AD5541AACPZ-REEL7 [ADI]

2.7 V to 5.5 V, Serial-Input, Voltage-Output, 16-/12-Bit nanoDAC™ in 8-lead 3 mm x 3 mm LFCSP;
AD5541AACPZ-REEL7
型号: AD5541AACPZ-REEL7
厂家: ADI    ADI
描述:

2.7 V to 5.5 V, Serial-Input, Voltage-Output, 16-/12-Bit nanoDAC™ in 8-lead 3 mm x 3 mm LFCSP

光电二极管 转换器
文件: 总21页 (文件大小:388K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2.7 V to 5.5 V, Serial-Input,  
Voltage Output, Unbuffered 16-Bit DAC  
AD5541A  
FUNCTIONAL BLOCK DIAGRAMS  
FEATURES  
16-bit resolution  
V
DD  
11.8 nV/√Hz noise spectral density  
1 μs settling time  
AD5541A  
V
16-BIT DAC  
REF  
OUT  
1.1 nV-sec glitch energy  
0.05 ppm/°C temperature drift  
5 kV HBM ESD classification  
0.375 mW power consumption at 3 V  
2.7 V to 5.5 V single-supply operation  
Hardware CS and LDAC functions  
50 MHz SPI-/QSPI-/MICROWIRE-/DSP-compatible interface  
Power-on reset clears DAC output to zero scale  
Available in 3 mm × 3 mm, 8-/10-lead LFCSP and 10-lead  
MSOP  
AGND  
V
LOGIC  
CS  
16-BIT DAC LATCH  
CONTROL  
LOGIC  
DIN  
SERIAL INPUT REGISTER  
SCLK  
LDAC  
DGND  
Figure 1. AD5541A  
APPLICATIONS  
V
DD  
Automatic test equipment  
Precision source-measure instruments  
Data acquisition systems  
AD5541A-1  
V
16-BIT DAC  
REF  
OUT  
Medical instrumentation  
Aerospace instrumentation  
Communications infrastructure equipment  
Industrial control  
16-BIT DAC LATCH  
CS  
DIN  
CONTROL  
LOGIC  
SERIAL INPUT REGISITER  
SCLK  
CLR  
GND  
Figure 2. AD5541A-1  
The AD5541A uses a versatile 3-wire interface that is compatible  
with 50 MHz LPI, QLPI™, MICROWIRE™, and DLP interface  
standards.  
GENERAL DESCRIPTION  
The AD5541A is a single, 16-bit, serial input, unbuffered voltage  
output digital-to-analog converter (DAC) that operates from a  
single 2.7 V to 5.5 V supply.  
Table 1. Related Devices  
The DAC output range extends from 0 V to VREF and is guaranteed  
monotonic, providing 1 ꢀLB INꢀ accuracy at 16 bits without  
adjustment over the full specified temperature range of −40°C  
to +125°C. The AD5541A is available in a 3 mm × 3 mm, 10-lead  
ꢀFCLP and 10-lead MLOP. The AD5541A-1 is available in a  
3 mm × 3 mm, 8-lead ꢀFCLP.  
Part No.  
Description  
AD5040/AD5060 2.7 V to 5.5 V 14-/16-bit buffed output DACs  
AD5541/AD5542 2.7 V to 5.5 V 16-bit voltage output DACs  
AD5781/AD5791 18-/20-bit voltage output DACs  
AD5024/AD5064 4.5 V to 5.5 V, 12-/16-bit quad channel DACs  
AD5061  
Single, 16-bit nanoDAC, 4 ꢀSꢁ ꢂNꢀ, SOT-23  
16-bit, bipolar, voltage output DAC  
AD5542A  
Offering unbuffered outputs, the AD5541A achieves a 1 μs set-  
tling time with low power consumption and low offset errors.  
Providing low noise performance of 11.8 nV/√Hz and low  
glitch, the AD5541A is suitable for deployment across multiple  
end systems.  
PRODUCT HIGHLIGHTS  
1. 16-bit performance without adjustment.  
2. 2.7 V to 5.5 V single operation.  
3. ꢀow 11.8 nV/√Hz noise spectral density.  
4. ꢀow 0.05 ppm/°C temperature drift.  
5. 3 mm × 3 mm ꢀFCLP and MLOP packaging.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2010–2011 Analog Devices, Inc. All rights reserved.  
 
AD5541A* PRODUCT PAGE QUICK LINKS  
Last Content Update: 09/27/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
REFERENCE DESIGNS  
CN0169  
CN0181  
CN0348  
EVALUATION KITS  
AD5541A Evaluation Board  
REFERENCE MATERIALS  
DOCUMENTATION  
Solutions Bulletins & Brochures  
Data Sheet  
Digital to Analog Converters ICs Solutions Bulletin  
AD5541A: 2.7 V to 5.5 V, Serial-Input, Voltage- Output,  
Unbuffered 16-Bit DAC  
Digital-to-Analog Converter ICs Solutions Bulletin, Volume  
10, Issue 1  
User Guides  
DESIGN RESOURCES  
AD5541A Material Declaration  
PCN-PDN Information  
UG-1046: Evaluation Board for the AD5541A and the  
AD5542A, 16-Bit, Accurate, High Precision DAC in LFCSP  
with 1 μs Settling Time and 5 kV ESD Ratings  
Quality And Reliability  
Symbols and Footprints  
SOFTWARE AND SYSTEMS REQUIREMENTS  
AD5446 IIO DAC Linux Driver  
AD5541A - No-OS Driver for Microchip Microcontroller  
Platforms  
DISCUSSIONS  
View all AD5541A EngineerZone Discussions.  
AD5541A - No-OS Driver for Renesas Microcontroller  
Platforms  
SAMPLE AND BUY  
AD5791 IIO DAC Linux Driver  
Visit the product page to see pricing options.  
AD5541A FMC-SDP Interposer & Evaluation Board / Xilinx  
KC705 Reference Design  
TECHNICAL SUPPORT  
AD5541A Pmod Xilinx FPGA Reference Design  
Submit a technical question or find your regional support  
number.  
BeMicro FPGA Project for AD5541A with Nios driver  
TOOLS AND SIMULATIONS  
AD5541A IBIS Model  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
AD5541A  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Lerial Interface............................................................................ 14  
Unipolar Output Operation...................................................... 15  
Output Amplifier Lelection....................................................... 15  
Force Lense Amplifier Lelection............................................... 16  
Reference and Ground............................................................... 16  
Power-On Reset.......................................................................... 16  
Power Lupply and Reference Bypassing.................................. 16  
Applications Information.............................................................. 17  
Microprocessor Interfacing....................................................... 17  
AD5541A to ADLP-BF531 Interface ....................................... 17  
AD5541A to LPORT Interface.................................................. 17  
ꢀayout Guidelines....................................................................... 17  
Galvanically Isolated Interface ................................................. 17  
Decoding Multiple DACs.......................................................... 18  
Outline Dimensions....................................................................... 19  
Ordering Guide .......................................................................... 20  
Applications....................................................................................... 1  
Functional Block Diagrams............................................................. 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Lpecifications..................................................................................... 3  
AC Characteristics........................................................................ 4  
Timing Characteristics ................................................................ 5  
Absolute Maximum Ratings............................................................ 6  
ELD Caution.................................................................................. 6  
Pin Configurations and Function Descriptions ........................... 7  
Typical Performance Characteristics ............................................. 9  
Terminology .................................................................................... 13  
Theory of Operation ...................................................................... 14  
Digital-to-Analog Lection ......................................................... 14  
REVISION HISTORY  
3/11—Rev. 0 to Rev. A  
Added Figure 5 and Figure 6............................................................8  
Added Table 7; Renumbered Lequentially .....................................8  
Changes to Figure 15...................................................................... 10  
Changed VREF to VREF – 1 ꢀLB in Unipolar Output Operation  
Lection.............................................................................................. 15  
Updated Outline Dimensions....................................................... 18  
Changes to Ordering Guide.......................................................... 18  
Added 10-ꢀead ꢀFCLP and 8-ꢀead ꢀFCLP.....................Universal  
Changes to Features, General Description, and Product  
Highlights Lections and Table 1 ..................................................... 1  
Added Figure 2; Renumbered Lequentially .................................. 1  
Changes to ꢀogic Inputs Parameter, Table 1................................. 3  
Changes to Figure 3.......................................................................... 5  
Changes to Table 5............................................................................ 6  
Changes to Table 6............................................................................ 7  
7/10—Revision 0: Initial Version  
Rev. A | Page 2 of 20  
 
AD5541A  
SPECIFICATIONS  
VDD = 2.7 V to 5.5 V, 2.5 V ≤ VREF ≤ VDD, AGND = DGND = 0 V, 40°C < TA < +125°C,1 unless otherwise noted.  
Table 2.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Condition  
STATꢂC PERFORMANCE  
Resolution  
Relative Accuracy (ꢂNꢀ)  
16  
ꢁits  
ꢀSꢁ  
ꢀSꢁ  
ꢀSꢁ  
0.5  
0.5  
0.5  
1.0  
2.0  
1.0  
ꢁ grade  
A grade  
Guaranteed monotonic  
Differential Nonlinearity (DNꢀ)  
Gain Error  
0.5  
2
3
4
ꢀSꢁ  
ꢀSꢁ  
ꢀSꢁ  
TA = 25°C  
−40°C < TA < +85°C  
−40°C < TA < +125°C  
Gain Error Temperature Coefficient  
Zero-Code Error  
0.1  
0.3  
ppm/°C  
ꢀSꢁ  
ꢀSꢁ  
0.7  
1.5  
3
TA = 25°C  
−40°C < TA < +85°C  
−40°C < TA < +125°C  
ꢀSꢁ  
Zero-Code Temperature Coefficient  
DC Power Supply Rejection Ratio  
OUTPUT CHARACTERꢂSTꢂCS2  
Output Voltage Range  
0.05  
ppm/°C  
ꢀSꢁ  
1
ΔVDD 10ꢃ  
0
VREF − 1 ꢀSꢁ  
V
Unipolar operation  
DAC Output ꢂmpedance  
6.25  
kΩ  
Tolerance typically 20ꢃ  
DAC REFERENCE ꢂNPUT3  
Reference ꢂnput Range  
Reference ꢂnput Resistance  
Reference ꢂnput Capacitance  
2.0  
9
VDD  
V
kΩ  
pF  
pF  
Unipolar operation  
Code 0x0000  
Code 0xFFFF  
26  
26  
ꢀOGꢂC ꢂNPUTS  
ꢂnput Current  
ꢂnput ꢀow Voltage, VꢂNꢀ  
1
0.4  
0.8  
μA  
V
V
VꢀOGꢂC = 1.8 V to 5.5 V  
VꢀOGꢂC = 2.7 V to 5.5 V  
VꢀOGꢂC = 4.5 V to 5.5 V  
VꢀOGꢂC = 2.7 V to 3.6 V  
VꢀOGꢂC = 1.8 V to 2.7 V  
ꢂnput High Voltage, VꢂNH  
2.4  
1.8  
1.3  
V
V
V
pF  
V
ꢂnput Capacitance2  
Hysteresis Voltage2  
10  
0.15  
125  
POWER REQUꢂREMENTS  
VDD  
DD  
VꢀOGꢂC  
2.7  
1.8  
5.5  
150  
5.5  
V
ꢄA  
V
All digital inputs at 0 V, VꢀOGꢂC, or VDD  
VꢂH = VꢀOGꢂC or VDD and Vꢂꢀ = GND  
ꢀOGꢂC  
15  
0.625  
24  
0.825  
ꢄA  
mW  
All digital inputs at 0 V, VꢀOGꢂC, or VDD  
Power Dissipation  
1 For 2.7 V ≤ VꢀOGꢂC ≤ 5.5 V: −40°C < TA < +125°C. For 1.8 V ≤ VꢀOGꢂC ≤ 2.7 V: −40°C < TA < +105°C.  
2 Guaranteed by design, but not subject to production test.  
3 Reference input resistance is code-dependent, minimum at 0x8555.  
Rev. A | Page 3 of 20  
 
 
AD5541A  
AC CHARACTERISTICS  
VDD = 2.7 V to 5.5 V, 2.5 V ≤ VREF ≤ VDD, AGND = DGND = 0 V, 40°C < TA < +125°C, unless otherwise noted.  
Table 3.  
Parameter  
Min  
Typ  
1
17  
1.1  
2.2  
1
0.2  
92  
80  
74  
Max  
Unit  
μs  
Test Condition  
Output Voltage Settling Time  
Slew Rate  
Digital-to-Analog Glitch ꢂmpulse  
Reference −3 dꢁ ꢁandwidth  
Reference Feedthrough  
Digital Feedthrough  
Signal-to-Noise Ratio  
Spurious Free Dynamic Range  
Total Harmonic Distortion  
To ½ ꢀSꢁ of full scale, C= 10 pF  
C= 10 pF, measured from 0ꢃ to 63ꢃ  
1 ꢀSꢁ change around major carry  
All 1s loaded  
V/μs  
nV-sec  
MHz  
mV p-p  
nV-sec  
dꢁ  
All 0s loaded, VREF = 1 V p-p at 100 kHz  
dꢁ  
dꢁ  
Digitally generated sine wave at 1 kHz  
DAC code = 0xFFFF, frequency 10 kHz,  
VREF = 2.5 V 1 V p-p  
Output Noise Spectral Density  
Output Noise  
11.8  
0.134  
nV/√Hz  
μV p-p  
DAC code = 0x0000, frequency = 1 kHz  
0.1 Hz to 10 Hz  
Rev. A | Page 4 of 20  
 
AD5541A  
TIMING CHARACTERISTICS  
VDD = 5 V, 2.5 V ≤ VREF ≤ VDD, VINH = 90% of VꢀOGIC, VINꢀ = 10% of VꢀOGIC, AGND = DGND = 0 V, 40°C < TA < +105°C, unless otherwise  
noted.  
Table 4.  
Limit at  
1.8 ≤ VLOGIC ≤ 2.7 V  
Limit at  
2.7 V ≤ VLOGIC ≤ 5.5 V  
Parameter1,2  
Unit  
Description  
fSCꢀK  
t1  
t2  
t3  
t4  
14  
70  
35  
35  
5
50  
20  
10  
10  
5
MHz max  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
SCꢀK cycle frequency  
SCꢀK cycle time  
SCꢀK high time  
SCꢀK low time  
CS low to SCꢀK high setup  
CS high to SCꢀK high setup  
SCꢀK high to CS low hold time  
SCꢀK high to CS high hold time  
Data setup time  
Data hold time (VꢂNH = 90ꢃ of VDD, VꢂNꢀ = 10ꢃ of VDD)  
Data hold time (VꢂNH = 3 V, VꢂNꢀ = 0 V)  
ꢀDAC pulse width  
t5  
5
5
t6  
5
5
t7  
10  
35  
5
5
t8  
t9  
t9  
t10  
t11  
t12  
10  
4
5
20  
10  
15  
5
20  
10  
15  
CS high to ꢀDAC low setup  
CS high time between active periods  
1 Guaranteed by design and characterization. Not production tested.  
2 All input signals are specified with tR = tF = 1 ns/V and timed from a voltage level of (VꢂNꢀ + VꢂNH)/2.  
t1  
SCLK  
t2  
t3  
t6  
t5  
t7  
t4  
CS  
t12  
t8  
t9  
DIN  
DB15  
t11  
t10  
LDAC  
Figure 3. Timing Diagram  
Rev. A | Page 5 of 20  
 
 
AD5541A  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Ltresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 5.  
Parameter  
Rating  
VDD to AGND  
VꢀOGꢂC to DGND  
−0.3 V to +6 V  
−0.3 V to +6 V  
Digital ꢂnput Voltage to DGND  
−0.3 V to VDD/VꢀOGꢂC  
0.3 V  
+
VOUT to AGND  
AGND to DGND  
−0.3 V to VDD + 0.3 V  
−0.3 V to +0.3 V  
10 mA  
ESD CAUTION  
ꢂnput Current to Any Pin Except Supplies  
Operating Temperature Range  
ꢂndustrial (A, ꢁ Versions)  
Storage Temperature Range  
Maximum Junction Temperature (TJ max)  
Package Power Dissipation  
Thermal ꢂmpedance, θJA  
ꢀFCSP (CP-10-9)  
−40°C to +125°C  
−65°C to +150°C  
150°C  
(TJ max − TA)/θJA  
50°C/W  
62°C/W  
135°C/W  
ꢀFCSP (CP-8-11)  
MSOP (RM-10)  
ꢀead Temperature, Soldering  
Peak Temperature1  
ESD2  
260°C  
5 kV  
1 As per JEDEC Standard 20.  
2 Human body model (HꢁM) classification.  
Rev. A | Page 6 of 20  
 
AD5541A  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
V
1
2
3
4
5
10  
9
V
LOGIC  
DD  
V
DGND  
LDAC  
DIN  
OUT  
AD5541A  
TOP VIEW  
(Not to Scale)  
AGND  
8
REF  
CS  
7
6
SCLK  
Figure 4. AD5541A 10-Lead MSOP Pin Configuration  
Table 6. AD5541A Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
3
4
VDD  
VOUT  
AGND  
REF  
Analog Supply Voltage.  
Analog Output Voltage from the DAC.  
Ground Reference Point for Analog Circuitry.  
Voltage Reference ꢂnput for the DAC. Connect to an external 2.5 V reference. The reference can range from  
2 V to VDD.  
CS  
5
6
ꢀogic ꢂnput Signal. The chip select signal is used to frame the serial data input.  
SCꢀK  
Clock ꢂnput. Data is clocked into the serial input register on the rising edge of SCꢀK. The duty cycle must be  
between 40ꢃ and 60ꢃ.  
7
8
9
DꢂN  
Serial Data ꢂnput. This device accepts 16-bit words. Data is clocked into the serial input register on the rising edge  
of SCꢀK.  
ꢀDAC ꢂnput. When this input is taken low, the DAC register is simultaneously updated with the contents of the  
serial register data.  
Digital Ground. Ground reference for digital circuitry.  
ꢀogic Power Supply.  
ꢀDAC  
DGND  
VꢀOGꢂC  
10  
Rev. A | Page 7 of 20  
 
AD5541A  
V
1
2
3
4
5
10 V  
DD  
LOGIC  
REF  
CS  
1
2
3
4
8
7
6
5
GND  
V
9
8
7
6
DGND  
LDAC  
DIN  
OUT  
AD5541A  
TOP VIEW  
(Not to Scale)  
V
AD5541A-1  
TOP VIEW  
(Not to Scale)  
DD  
AGND  
V
SCLK  
DIN  
REF  
CS  
OUT  
SCLK  
CLR  
NOTES  
NOTES  
1. FOR INCREASED RELIABILITY OF THE SOLDER  
JOINTS AND MAXIMUM THERMAL CAPABILITY,  
IT IS RECOMMENDED THAT THE PAD BE SOLDERED  
TO THE SUBSTRATE, GND.  
1. FOR INCREASED RELIABILITY OF THE SOLDER  
JOINTS AND MAXIMUM THERMAL CAPABILITY,  
IT IS RECOMMENDED THAT THE PAD BE SOLDERED  
TO THE SUBSTRATE, GND.  
Figure 5. AD5541A-1 8-Lead LFCSP Pin Configuration  
Figure 6. AD5541A 10-Lead LFCSP Pin Configuration  
Table 7. AD5541A-1 and AD5541A Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
8-Lead LFCSP 10-Lead LFCSP  
1
4
REF  
Voltage Reference ꢂnput for the DAC. Connect to an external 2.5 V reference. The  
reference can range from 2 V to VDD.  
2
3
5
6
CS  
ꢀogic ꢂnput Signal. The chip select signal is used to frame the serial data input.  
SCꢀK  
Clock ꢂnput. Data is clocked into the serial input register on the rising edge of SCꢀK.  
Duty cycle must be between 40ꢃ and 60ꢃ.  
4
5
7
DꢂN  
CꢀR  
Serial Data ꢂnput. This device accepts 16-bit words. Data is clocked into the serial input  
register on the rising edge of SCꢀK.  
Asynchronous Clear ꢂnput. The CꢀR input is falling edge sensitive. When CꢀR is low, all  
ꢀDAC pulses are ignored. When CꢀR is activated, the serial input register and the DAC  
register are cleared to zero scale.  
N/A1  
6
2
9
1
N/A1  
3
10  
8
VOUT  
DGND  
VDD  
GND  
AGND  
VꢀOGꢂC  
ꢀDAC  
Analog Output Voltage from the DAC.  
Digital Ground. Ground reference for digital circuitry.  
Analog Supply Voltage.  
Ground Reference Point for ꢁoth Analog and Digital Circuitry.  
Ground Reference Point for Analog Circuitry.  
ꢀogic Power Supply.  
N/A1  
7
8
N/A1  
N/A1  
N/A1  
ꢀDAC ꢂnput. When this input is taken low, the DAC register is simultaneously updated  
with the contents of the serial input register.  
EPAD  
Exposed Pad. For increased reliability of the solder joints and maximum thermal  
capability, it is recommended that the pad be soldered to the substrate, GND.  
1 N/A means not applicable.  
Rev. A | Page 8 of 20  
 
AD5541A  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.50  
0.50  
V
V
= 5V  
V
V
= 5V  
DD  
DD  
= 2.5V  
= 2.5V  
REF  
REF  
0.25  
0
0.25  
0
–0.25  
–0.50  
–0.25  
–0.50  
–0.75  
0
8192 16,384 24,576 32,768 40,960 49,152 57,344 65,536  
0
8192 16,384 24,576 32,768 40,960 49,152 57,344 65,536  
CODE  
CODE  
Figure 7. Integral Nonlinearity vs. Code  
Figure 10. Differential Nonlinearity vs. Code  
0.25  
0.75  
V
= 5V  
V
= 5V  
DD  
DD  
V
= 2.5V  
V
= 2.5V  
REF  
REF  
0
–0.25  
–0.50  
–0.75  
0.50  
0.25  
0
–0.25  
–1.00  
–0.50  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 8. Integral Nonlinearity vs. Temperature  
Figure 11. Differential Nonlinearity vs. Temperature  
0.50  
0.75  
V
T
= 5V  
V
= 2.5V  
DD  
= 25°C  
REF  
= 25°C  
T
A
A
0.25  
0
0.50  
0.25  
0
DNL  
DNL  
–0.25  
–0.50  
INL  
–0.25  
INL  
–0.75  
–0.50  
2
3
4
5
6
7
0
1
2
3
4
5
6
SUPPLY VOLTAGE (V)  
REFERENCE VOLTAGE (V)  
Figure 9. Linearity Error vs. Supply Voltage  
Figure 12. Linearity Error vs. Reference Voltage  
Rev. A | Page 9 of 20  
 
 
AD5541A  
3
1.5  
1.0  
V
V
= 5V  
DD  
V
V
T
= 5V  
DD  
= 2.5V  
REF  
= 2.5V  
REF  
T
= 25°C  
A
= 25°C  
A
2
1
0.5  
0
0
–0.5  
–1.0  
–1.5  
–1  
–2  
–3  
–100  
–50  
0
50  
100  
150  
–55  
–5  
45  
95  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 13. Gain Error vs. Temperature  
Figure 16. Zero-Code Error vs. Temperature  
200  
150  
100  
50  
160  
T
= 25°C  
A
V
V
= 5V  
DD  
= 2.5V  
REF  
140  
120  
100  
80  
T
= 25°C  
A
REFERENCE VOLTAGE  
V
= 5V  
DD  
SUPPLY VOLTAGE  
= 2.5V  
V
REF  
60  
40  
20  
0
0
–55  
0
1
2
3
VOLTAGE (V)  
4
5
6
–5  
45  
95  
TEMPERATURE (°C)  
Figure 14. Supply Current vs. Temperature  
Figure 17. Supply Current vs. Reference Voltage or Supply Voltage  
200  
200  
180  
160  
140  
120  
100  
80  
V
V
= 5V  
DD  
= 2.5V  
REF  
T
= 25°C  
A
150  
100  
50  
60  
40  
20  
0
0
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0  
DIGITAL INPUT VOLTAGE (V)  
0
10,000 20,000 30,000 40,000 50,000 60,000 70,000  
CODE (Decimal)  
Figure 15. Supply Current vs. Digital Input Voltage  
Figure 18. Reference Current vs. Code  
Rev. A | Page 10 of 20  
AD5541A  
V
V
T
= 2.5V  
V
V
T
= 2.5V  
REF  
= 5V  
REF  
= 5V  
DD  
= 25°C  
DD  
= 25°C  
A
A
100 •  
90  
• • • •  
100  
90  
V
(1V/DIV)  
OUT  
DIN (5V/DIV)  
V
(50mV/DIV)  
OUT  
V
(50mV/DIV)  
GAIN = –216  
1LSB = 8.2mV  
OUT  
10  
10  
• • • •  
0%  
0%  
0.5µs/DIV  
2µs/DIV  
Figure 19. Digital Feedthrough  
Figure 22. Small Signal Settling Time  
1.236  
5
5
4
3
2
+125°C  
+25°C  
–55°C  
CS  
0
1.234  
1.232  
1.230  
1.228  
1.226  
1.224  
–5  
–10  
–15  
–20  
–25  
–30  
V
OUT  
1
0
90  
100  
110  
120  
–0.5  
0
0.5  
1.0  
1.5  
2.0  
I
SUPPLY (µA)  
DD  
TIME (ns)  
Figure 20. Digital-to-Analog Glitch Impulse  
Figure 23. Analog Supply Current Histogram  
6
5
4
3
2
+125°C  
+25°C  
–55°C  
V
V
= 2.5V  
REF  
= 5V  
2µs/DIV  
DD  
T
= 25°C  
A
CS (5V/DIV)  
100 •  
90  
• • • •  
10pF  
50pF  
100pF  
200pF  
10  
1
0
• • • •  
0%  
V
(0.5V/DIV)  
OUT  
15  
16  
17  
18  
19  
I
AT RAILS (µA)  
LOGIC  
Figure 21. Large Signal Settling Time  
Figure 24. Digital Supply Current Histogram  
Rev. A | Page 11 of 20  
 
 
AD5541A  
40  
20  
10  
0
5
0
–20  
–40  
–60  
–80  
–5  
0
–100  
20  
40  
60  
80  
100  
120  
0
10,000 20,000 30,000 40,000 50,000 60,000 70,000  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 25. 0.1 Hz to 10 Hz Output Noise  
Figure 28. Total Harmonic Distortion  
40  
35  
30  
25  
20  
15  
10  
0
–10  
–20  
–30  
–40  
10  
5
–50  
–60  
0
600  
700  
800  
900  
1000  
1100  
1200  
1300  
1400  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 26. Noise Spectral Density vs. Frequency,1 kHz  
Figure 29. Multiplying Bandwidth  
14  
12  
10  
8
6
4
2
0
9600  
9700  
9800  
9900 10,000 10,100 10,200 10,300 10,400  
FREQUENCY (Hz)  
Figure 27. Noise Spectral Density vs. Frequency, 10 kHz  
Rev. A | Page 12 of 20  
AD5541A  
TERMINOLOGY  
Digital-to-Analog Glitch Impulse  
Relative Accuracy or Integral Nonlinearity (INL)  
For the DAC, relative accuracy or INꢀ is a measure of the  
maximum deviation, in ꢀLBs, from a straight line passing  
through the endpoints of the DAC transfer function. A typical  
INꢀ vs. code plot is shown in Figure 7.  
Digital-to-analog glitch impulse is the impulse injected into the  
analog output when the input code in the DAC register changes  
state. It is normally specified as the area of the glitch in nV-sec  
and is measured when the digital input code is changed by  
1 ꢀLB at the major carry transition. A digital-to-analog glitch  
impulse plot is shown in Figure 20.  
Differential Nonlinearity (DNL)  
DNꢀ is the difference between the measured change and the  
ideal 1 ꢀLB change between any two adjacent codes. A specified  
differential nonlinearity of 1 ꢀLB maximum ensures mono-  
tonicity. A typical DNꢀ vs. code plot is shown in Figure 10.  
Digital Feedthrough  
Digital feedthrough is a measure of the impulse injected into  
the analog output of the DAC from the digital inputs of the  
DAC, but it is measured when the DAC output is not updated.  
Gain Error  
CL  
is held high while the LCꢀK and DIN signals are toggled. It  
Gain error is the difference between the actual and ideal analog  
output range, expressed as a percent of the full-scale range.  
It is the deviation in slope of the DAC transfer characteristic  
from ideal.  
is specified in nV-sec and is measured with a full-scale code  
change on the data bus, that is, from all 0s to all 1s and vice  
versa. A typical digital feedthrough plot is shown in Figure 19.  
Power Supply Rejection Ratio (PSRR)  
Gain Error Temperature Coefficient  
PLRR indicates how the output of the DAC is affected by changes  
in the power supply voltage. The power supply rejection ratio is  
expressed in terms of percent change in output per percent  
change in VDD for full-scale output of the DAC. VDD is varied by  
10%.  
Gain error temperature coefficient is a measure of the change  
in gain error with changes in temperature. It is expressed in  
ppm/°C.  
Zero-Code Error  
Zero-code error is a measure of the output error when zero  
code is loaded to the DAC register.  
Reference Feedthrough  
Reference feedthrough is a measure of the feedthrough from the  
Zero-Code Temperature Coefficient  
This is a measure of the change in zero-code error with a  
change in temperature. It is expressed in mV/°C.  
VREF input to the DAC output when the DAC is loaded with all  
0s. A 100 kHz, 1 V p-p is applied to VREF. Reference feedthrough  
is expressed in mV p-p.  
Rev. A | Page 13 of 20  
 
AD5541A  
THEORY OF OPERATION  
The AD5541A is a single, 16-bit, serial input, voltage output  
DAC. It operates from a single supply ranging from 2.7 V to 5 V  
and consumes typically 125 μA with a supply of 5 V. Data is written  
to these devices in a 16-bit word format, via a 3- or 4-wire serial  
interface. To ensure a known power-up state, this part is designed  
with a power-on reset function. The output is reset to 0 V.  
SERIAL INTERFACE  
The AD5541A is controlled by a versatile 3- or 4-wire serial  
interface that operates at clock rates of up to 50 MHz and is  
compatible with LPI, QLPI, MICROWIRE, and DLP interface  
standards. The timing diagram is shown in Figure 3. The  
AD5541A has a separate serial input register from the 16-bit  
DAC register that allows preloading of a new data value into the  
serial input register without disturbing the present DAC output  
voltage.  
DIGITAL-TO-ANALOG SECTION  
The DAC architecture consists of two matched DAC sections.  
A simplified circuit diagram is shown in Figure 30. The DAC  
architecture of the AD5541A is segmented. The four MLBs of  
the 16-bit data-word are decoded to drive 15 switches, E1 to  
E15. Each switch connects one of 15 matched resistors to either  
AGND or VREF. The remaining 12 bits of the data-word drive  
the L0 to L11 switches of a 12-bit voltage mode R-2R ladder  
network.  
CL  
Input data is framed by the chip select input, . After a high-  
CL  
to-low transition on , data is shifted synchronously and  
latched into the serial input register on the rising edge of the  
serial clock, LCꢀK. After 16 data bits have been loaded into the  
CL  
serial input register, a low-to-high transition on  
contents of the shift register to the DAC register if  
ꢀDAC  
transfers the  
ꢀDAC  
is held  
is high at this point, a low-to-high transition on  
transfers the contents into the serial input register only.  
R
R
low. If  
CL  
V
OUT  
2R  
2R  
S0  
2R . . . . .  
S1 . . . . .  
2R  
2R  
E1  
2R . . . . .  
E2 . . . . .  
2R  
E15  
After a new value is fully loaded in the serial input register, it  
can be asynchronously transferred to the DAC register by  
S11  
ꢀDAC  
strobing the  
pin. Data is loaded MLB first in 16-bit  
CL  
V
REF  
words. Data can be loaded to the part only while  
is low.  
FOUR MSBs DECODED  
INTO 15 EQUAL SEGMENTS  
12-BIT R-2R LADDER  
Figure 30. DAC Architecture  
With this type of DAC configuration, the output impedance is  
independent of code, whereas the input impedance seen by the  
reference is heavily code dependent. The output voltage is  
dependent on the reference voltage, as shown in the following  
equation:  
VREF × D  
VOUT  
where:  
=
2N  
D is the decimal data-word loaded to the DAC register.  
N is the resolution of the DAC.  
For a reference of 2.5 V, the equation simplifies to the following:  
2.5 × D  
VOUT  
=
65,536  
This gives a VOUT of 1.25 V with midscale loaded and 2.5 V with  
full scale loaded to the DAC.  
The ꢀLB size is VREF/65,536.  
Rev. A | Page 14 of 20  
 
 
AD5541A  
UNIPOLAR OUTPUT OPERATION  
OUTPUT AMPLIFIER SELECTION  
This DAC is capable of driving unbuffered loads of 60 kΩ.  
Unbuffered operation results in low supply current, typically  
300 ꢁA, and a low offset error. The AD5541A provides a  
unipolar output swing ranging from 0 V to VREF − 1 ꢀLB.  
Figure 31 shows a typical unipolar output voltage circuit. The  
code table for this mode of operation is shown in Table 8. The  
example includes the ADR421 2.5 V reference and the AD8628  
low offset and zero-drift reference buffer.  
For bipolar mode, a precision amplifier should be used and  
supplied from a dual power supply. This provides the VREF  
output. In a single-supply application, selection of a suitable  
op amp may be more difficult because the output swing of the  
amplifier does not usually include the negative rail, in this case,  
AGND. This can result in some degradation of the specified  
performance unless the application does not use codes near zero.  
The selected op amp must have a very low offset voltage (the  
DAC ꢀLB is 38 ꢁV with a 2.5 V reference) to eliminate the need  
for output offset trims. Input bias current should also be very  
low because the bias current, multiplied by the DAC output  
impedance (approximately 6 kꢂ), adds to the zero-code error.  
Rail-to-rail input and output performance is required. For fast  
settling, the slew rate of the op amp should not impede the  
settling time of the DAC. Output impedance of the DAC is  
constant and code independent, but to minimize gain errors,  
the input impedance of the output amplifier should be as high  
as possible. The amplifier should also have a 3 dB bandwidth of  
1 MHz or greater. The amplifier adds another time constant to  
the system, thus increasing the settling time of the output. A  
higher 3 dB amplifier bandwidth results in a shorter effective  
settling time of the combined DAC and amplifier.  
Table 8. Unipolar Code Table  
DAC Latch Contents  
MSB  
LSB  
Analog Output  
VREF × (65,535/65,536)  
VREF × (32,768/65,536) = ½ VREF  
VREF × (1/65,536)  
0 V  
1111 1111 1111 1111  
1000 0000 0000 0000  
0000 0000 0000 0001  
0000 0000 0000 0000  
Assuming a perfect reference, the unipolar worst-case output  
voltage can be calculated from the following equation:  
D
VOUT UNI  
=
×
(
VREF + VGE + VZSE + INL  
)
216  
where:  
OUT−UNI is the unipolar mode worst-case output.  
D is the code loaded to DAC.  
V
V
V
V
REF is the reference voltage applied to the part.  
GE is the gain error in volts.  
ZSE is the zero-scale error in volts.  
INL is the integral nonlinearity in volts.  
5V  
1µF  
0.1µF  
2
AD8628  
5V  
10µF  
V
IN  
V
6
OUT  
0.1µF  
ADR421  
0.1µF  
4
SERIAL  
INTERFACE  
V
REF  
DD  
AD820/  
CS  
OP196  
UNIPOLAR  
OUTPUT  
DIN  
AD5541A  
V
OUT  
SCLK  
EXTERNAL  
OP AMP  
DGND  
AGND  
Figure 31. Unipolar Output  
Rev. A | Page 15 of 20  
 
 
 
AD5541A  
FORCE SENSE AMPLIFIER SELECTION  
POWER-ON RESET  
Use single-supply, low noise amplifiers. A low output impedance at  
high frequencies is preferred because the amplifiers must be  
able to handle dynamic currents of up to 20 mA.  
The AD5541A has a power-on reset function to ensure that the  
output is at a known state on power-up. On power-up, the DAC  
register contains all 0s until the data is loaded from the serial  
register. However, the serial register is not cleared on power-up;  
therefore, its contents are undefined. When loading data initially  
to the DAC, 16 bits or more should be loaded to prevent erroneous  
data appearing on the output. If more than 16 bits are loaded,  
the last 16 are kept, and if less than 16 bits are loaded, bits remain  
from the previous word. If the AD5541A must be interfaced  
with data shorter than 16 bits, pad the data with 0s at the ꢀLBs.  
REFERENCE AND GROUND  
Because the input impedance is code dependent, drive the refer-  
ence pin from a low impedance source. The AD5541A operates  
with a voltage reference ranging from 2 V to VDD. References  
below 2 V result in reduced accuracy. The full-scale output  
voltage of the DAC is determined by the reference. Table 8  
outlines the analog output voltage or particular digital codes.  
POWER SUPPLY AND REFERENCE BYPASSING  
If the application does not require separate force and sense  
lines, tie the lines close to the package to minimize voltage  
drops between the package leads and the internal die.  
For accurate high resolution performance, it is recommended  
that the reference and supply pins be bypassed with a 10 ꢁF  
tantalum capacitor in parallel with a 0.1 ꢁF ceramic capacitor.  
Rev. A | Page 16 of 20  
 
AD5541A  
APPLICATIONS INFORMATION  
MICROPROCESSOR INTERFACING  
LAYOUT GUIDELINES  
Microprocessor interfacing to the AD5541A is via a serial bus  
that uses standard protocol that is compatible with DLP proces-  
sors and microcontrollers. The communications channel requires  
a 3- or 4-wire interface consisting of a clock signal, a data signal,  
and a synchronization signal. The AD5541A requires a 16-bit  
data-word with data valid on the rising edge of LCꢀK.  
In any circuit where accuracy is important, careful consider-  
ation of the power supply and ground return layout helps to  
ensure the rated performance. Design the printed circuit board  
(PCB) on which the AD5541A is mounted so that the analog  
and digital sections are separated and confined to certain areas  
of the board. If the AD5541A is in a system where multiple  
devices require an analog ground-to-digital ground connection,  
make the connection at one point only. Establish the star  
ground point as close as possible to the device.  
AD5541A TO ADSP-BF531 INTERFACE  
The LPI interface of the AD5541A is designed to be easily  
connected to industry-standard DLPs and microcontrollers.  
Figure 32 shows how the AD5541A can be connected to the  
Analog Devices, Inc., Blackfin® DLP. The Blackfin has an  
integrated LPI port that can be connected directly to the LPI  
pins of the AD5541A.  
The AD5541A should have ample supply bypassing of 10 ꢁF  
in parallel with 0.1 ꢁF on each supply located as close to the  
package as possible, ideally right up against the device. The  
10 ꢁF capacitors are the tantalum bead type. The 0.1 ꢁF capaci-  
tor should have low effective series resistance (ELR) and low  
effective series inductance (ELI), such as the common ceramic  
types, which provide a low impedance path to ground at high  
frequencies to handle transient currents due to internal logic  
switching.  
AD5541A  
SPISELx  
SCK  
CS  
SCLK  
DIN  
MOSI  
ADSP-BF531  
GALVANICALLY ISOLATED INTERFACE  
PF9  
LDAC  
In many process control applications, it is necessary to provide  
an isolation barrier between the controller and the unit being  
controlled to protect and isolate the controlling circuitry from  
any hazardous common-mode voltages that may occur. iCoupler®  
products from Analog Devices provide voltage isolation in excess  
of 2.5 kV. The serial loading structure of the AD5541A makes  
the part ideal for isolated interfaces because the number of  
interface lines is kept to a minimum. Figure 34 shows a 4-channel  
isolated interface to the AD5541A using an ADuM1400. For  
further information, visit http://www.analog.com/icouplers.  
Figure 32. AD5541A to ADSP-BF531 Interface  
AD5541A TO SPORT INTERFACE  
The Analog Devices ADLP-BF527 has one LPORT serial port.  
Figure 33 shows how one LPORT interface can be used to  
control the AD5541A.  
AD5541A  
SPORT_TFS  
SPORT_TSCK  
SPORT_DTO  
CS  
SCLK  
DIN  
ADuM14001  
CONTROLLER  
V
V
V
V
V
V
V
V
IA  
IB  
IC  
ID  
OA  
OB  
OC  
OD  
TO  
SERIAL  
ENCODE  
ENCODE  
ENCODE  
ENCODE  
DECODE  
DECODE  
DECODE  
DECODE  
SCLK  
CLOCK IN  
ADSP-BF527  
GPIO0  
LDAC  
TO  
DIN  
SERIAL  
DATA OUT  
Figure 33. AD5541A to SPORT Interface  
TO  
CS  
SYNC OUT  
LOAD DAC  
OUT  
TO  
LDAC  
1
ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 34. Isolated Interface  
Rev. A | Page 17 of 20  
 
 
 
 
AD5541A  
DECODING MULTIPLE DACS  
AD5541A  
SCLK  
DIN  
CS  
CL  
The  
number of DACs. All devices receive the same serial clock and  
CL  
pin of the AD5541A can be used to select one of a  
V
V
V
V
OUT  
OUT  
OUT  
OUT  
DIN  
V
DD  
SCLK  
serial data, but only one device receives the  
signal at any one  
time. The DAC addressed is determined by the decoder. There is  
some digital feedthrough from the digital input lines. Using a  
burst clock minimizes the effects of digital feedthrough on the  
analog signal channels. Figure 35 shows a typical circuit.  
ENABLE  
AD5541A  
EN  
CS  
CODED  
ADDRESS  
DECODER  
DGND  
DIN  
SCLK  
AD5541A  
CS  
DIN  
SCLK  
AD5541A  
CS  
DIN  
SCLK  
Figure 35. Addressing Multiple DACs  
Rev. A | Page 18 of 20  
 
 
AD5541A  
OUTLINE DIMENSIONS  
3.10  
3.00  
2.90  
10  
1
6
5
5.15  
4.90  
4.65  
3.10  
3.00  
2.90  
PIN 1  
IDENTIFIER  
0.50 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.70  
0.55  
0.40  
0.15  
0.05  
0.23  
0.13  
6°  
0°  
0.30  
0.15  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-BA  
Figure 36. 10-Lead Mini Small Outline Package [MSOP]  
(RM-10)  
Dimensions shown in millimeters  
2.48  
2.38  
2.23  
3.10  
3.00 SQ  
0.50 BSC  
2.90  
6
10  
PIN 1 INDEX  
EXPOSED  
PAD  
1.74  
1.64  
1.49  
AREA  
0.50  
0.40  
0.30  
5
1
PIN 1  
INDICATOR  
TOP VIEW  
BOTTOM VIEW  
(R 0.15)  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.30  
0.25  
0.20  
0.20 REF  
Figure 37. 10-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
3 mm × 3 mm Body, Very Very Thin, Dual Lead  
(CP-10-9)  
Dimensions shown in millimeters  
Rev. A | Page 19 of 20  
 
AD5541A  
2.44  
2.34  
2.24  
3.10  
3.00 SQ  
2.90  
0.50 BSC  
8
5
PIN 1 INDEX  
AREA  
EXPOSED  
PAD  
1.70  
1.60  
1.50  
0.50  
0.40  
0.30  
4
1
PIN 1  
INDICATOR  
(R 0.15)  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.30  
0.25  
0.20  
0.203 REF  
COMPLIANT TO JEDEC STANDARDS MO-229-WEED  
Figure 38. 8-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
3 mm × 3 mm Body, Very Very Thin, Dual Lead  
(CP-8-11)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Power-On  
Package  
Option  
Branding  
Code  
Model1  
INL  
1 ꢀSꢁ  
DNL  
1 ꢀSꢁ  
Reset to Code Temperature Range Package Description  
AD5541AꢁRMZ  
AD5541AꢁRMZ-REEꢀ7  
AD5541AARMZ  
AD5541AARMZ-REEꢀ7  
AD5541AACPZ-REEꢀ7  
AD5541AꢁCPZ-REEꢀ7  
AD5541AꢁCPZ-500Rꢀ7  
AD5541AꢁCPZ-1-Rꢀ7  
EVAꢀ-AD5541ASDZ  
Zero Scale  
Zero Scale  
Zero Scale  
Zero Scale  
Zero Scale  
Zero Scale  
Zero Scale  
Zero Scale  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
10-ꢀead MSOP  
10-ꢀead MSOP  
10-ꢀead MSOP  
10-ꢀead MSOP  
10-lead ꢀFCSP_WD  
10-lead ꢀFCSP_WD  
10-lead ꢀFCSP_WD  
8-lead ꢀFCSP_WD  
AD5541A Evaluation ꢁoard  
RM-10  
RM-10  
RM-10  
RM-10  
CP-10-9  
CP-10-9  
CP-10-9  
CP-8-11  
DEQ  
DEQ  
DER  
DER  
DER  
DEQ  
DEQ  
DFG  
1 ꢀSꢁ  
2 ꢀSꢁ  
2 ꢀSꢁ  
2 ꢀSꢁ  
1 ꢀSꢁ  
1 ꢀSꢁ  
1 ꢀSꢁ  
1 ꢀSꢁ  
1 ꢀSꢁ  
1 ꢀSꢁ  
1 ꢀSꢁ  
1 ꢀSꢁ  
1 ꢀSꢁ  
1 ꢀSꢁ  
1 Z = RoHS Compliant Part.  
©2010–2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08516-0-3/11(A)  
Rev. A | Page 20 of 20  
 
 
 
 
 
 
 
 

相关型号:

AD5541AARMZ

2.7 V to 5.5 V, Serial-Input, Voltage-Output, 16-/12-Bit nanoDACs in LFCSP
ADI

AD5541AARMZ-REEL7

2.7 V to 5.5 V, Serial-Input, Voltage-Output, 16-/12-Bit nanoDAC™ in 8-lead 3 mm x 3 mm LFCSP
ADI

AD5541ABCPZ

2.7 V to 5.5 V, Serial-Input, Voltage-Output, 16-/12-Bit nanoDACs in LFCSP
ADI

AD5541ABCPZ-1

2.7 V to 5.5 V, Serial-Input, Voltage-Output, 16-/12-Bit nanoDACs in LFCSP
ADI

AD5541ABCPZ-1-RL7

2.7 V to 5.5 V, Serial-Input, Voltage-Output, 16-/12-Bit nanoDAC™ in 8-lead 3 mm x 3 mm LFCSP
ADI

AD5541ABCPZ-1-RL7

SERIAL INPUT LOADING, 1 us SETTLING TIME, 16-BIT DAC, PDSO8, 3 X 3 MM, ROHS COMPLIANT, MO-229WEED, LFCSP-8
ROCHESTER

AD5541ABCPZ-500RL7

2.7 V to 5.5 V, Serial-Input, Voltage-Output, 16-/12-Bit nanoDAC™ in 8-lead 3 mm x 3 mm LFCSP
ADI

AD5541ABCPZ-REEL7

2.7 V to 5.5 V, Serial-Input, Voltage-Output, 16-/12-Bit nanoDAC™ in 8-lead 3 mm x 3 mm LFCSP
ADI

AD5541ABCPZ-REEL7

SERIAL INPUT LOADING, 1 us SETTLING TIME, 16-BIT DAC, PDSO10, 3 X 3 MM, ROHS COMPLIANT, LFCSP-10
ROCHESTER

AD5541ABRMZ

2.7 V to 5.5 V, Serial-Input, Voltage-Output, 16-/12-Bit nanoDACs in LFCSP
ADI

AD5541ABRMZ

SERIAL INPUT LOADING, 1 us SETTLING TIME, 16-BIT DAC, PDSO10, ROHS COMPLIANT, MO-187BA, MSOP-10
ROCHESTER

AD5541ABRMZ-REEL7

2.7 V to 5.5 V, Serial-Input, Voltage-Output, 16-/12-Bit nanoDAC™ in 8-lead 3 mm x 3 mm LFCSP
ADI