.05)  
0.0004 (0.01)  
0.0 (0.0)  
SEATING  
PLANE  
0.020 (0.50)  
BSC  
0.008 (0.20)  
REF  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS  
20 Lead TSSO P  
(RU- 20)  
16 Lead TSSO P  
(RU- 16)  
0.201 (5.10)  
0.193 (4.90)  
0.260 (6.60)  
0.252 (6.40)  
16  
9
20  
11  
10  
1
8
1
PIN  
1
0.006 (0.15)  
0.002 (0.05)  
PIN 1  
0.006 (0.15)  
0.002 (0.05)  
0.0433  
(1.10)  
MAX  
0.0433  
(1.10)  
MAX  
8o  
0o  
0.028 (0.70)  
0.020 (0.50)  
0.0118 (0.30)  
0.0075 (0.19)  
0.0256 (0.65)  
BSC  
SEATING  
PLANE  
0.028 (0.70)  
0.020 (0.50)  
8°  
0°  
0.0079 (0.20)  
0.0035 (0.090)  
0.0256  
(0.65)  
BSC  
0.0118 (0.30)  
0.0075 (0.19)  
SEATING  
PLANE  
0.0079 (0.20)  
0.0035 (0.090)  
REV. PrI  
–12–  

相关型号:

AD5445BRU

IC PARALLEL, WORD INPUT LOADING, 0.04 us SETTLING TIME, 12-BIT DAC, PDSO20, TSSOP-20, Digital to Analog Converter
ADI

AD5445YCP

8-/10-/12-Bit, High Bandwidth Multiplying DACs with Parallel Interface
ADI

AD5445YCP-REEL

8-/10-/12-Bit, High Bandwidth Multiplying DACs with Parallel Interface
ADI

AD5445YCP-REEL7

8-/10-/12-Bit, High Bandwidth Multiplying DACs with Parallel Interface
ADI

AD5445YCPZ

8-/10-/12-Bit, High Bandwidth Multiplying DACs with Parallel Interface
ADI

AD5445YRU

8-/10-/12-Bit, High Bandwidth Multiplying DACs with Parallel Interface
ADI

AD5445YRU-REEL

8-/10-/12-Bit, High Bandwidth Multiplying DACs with Parallel Interface
ADI

AD5445YRU-REEL7

8-/10-/12-Bit, High Bandwidth Multiplying DACs with Parallel Interface
ADI

AD5445YRUZ

8-/10-/12-Bit, High Bandwidth Multiplying DACs with Parallel Interface
ADI

AD5445YRUZ-REEL

8-/10-/12-Bit, High Bandwidth Multiplying DACs with Parallel Interface
ADI

AD5445YRUZ-REEL7

8-/10-/12-Bit, High Bandwidth Multiplying DACs with Parallel Interface
ADI

AD5446

Dual 8-,10-,12-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI