AD5530BRU-REEL [ADI]

Serial Input, Voltage Output 12-/14-Bit Digital-to-Analog Converters; 串行输入,电压输出12位/ 14位数字 - 模拟转换器
AD5530BRU-REEL
型号: AD5530BRU-REEL
厂家: ADI    ADI
描述:

Serial Input, Voltage Output 12-/14-Bit Digital-to-Analog Converters
串行输入,电压输出12位/ 14位数字 - 模拟转换器

转换器 数模转换器 光电二极管
文件: 总20页 (文件大小:408K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Serial Input, Voltage Output  
12-/14-Bit Digital-to-Analog Converters  
AD5530/AD5531  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
V
V
DD  
SS  
Pin-compatible 12-, 14-bit digital-to-analog converters  
Serial input, voltage output  
Maximum output voltage range of 10 V  
Data readback  
3-wire serial interface  
Clear function to a user-defined voltage  
Power-down function  
AD5530/AD5531  
REFIN  
12-/14-BIT  
DAC  
R
R
V
OUT  
R
R
REFAGND  
LDAC  
RBEN  
DUTGND  
CLR  
DAC REGISTER  
Serial data output for daisy-chaining  
16-lead TSSOP  
POWER-DOWN  
CONTROL LOGIC  
PD  
SDIN  
SHIFT REGISTER  
SCLK SYNC  
APPLICATIONS  
GND  
SDO  
Industrial automation  
Figure 1.  
Automatic test equipment  
Process control  
General-purpose instrumentation  
GENERAL DESCRIPTION  
The AD5530/AD5531 are single 12- and 14-bit (respectively)  
serial input, voltage output digital-to-analog converters (DAC).  
The DAC output is buffered by a gain of two amplifier and  
LDAC  
referenced to the potential at DUTGND.  
update the output of the DAC asynchronously. A power-down  
PD  
can be used to  
They utilize a versatile 3-wire interface that is compatible with  
SPI®, QSPI™, MICROWIRE™, and DSP interface standards. Data  
is presented to the part in a 16-bit serial word format. Serial  
data is available on the SDO pin for daisy-chaining purposes.  
Data readback allows the user to read the contents of the DAC  
register via the SDO pin.  
pin ( ) allows the DAC to be put into a low power state, and  
CLR  
a
pin allows the output to be cleared to a user-defined  
voltage, the potential at DUTGND.  
The AD5530/AD5531 are available in 16-lead TSSOP.  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2007 Analog Devices, Inc. All rights reserved.  
 
AD5530/AD5531  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
PD  
Function................................................................................ 13  
Readback Function .................................................................... 13  
CLR  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
AC Performance Characteristics................................................ 5  
Standalone Timing Characteristics............................................ 5  
Daisy-Chaining and Readback Timing Characteristics.......... 6  
Absolute Maximum Ratings............................................................ 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
Typical Performance Characteristics ............................................. 9  
Terminology .................................................................................... 12  
Theory of Operation ...................................................................... 13  
DAC Architecture....................................................................... 13  
Serial Interface ............................................................................ 13  
Function.............................................................................. 13  
Output Voltage............................................................................ 14  
Bipolar Configuration................................................................ 14  
Microprocessor Interfacing........................................................... 15  
AD5530/AD5531 to ADSP-21xx.............................................. 15  
AD5530/AD5531 to 8051 Interface......................................... 15  
AD5530/AD5531 to MC68HC11 Interface............................ 15  
Applications Information.............................................................. 17  
Optocoupler Interface................................................................ 17  
Serial Interface to Multiple AD5530s or AD5531s................ 17  
Daisy-Chaining Interface with Multiple AD5530s or  
AD5531s ...................................................................................... 17  
Outline Dimensions....................................................................... 18  
Ordering Guide .......................................................................... 18  
REVISION HISTORY  
1/07—Rev. A to Rev. B  
Updated Format..................................................................Universal  
Changes to Figure 28...................................................................... 17  
3/06—Rev. 0 to Rev. A  
Change to Table 3 ............................................................................. 5  
Change to Figure 4 ........................................................................... 8  
Change to Output Voltage Section............................................... 14  
Change to Ordering Guide............................................................ 18  
5/02—Revision 0: Initial Version  
Rev. B | Page 2 of 20  
 
AD5530/AD5531  
SPECIFICATIONS  
VDD = 15 V 10%; VSS = −15 V 10%; GND = 0 V; RL = 5 kΩ and CL = 220 pF to GND. All specifications TMIN to TMAX, unless otherwise noted.  
Table 1.  
Parameter1  
AD5530  
AD5531  
Unit  
Test Conditions/Comments  
ACCURACY  
Resolution  
12  
±1  
±1  
±2  
±2  
±1  
0.5  
10  
14  
±2  
±1  
±±  
±±  
±4  
0.5  
10  
Bits  
LSB max  
LSB max  
LSB max  
LSB max  
LSB typ  
ppm FSR/°C typ  
ppm FSR/°C max  
Relative Accuracy  
Differential Nonlinearity  
Zero-Scale Error  
Full-Scale Error  
Gain Error  
Guaranteed monotonic over temperature  
Typically within ±1 LSB  
Typically within ±1 LSB  
Gain Temperature Coefficient2  
REFERENCE INPUTS2  
Reference Input Range  
DC Input Resistance  
Input Current  
0 to 5  
100  
±1  
0 to 5  
100  
±1  
V min to V max  
MΩ typ  
μA max  
Max output range ±10 V  
Per input, typically ±20 nA  
DUTGND INPUT2  
DC Input Impedance  
Max Input Current  
Input Range  
60  
±0.3  
−4 to +4  
60  
±0.3  
−4 to +4  
kΩ typ  
mA typ  
V min to V max  
Max output range ±10 V  
O/P CHARACTERISTICS2  
Output Voltage Swing  
Short-Circuit Current  
Resistive Load  
Capacitive Load  
DC Output Impedance  
DIGITAL I/O  
±10  
15  
5
1200  
0.5  
±10  
15  
5
1200  
0.5  
V max  
mA max  
kΩ min  
pF max  
Ω max  
To 0 V  
To 0 V  
VINH, Input High Voltage  
VINL, Input Low Voltage  
IINH, Input Current  
CIN, Input Capacitance2  
SDO VOL, Output Low Voltage  
POWER REQUIREMENTS  
VDD/VSS  
2.4  
0.±  
±10  
10  
2.4  
0.±  
±10  
10  
V min  
V max  
μA max  
pF max  
V max  
Total for all pins  
3 pF typical  
ISINK = 1 mA  
0.4  
0.4  
+15/−15  
+15/−15  
V nom  
±10ꢀ for specified performance  
Power Supply Sensitivity  
ΔFull Scale/ΔVDD  
ΔFull Scale/ΔVSS  
IDD  
ISS  
110  
100  
2
2
150  
110  
100  
2
2
150  
dB typ  
dB typ  
mA max  
mA max  
μA max  
Outputs unloaded  
Outputs unloaded  
Typically 50 μA  
IDD in Power-Down  
1 Temperature range for B Version: −40°C to +±5°C.  
2 Guaranteed by design, not subject to production test.  
Rev. B | Page 3 of 20  
 
AD5530/AD5531  
VDD = 12 V 10%; VSS = −12 V 10%; GND = 0 V; RL = 5 kΩ and CL = 220 pF to GND; TA = TMIN to TMAX, unless otherwise noted.  
Table 2.  
Parameter1  
AD5530  
AD5531  
Unit  
Test Conditions/Comments  
ACCURACY  
Resolution  
12  
±1  
±1  
±2  
±2  
±1  
0.5  
10  
14  
±2  
±1  
±±  
±±  
±4  
0.5  
10  
Bits  
LSB max  
LSB max  
LSB max  
LSB max  
LSB typ  
ppm FSR/°C typ  
ppm FSR/°C max  
Relative Accuracy  
Differential Nonlinearity  
Zero-Scale Error  
Full-Scale Error  
Gain Error  
Guaranteed monotonic over temperature  
Typically within ±1 LSB  
Typically within ±1 LSB  
Gain Temperature Coefficient2  
REFERENCE INPUTS2  
Reference Input Range  
DC Input Resistance  
Input Current  
0 to 4.096  
100  
±1  
0 to 4.096  
100  
±1  
V min to V max  
MΩ typ  
μA max  
Max output range ±±.192 V  
Per input, typically ±20 nA  
DUTGND INPUT2  
DC Input Impedance  
Max Input Current  
Input Range  
60  
±0.3  
−3 to +3  
60  
±0.3  
−3 to +3  
kΩ typ  
mA typ  
V min to V max  
Max output range ±±.192 V  
O/P CHARACTERISTICS2  
Output Voltage Swing  
Short-Circuit Current  
Resistive Load  
Capacitive Load  
DC Output Impedance  
DIGITAL I/O  
±±.192  
15  
5
1200  
0.5  
±±.192  
15  
5
1200  
0.5  
V max  
mA max  
kΩ min  
pF max  
Ω max  
To 0 V  
To 0 V  
VINH, Input High Voltage  
VINL, Input Low Voltage  
IINH, Input Current  
CIN, Input Capacitance2  
SDO VOL, Output Low Voltage  
POWER REQUIREMENTS  
VDD/VSS  
2.4  
0.±  
±10  
10  
2.4  
0.±  
±10  
10  
V min  
V max  
μA max  
pF max  
V max  
Total for all pins  
3 pF typical  
ISINK = 1 mA  
0.4  
0.4  
+12/−12  
+12/−12  
V nom  
±10ꢀ for specified performance  
Power Supply Sensitivity  
ΔFull Scale/ΔVDD  
ΔFull Scale/ΔVSS  
IDD  
ISS  
110  
100  
2
2
150  
110  
100  
2
2
150  
dB typ  
dB typ  
mA max  
mA max  
μA max  
Outputs unloaded  
Outputs unloaded  
Typically 50 μA  
IDD in Power-Down  
1 Temperature range for B Version: −40°C to +±5°C.  
2 Guaranteed by design, not subject to production test.  
Rev. B | Page 4 of 20  
AD5530/AD5531  
AC PERFORMANCE CHARACTERISTICS  
VDD = 10.8 V to 16.5 V, VSS = −10.8 V to −16.5 V; GND = 0 V; RL = 5 kΩ and CL = 220 pF to GND. All specifications TMIN to TMAX, unless  
otherwise noted.  
Table 3.  
Parameter  
B Version Unit  
Test Conditions/Comments  
DYNAMIC PERFORMANCE  
Output Voltage Settling Time  
20  
μs typ  
Full-scale change to ±ꢁ LSB. DAC latch contents alternately  
loaded with all 0s and all 1s.  
Slew Rate  
Digital-to-Analog Glitch Impulse  
1.3  
120  
V/μs typ  
nV-s typ  
DAC latch alternately loaded with 0x0FFF and 0x1000. Not  
dependent on load conditions.  
Digital Feedthrough  
Output Noise Spectral Density @ 1 kHz  
0.5  
100  
nV-s typ  
nV/√Hz typ  
Effect of input bus activity on DAC output under test.  
All 1s loaded to DAC.  
STANDALONE TIMING CHARACTERISTICS  
VDD = 10.8 V to 16.5 V, VSS = −10.8 V to −16.5 V; GND = 0 V; RL = 5 kΩ and CL = 220 pF to GND. All specifications TMIN to TMAX, unless  
otherwise noted.  
Table 4.  
Parameter1, 2  
Limit at TMIN, TMAX  
Unit  
Description  
fMAX  
t1  
t2  
t3  
t4  
7
MHz max  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
SCLK frequency  
SCLK cycle time  
SCLK low time  
SCLK high time  
SYNC to SCLK falling edge setup time  
SCLK falling edge to SYNC rising edge  
Min SYNC high time  
Data setup time  
Data hold time  
SYNC high to LDAC low  
LDAC pulse width  
140  
60  
60  
50  
40  
50  
40  
15  
5
t5  
t6  
t7  
t±  
t9  
t10  
t11  
t12  
50  
5
LDAC high to SYNC low  
50  
CLR  
pulse width  
1 Guaranteed by design, not subject to production test.  
2 Sample tested during initial release and after any redesign or process change that can affect this parameter. All input signals are measured with tR = tF = 5 ns (10ꢀ to  
90ꢀ of VDD) and timed from a voltage level of (VIL + VIH)/2.  
t1  
t3  
SCLK  
t2  
t4  
t5  
SYNC  
SDIN  
t6  
t7  
t8  
MSB  
LSB  
DB0  
DB15  
DB14  
DB11  
t9  
t11  
1
LDAC  
t10  
t12  
CLR  
1
LDAC CAN BE TIED PERMANENTLY LOW, IF REQUIRED.  
Figure 2. Timing Diagram for Standalone Mode  
Rev. B | Page 5 of 20  
 
 
AD5530/AD5531  
DAISY-CHAINING AND READBACK TIMING CHARACTERISTICS  
VDD = 10.8 V to 16.5 V, VSS = −10.8 V to −16.5 V; GND = 0 V; RL = 5 kΩ and CL = 220 pF to GND. All specifications TMIN to TMAX, unless  
otherwise noted.  
Table 5.  
Parameter1, 2, 3  
Limit at TMIN, TMAX  
Unit  
Description  
fMAX  
t1  
t2  
t3  
t4  
2
MHz max  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns max  
ns min  
ns min  
ns min  
SCLK frequency  
SCLK cycle time  
SCLK low time  
SCLK high time  
SYNC to SCLK falling edge setup time  
SCLK falling edge to SYNC rising edge  
Min SYNC high time  
500  
200  
200  
50  
t5  
40  
t6  
50  
t7  
t±  
40  
15  
50  
Data setup time  
Data hold time  
CLR pulse width  
t12  
t13  
t14  
t15  
t16  
t17  
130  
50  
50  
SCLK falling edge to SDO valid  
SCLK falling edge to SDO invalid  
RBEN to SCLK falling edge setup time  
RBEN hold time  
50  
100  
RBEN falling edge to SDO valid  
1 Guaranteed by design, not subject to production test.  
2 Sample tested during initial release and after any redesign or process change that can affect this parameter. All input signals are measured with tR = tF = 5 ns (10ꢀ to  
90ꢀ of VDD) and timed from a voltage level of (VIL + VIH)/2.  
3 SDO; RPULLUP = 5 kΩ, CL = 15 pF  
t1  
t3  
SCLK  
t2  
t4  
t5  
SYNC  
SDIN  
t6  
t7  
t8  
MSB  
LSB  
DB15  
DB14  
DB11  
DB0  
t13  
t14  
DB11  
MSB  
LSB  
DB0  
SDO  
(DAISY-  
CHAINING)  
DB15  
t15  
t16  
RBEN  
t13  
t17  
t14  
SDO  
(READBACK)  
0
0
RB13  
RB0  
LSB  
MSB  
Figure 3. Timing Diagram for Daisy-Chaining and Readback Mode  
Rev. B | Page 6 of 20  
 
 
AD5530/AD5531  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 6.  
Parameter  
Rating  
VDD to GND  
−0.3 V to +17 V  
VSS to GND  
+0.3 V to −17 V  
Digital Inputs to GND  
SDO to GND  
−0.3 V to VDD + 0.3 V  
−0.3 V to +6.5 V  
REFIN to REFAGND  
−0.3 V to +17 V  
REFIN to GND  
REFAGND to GND  
DUTGND to GND  
VSS − 0.3 V to VDD + 0.3 V  
VSS − 0.3 V to VDD + 0.3 V  
VSS − 0.3 V to VDD + 0.3 V  
ESD CAUTION  
Operating Temperature Range  
Industrial (B Version)  
Storage Temperature Range  
Maximum Junction Temperature (TJ MAX  
Package Power Dissipation  
Thermal Impedance θJA  
TSSOP (RU-16)  
−40°C to +±5°C  
−65°C to +150°C  
150°C  
)
(TJ MAX – TA)/θJA  
150.4°C/W  
300°C  
235°C  
Lead Temperature (Soldering 10 sec)  
IR Reflow, Peak Temperature (<20 sec)  
Rev. B | Page 7 of 20  
 
AD5530/AD5531  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
REFAGND  
REFIN  
LDAC  
SDIN  
1
2
3
4
5
6
7
8
16  
15  
V
V
DD  
OUT  
14 DUTGND  
13  
AD5530/  
AD5531  
TOP VIEW  
(Not to Scale)  
V
SS  
SYNC  
RBEN  
SCLK  
SDO  
12 NC  
11 GND  
10 PD  
9
CLR  
NC = NO CONNECT  
Figure 4. Pin Configuration  
Table 7. Pin Function Descriptions  
Pin No.  
Mnemonic  
REFAGND  
REFIN  
Description  
1
2
3
For bipolar ±10 V output range, this pin should be tied to 0 V.  
This is the voltage reference input for the DAC. Connect to external 5 V reference for specified bipolar ±10 V output.  
Load DAC Logic Input (Active Low). When taken low, the contents of the shift register are transferred to the DAC  
register. LDAC can be tied permanently low, enabling the outputs to be updated on the rising edge of SYNC.  
LDAC  
4
5
6
SDIN  
SYNC  
RBEN  
Serial Data Input. This device accepts 16-bit words. Data is clocked into the input register on the falling edge of SCLK.  
Active Low Control Input. Data is clocked into the shift register on the falling edges of SCLK.  
Active Low Readback Enable Function. This function allows the contents of the DAC register to be read. Data  
from the DAC register is shifted out on the SDO pin on each rising edge of SCLK.  
7
±
SCLK  
SDO  
Clock Input. Data is clocked into the input register on the falling edge of SCLK.  
Serial Data Out. This pin is used to clock out the serial data previously written to the input shift register or can be  
used in conjunction with RBEN to read back the data from the DAC register. This is an open drain output; it  
should be pulled high with an external pull-up resistor. In standalone mode, SDO should be tied to GND or left  
high impedance.  
9
CLR  
Level Sensitive, Active Low Input. A falling edge of CLR resets VOUT to DUTGND. The contents of the registers  
are untouched.  
10  
11  
12  
13  
14  
15  
16  
PD  
This allows the DAC to be put into a power-down state.  
GND  
NC  
VSS  
DUTGND  
VOUT  
VDD  
Ground Reference.  
Do not connect anything to this pin.  
Negative Analog Supply Voltage. −12 V ± 10ꢀ or −15 V ± 10ꢀ, for specified performance.  
VOUT is referenced to the voltage applied to this pin.  
DAC Output.  
Positive Analog Supply Voltage. 12 V ± 10ꢀ or 15 V ± 10ꢀ, for specified performance.  
Rev. B | Page ± of 20  
 
AD5530/AD5531  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.0  
1.00  
0.75  
0.50  
0.25  
0
V
V
= +15V  
= –15V  
V
V
= +15V  
= –15V  
DD  
DD  
0.8  
0.6  
SS  
SS  
REFIN = +5V  
REFAGND = 0V  
REFIN = +5V  
REFAGND = 0V  
T
= 25°C  
T = 25°C  
A
A
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.25  
–0.50  
–0.75  
–1.00  
0
500  
1000 1500 2000 2500 3000 3500 4000  
CODE  
0
2000 4000 6000 8000 10000 12000 14000 16000  
CODE  
Figure 5. AD5530 Typical INL Plot  
Figure 8. AD5531 Typical DNL Plot  
0.5  
0.4  
2.0  
1.5  
V
V
= +15V  
= –15V  
V
V
= +15V  
= –15V  
DD  
DD  
SS  
SS  
REFIN = +5V  
REFIN = +5V  
REFAGND = 0V  
REFAGND = 0V  
0.3  
T
= 25°C  
A
1.0  
0.2  
0.5  
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.5  
–1.0  
–1.5  
–2.0  
0
500  
1000 1500 2000 2500 3000 3500 4000  
CODE  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
Figure 6. AD5530 Typical DNL Plot  
Figure 9. AD5531 Typical INL Error vs. Temperature  
1.0  
0.8  
V
V
= +15V  
= –15V  
2.0  
1.5  
DD  
V
V
= +15V  
= –15V  
DD  
SS  
REFIN = +5V  
REFAGND = 0V  
SS  
REFIN = +5V  
REFAGND = 0V  
0.6  
T
= 25°C  
1.0  
A
0.4  
0.2  
0.5  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
–1.0  
–1.5  
–2.0  
–40  
–20  
0
20  
40  
60  
80  
0
2000 4000 6000 8000 10000 12000 14000 16000  
CODE  
TEMPERATURE (°C)  
Figure 10. AD5531 Typical DNL Error vs. Temperature  
Figure 7. AD5531 Typical INL Plot  
Rev. B | Page 9 of 20  
 
AD5530/AD5531  
3
0.03  
0.02  
0.01  
0
V
V
= +15V  
= –15V  
DD  
SS  
REFIN = 0V  
2
T
= 25°C  
A
–40°C  
POSITIVE INL  
NEGATIVE INL  
1
+25°C  
+85°C  
0
–1  
–2  
–3  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
10  
11  
12  
13  
14  
15  
16  
17  
REFIN VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Figure 11. AD5531 Typical INL Error vs. Reference Voltage  
Figure 14. IDD in Power-Down vs. Supply  
0
12  
8
V
V
= +15V  
= –15V  
DD  
SS  
REFIN = +5V  
REFAGND = 0V  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
4
0
–4  
–8  
–12  
V
V
= +15V  
= –15V  
DD  
SS  
REFIN = +5V  
REFAGND = 0V  
T
= 25°C  
A
–40  
–20  
0
20  
40  
60  
80  
0
5
10  
15  
20  
25  
TEMPERATURE (°C)  
TIME (µs)  
Figure 12. Typical Full-Scale and Offset Error vs. Temperature  
Figure 15. Settling Time  
1.50  
0
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–0.12  
–0.14  
–0.16  
1.45  
+85°C  
1.40  
+25°C  
1.35  
–40°C  
1.30  
V
V
= +15V  
= –15V  
DD  
SS  
1.25  
1.20  
REFIN = +5V  
REFAGND = 0V  
T
= 25°C  
A
10  
11  
12  
13  
14  
/V (V)  
15  
16  
17  
V
DD SS  
TIME (750ns/DIV)  
Figure 13. IDD vs. VDD/VSS  
Figure 16. Typical Digital-to-Analog Glitch Impulse  
Rev. B | Page 10 of 20  
AD5530/AD5531  
V
V
= +15V  
= –15V  
DD  
V
OUT  
SS  
REFIN = +5V  
REFAGND = 0V  
T
= 25°C  
A
PD  
2V/DIV  
2V/DIV  
Figure 17. Typical Power-Down Time  
Rev. B | Page 11 of 20  
AD5530/AD5531  
TERMINOLOGY  
Gain Error  
Relative Accuracy  
Gain error is the difference between the actual and ideal analog  
output range, expressed as a percent of the full-scale range. It is  
the deviation in slope of the DAC transfer characteristic from ideal.  
Relative accuracy or endpoint linearity is a measure of the  
maximum deviation, in LSBs, from a straight line passing  
through the endpoints of the DAC transfer function.  
Output Voltage Settling Time  
This is the amount of time it takes for the output to settle to a  
specified level for a full-scale input change.  
Differential Nonlinearity  
Differential nonlinearity is the difference between the measured  
change and the ideal 1 LSB change between any two adjacent  
codes. A specified differential nonlinearity of 1 LSB maximum  
ensures monotonicity.  
Digital-to-Analog Glitch Impulse  
Digital-to-analog glitch impulse is the impulse injected into the  
analog output when the input code in the DAC register changes  
state. It is specified as the area of the glitch in nV-s and is  
measured when the digital input code is changed by 1 LSB at  
the major carry transition.  
Zero-Scale Error  
Zero-scale error is a measure of the output error when all 0s are  
loaded to the DAC latch.  
Full-Scale Error  
Digital Feedthrough  
This is the error in DAC output voltage when all 1s are loaded  
into the DAC latch. Ideally the output voltage, with all 1s loaded  
into the DAC latch, should be 2 VREF − 1 LSB.  
Digital feedthrough is a measure of the impulse injected into  
the analog output of the DAC from the digital inputs of the  
DAC, but is measured when the DAC output is not updated. It  
is specified in nV-s and is measured with a full-scale code  
change on the data bus, that is, from all 0s to all 1s and vice versa.  
Rev. B | Page 12 of 20  
 
AD5530/AD5531  
THEORY OF OPERATION  
DAC ARCHITECTURE  
REFIN  
12-/14-BIT DAC  
14  
OUTPUT  
The AD5530/AD5531 are pin-compatible 12- and 14-bit DACs.  
The AD5530 consists of a straight 12-bit R-2R voltage mode  
DAC, and the AD5531 consists of a 14-bit R-2R section. Using a  
5 V reference connected to the REFIN pin and REFAGND tied  
to 0 V, a bipolar 10 V voltage output results. The DAC coding  
is straight binary.  
LDAC  
SYNC  
DAC REGISTER  
14  
SYNC REGISTER  
14  
SERIAL INTERFACE  
Serial data on the SDIN input is loaded to the input register  
SYNC  
LDAC  
under the control of SCLK,  
, and  
. A write  
16-BIT SHIFT  
REGISTER  
SDIN  
SDO  
operation transfers a 16-bit word to the AD5530/AD5531.  
Figure 2 and Figure 3 show the timing diagrams. Figure 18 and  
Figure 19 show the contents of the input shift register. Twelve or  
14 bits of the serial word are data bits; the rest are don’t cares.  
Figure 20. Simplified Serial Interface  
Data written to the part via SDIN is available on the SDO pin 16  
clocks later if the readback function is not used. SDO data is  
clocked out on the falling edge of the serial clock with some delay.  
DB15 (MSB)  
DB0 (LSB)  
X
X
D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
DATA BITS  
X X  
PD FUNCTION  
Figure 18. AD5530 Input Shift Register Contents  
PD  
The  
pin allows the user to place the device into power-down  
DB15 (MSB)  
DB0 (LSB)  
mode. While in this mode, power consumption is at a minimum;  
the device draws only 50 μA of current. The  
not affect the contents of the DAC register.  
X
X
D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
DATA BITS  
PD  
function does  
Figure 19. AD5531 Input Shift Register Contents  
READBACK FUNCTION  
SYNC  
The serial word is framed by the signal,  
. After a high-to-  
, data is latched into the input shift  
register on the falling edges of SCLK. There are two ways the  
LDAC  
The AD5530/AD5531 allows the data contained in the DAC  
register to be read back if required. The pins involved are the  
SYNC  
low transition on  
RBEN  
RBEN  
and SDO (serial data out). When  
the next falling edge of SCLK, the contents of the DAC register  
RBEN  
is taken low, on  
DAC register and output can be updated. The  
signal is  
; depending on its status,  
either a synchronous or asynchronous update is selected. If  
SYNC  
examined on the falling edge of  
are transferred to the shift register.  
can be used to frame  
the readback data by leaving it low for 16 clock cycles, or it can  
be asserted high after the required hold time. The shift register  
contains the DAC register data and this is shifted out on the  
SDO line on each falling edge of SCLK with some delay. This  
ensures the data on the serial data output pin is valid for the  
falling edge of the receiving part. The two MSBs of the 16-bit  
word are 0s.  
LDAC  
is low, then the DAC register and output are updated on  
SYNC  
LDAC  
is  
the low-to-high transition of  
. Alternatively, if  
high upon sampling, the DAC register is not loaded with the  
SYNC  
new data on a rising edge of  
register and the output voltage are updated by bringing  
LDAC  
. The contents of the DAC  
LDAC  
low any time after the 16-bit data transfer is complete.  
can be tied permanently low if required. A simplified diagram  
of the input loading circuitry is illustrated in Figure 20.  
CLR FUNCTION  
CLR  
The falling edge of  
potential as DUTGND. The contents of the registers remain  
LDAC  
causes VOUT to be reset to the same  
unchanged, so the user can reload the previous data with  
CLR LDAC  
is tied low, the  
after  
output is loaded with the contents of the DAC register auto-  
CLR  
is asserted high. Alternatively, if  
matically after  
is brought high.  
Rev. B | Page 13 of 20  
 
 
 
 
AD5530/AD5531  
+15V  
OUTPUT VOLTAGE  
The DAC transfer function is as follows:  
2
AD586  
4
V
OUT  
6
5
V
OUT  
(–10V TO +10V)  
V
D
REFIN  
OUT  
9
V
OUT = 2 × [2 × ((REFIN REFAGND) ×  
) + 2 ×  
2N  
AD5530/  
AD55311  
R1  
10k  
REFAGND REFIN] − DUTGND  
where:  
C1  
1µF  
DUTGND  
REFAGND GND  
D is the decimal data-word loaded to the DAC register.  
N is the resolution of the DAC.  
V
SS  
SIGNAL  
GND  
SIGNAL  
GND  
BIPOLAR CONFIGURATION  
–15V  
Figure 21 shows the AD5530/AD5531 in a bipolar circuit  
configuration. REFIN is driven by the AD586, 5 V reference,  
and the REFAGND and DUTGND pins are tied to GND. This  
results in a bipolar output voltage ranging from −10 V to +10 V.  
Resistor R1 is provided (if required) for gain adjust. Figure 22  
shows the transfer function of the DAC when REFAGND is tied  
to 0 V.  
1
ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 21. Bipolar 10 V Operation  
2 REFIN  
0V  
–2 REFIN  
DAC INPUT CODE 000 001  
(3)FFF  
Figure 22. Output Voltage vs. DAC Input Codes (Hex)  
Rev. B | Page 14 of 20  
 
 
 
AD5530/AD5531  
MICROPROCESSOR INTERFACING  
Microprocessor interfacing to the AD5530/AD5531 is via a  
serial bus that uses standard protocol compatible with micro-  
controllers and DSP processors. The communications channel  
is a 3-wire (minimum) interface consisting of a clock signal, a  
data signal, and a synchronization signal. The AD5530/AD5531  
requires a 16-bit data-word with data valid on the falling edge  
of SCLK.  
The 8051 provides the LSB of its SBUF register as the first bit in  
the data stream. The user has to ensure that the data in the SBUF  
register is arranged correctly because the DAC expects MSB first.  
1
AD5530/  
AD55311  
80C51/80L51  
P3.4  
P3.3  
RxD  
TxD  
LDAC  
SYNC  
SDIN  
For all the interfaces, the DAC output update can be done  
automatically when all the data is clocked in or asynchronously  
SCLK  
LDAC  
under the control of  
The contents of the DAC register can be read using the  
RBEN  
.
1
ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 24. AD5530/AD5531 to 8051 Interface  
readback function.  
is used to frame the readback data,  
When data is to be transmitted to the DAC, P3.3 is taken low.  
Data on RxD is clocked out of the microcontroller on the rising  
edge of TxD and is valid on the falling edge. As a result no glue  
logic is required between this DAC and microcontroller interface.  
which is clocked out on SDO. Figure 23, Figure 24, and Figure 25  
show these DACs interfacing with a simple 4-wire interface.  
The serial interface of the AD5530/AD5531 can be operated  
from a minimum of three wires.  
The 8051 transmits data in 8-bit bytes with only eight falling  
clock edges occurring in the transmit cycle. As the DAC expects  
a 16-bit word, P3.3 must be left low after the first 8 bits are  
transferred. After the second byte has been transferred, the P3.3  
AD5530/AD5531 TO ADSP-21xx  
An interface between the AD5530/AD5531 and the ADSP-21xx  
is shown in Figure 23. In the interface example shown, SPORT0  
is used to transfer data to the DAC. The SPORT control register  
should be configured as follows: internal clock operation,  
alternate framing mode; active low framing signal.  
LDAC  
line is taken high. The DAC can be updated using  
P3.4 of the 8051.  
via  
AD5530/AD5531 TO MC68HC11 INTERFACE  
Transmission is initiated by writing a word to the Tx register  
after the SPORT has been enabled. As the data is clocked out of  
the DSP on the rising edge of SCLK, no glue logic is required to  
interface the DSP to the DAC. In the interface shown, the DAC  
Figure 25 shows an example of a serial interface between the  
AD5530/AD5531 and the MC68HC11 microcontroller. SCK of  
the MC68HC11 drives the SCLK of the DAC, and the MOSI  
SYNC  
output drives the serial data lines, SDIN.  
one of the port lines, in this case PC7.  
is driven from  
LDAC  
output is updated using the  
pin via the DSP. Alternatively,  
input could be tied permanently low and then the  
update takes place automatically when TFS is taken high.  
LDAC  
the  
1
AD5530/  
AD55311  
MC68HC11  
AD5530/  
AD55311  
ADSP-2101/  
PC6  
LDAC  
SYNC  
SDIN  
1
ADSP-2103  
PC7  
MOSI  
SCK  
FO  
TFS  
LDAC  
SYNC  
SDIN  
SCLK  
DT  
SCLK  
SCLK  
1
ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 25. AD5530/AD5531 to MC68HC11 Interface  
1
ADDITIONAL PINS OMITTED FOR CLARITY.  
The MC68HC11 is configured for master mode, MSTR = 1,  
CPOL = 0, and CPHA = 1. When data is transferred to the part,  
PC7 is taken low and data is transmitted MSB first. Data  
appearing on the MOSI output is valid on the falling edge of SCK.  
Eight falling clock edges occur in the transmit cycle, so to load the  
required 16-bit word, PC7 is not brought high until the second  
8-bit word has been transferred to the DAC input shift register.  
Figure 23. AD5530/AD5531 to ADSP-21xx Interface  
AD5530/AD5531 TO 8051 INTERFACE  
A serial interface between the AD5530/AD5531 and the 8051 is  
shown in Figure 24. TxD of the 8051 drives SCLK of the  
AD5530/AD5531, while RxD drives the serial data line, SDIN.  
P3.3 and P3.4 are bit-programmable pins on the serial port and  
are used to drive  
and  
, respectively.  
SYNC  
LDAC  
Rev. B | Page 15 of 20  
 
 
 
 
 
 
AD5530/AD5531  
LDAC  
data back from the DAC register, the SDO line can be  
RBEN  
another port output controlling and framing the readback  
data transfer.  
is controlled by the PC6 port output. The DAC can be  
connected to MISO of the MC68HC11, with  
tied to  
LDAC  
updated after each 2-byte transfer by bringing  
example does not show other serial lines for the DAC. If  
were used, it could be controlled by port output PC5. To read  
low. This  
CLR  
Rev. B | Page 16 of 20  
AD5530/AD5531  
APPLICATIONS INFORMATION  
SERIAL INTERFACE TO MULTIPLE AD5530s OR  
AD5531s  
OPTOCOUPLER INTERFACE  
In many process control applications, it is necessary to provide  
an isolation barrier between the controller and the unit being  
controlled. Opto-isolators can provide voltage isolation in  
excess of 3 kV. The serial loading structure of the AD5530/  
AD5531 makes it ideal for opto-isolated interfaces because the  
number of interface lines is kept to a minimum. Figure 26  
shows a 4-channel isolated interface to the AD5530/AD5531.  
To reduce the number of opto-isolators, if simultaneous  
SYNC  
Figure 27 shows how the  
AD5530/AD5531s. All devices receive the same serial clock and  
SYNC  
pin is used to address multiple  
serial data, but only one device receives the  
signal at any  
one time. The DAC addressed is determined by the decoder.  
There is some feedthrough from the digital input lines, the  
effects of which can be minimized by using a burst clock.  
LDAC  
updating is not required, then the  
permanently low.  
pin can be tied  
AD5530/AD55311  
SCLK  
SYNC  
V
CC  
SDIN  
SDIN  
V
OUT  
SCLK  
V
µCONTROLLER  
CONTROL OUT  
CC  
TO LDAC  
TO SYNC  
TO SCLK  
TO SDIN  
AD5530/AD55311  
ENABLE  
EN  
SYNC  
1
DECODER  
SYNC OUT  
SERIAL CLOCK OUT  
SERIAL DATA OUT  
SDIN  
V
OUT  
CODED  
ADDRESS  
DGND  
SCLK  
1
AD5530/AD55311  
ADDITIONAL PINS  
OMITTED FOR CLARITY.  
SYNC  
SDIN  
V
OUT  
SCLK  
OPTOCOUPLER  
AD5530/AD55311  
Figure 26. Opto-Isolated Interface  
SYNC  
SDIN  
V
OUT  
SCLK  
Figure 27. Addressing Multiple AD5530/AD5531s  
DAISY-CHAINING INTERFACE WITH MULTIPLE AD5530s OR AD5531s  
A number of these DAC parts can be daisy-chained together using the SDO pin. Figure 28 illustrates such a configuration.  
V
DD  
R
R
R
AD5530/AD55311  
AD5530/AD55311  
AD5530/AD55311  
SCLK  
SDIN  
SCLK  
SCLK  
SCLK  
SDIN  
SDO  
SDIN  
SDO  
SDIN  
SDO  
SYNC  
SYNC  
SYNC  
SYNC  
TO OTHER  
SERIAL DEVICES  
1
ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 28. Daisy-Chaining Multiple AD5530/AD5531s  
Rev. B | Page 17 of 20  
 
 
 
 
AD5530/AD5531  
OUTLINE DIMENSIONS  
5.10  
5.00  
4.90  
16  
9
8
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
1.20  
MAX  
0.15  
0.05  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
0.65  
BSC  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AB  
Figure 29. 16-Lead Thin Shrink Small Outline Package (TSSOP)  
(RU-16)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
AD5530BRU  
Temperature Range  
−40°C to +±5°C  
−40°C to +±5°C  
−40°C to +±5°C  
−40°C to +±5°C  
−40°C to +±5°C  
−40°C to +±5°C  
−40°C to +±5°C  
−40°C to +±5°C  
−40°C to +±5°C  
−40°C to +±5°C  
−40°C to +±5°C  
−40°C to +±5°C  
Resolution INL (LSBs) DNL (LSBs) Package Description  
Package Option  
RU-16  
RU-16  
RU-16  
RU-16  
12  
12  
12  
12  
12  
12  
14  
14  
14  
14  
14  
14  
±1  
±1  
±1  
±1  
±1  
±1  
±2  
±2  
±2  
±2  
±2  
±2  
±1  
±1  
±1  
±1  
±1  
±1  
±1  
±1  
±1  
±1  
±1  
±1  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
AD5530BRU-REEL  
AD5530BRU-REEL7  
AD5530BRUZ1  
AD5530BRUZ-REEL1  
AD5530BRUZ-REEL71  
AD5531BRU  
AD5531BRU-REEL  
AD5531BRU-REEL7  
AD5531BRUZ1  
AD5531BRUZ-REEL1  
AD5531BRUZ-REEL71  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
1 Z = Pb-free part.  
Rev. B | Page 1± of 20  
 
AD5530/AD5531  
NOTES  
Rev. B | Page 19 of 20  
AD5530/AD5531  
NOTES  
©2007 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C00938-0-1/07(B)  
Rev. B | Page 20 of 20  

相关型号:

AD5530BRU-REEL7

Serial Input, Voltage Output 12-/14-Bit Digital-to-Analog Converters
ADI

AD5530BRUZ-REEL

SERIAL INPUT LOADING, 20us SETTLING TIME, 12-BIT DAC, PDSO16, LEAD FREE, MO-153AB, TSSOP-16
ADI

AD5530BRUZ-REEL1

Serial Input, Voltage Output 12-/14-Bit Digital-to-Analog Converters
ADI

AD5530BRUZ-REEL7

Serial Input, Voltage Output 12-Bit D/A Converter
ADI

AD5530BRUZ-REEL71

Serial Input, Voltage Output 12-/14-Bit Digital-to-Analog Converters
ADI

AD5530BRUZ1

Serial Input, Voltage Output 12-/14-Bit Digital-to-Analog Converters
ADI

AD5530_07

Serial Input, Voltage Output 12-/14-Bit Digital-to-Analog Converters
ADI

AD5530_15

Serial Input, Voltage Output 12-/14-Bit Digital-to-Analog Converters
ADI

AD5531

Serial Input, Voltage Output 12-/14-Bit DACs
ADI

AD5531BRU

Serial Input, Voltage Output 12-/14-Bit DACs
ADI

AD5531BRU-REEL

Serial Input, Voltage Output 12-/14-Bit Digital-to-Analog Converters
ADI

AD5531BRU-REEL7

Serial Input, Voltage Output 12-/14-Bit Digital-to-Analog Converters
ADI