AD5546CRUZ-REEL7 [ADI]

Current-Output Parallel-Input, 16-Bit Digital-to-Analog Converter;
AD5546CRUZ-REEL7
型号: AD5546CRUZ-REEL7
厂家: ADI    ADI
描述:

Current-Output Parallel-Input, 16-Bit Digital-to-Analog Converter

光电二极管 转换器
文件: 总20页 (文件大小:655K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Current Output, Parallel Input, 16-/14-Bit  
Multiplying DACs with Four-Quadrant Resistors  
Data Sheet  
AD5546/AD5556  
FEATURES  
FUNCTIONAꢀ BꢀOCK DIAGRAM  
R1  
R
REF R  
COM  
OFS  
16-bit resolution  
14-bit resolution  
2- or 4-quadrant multiplying DAC  
1 ꢀSB DNꢀ  
R
R
R1  
R2  
OFS  
FB  
R
I
FB  
DAC  
16/14  
AD5546/  
AD5556  
OUT  
V
DD  
1 ꢀSB INꢀ  
Operating supply voltage: 2.7 V to 5.5 V  
ꢀow noise: 12 nV/√Hz  
ꢀow power: IDD = 10 μA  
WR  
CONTROL  
LOGIC  
DAC  
REGISTER  
LDAC  
GND  
DB0 TO DB15  
0.5 μs settling time  
POR  
Built-in RFB facilitates current-to-voltage conversion  
Built-in 4-quadrant resistors allow 0 V to –10 V, 0 V to +10 V,  
or 10 V outputs  
2 mA full-scale current 20ꢁ, with VREF = 10 V  
Automotive operating temperature: –40°C to +125°C  
Compact TSSOP-28 package  
MSB RS  
Figure 1. AD5546/AD5556 Simplified Block Diagram  
GENERAꢀ DESCRIPTION  
The AD5546/AD5556 are precision 16-/14-bit, multiplying, low  
power, current output, parallel input digital-to-analog converters  
(DACs). They operate from a single 2.7 V to 5.5 V supply with  
10 V multiplying references for four-quadrant outputs. Built-  
in four-quadrant resistors facilitate the resistance matching and  
temperature tracking that minimize the number of components  
needed for multiquadrant applications. The feedback resistor  
(RFB) simplifies the I-V conversion with an external buffer. The  
AD5546/AD5556 are packaged in compact TSSOP-28 packages  
with operating temperatures from –40°C to +125°C.  
APPꢀICATIONS  
Automatic test equipment  
Instrumentation  
Digitally controlled calibration  
Digital waveform generation  
The EVAL-AD5546SDZ is available for evaluating DAC perfor-  
mance. For more information, see the UG-309 evaluation board  
user guide.  
+
U2A  
OP2177  
+10V  
–10V  
C7  
R1A  
R1  
R
VREFA  
R
R
FBA  
COMA  
OFSA  
+15V  
C4  
1µF  
C6  
R2  
R
R
FB  
OFS  
+5V  
V
DD  
C5  
C1  
1µF  
C2  
I
0.1µF  
OUT  
16-/14-BIT  
DATA  
0.1µF  
V+  
U1  
U2B  
AD5546/AD5556  
VOUT  
OP2177  
GND  
V–  
+
16-/14-BIT  
C8  
1µF  
DATA  
WR LDAC RS MSB  
WR  
LDAC  
RS  
C9  
0.1µF  
–15V  
MSB  
Figure 2. 16-/14-Bit, Four-Quadrant Multiplying DAC with a Minimum of External Components  
Rev. D  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2004-2011 Analog Devices, Inc. All rights reserved.  
 
 
 
 
 
AD5546/AD5556  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Digital Section ............................................................................ 11  
ESD Protection Circuits ............................................................ 11  
Amplifier Selection .................................................................... 11  
Reference Selection .................................................................... 11  
Applications Information .............................................................. 12  
Unipolar Mode ........................................................................... 12  
Bipolar Mode .............................................................................. 13  
AC Reference Signal Attenuator............................................... 14  
System Calibration ..................................................................... 14  
Reference Selection .................................................................... 15  
Amplifier Selection .................................................................... 15  
Outline Dimensions....................................................................... 17  
Ordering Guide .......................................................................... 17  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description ......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics............................................................. 3  
Timing Diagram ........................................................................... 4  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Pin Configurations and Function Descriptions ........................... 6  
Typical Performance Characteristics ............................................. 8  
Circuit Operation ........................................................................... 10  
Digital-to-Analog (DAC) Converter Section ......................... 10  
REVISION HISTORY  
11/11—Rev. C to Rev. D  
Changes to General Description Section ...................................... 1  
Changes to Ordering Guide .......................................................... 18  
1/11—Rev. B to Rev. C  
Changes to Figure 2.......................................................................... 1  
Changes to Figure 21...................................................................... 13  
4/10—Rev. A to Rev. B  
Changes to Table 1............................................................................ 4  
Moved Timing Diagram Section and Figure 5 to  
Specifications Section....................................................................... 4  
Moved Table 5 Through Table 7 to Digital Section Section ....... 7  
Replaced Figure 15 and Figure 16 .................................................. 9  
Deleted Figure 17 and Figure 18..................................................... 9  
Added Reference Selection Section, Amplifier Selection Section,  
and Table 11 Through Table 13 .................................................... 15  
9/09—Rev. 0 to Rev. A  
Changes to Features Section............................................................ 1  
Changes to Static Performance, Relative Accuracy,  
Grade: AD5546C Parameter, Table 1............................................. 3  
Changes to Ordering Guide .......................................................... 16  
1/04—Revision 0: Initial Version  
Rev. D | Page 2 of 20  
 
Data Sheet  
AD5546/AD5556  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
VDD = 2.7 V to 5.5 V, IOUT = virtual GND, GND = 0 V, VREF = –10 V to 10 V, TA = full operating temperature range, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
STATIC PERFORMANCE1  
Resolution  
N
AD5546, 1 LSB = VREF/216 = 153 µV at  
16  
14  
Bits  
Bits  
V
REF = 10 V  
AD5556, 1 LSB = VREF/214 = 610 µV at  
REF = 10 V  
V
Relative Accuracy  
INL  
Grade: AD5556C  
Grade: AD5546B  
Grade: AD5546C  
Monotonic  
Data = zero scale, TA = 25°C  
Data = zero scale, TA = TA maximum  
Data = full scale  
Data = full scale  
Data = full scale  
1
2
1
LSB  
LSB  
LSB  
LSB  
nA  
Differential Nonlinearity  
Output Leakage Current  
DNL  
IOUT  
1
10  
20  
4
4
2.5  
nA  
Full-Scale Gain Error  
Bipolar Mode Gain Error  
Bipolar Mode Zero-Scale  
Error  
GFSE  
GE  
GZSE  
1
1
1
mV  
mV  
mV  
Full-Scale Tempco2  
REFERENCE INPUT  
VREF Range  
REF Input Resistance  
R1 and R2 Resistance  
R1-to-R2 Mismatch  
Feedback and Offset  
Resistance  
Input Capacitance2  
TCVFS  
1
ppm/°C  
VREF  
REF  
R1 and R2  
∆(R1 to R2)  
RFB, ROFS  
–18  
4
4
+18  
6
6
1.5  
12  
V
5
5
0.5  
10  
kΩ  
kΩ  
8
kΩ  
CREF  
5
pF  
ANALOG OUTPUT  
Output Current  
IOUT  
COUT  
Data = full scale  
Code dependent  
2
200  
mA  
pF  
Output Capacitance2  
LOGIC INPUT AND OUTPUT  
Logic Input Low Voltage  
VIL  
VDD = 5 V  
VDD = 3 V  
VDD = 5 V  
VDD = 3 V  
0.8  
0.4  
V
V
V
V
Logic Input High Voltage  
VIH  
2.4  
2.1  
Input Leakage Current  
Input Capacitance2  
IIL  
CIL  
10  
10  
µA  
pF  
INTERFACE TIMING2, 3  
Data to WR Setup Time  
tDS  
tDH  
tWR  
VDD = 5 V  
VDD = 3 V  
VDD = 5 V  
VDD = 3 V  
VDD = 5 V  
20  
35  
0
ns  
ns  
ns  
ns  
ns  
Data to WR Hold Time  
WR Pulse Width  
0
20  
VDD = 3 V  
VDD = 5 V  
VDD = 3 V  
35  
20  
35  
ns  
ns  
ns  
LDAC Pulse Width  
tLDAC  
Rev. D | Page 3 of 20  
 
 
AD5546/AD5556  
Data Sheet  
Parameter  
Symbol  
Conditions  
VDD = 5 V  
VDD = 3 V  
VDD = 5 V  
VDD = 3 V  
Min  
20  
35  
0
Typ  
Max  
Unit  
ns  
RS Pulse Width  
tRS  
ns  
ns  
WR to LDAC Delay Time  
tLWD  
0
ns  
SUPPLY CHARACTERISTICS  
Power Supply Range  
Positive Supply Current  
Power Dissipation  
Power Supply Sensitivity  
AC CHARACTERISTICS4  
VDD RANGE  
IDD  
PDISS  
PSS  
2.7  
5.5  
10  
0.055  
0.003  
V
μA  
mW  
ꢀ/ꢀ  
Logic inputs = 0 V  
Logic inputs = 0 V  
∆VDD = 5ꢀ  
Output Voltage Settling  
Time  
tS  
To 0.1ꢀ of full scale, data cycles from zero  
scale to full scale to zero scale  
0.5  
μs  
Reference Multiplying BW  
DAC Glitch Impulse  
Multiplying Feedthrough  
Error  
BW  
Q
VOUT/VREF  
VREF = 100 mV rms, data = full scale, C6 =5.6 pF5  
VREF = 0 V, midscale minus 1 to midscale  
VREF = 100 mV rms, f = 10 kHz  
6.8  
−3  
79  
MHz  
nV-s  
dB  
Digital Feedthrough  
QD  
WR = 1, LDAC toggles at 1 MHz  
VREF = 5 V p-p, data = full-scale, f = 1 kHz  
f = 1 kHz, BW = 1 Hz  
7
nV-s  
Total Harmonic Distortion  
Output Noise Density  
THD  
eN  
–103  
12  
dB  
nV/rt Hz  
1 All static performance tests (except IOUT) are performed in a closed-loop system, using an external precision OP97 I-V converter amplifier. The AD554x RFB terminal is  
tied to the amplifier output. The op amp +IN is grounded, and the DAC IOUT is tied to the op amp –IN. Typical values represent average readings measured at 25°C.  
2 These parameters are guaranteed by design and are not subject to production testing.  
3 All input control signals are specified with tR = tF = 2.5 ns (10ꢀ to 90ꢀ of 3 V) and timed from a voltage level of 1.5 V.  
4 All ac characteristic tests are performed in a closed-loop system using an AD8038 I-V converter amplifier except for THD where an AD8065 was used.  
5 C6 is the C6 capacitor shown in Figure 20.  
TIMING DIAGRAM  
tWR  
WR  
DATA  
tDH  
tDS  
tLWD  
LDAC  
tLDAC  
tRS  
RS  
Figure 3. AD5546/AD5556 Timing Diagram  
Rev. D | Page 4 of 20  
 
 
Data Sheet  
AD5546/AD5556  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those listed in the operational sections  
of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
VDD to GND  
–0.3 V, +8 V  
–18 V, 18 V  
–0.3 V, +8 V  
–0.3 V, VDD + 0.3 V  
50 mA  
RFB, ROFS, R1, RCOM, and REF to GND  
Logic Inputs to GND  
V (IOUT) to GND  
Input Current to Any Pin Except Supplies  
Thermal Resistance (θJA)  
128°C  
ESD CAUTION  
Maximum Junction Temperature (TJ MAX  
Operating Temperature Range  
Storage Temperature Range  
Lead Temperature:  
)
150°C  
–40°C to +125°C  
–65°C to +150°C  
Vapor Phase, 60 s  
215°C  
Infrared, 15 s  
220°C  
Package Power Dissipation  
(TJ MAX – TA)/θJA  
Rev. D | Page 5 of 20  
 
 
AD5546/AD5556  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
1
28  
V
D5  
D4  
D3  
D2  
D1  
D0  
NC  
NC  
1
2
28 V  
DD  
DD  
2
27 D8  
27 D6  
3
26 D9  
3
26 D7  
4
25 D10  
24 D11  
23 D12  
22 D13  
21 D14  
20 D15  
19 GND  
18 RS  
4
25 D8  
5
5
24 D9  
6
6
23 D10  
22 D11  
21 D12  
20 D13  
19 GND  
18 RS  
AD5546  
AD5556  
7
7
TOP VIEW  
TOP VIEW  
(Not to Scale)  
(Not to Scale)  
8
8
R
9
R
9
OFS  
OFS  
R
10  
R
10  
FB  
FB  
R1 11  
12  
R1 11  
12  
R
17 MSB  
16 WR  
15 LDAC  
R
17 MSB  
16 WR  
15 LDAC  
COM  
REF 13  
14  
COM  
REF 13  
14  
I
I
OUT  
OUT  
NC = NO CONNECT  
Figure 4. AD5546 Pin Configuration  
Figure 5. AD5556 Pin Configuration  
Table 3. AD5546 Pin Function Descriptions  
Pin No. Mnemonic Description  
1 to 8  
9
D7 to D0  
ROFS  
Digital Input Data Bits[D7: D0]. The signal level must be ≤ VDD + 0.3 V.  
Bipolar Offset Resistor. Accepts up to 18 V. In two-quadrant mode, ties to RFB. In four-quadrant mode, ties to R1  
and the external reference.  
10  
11  
12  
RFB  
R1  
RCOM  
Internal Matching Feedback Resistor. Connects to the output of an external op amp for I-V conversion.  
Four-Quadrant Resistor R1. In two-quadrant mode, shorts to the REF pin. In four-quadrant mode, ties to ROFS.  
Center Tap Point of Two Four-Quadrant Resistors, R1 and R2. In four-quadrant mode, ties to the inverting node of  
the reference amplifier. In two-quadrant mode, shorts to the REF pin.  
13  
REF  
DAC Reference Input in Two-Quadrant Mode and R2 Terminal in Four-Quadrant Mode. In two-quadrant mode, this  
pin is the reference input with constant input resistance vs. code. In four-quadrant mode, this pin is driven by the  
external reference amplifier.  
14  
15  
16  
IOUT  
LDAC  
WR  
DAC Current Output. Connects to the inverting node of an external op amp for I-V conversion.  
Digital Input Load DAC Control. Signal level must be ≤ VDD + 0.3 V.  
Write Control Digital Input in Active Low. Transfers shift-register data to the DAC register on the rising edge. The  
signal level must be ≤ VDD + 0.3 V.  
17  
18  
19  
MSB  
RS  
Power-On Reset State. MSB = 0 resets at zero scale; MSB = 1 resets at midscale. The signal level must be  
≤ VDD + 0.3 V.  
Reset in Active Low. Resets to zero scale if MSB = 0, and resets to midscale if MSB = 1. The signal level must be  
≤ VDD + 0.3 V.  
GND  
Analog and Digital Grounds.  
20 to 21 D15 to D14 Digital Input Data Bits[D15:D14]. The signal level must be ≤ VDD + 0.3 V.  
22 to 27 D13 to D8  
28 VDD  
Digital Input Data Bits[D13:D8]. The signal level must be ≤ VDD + 0.3 V.  
Positive Power Supply Input. Specified range of operation: 2.7 V to 5.5 V.  
Table 4. AD5556 Pin Function Descriptions  
Pin No. Mnemonic Description  
1 to 6  
7 to 8  
9
D5 to D0  
NC  
ROFS  
Digital Input Data Bits[D5:D0]. The signal level must be VDD+0.3 V.  
No Connection. The user should not connect anything other than dummy pads on these terminals.  
Bipolar Offset Resistor. Accepts up to 18 V. In two-quadrant mode, ties to RFB. In four-quadrant mode, ties to R1  
and the external reference.  
10  
11  
12  
RFB  
R1  
RCOM  
Internal Matching Feedback Resistor. Connects to the output of an external op amp for I-V conversion.  
Four-Quadrant Resistor R1. In two-quadrant mode, shorts to the REF pin. In four-quadrant mode, ties to ROFS.  
Center Tap Point of Two Four-Quadrant Resistors, R1 and R2. In four-quadrant mode, ties to the inverting node of  
the reference amplifier. In two-quadrant mode, shorts to the REF pin.  
Rev. D | Page 6 of 20  
 
Data Sheet  
AD5546/AD5556  
Pin No. Mnemonic Description  
13  
REF  
DAC Reference Input in Two-Quadrant Mode and R2 Terminal in Four-Quadrant Mode. In two-quadrant mode, this  
pin is the reference input with constant input resistance vs. code. In four-quadrant mode, this pin is driven by the  
external reference amplifier.  
14  
15  
16  
IOUT  
LDAC  
WR  
DAC Current Output. Connects to the inverting node of an external op amp for I-V conversion.  
Digital Input Load DAC Control. The signal level must be ≤ VDD + 0.3 V.  
Write Control Digital Input in Active Low. Transfers shift-register data to the DAC register on the rising edge. The  
signal level must be ≤ VDD + 0.3 V.  
17  
18  
19  
MSB  
RS  
Power On Reset State. MSB = 0 resets at zero scale; MSB = 1 resets at midscale. The signal level must be  
≤ VDD + 0.3 V.  
Reset in Active Low. Resets to zero scale if MSB = 0 and resets to midscale if MSB = 1. The signal level must be  
≤ VDD + 0.3 V.  
GND  
Analog and Digital Grounds.  
20 to 27 D13 to D6  
28 VDD  
Digital Input Data Bits[D13:D6]. The signal level must be ≤ VDD + 0.3 V.  
Positive Power Supply Input. Specified range of operation: 2.7 V to 5.5 V.  
Rev. D | Page 7 of 20  
AD5546/AD5556  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.0  
0.8  
1.0  
0.8  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
0
0
8192 16,384 24,576 32,768 40,960 49,152 57,344 65,536  
CODE (Decimal)  
0
0248 4096  
6144  
8192 10,240 12,288 14,336 16,384  
CODE (Decimal)  
Figure 9. AD5556 Differential Nonlinearity Error  
Figure 6. AD5546 Integral Nonlinearity Error  
1.5  
1.0  
1.0  
0.8  
V
T
= 2.5V  
REF  
= 25°C  
A
0.6  
0.4  
0.5  
0.2  
INL  
0
0
DNL  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
–1.0  
–1.5  
GE  
2
4
6
8
10  
8192 16,384 24,576 32,768 40,960 49,152 57,344 65,536  
CODE (Decimal)  
SUPPLY VOLTAGE V (V)  
DD  
Figure 7. AD5546 Differential Nonlinearity Error  
Figure 10. Linearity Error vs. VDD  
1.0  
0.8  
5
4
3
2
V
= 5V  
DD  
T
= 25°C  
A
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
1
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
IH  
4.0  
4.5  
5.0  
2048  
4096  
6144  
8192 10,240 12,288 14,336 16,384  
CODE (Decimal)  
LOGIC INPUT VOLTAGE V (V)  
Figure 11. Supply Current vs. Logic Input Voltage  
Figure 8. AD5556 Integral Nonlinearity Error  
Rev. D | Page 8 of 20  
 
Data Sheet  
AD5546/AD5556  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
–3.80  
–3.85  
–3.90  
–3.95  
–4.00  
–4.05  
–4.10  
–4.15  
–4.20  
0x5555  
0x8000  
0xFFFF  
0x0000  
10k  
100k  
1M  
CLOCK FREQUENCY (Hz)  
10M  
100M  
–200  
–100  
0
100  
200  
300  
400  
TIME (ns)  
Figure 12. AD5546 Supply Current vs. Clock Frequency  
Figure 15. AD5546 Midscale Transition  
2
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
= 5V ± 10%  
0
–2  
DD  
= 10V  
REF  
–4  
–6  
–8  
–10  
–12  
–14  
–16  
–18  
10  
100  
1k  
10k  
100k  
1M  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 13. Power Supply Rejection Ratio vs. Frequency  
Figure 16. AD5546 Unipolar Reference Multiplying Bandwidth  
LDAC  
1
2
V
OUT  
CH1 5.00V CH2 2.00V M 200ns  
A CH1 2.70V  
B CH1 –6.20V  
400.00ns  
Figure 14. Settling Time from Full Scale to Zero Scale  
Rev. D | Page 9 of 20  
AD5546/AD5556  
Data Sheet  
CIRCUIT OPERATION  
variation of the AD5546/AD5556 output impedance. The  
DIGITAL-TO-ANALOG (DAC) CONVERTER SECTION  
feedback resistance in parallel with the DAC ladder resistance  
dominates output voltage noise. To maintain good analog  
performance, it is recommended to bypass the power supply  
with a 0.01 μF to 0.1 μF ceramic or chip capacitor in parallel  
with a 1 μF tantalum capacitor. Also, to minimize gain error,  
PCB metal traces between VREF and RFB should match.  
The AD5546/AD5556 are 16-/14-bit multiplying, current out-  
put, and parallel input DACs. The devices operate from a single  
2.7 V to 5.5 V supply and provide both unipolar 0 V to –VREF, or  
0 V to +VREF, and bipolar VREF output ranges from a –18 V to  
+18 V reference. In addition to the precision conversion RFB  
commonly found in current output DACs, there are three addi-  
tional precision resistors for four-quadrant bipolar applications.  
Every code change of the DAC corresponds to a step function;  
gain peaking at each output step may occur if the op amp has  
limited GBP and excessive parasitic capacitance present at the  
op amp inverting node. A compensation capacitor, therefore,  
may be needed between the I-V op amp inverting and output  
nodes to smooth the step transition. Such a compensation  
capacitor should be found empirically, but a 20 pF capacitor is  
generally adequate for the compensation.  
The AD5546/AD5556 consist of two groups of precision R-2R  
ladders, which make up the 12/10 LSBs, respectively. Further-  
more, the four MSBs are decoded into 15 segments of resistor  
value 2R. Figure 17 shows the architecture of the 16-bit AD5546.  
Each of the 16 segments in the R-2R ladder carries an equally  
weighted current of one-sixteenth of full scale. The feedback  
resistor, RFB, and four-quadrant resistor, ROFS, have values of 10  
kΩ. Each four-quadrant resistor, R1 and R2, equals 5 kΩ. In  
four-quadrant operation, R1, R2, and an external op amp work  
together to invert the reference voltage and apply it to the REF  
input. With ROFS and RFB connected as shown in Figure 2, the  
The VDD power is used primarily by the internal logic and to  
drive the DAC switches. Note that the output precision  
degrades if the operating voltage falls below the specified  
voltage. The user should also avoid using switching regulators  
because device power supply rejection degrades at higher  
frequencies.  
output can swing from –VREF to +VREF  
.
The reference voltage inputs exhibit a constant input resistance  
of 5 kΩ 20ꢀ. The DAC output, IOUT, impedance is code depen-  
dent. External amplifier choice should take into account the  
REF  
2R  
2R  
2R  
2R  
80k  
R2  
5kΩ  
80k80k80kΩ  
R
COM  
R1  
5kΩ  
4 MSB  
15 SEGMENTS  
R1  
R
R
R
R
R
R
R
R
40k40k40k40k40k40k40k40kΩ  
2R 2R 2R 2R 2R 2R 2R 2R 2R  
80k80k80k80k80k80k80k80k80kΩ  
8-BIT R–2R  
R
OFS  
FB  
RA  
RB  
R
R
R
R
R
2R  
2R  
2R  
2R  
2R  
80k80k80k80k80kΩ  
10k10kΩ  
4-BIT R–2R  
I
OUT  
GND  
16  
8
4
ADDRESS DECODER  
LDAC  
LDAC  
WR  
DAC REGISTER  
RS  
RS  
RS  
INPUT REGISTER  
WR  
D15 D14  
D0  
Figure 17. 16-Bit AD5546 Equivalent R-2R DAC Circuit with Digital Section  
Rev. D | Page 10 of 20  
 
 
 
Data Sheet  
AD5546/AD5556  
DIGITAL SECTION  
The AD5546/AD5556 have 16-/14-bit parallel inputs. The devices are double buffered with 16-/14-bit registers. The double-buffered  
feature allows the update of several AD5546/AD5556 simultaneously. For the AD5546, the input register is loaded directly from a 16-bit  
WR  
controller bus when the  
high. Updating the DAC register updates the DAC output with the new data (see Figure 17). To make both registers transparent, tie  
RS  
pin is brought low. The DAC register is updated with data from the input register when LDAC is brought  
WR  
low and LDAC high. The asynchronous  
pin resets the part to zero scale if the MSB pin = 0 and to midscale if the MSB pin = 1.  
Table 5. AD5546 Parallel Input Data Format  
MSB  
LSB  
Bit Position  
Data Word  
B15  
D15  
B14  
B13  
B12  
D12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
D14 D13  
D11 D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Table 6. AD5556 Parallel Input Data Format  
MSB  
LSB  
B0  
Bit Position  
Data Word  
B13  
D13  
B12  
D12  
B11  
D11  
B10  
D10  
B9  
B8  
D8  
B7  
D7  
B6  
B5  
D5  
B4  
D4  
B3  
B2  
D2  
B1  
D1  
D9  
D6  
D3  
D0  
Table 7. Control Inputs  
LDAC Register Operation  
RS WR  
0
1
1
1
1
X1  
0
1
0
X1  
0
1
1
Reset output to 0, with MSB pin = 0 and to midscale with MSB pin = 1.  
Load input register with data bits.  
Load DAC register with the contents of the input register.  
Input and DAC registers are transparent.  
When LDAC and WR are tied together and programmed as a pulse, the data bits are loaded into the input register on  
the falling edge of the pulse and then loaded into the DAC register on the rising edge of the pulse.  
No register operation.  
1
1
0
1 X = don’t care.  
are good candidates for the I-V conversion.  
ESD PROTECTION CIRCUITS  
All logic input pins contain back-biased ESD protection Zeners  
connected to ground (GND) and VDD, as shown in Figure 18. As  
a result, the voltage level of the logic input should not be greater  
than the supply voltage.  
REFERENCE SELECTION  
The initial accuracy and the rated output of the voltage refer-  
ence determine the full span adjustment. The initial accuracy is  
usually a secondary concern in precision because it can be  
trimmed. Figure 23 shows an example of a trimming circuit.  
The zero scale error can also be minimized by standard op amp  
nulling techniques.  
V
DD  
DIGITAL  
INPUTS  
5kΩ  
The voltage reference temperature coefficient (TC) and long-  
term drift are primary considerations. For example, a 5 V ref-  
erence with a TC of 5 ppm/oC means that the output changes by  
25 µV per degree Celsius. As a result, the reference that operates  
at 55oC contributes an additional 750 µV full-scale error.  
DGND  
Figure 18. Equivalent ESD Protection Circuits  
AMPLIFIER SELECTION  
Similarly, the same 5 V reference with a 50 ppm long-term  
drift means that the output may change by 250 µV over time.  
Therefore, it is practical to calibrate a system periodically to  
maintain its optimum precision.  
In addition to offset voltage, the bias current is important in op  
amp selection for precision current output DACs. An input bias  
current of 30 nA in the op amp contributes to 1 LSB in the  
AD5546s full-scale error. The OP1177 and AD8628 op amps  
Rev. D | Page 11 of 20  
 
 
 
 
 
AD5546/AD5556  
Data Sheet  
APPLICATIONS INFORMATION  
UNIPOLAR MODE  
Two-Quadrant Multiplying Mode, VOUT = 0 V to +VREF  
The AD5546/AD5556 are designed to operate with either  
positive or negative reference voltages. As a result, positive  
output can be achieved with an additional op amp, (see  
Figure 20), and the output becomes  
Two-Quadrant Multiplying Mode, VOUT = 0 V to –VREF  
The AD5546/AD5556 DAC architecture uses a current-steering  
R-2R ladder design that requires an external reference and op  
amp to convert the unipolar mode of output voltage to  
AD5546  
AD5546  
V
OUT = +VREF × D/65,536  
(3)  
(4)  
V
OUT = –VREF × D/65,536  
(1)  
(2)  
AD5556  
AD5556  
VOUT = +VREF × D/16,384  
VOUT = –VREF × D/16,384  
Table 9 shows the positive output vs. code for the AD5546.  
where D is the decimal equivalent of the input code.  
The output voltage polarity is opposite to the VREF polarity in  
Table 9. AD5546 Unipolar Mode Positive Output vs. Code  
this case (see Figure 19). Table 8 shows the negative output vs.  
code for the AD5546.  
D in Binary  
VOUT (V)  
1111 1111 1111 1111  
1000 0000 0000 0000  
0000 0000 0000 0001  
0000 0000 0000 0000  
+VREF(65,535/65,536)  
+VREF/2  
+VREF(1/65,536)  
0
Table 8. AD5546 Unipolar Mode Negative Output vs. Code  
D in Binary  
VOUT (V)  
1111 1111 1111 1111  
1000 0000 0000 0000  
0000 0000 0000 0001  
0000 0000 0000 0000  
–VREF(65,535/65,536)  
–VREF/2  
–VREF(1/65,536)  
0
+5V  
2
V
IN  
U3  
C1  
1µF  
C2  
0.1µF  
ADR03  
5
TRIM  
V
OUT  
GND  
4
R1  
R
REF  
R
R
R
COM  
OFS  
FB  
C6  
2.2pF  
R1  
R2  
R
OFS  
FB  
V
DD  
C3  
0.1µF  
I
OUT  
16-/14-BIT  
DATA  
V+  
U2  
AD8628  
V–  
U1  
AD5546/AD5556  
VOUT  
–2.5V TO 0V  
GND  
+
C4  
0.1µF  
16-/14-BIT  
DATA  
WR LDAC RS MSB  
C5  
1µF  
WR  
LDAC  
RS  
–5V  
MSB  
Figure 19. Unipolar Two-Quadrant Multiplying Mode, VOUT = 0 to –VREF  
Rev. D | Page 12 of 20  
 
 
 
 
 
Data Sheet  
AD5546/AD5556  
+
U2A  
OP2177  
+10V  
–10V  
C7  
R1A  
R1  
R
VREFA  
R
R
FBA  
COMA  
R2  
OFSA  
+15V  
C4  
1µF  
C6  
R
R
FB  
OFS  
+5V  
V
DD  
C5  
C1  
1µF  
C2  
I
0.1µF  
OUT  
16-/14-BIT  
DATA  
0.1µF  
V+  
U1  
U2B  
AD5546/AD5556  
VOUT  
OP2177  
GND  
V–  
+
16-/14-BIT  
C8  
1µF  
DATA  
WR LDAC RS MSB  
WR  
LDAC  
RS  
C9  
0.1µF  
–15V  
MSB  
Figure 20. Unipolar Two-Quadrant Multiplying Mode, VOUT = 0 to +VREF  
5V  
2
+
V
IN  
U2A  
U3  
OP2177  
ADR03  
TRIM  
5
6
C1  
–VREF  
REF  
+VREF  
V
OUT  
GND  
R1  
R
R
R
R
COM  
OFS  
FB  
4
R1  
R2  
R
OFS  
FB  
C2  
5V  
V
DD  
I
OUT  
16-/14-BIT  
DATA  
U1  
U2B  
OP2177  
AD5546/AD5556  
VOUT  
16-/14-BIT  
DATA  
GND  
+
–VREF TO +VREF  
WR LDAC RS MSB  
WR  
LDAC  
RS  
MSB  
Figure 21. Four-Quadrant Multiplying Mode, VOUT = –VREF to +VREF  
10 V reference, the circuit yields a precision, bipolar –10 V to  
+10 V output.  
BIPOLAR MODE  
Four-Quadrant Multiplying Mode, VOUT = –VREF to +VREF  
AD5546  
The AD5546/AD5556 contain on-chip all the four-quadrant  
resistors necessary for the precision bipolar multiplying  
operation. Such a feature minimizes the number of exponent  
components to only a voltage reference, dual op amp, and  
compensation capacitor (see Figure 21). For example, with a  
VOUT = (D/32768 1) × VREF  
(5)  
(6)  
AD5556  
VOUT = (D/16384 1) × VREF  
Table 10 shows some of the results for the 16-bit AD5546.  
Rev. D | Page 13 of 20  
 
 
 
AD5546/AD5556  
Data Sheet  
ac reference signals for signal attenuation, channel equalization,  
and waveform generation applications. The maximum signal  
range can be up to ±±1 ꢀ ꢁsee Figure 22).  
Table 10. AD5546 Output vs. Code  
D in Binary  
VOUT  
1111 1111 1111 1111  
1000 0000 0000 0001  
1000 0000 0000 0000  
0111 1111 1111 1111  
0000 0000 0000 0000  
+VREF(32,767/32,768)  
+VREF(1/32,768)  
0
–VREF(1/32,768)  
–VREF  
SYSTEM CALIBRATION  
The initial accuracy of the system can be adjusted by trimming  
the voltage reference ADR0x with a digital potentiometer ꢁsee  
Figure 23). The AD5±70 provides an OTP ꢁone time program-  
mable), 1-bit adjustment that is ideal and reliable for such cali-  
bration. The Analog Devices, Inc., OTP digital potentiometer  
comes with programmable software that simplifies the factory  
calibration process.  
AC REFERENCE SIGNAL ATTENUATOR  
Besides handling digital waveforms decoded from parallel input  
data, the AD5546/AD5556 handle equally well low frequency  
+
U2A  
OP2177  
+10V  
–10V  
C7  
R1A  
R1  
RCOMA  
VREFA  
ROFSA RFBA  
+15V  
C4  
1F  
C6  
R2  
ROFS  
RFB  
+5V  
VDD  
C5  
C1  
1F  
C2  
IOUT  
0.1F  
0.1F  
16/14-BIT  
V+  
U1  
U2B  
AD5546/AD5556  
VOUT  
OP2177  
GND  
V–  
+
16/14 DATA  
C8  
1F  
WR LDAC RS MSB  
WR  
LDAC  
RS  
C9  
0.1F  
–15V  
MSB  
Figure 22. Signal Attenuator with AC Reference  
+5V  
2
+
V+  
U2A  
V
IN  
U3  
U4  
C1  
1µF  
C2  
0.1µF  
AD5170  
R3  
470k  
AD8628  
ADR03  
V–  
C8  
5
6
10kΩ  
TRIM  
0.1µF  
B
V
OUT  
R7  
1kΩ  
GND  
C9  
1µF  
4
–2.5V  
R
–5V  
C7  
+2.5V  
R1A  
R
VREFA  
R
FBA  
COMA  
OFSA  
+5V  
C4  
1µF  
C6  
R1  
R2  
R
R
FB  
OFS  
V
DD  
C5  
C3  
0.1µF  
I
0.1µF  
OUT  
16-/14-BIT  
DATA  
V+  
U1  
AD5546/AD5556  
U2B  
VOUT  
0V TO +2.5V  
AD8628  
GND  
V–  
+
16-/14-BIT  
DATA  
WR LDAC RS MSB  
WR  
LDAC  
RS  
MSB  
Figure 23. Full Span Calibration  
Rev. D | Page 14 of 20  
 
 
 
 
 
Data Sheet  
AD5546/AD5556  
The input bias current of an op amp also generates an offset at  
the voltage output because of the bias current flowing in the  
feedback resistor, RFB.  
REFERENCE SELECTION  
When selecting a reference for use with the AD55xx series  
of current output DACs, pay attention to the output voltage  
temperature coefficient specification of the reference. Choosing  
a precision reference with a low output temperature coefficient  
minimizes error sources. Table 11 lists some of the references  
available from Analog Devices that are suitable for use with this  
range of current output DACs.  
Common-mode rejection of the op amp is important in voltage-  
switching circuits because it produces a code-dependent error  
at the voltage output of the circuit.  
Provided that the DAC switches are driven from true wideband  
low impedance sources, they settle quickly. Consequently, the  
slew rate and settling time of a voltage-switching DAC circuit is  
determined largely by the output op amp. To obtain minimum  
settling time in this configuration, minimize capacitance at the  
AMPLIFIER SELECTION  
The primary requirement for the current-steering mode is an  
amplifier with low input bias currents and low input offset voltage.  
Because of the code-dependent output resistance of the DAC,  
the input offset voltage of an op amp is multiplied by the variable  
gain of the circuit. A change in this noise gain between two  
adjacent digital fractions produces a step change in the output  
voltage due to the amplifiers input offset voltage. This output  
voltage change is superimposed on the desired change in output  
between the two codes and gives rise to a differential linearity  
error, which, if large enough, can cause the DAC to be  
nonmonotonic.  
V
REF node (the voltage output node in this application) of the  
DAC. This is done by using low input capacitance buffer  
amplifiers and careful board design.  
Analog Devices offers a wide range of amplifiers for both precision  
dc and ac applications, as listed in Table 12 and Table 13.  
Table 11. Suitable Analog Devices Precision References  
Maximum Temperature  
Part No. Output Voltage (V) Initial Tolerance (%) Drift (ppm/°C)  
ISS (mA) Output Noise (µV p-p) Package(s)  
ADR01  
ADR01  
ADR02  
ADR02  
ADR03  
ADR03  
ADR06  
ADR06  
ADR420 2.048  
ADR421 2.50  
ADR423 3.00  
ADR425 5.00  
ADR431 2.500  
ADR435 5.000  
ADR391 2.5  
ADR395 5.0  
10  
10  
0.05  
0.05  
0.06  
0.06  
0.1  
0.1  
0.1  
0.1  
0.05  
0.04  
0.04  
0.04  
0.04  
0.04  
0.16  
0.10  
3
9
3
9
3
9
3
9
3
3
3
3
3
3
9
9
1
1
1
1
1
1
1
1
0.5  
0.5  
0.5  
0.5  
0.8  
0.8  
0.12  
0.12  
20  
20  
10  
10  
6
SOIC-8  
TSOT-5, SC70-5  
SOIC-8  
TSOT-5, SC70-5  
SOIC-8  
TSOT-5, SC70-5  
SOIC-8  
TSOT-5, SC70-5  
SOIC-8, MSOP-8  
SOIC-8, MSOP-8  
SOIC-8, MSOP-8  
SOIC-8, MSOP-8  
SOIC-8, MSOP-8  
SOIC-8, MSOP-8  
TSOT-5  
5.0  
5.0  
2.5  
2.5  
3.0  
3.0  
6
10  
10  
1.75  
1.75  
2
3.4  
3.5  
8
5
8
TSOT-5  
Rev. D | Page 15 of 20  
 
 
 
AD5546/AD5556  
Data Sheet  
Table 12. Suitable Analog Devices Precision Op Amps  
V
OS Maximum IB Maximum 0.1 Hz to 10 Hz  
Part No.  
OP97  
Supply Voltage (V) (µV)  
(nA)  
Noise (µV p-p)  
Supply Current (µA)  
Package(s)  
2 to 20  
2.5 to 15  
5 to 18  
5 to 15  
5 to 15  
1.8 to 5  
1.8 to 5  
2.7 to 5  
2.7 to 5  
2.7 to 5  
25  
60  
75  
75  
125  
50  
50  
65  
65  
65  
0.1  
2
2
12  
0.5  
0.4  
0.1  
0.077  
0.1  
2.3  
2.3  
2.3  
2.4  
2.4  
600  
500  
2300  
3000  
2000  
40  
SOIC-8 , PDIP-8  
MSOP-8, SOIC-8  
MSOP-8, SOIC-8  
MSOP-8, SOIC-8  
SOIC-8, SOT-23-5  
TSOT-5  
OP1177  
AD8675  
AD8671  
ADA4004-1  
AD8603  
AD8607  
AD8605  
AD8615  
AD8616  
90  
0.001  
0.001  
0.001  
0.001  
0.001  
40  
MSOP-8, SOIC-8  
WLCSP-5, SOT-23-5  
TSOT-23-5  
1000  
2000  
2000  
MSOP-8, SOIC-8  
Table 13. Suitable Analog Devices High Speed Op Amps  
Part No.  
AD8065  
AD8066  
AD8021  
AD8038  
Supply Voltage (V) BW @ ACL (MHz)  
Slew Rate (V/µs)  
VOS (Max) (µV)  
IB (Max) (nA)  
0.006  
0.006  
10,500  
750  
100  
500  
500  
350  
Package(s)  
5 to 24  
5 to 24  
5 to 24  
3 to 12  
145  
145  
490  
350  
600  
325  
325  
320  
320  
320  
180  
180  
120  
425  
310  
1000  
850  
650  
650  
1300  
1500  
1500  
1000  
3000  
35  
5000  
5000  
6000  
6000  
10,000  
SOIC-8, SOT-23-5  
SOIC-8, MSOP-8  
SOIC-8, MSOP-8  
SOIC-8, SC70-5  
LFCSP-8, SOIC-8  
SOT-23-5, SOIC-8  
SOIC-8, MSOP-8  
SOT-23-5, SOIC-8  
SOIC-8, MSOP-8  
SOIC-8, PDIP-8  
ADA4899-1 5 to 12  
AD8057  
AD8058  
AD8061  
AD8062  
AD9631  
3 to 12  
3 to 12  
2.7 to 8  
2.7 to 8  
350  
7000  
3 to  
6
Rev. D | Page 16 of 20  
 
 
Data Sheet  
AD5546/AD5556  
OUTLINE DIMENSIONS  
9.80  
9.70  
9.60  
28  
15  
4.50  
4.40  
4.30  
6.40 BSC  
1
14  
PIN 1  
0.65  
BSC  
1.20 MAX  
0.15  
0.05  
8°  
0°  
0.75  
0.60  
0.45  
0.30  
0.19  
0.20  
0.09  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AE  
Figure 24. 28-Lead Thin Shrink Small Outline Package [TSSOP]  
RU-28  
Dimensions shown in millimeters  
ORDERING GUIDE  
RES  
DNL  
(LSB)  
INL  
(LSB)  
Temperature  
Range (°C)  
Model1  
(Bit)  
16  
16  
16  
16  
16  
16  
14  
14  
14  
Package Description Package Option Ordering Quantity  
AD5546BRU  
AD5546BRU-REEL7  
AD5546BRUZ  
AD5546BRUZ-REEL7  
AD5546CRUZ  
AD5546CRUZ-REEL7  
AD5556CRU  
1
1
1
1
1
1
1
1
1
2
2
2
2
1
1
1
1
1
−40 to +125  
−40 to +125  
−40 to +125  
−40 to +125  
−40 to +125  
−40 to +125  
−40 to +125  
−40 to +125  
−40 to +125  
28-Lead TSSOP  
28-Lead TSSOP  
28-Lead TSSOP  
28-Lead TSSOP  
28-Lead TSSOP  
28-Lead TSSOP  
28-Lead TSSOP  
28-Lead TSSOP  
28-Lead TSSOP  
Evaluation Board  
RU-28  
RU-28  
RU-28  
RU-28  
RU-28  
RU-28  
RU-28  
RU-28  
RU-28  
50  
1,000  
50  
1,000  
50  
1,000  
50  
AD5556CRU-REEL7  
AD5556CRUZ  
1,000  
50  
EVAL-AD5546SDZ  
1 Z = RoHS Compliant Part.  
Rev. D | Page 17 of 20  
 
 
AD5546/AD5556  
NOTES  
Data Sheet  
Rev. D | Page 18 of 20  
Data Sheet  
NOTES  
AD5546/AD5556  
Rev. D | Page 19 of 20  
AD5546/AD5556  
NOTES  
Data Sheet  
©2004-2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D03810-0-11/11(D)  
Rev. D | Page 20 of 20  

相关型号:

AD5547

Dual Current Output, Parallel Input, 16-/14-Bit Multiplying DACs with 4-Quadrant Resistors
ADI

AD5547-EP

Dual-Current Output, Parallel Input
ADI

AD5547BRU

Dual Current Output, Parallel Input, 16-/14-Bit Multiplying DACs with 4-Quadrant Resistors
ADI

AD5547BRU-R7

IC PARALLEL, WORD INPUT LOADING, 0.5 us SETTLING TIME, 16-BIT DAC, PDSO38, MO-153BD-1, TSSOP-38, Digital to Analog Converter
ADI

AD5547BRU-REEL7

Dual Current Output, Parallel Input, 16-/14-Bit Multiplying DACs with 4-Quadrant Resistors
ADI

AD5547BRUZ

Dual-Current Output, Parallel Input, 16-/14-Bit Multiplying DACs
ADI

AD5547BRUZ-REEL7

IC PARALLEL, WORD INPUT LOADING, 0.5 us SETTLING TIME, 16-BIT DAC, PDSO38, ROHS COMPLIANT, MO-153BD-1, TSSOP-38, Digital to Analog Converter
ADI

AD5547CRUZ

Dual-Current Output, Parallel Input, 16-/14-Bit Multiplying DACs
ADI

AD5547CRUZ-REEL7

Dual-Current Output, Parallel Input, 16-/14-Bit Multiplying DACs
ADI

AD5547SRU-EP

Dual-Current Output, Parallel Input
ADI

AD5551

5 V, Serial-Input Voltage-Output, 14-Bit DACs
ADI

AD5551BR

5 V, Serial-Input Voltage-Output, 14-Bit DACs
ADI