AD5543CRZ-REEL7 [ADI]

IC SERIAL INPUT LOADING, 0.5 us SETTLING TIME, 16-BIT DAC, PDSO8, ROHS COMPLIANT, MS-012AA, SOIC-8, Digital to Analog Converter;
AD5543CRZ-REEL7
型号: AD5543CRZ-REEL7
厂家: ADI    ADI
描述:

IC SERIAL INPUT LOADING, 0.5 us SETTLING TIME, 16-BIT DAC, PDSO8, ROHS COMPLIANT, MS-012AA, SOIC-8, Digital to Analog Converter

输入元件 光电二极管 转换器
文件: 总16页 (文件大小:483K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Current Output/  
Serial Input, 16-/14-Bit DAC  
AD5543/AD5553  
FEATURES  
FUNCTIONAꢀ BꢀOCK DIAGRAM  
16-bit resolution AD5543  
14-bit resolution AD5553  
1 ꢀSB DNꢀ  
AD5543/AD5553  
R
FB  
V
DD  
1 ꢀSB INꢀ  
ꢀow noise: 12 nV/√Hz  
ꢀow power: IDD = 10 μA  
0.5 μs settling time  
4Q multiplying reference input  
2 mA full-scale current 20ꢁ, with VREF = 10 V  
Built-in RFB facilitates voltage conversion  
3-wire interface  
I
V
DAC  
OUT  
REF  
CS  
16 OR 14  
CONTROL  
LOGIC  
DAC  
REGISTER  
16 OR 14  
CLK  
SDI  
GND  
16-BIT/14-BIT SHIFT  
REGISTER  
Ultracompact MSOP-8 and SOIC-8 packages  
APPꢀICATIONS  
Figure 1.  
Automatic test equipment  
Instrumentation  
1.0  
0.8  
Digitally controlled calibration  
Industrial control PꢀCs  
0.6  
0.4  
GENERAꢀ DESCRIPTION  
0.2  
The AD5543/AD5553 are precision 16-/14-bit, low power,  
current output, small form factor digital-to-analog converters  
(DAC). They are designed to operate from a single 5 V supply  
with a 10 V multiplying reference.  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
The applied external reference, VREF, determines the full-scale  
output current. An internal feedback resistor (RFB) facilitates the  
R-2R and temperature tracking for voltage conversion when  
combined with an external op amp.  
CODE  
A serial-data interface offers high speed, 3-wire microcontroller-  
compatible inputs using serial data in (SDI), clock (CLK), and  
Figure 2. Integral Nonlinearity  
REF LEVEL /DIV  
0.000dB 12.000dB  
MARKER 4 311 677.200Hz  
MAG (A/R) –2.939dB  
CS  
chip select ( ).  
0xFFFF  
0x8000  
0x4000  
0x2000  
0x1000  
0x0800  
0x0400  
0x0200  
0x0100  
0x0080  
0x0040  
0x0020  
0x0010  
0x0008  
0x0004  
0x0002  
0x0001  
The AD5543/AD5553 are packaged in ultracompact (3 mm ×  
4.7 mm) MSOP-8 and SOIC-8 packages.  
0x0000  
10  
100  
1k  
10k  
100k  
1M  
10M  
START 10.000Hz  
STOP 50 000 000.000Hz  
Figure 3. Reference Multiplying Bandwidth  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 www.analog.com  
Fax: 781.461.3113 ©2002–2009 Analog Devices, Inc. All rights reserved.  
 
AD5543/AD5553  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
DAC Section................................................................................ 10  
Serial Data Interface....................................................................... 11  
ESD Protection Circuits ............................................................ 11  
PCB Layout and Power Supply Bypassing .............................. 11  
Applications Information.............................................................. 12  
Stability ........................................................................................ 12  
Positive Voltage Output............................................................. 12  
Bipolar Output............................................................................ 12  
Programmable Current Source ................................................ 12  
Outline Dimensions....................................................................... 14  
Ordering Guide .......................................................................... 15  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Typical Performance Characteristics ............................................. 7  
Circuit Operation ........................................................................... 10  
REVISION HISTORY  
7/09—Rev. A to Rev. B  
Updated Format..................................................................Universal  
Change to Features Section ............................................................. 1  
Updated Outline Dimensions....................................................... 14  
Changes to Ordering Guide .......................................................... 15  
2/03—Rev. 0 to Rev. A  
Changes to Ordering Guide ............................................................ 3  
12/02—Rev. 0: Initial Version  
Rev. B | Page 2 of 16  
 
AD5543/AD5553  
SPECIFICATIONS  
VDD = 5 V 10%, VSS = 0 V, IOUT = virtual GND, GND = 0 V, VREF = 10 V, TA = full operating temperature range, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
N
Condition  
5 V 10ꢁ  
Unit  
STATIC PERFORMANCE1  
Resolution  
1 LSB = VREF/216 = 153 μV when VREF = 10 V (AD5543)  
1 LSB = VREF/214 = 610 μV when VREF = 10 V (AD5553)  
Grade: AD5553C  
16  
14  
1
Bits  
Bits  
Relative Accuracy  
INL  
LSB max  
LSB max  
LSB max  
LSB max  
nA max  
nA max  
mV typ/max  
ppm/°C typ  
Grade: AD5543C  
Grade: AD5543B  
Monotonic  
Data = 0x0000, TA = 25°C  
Data = 0x0000, TA = TA max  
Data = 0xFFFF  
1
2
1
Differential Nonlinearity  
Output Leakage Current  
DNL  
IOUT  
10  
20  
1/ 4  
1
Full-Scale Gain Error  
Full-Scale Tempco2  
REFERENCE INPUT  
VREF Range  
Input Resistance  
Input Capacitance2  
ANALOG OUTPUT  
Output Current  
GFSE  
TCVFS  
VREF  
RREF  
CREF  
−15/+15  
V min/max  
kΩ typ3  
pF typ  
5
5
IOUT  
Data = 0xFFFF for AD5543  
Data = 0x3FFF for AD5553  
Code dependent  
2
mA typ  
pF typ  
Output Capacitance2  
LOGIC INPUTS AND OUTPUT  
Logic Input Low Voltage  
Logic Input High Voltage  
Input Leakage Current  
Input Capacitance2  
INTERFACE TIMING 2, 4  
Clock Input Frequency  
Clock Width High  
COUT  
200  
VIL  
VIH  
IIL  
0.8  
2.4  
10  
V max  
V min  
μA max  
pF max  
CIL  
10  
fCLK  
tCH  
tCL  
tCSS  
tCSH  
tDS  
50  
10  
10  
0
MHz  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
Clock Width Low  
CS to Clock Setup  
Clock to CS Hold  
10  
5
10  
Data Setup  
Data Hold  
tDH  
SUPPLY CHARACTERISTICS  
Power Supply Range  
Positive Supply Current  
Power Dissipation  
VDD RANGE  
IDD  
PDISS  
PSS  
4.5/5.5  
10  
0.055  
0.006  
V min/max  
μA max  
mW max  
ꢀ/ꢀ max  
Logic inputs = 0 V  
Logic inputs = 0 V  
ΔVDD = 5ꢀ  
Power Supply Sensitivity  
Rev. B | Page 3 of 16  
 
AD5543/AD5553  
Parameter  
AC CHARACTERISTICS4  
Symbol  
Condition  
5 V 10ꢁ  
Unit  
Output Voltage Settling Time tS  
To 0.1ꢀ of full scale,  
0.5  
μs typ  
Data = 0x0000 to 0xFFFF to 0x0000 for AD5543  
Data = 0x0000 to 0x3FFF to 0x0000 for AD5553  
VREF = 5 V p-p, data = 0xFFFF  
VREF = 0 V, data = 0x7FFF to 0x8000 for AD5543  
Data = 0x0000, VREF = 100 mV rms, same channel  
CS = 1, and fCLK = 1 MHz  
Reference Multiplying BW  
DAC Glitch Impulse  
Feedthrough Error  
Digital Feedthrough  
Total Harmonic Distortion  
Output Spot Noise Voltage  
BW  
Q
VOUT/VREF  
Q
THD  
eN  
4
7
−65  
7
−85  
12  
MHz typ  
nV-sec  
dB  
nV-sec  
dB typ  
nV/√Hz  
VREF = 5 V p-p, data = 0xFFFF, f = 1 kHz  
f = 1 kHz, BW = 1 Hz  
1 All static performance tests (except IOUT) are performed in a closed-loop system using an external precision OP177 I-to-V converter amplifier. The AD5543 RFB terminal is  
tied to the amplifier output. The +IN op amp is grounded, and the DAC IOUT is tied to the −IN op amp. Typical values represent average readings measured at 25°C.  
2 These parameters are guaranteed by design and are not subject to production testing.  
3 All ac characteristic tests are performed in a closed-loop system using an AD841 I-to-V converter amplifier.  
4 All input control signals are specified with tR = tF = 2.5 ns (10ꢀ to 90ꢀ of 3 V) and timed from a voltage level of 1.5 V.  
Rev. B | Page 4 of 16  
 
 
AD5543/AD5553  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
VDD to GND  
VREF to GND  
Logic Inputs to GND  
V(IOUT) to GND  
Input Current to Any Pin Except Supplies  
Package Power Dissipation  
Thermal Resistance, θJA  
8-Lead Surface Mount (MSOP-8)  
8-Lead Surface Mount (SOIC-8)  
Maximum Junction Temperature (TJ Max  
Operating Temperature Range  
Model B and Model C  
−0.3 V to +8 V  
−18 V to +18 V  
−0.3 V to +8 V  
−0.3 V to VDD + 0.3 V  
50 mA  
(TJ Max − TA )/θJA  
ESD CAUTION  
150°C/W  
100°C/W  
150°C  
)
−40°C to +85°C  
−65°C to +150°C  
Storage Temperature Range  
Lead Temperature  
RN-8, RM-8 (Vapor Phase, 60 sec)  
RN-8, RM-8 (Infrared, 15 sec)  
215°C  
220°C  
Rev. B | Page 5 of 16  
 
AD5543/AD5553  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
CLK  
SDI  
1
2
3
4
8
7
6
5
CS  
AD5543/  
AD5553  
V
DD  
R
GND  
FB  
TOP VIEW  
(Not to Scale)  
V
I
OUT  
REF  
Figure 4. Pin Configuration  
Table 3. Pin Function Descriptions  
Pin No.  
Mnemonic  
Function  
1
2
3
4
5
6
7
8
CLK  
SDI  
RFB  
VREF  
IOUT  
GND  
VDD  
Clock Input. Positive-edge triggered, clocks data into shift register.  
Serial Register Input. Data loads directly into the shift register MSB first. Extra leading bits are ignored.  
Internal Matching Feedback Resistor. Connects to an external op amp for voltage output.  
DAC Reference Input Pin. Establishes DAC full-scale voltage. Constant input resistance vs. code.  
DAC Current Output. Connects to inverting terminal of external precision I-to-V op amp for voltage output.  
Analog and Digital Ground.  
Positive Power Supply Input. Specified range of operation at 5 V 10ꢀ.  
Chip Select. Active low digital input. Transfers shift-register data to DAC register on rising edge. See Table 4 for  
operation.  
CS  
Rev. B | Page 6 of 16  
 
AD5543/AD5553  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.8  
–1.0  
0
8192 16,384 24,576 32,768 40,960 49,152 57,344 65,536  
CODE (Decimal)  
0
2048  
4096  
6144  
CODE (Decimal)  
8192 10,240 12,288 14,336 16,384  
Figure 5. AD5543 Integral Nonlinearity Error  
Figure 8. AD5553 Differential Nonlinearity Error  
1.5  
1.0  
0.8  
V
A
= 2.5V  
REF  
= 25°C  
T
1.0  
0.5  
0
0.6  
0.4  
0.2  
INL  
0
DNL  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
–1.0  
–1.5  
GE  
2
4
6
8
10  
0
8192 16,384 24,576 32,768 40,960 49,152 57,344 65,536  
CODE (Decimal)  
SUPPLY VOLTAGE V (V)  
DD  
Figure 6. AD5543 Differential Nonlinearity Error  
Figure 9. Linearity Error vs. VDD  
5
4
3
2
1
0
1.0  
0.8  
V
A
= 5V  
DD  
= 25°C  
T
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
IH  
4.0  
4.5  
5.0  
0
2048  
4096  
6144  
CODE (Decimal)  
8192 10,240 12,288 14,336 16,384  
LOGIC INPUTVOLTAGEV (V)  
Figure 7. AD5553 Integral Nonlinearity Error  
Figure 10. Supply Current vs. Logic Input Voltage  
Rev. B | Page 7 of 16  
 
AD5543/AD5553  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
A2  
–5V  
DLY  
67.72µs  
0x5555  
0x8000  
0xFFFF  
0x0000  
10k  
100k  
1M  
CLOCK FREQUENCY (Hz)  
10M  
100M  
5V  
2V  
136ns  
Figure 11. AD5543 Supply Current vs. Clock Frequency  
Figure 14. Settling Time  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
= 5V ± 10%  
= 10V  
DD  
REF  
CS (5V/DIV)  
V
V
= 5V  
DD  
= 10V  
REF  
CODES 0x8000 0x7FFF  
V
(50mV/DIV)  
OUT  
0
0.5  
1.0  
1.5  
2.0  
2.5  
TIME (µs)  
3.0  
3.5  
4.0  
4.5  
5.0  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 15. Midscale Transition and Digital Feedthrough  
Figure 12. Power Supply Rejection Ratio vs. Frequency  
REF LEVEL /DIV  
0.000dB 12.000dB  
MARKER 4 311 677.200Hz  
MAG (A/R) –2.939dB  
0xFFFF  
0x8000  
0x4000  
0x2000  
0x1000  
0x0800  
0x0400  
0x0200  
0x0100  
0x0080  
0x0040  
0x0020  
0x0010  
0x0008  
0x0004  
0x0002  
0x0001  
0x0000  
10  
100  
1k  
10k  
100k  
1M  
10M  
START 10.000Hz  
STOP 50 000 000.000Hz  
Figure 13. Reference Multiplying Bandwidth  
Rev. B | Page 8 of 16  
AD5543/AD5553  
SDI  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D1  
D0  
CLK  
tDS  
tDH  
tCH  
tCL  
tCSS  
tCSH  
CS  
Figure 16. AD5543 Timing Diagram  
SDI  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D1  
D0  
CLK  
tDS  
tDH  
tCH  
tCL  
tCSS  
tCSH  
CS  
Figure 17. AD5553 Timing Diagram  
Table 4. Control-Logic Truth Table  
CS  
CꢀK  
Serial Shift Register Function  
DAC Register  
Latched  
X
H
No effect  
+1  
X1  
X1  
L
Shift register data advanced one bit  
No effect  
Shift register data transferred to DAC register  
Latched  
H
+1  
Latched  
New data loaded from serial register  
1 + = positive logic transition; X = don't care.  
Table 5. AD5543 Serial Input Register Data Format; Data is Loaded in the MSB-First Format  
MSB  
ꢀSB  
B1  
D1  
B15  
D15  
B14  
D14  
B13  
D13  
B12  
D12  
B11  
D11  
B10  
D10  
B9  
D9  
B8  
D8  
B7  
D7  
B6  
D6  
B5  
D5  
B4  
D4  
B3  
D3  
B2  
D2  
B0  
D0  
Table 6. AD5553 Serial Input Register Data Format; Data is Loaded in the MSB-First Format  
MSB1  
ꢀSB  
B13  
D13  
B12  
D12  
B11  
D11  
B10  
D10  
B9  
D9  
B8  
D8  
B7  
D7  
B6  
D6  
B5  
D5  
B4  
D4  
B3  
D3  
B2  
D2  
B1  
D1  
B0  
D0  
1
CS  
A full 16-bit data-word can be loaded into the AD5553 serial input register, but only the last 14 bits entered are transferred to the DAC register when returns to  
logic high.  
Rev. B | Page 9 of 16  
 
 
 
 
AD5543/AD5553  
CIRCUIT OPERATION  
V
DD  
The AD5543/AD5553 contain 16-/14-bit, current output,  
digital-to-analog converters (DAC), serial input registers, and  
DAC registers. Both converters use a 3-wire serial data interface.  
U1  
V
V
R
FB  
DD  
U2  
I
V
OUT  
REF  
REF  
DAC SECTION  
V
V+  
O
AD8628  
GND  
The DAC architecture uses a current steering R-2R ladder  
design. Figure 18 shows the typical equivalent DAC structure.  
The DAC contains a matching feedback resistor for use with an  
external op amp (see Figure 19). With RFB and IOUT terminals  
connected to the op amp output and inverting node, respectively,  
a precision voltage output is achieved as  
V–  
AD5543/AD5553  
–5V  
Figure 19. Voltage Output Configuration  
These DACs are also designed to accommodate ac reference  
input signals. The AD5543 accommodates input reference  
voltages in the range of −12 V to +12 V. The reference voltage  
inputs exhibit a constant nominal input resistance value of  
5 kΩ 30%. The DAC output (IOUT) is code-dependent, producing  
various resistances and capacitances. External amplifier choice  
should take into account the variation in impedance generated  
by the AD5543 on the inverting input node of the amplifier. The  
feedback resistance, in parallel with the DAC ladder resistance,  
dominates output voltage noise. To maintain good analog  
performance, power supply bypassing of 0.01 μF to 0.1 μF  
ceramic or chip capacitors, in parallel with a 1 μF tantalum  
capacitor, is recommended. Due to degradation of power supply  
rejection ratio (PSRR) in frequency, users must avoid using  
switching power supplies.  
V
V
OUT = −VREF × D/65,536 (AD5543)  
OUT = −VREF × D/16,384 (AD5553)  
(1)  
(2)  
Note that the output voltage polarity is the opposite of the VREF  
polarity for dc reference voltages.  
These DACs are designed to operate with either negative or  
positive reference voltages. The VDD power pin is only used by  
the internal logic to drive the on and off states of the DAC  
switches.  
V
DD  
R
R
R
R
V
FB  
REF  
2R  
2R  
2R  
R
5k  
S1  
S2  
I
OUT  
GND  
DIGITAL INTERFACE CONNECTIONS OMITTED FOR CLARITY;  
SWITCHES S1 AND S2 ARE CLOSED, V MUST BE POWERED.  
DD  
Figure 18. Equivalent R-2R DAC Circuit  
Note that a matching switch is used in series with the internal  
5 kΩ feedback resistor. If users attempt to measure RFB, power  
must be applied to VDD to achieve continuity.  
Rev. B | Page 10 of 16  
 
 
 
AD5543/AD5553  
V
DD  
SERIAL DATA INTERFACE  
DIGITAL  
INPUTS  
CS  
The AD5543/AD5553 use a 3-wire ( , SDI, CLK) serial data  
5k  
interface. New serial data is clocked into the serial input register  
in a 16-bit data-word format for the AD5543. The MSB is loaded  
first. Table 5 defines the 16 data-word bits. Data is placed on the  
SDI pin and clocked into the register on the positive clock edge  
of CLK, subject to the data setup-and-hold time requirements  
that are specified in the interface timing specifications. Only the  
last 16 bits clocked into the serial register are interrogated when  
DGND  
Figure 20. Equivalent ESD Protection Circuits  
PCB ꢀAYOUT AND POWER SUPPꢀY BYPASSING  
It is a good practice to employ compact, minimum lead length  
PCB layout design. The leads to the input should be as short as  
possible to minimize IR drop and stray inductance.  
CS  
the  
pin is strobed to transfer the serial register data to the  
DAC register. Because most microcontrollers output serial data  
in 8-bit bytes, two data bytes can be written to the AD5543/  
It is also essential to bypass the power supplies with quality  
capacitors for optimum stability. Supply leads to the device  
should be bypassed with 0.01 μF to 0.1 μF disc or chip ceramic  
capacitors. Low-ESR 1 μF to 10 μF tantalum or electrolytic  
capacitors should also be applied at the supplies to minimize  
transient disturbance and filter out low frequency ripple.  
CS  
AD5553. After loading the serial register, the rising edge of  
transfers the serial register data to the DAC register; during this  
strobe, the CLK should not be toggled. For the AD5553, with  
16-bit clock cycles, the two LSBs are ignored.  
ESD PROTECTION CIRCUITS  
All logic input pins contain back-biased ESD protection Zener  
diodes that are connected to ground (GND) and VDD as shown in  
Figure 20.  
The PCB metal traces between VREF and RFB should also be  
matched to minimize gain error.  
Rev. B | Page 11 of 16  
 
 
AD5543/AD5553  
APPLICATIONS INFORMATION  
amplifier with a 2.5 V offset from the reference voltage results  
in a full four-quadrant multiplying circuit. The transfer  
equation of this circuit shows that both negative and positive  
output voltages are created as the input data (D) is incremented  
from code zero (VOUT = −2.5 V) to midscale (VOUT = 0 V) to  
full-scale (VOUT = +2.5 V).  
STABIꢀITY  
V
DD  
U1  
C1  
R
V
FB  
DD  
I
V
V
OUT  
REF  
REF  
V
O
AD8628  
GND  
VOUT = (D/32,768 − 1) × VREF (AD5543)  
OUT = (D/16,384 − 1) × VREF (AD5553)  
(3)  
(4)  
V
AD5543/AD5553  
U2  
Figure 21. Optional Compensation Capacitor for Gain Peaking Prevention  
For the AD5543, the resistance tolerance becomes the dominant  
error of which users should be aware.  
In the I-to-V configuration, the IOUT of the DAC and the  
inverting node of the op amp must be connected as close as  
possible to each other, and proper PCB layout technique must  
be employed. Since every code change corresponds to a step  
function, gain peaking may occur if the op amp has limited  
GBP and, there is excessive parasitic capacitance at the inverting  
node.  
R1  
R2  
10k± 0.01% 10k± 0.01%  
C2  
U4  
+5V  
V+  
+5V  
U1  
5k± 0.01%  
V
O
R3  
ADR03  
1/2AD8620  
V–  
C1  
OUT  
V
R
FB  
DD  
I
V
V
V
An optional compensation capacitor, C1, can be added for  
stability as shown in Figure 21. C1 should be found empirically,  
but 20 pF is generally adequate for the compensation.  
+5V  
IN  
REF  
GND  
OUT  
GND  
U3  
–5V  
1/2AD8620  
–2.5V < V < +2.5V  
O
AD5553 ONLY  
U2  
POSITIVE VOꢀTAGE OUTPUT  
Figure 23. Four-Quadrant Multiplying Application Circuit  
To achieve the positive voltage output, an applied negative  
reference to the input of the DAC is preferred over the output  
inversion through an inverting amplifier because of the tolerance  
errors of the resistors. To generate a negative reference, the  
reference can be level-shifted by an op amp such that the VOUT  
and GND pins of the reference become the virtual ground and  
−2.5 V, respectively (see Figure 22).  
PROGRAMMABꢀE CURRENT SOURCE  
Figure 24 shows a versatile V-I conversion circuit using an  
improved Howland Current Pump. In addition to the precision  
current conversion it provides, this circuit enables a bidirectional  
current flow and high voltage compliance. This circuit can be  
used in 4 mA to 20 mA current transmitters with up to 500 Ω of  
load. In Figure 24, it can be shown that if the resistor network is  
matched, the load current is  
+5V  
ADR03  
V
V
(
R2 + R3 /R1  
)
IN  
OUT  
U4  
+5V  
IL  
=
×VREF × D  
(5)  
U1  
V
GND  
U3  
–2.5V  
C1  
OUT  
R3  
V
R
FB  
DD  
V+  
I
1/2AD8620  
V–  
REF  
R3 in theory can be made small to achieve the current needed  
within the U3 output current driving capability. This circuit is  
versatile such that AD8510 can deliver 20 mA in both directions  
and the voltage compliance approaches 15 V, which is limited  
mainly by the supply voltages of U3. However, users must pay  
attention to the compensation. Without C1, it can be shown  
that the output impedance becomes  
V
O
1/2AD8628  
GND  
–5V  
AD5543/AD5553  
U2  
0V < V < +2.5V  
O
Figure 22. Positive Voltage Output Configuration  
BIPOꢀAR OUTPUT  
The AD5543/AD5553 are inherently two-quadrant multiplying  
D/A converters. That is, they can easily be set up for unipolar  
output operation. The full-scale output polarity is the inverse of  
the reference input voltage.  
R1' R3  
R2' + R3'  
If the resistors are perfectly matched, ZO is infinite, which is  
(
R1 + R2  
)
ZO  
=
(6)  
R1  
(
)
R1' R2 + R3  
(
)
desirable, and behaves as an ideal current source. On the other  
hand, if they are not matched, ZO can be either positive or  
negative. Negative can cause oscillation. As a result, C1 is needed to  
prevent the oscillation. For critical applications, C1 could be  
found empirically but typically falls in the range of a few  
picofarads (pF).  
In some applications, it may be necessary to generate the full  
four-quadrant multiplying capability or a bipolar output swing.  
This is easily accomplished by using an additional U4 external  
amplifier configured as a summing amplifier (see Figure 23). In  
this circuit, the second U4 amplifier provides a gain of 2 that  
increases the output span magnitude to 5 V. Biasing the external  
Rev. B | Page 12 of 16  
 
 
 
 
 
 
AD5543/AD5553  
V
DD  
DD  
U1  
R
V
FB  
I
V
V
REF  
OUT  
REF  
R1'  
150kΩ  
R2'  
15kΩ  
AD8628  
GND  
C1  
10pF  
AD5543/AD5553  
U2  
V
DD  
U3  
R3'  
50Ω  
V+  
AD8510  
V–  
R3  
50Ω  
V
SS  
V
L
R1  
150kΩ  
R2  
15kΩ  
I
LOAD  
L
Figure 24. Programmable Current Source with Bidirectional Current Control and High Voltage Compliance Capabilities  
Rev. B | Page 13 of 16  
 
AD5543/AD5553  
OUTLINE DIMENSIONS  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
0.65 BSC  
0.95  
0.85  
0.75  
1.10 MAX  
0.80  
0.60  
0.40  
8°  
0°  
0.15  
0.00  
0.38  
0.22  
0.23  
0.08  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 25. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 26. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
Rev. B | Page 14 of 16  
 
AD5543/AD5553  
ORDERING GUIDE  
INL  
(LSB)  
RES  
(LSB)  
Package  
Description  
Package  
Option  
Model1  
AD5543CRZ2  
AD5543CRZ-REEL7  
AD5543CRMZ2  
AD5543CRMZ-REEL72  
AD5543BR  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Branding  
1
1
1
1
2
2
2
2
2
2
1
1
1
1
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
14  
14  
14  
14  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead MSOP  
8-Lead MSOP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
R-8  
R-8  
RM-8  
RM-8  
R-8  
DEV  
DEV  
AD5543BRZ2  
AD5543BRM  
R-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
DXB  
DXB  
AD5543BRM –REEL7  
AD5543BRMZ2  
AD5543BRMZ-REEL7  
AD5553CRM  
AD5553CRM –REEL7  
AD5553CRMZ2  
AD5553CRMZ –REEL72  
DXB#  
DXB#  
DUC  
DUC  
DUC#  
DUC#  
1 The AD5543 contains 1040 transistors. The die size measures 55 mil × 73 mil or 4,015 sq. mil.  
2 Z = RoHS Compliant Part, # denotes RoHS Compliant product may be top or bottom marked.  
Rev. B | Page 15 of 16  
 
 
 
AD5543/AD5553  
NOTES  
©2002–2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D02917-0-8/09(B)  
Rev. B | Page 16 of 16  
 

相关型号:

AD5543_12

Current Output/Serial Input, 16-/14-Bit DACs
ADI

AD5544

Quad, Current-Output Serial-Input, 16-Bit/14-Bit DACs
ADI

AD55444

13-BIT 250 MSPS ANALOG-TO-DIGITAL CONVERTER
TI

AD5544ACPZ-1-R2

Quad, Current-Output, Serial-Input 16-/14-Bit DACs
ADI

AD5544ACPZ-1-RL7

Quad, Current-Output, Serial-Input 16-/14-Bit DACs
ADI

AD5544ARS

Quad, Current-Output Serial-Input, 16-Bit/14-Bit DACs
ADI

AD5544ARSZ

Quad, Current-Output, Serial-Input 16-/14-Bit DACs
ADI

AD5544ARSZ-REEL7

Quad, Current-Output, Serial-Input 16-/14-Bit DACs
ADI

AD5544BCPZ-R2

Quad, Current-Output, Serial-Input 16-/14-Bit DACs
ADI

AD5544BCPZ-RL7

Quad, Current-Output, Serial-Input 16-/14-Bit DACs
ADI

AD5544BRSZ

Quad, Current-Output, Serial-Input 16-/14-Bit DACs
ADI

AD5544BRSZ-REEL7

Quad, Current-Output, Serial-Input 16-/14-Bit DACs
ADI