AD5557CRU-R7 [ADI]

IC PARALLEL, WORD INPUT LOADING, 0.5 us SETTLING TIME, 14-BIT DAC, PDSO38, MO-153BD-1, TSSOP-38, Digital to Analog Converter;
AD5557CRU-R7
型号: AD5557CRU-R7
厂家: ADI    ADI
描述:

IC PARALLEL, WORD INPUT LOADING, 0.5 us SETTLING TIME, 14-BIT DAC, PDSO38, MO-153BD-1, TSSOP-38, Digital to Analog Converter

输入元件 光电二极管 转换器
文件: 总20页 (文件大小:415K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual-Current Output, Parallel Input, 16-/14-Bit  
Multiplying DACs with 4-Quadrant Resistors  
Data Sheet  
AD5547/AD5557  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
R
R
V
R
OFSA  
1A  
COMA  
REFA  
Dual channel  
R
FBA  
16-bit resolution: AD5547  
14-bit resolution: AD5557  
2- or 4-quadrant, 6.8 MHz BW multiplying DAC  
1 LSB DNL  
1 LSB INL  
Operating supply voltage: 2.7 V to 5.5 V  
Low noise: 12 nV/√Hz  
Low power: IDD = 10 µA max  
V
DD  
DAC A  
REGISTER  
RS  
D0..D15  
OR  
D0..D13  
INPUT  
REGISTER  
I
DAC A  
DAC B  
D0 TO D15  
(AD5547)  
D0 TO D13  
(AD5557)  
OUTA  
RS  
AGNDA  
AGNDB  
DAC B  
REGISTER  
RS  
INPUT  
REGISTER  
I
OUTB  
RS  
DAC A  
DAC B  
WR  
R
FBB  
R
OFSB  
POWER  
ON  
RESET  
0.5 µs settling time  
A0, A1  
ADDR  
DECODE  
AD5547/AD5557  
Built-in RFB facilitates current-to-voltage conversion  
Built-in 4-quadrant resistors allow 0 V to –10 V, 0 V to +10 V,  
or 10 V outputs  
2 mA full-scale current 20%, with VREF = 10 V  
Extended automotive operating temperature range  
−40°C to +125°C  
DGND  
RS MSB  
LDAC  
R
R
V
REFB  
1B  
COMB  
Figure 1.  
GENERAL DESCRIPTION  
The AD5547/AD5557 are dual precision, 16-/14-bit, multiplying,  
low power, current-output, parallel input, digital-to-analog  
converters (DACs). They are designed to operate from single  
+5 V supply with 10 V multiplying references for 4-quadrant  
outputs with 6.8 MHz bandwidth.  
Selectable zero-scale/midscale power-on presets  
Compact 38-lead TSSOP package  
APPLICATIONS  
Automatic test equipment  
Instrumentation  
Digitally controlled calibration  
Digital waveform generation  
The built-in, 4-quadrant resistors facilitate resistance matching  
and temperature tracking, which minimize the number of  
components needed for multiquadrant applications. In addition,  
the feedback resistor (RFB) simplifies the I-to-V conversion with  
an external buffer.  
The AD5547/AD5557 are available in a compact, 38-lead TSSOP  
package and operate at the extended automotive temperature  
range of −40°C to +125°C.  
VREF  
U1  
–VREF  
C1  
R
R
V
R
R
FBA  
1A  
COMA  
REFA  
OFSA  
C2  
ROFS RFB  
R1  
R2  
U2  
IOUTA  
VOUTA  
16-/14-BIT  
DAC A  
AD5547/AD5557  
16/14 DATA  
AGNDA  
–VREF TO +VREF  
POWER-ON  
RESET  
WR LDAC RS  
MSB A0, A1  
(ONE CHANNEL SHOWN ONLY)  
WR  
LDAC  
RS  
MSB  
A0, A1  
2
Figure 2. 16-/14-Bit 4-Quadrant Multiplying DAC with Minimum of External Components (Only One Channel Is Shown)  
Rev. D  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2004–2012 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
AD5547/AD5557  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
DAC Section................................................................................ 12  
Digital Section ............................................................................ 13  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description ......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics............................................................. 3  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Pin Configurations and Function Descriptions ........................... 6  
Typical Performance Characteristics ........................................... 10  
Circuit Operation ........................................................................... 12  
PCB Layout, Power Supply Bypassing, and Ground  
Connections ................................................................................ 13  
Applications Information .............................................................. 14  
Unipolar Mode ........................................................................... 14  
Bipolar Mode .............................................................................. 16  
Reference Selection .................................................................... 18  
Amplifier Selection .................................................................... 18  
Outline Dimensions....................................................................... 20  
Ordering Guide .......................................................................... 20  
REVISION HISTORY  
11/12—Rev. C to Rev. D  
Added Table 12 ............................................................................... 19  
Changes to Figure 22...................................................................... 15  
9/09—Rev. 0 to Rev. A  
11/11—Rev. B to Rev. C  
Added Figure 14; Renumbered Sequentially .............................. 11  
Changes to Features Section ............................................................1  
Changes to Static Performance, Relative Accuracy,  
Grade: AD5547C Parameter, Table 1..............................................3  
Changes to Ordering Guide.......................................................... 19  
4/10—Rev. A to Rev. B  
Changes to Features Section and General Description Section . 1  
Changes to Table 1............................................................................ 3  
Deleted Figure 17 and Figure 18; Renumbered Sequentially ... 10  
Changes to Figure 15 and Figure 16............................................. 11  
Changes to Figure 20...................................................................... 14  
Added Reference Selection Section, Amplifier Selection Section,  
Table 10, and Table 11; Renumbered Sequentially..................... 18  
1/04—Revision 0: Initial Version  
Rev. D | Page 2 of 20  
 
Data Sheet  
AD5547/AD5557  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
VDD = 2.7 V to 5.5 V, IOUT = virtual GND, GND = 0 V, VREF = −10 V to +10 V, TA = −40°C to +125°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
N
Test Conditions/Comments  
Min Typ  
Max  
Unit  
STATIC PERFORMANCE1  
Resolution  
AD5547, 1 LSB = VREF/216 = 153 µV at VREF = 10 V  
AD5557, 1 LSB = VREF/214 = 610 µV at VREF = 10 V  
Grade: AD5557C  
Grade: AD5547B  
Grade: AD5547C  
16  
14  
Bits  
Bits  
LSB  
LSB  
LSB  
LSB  
nA  
nA  
mV  
mV  
mV  
Relative Accuracy  
INL  
1
2
1
Differential Nonlinearity  
Output Leakage Current  
DNL  
IOUT  
Monotonic  
1
Data = zero scale, TA = 25°C  
Data = zero scale, TA = TA maximum  
Data = full scale  
Data = full scale  
Data = full scale  
10  
20  
4
4
3
Full-Scale Gain Error  
Bipolar Mode Gain Error  
Bipolar Mode Zero-Scale Error  
Full-Scale Temperature Coefficient2 TCVFS  
REFERENCE INPUT  
GFSE  
GE  
GZSE  
1
1
1
1
ppm/°C  
VREF Range  
VREF  
REF  
R1 and R2  
Δ(R1 to R2)  
RFB, ROFS  
CREF  
−18  
4
4
+18  
6
6
1.5  
12  
V
REF Input Resistance  
R1 and R2 Resistance  
R1-to-R2 Mismatch  
Feedback and Offset Resistance  
Input Capacitance2  
ANALOG OUTPUT  
5
5
kΩ  
kΩ  
kΩ  
pF  
0.5  
8
10  
5
Output Current  
IOUT  
COUT  
Data = full scale  
Code dependent  
2
200  
mA  
pF  
Output Capacitance2  
LOGIC INPUT AND OUTPUT  
Logic Input Low Voltage  
VIL  
VDD = 5 V  
VDD = 3 V  
VDD = 5 V  
VDD = 3 V  
0.8  
0.4  
V
V
V
V
Logic Input High Voltage  
VIH  
2.4  
2.1  
Input Leakage Current  
Input Capacitance2  
IIL  
CIL  
10  
10  
µA  
pF  
INTERFACE TIMING2, 3  
See Figure 3  
VDD = 5 V  
VDD = 3 V  
VDD = 5 V  
VDD = 3 V  
VDD = 5 V  
Data to WR Setup Time  
tDS  
tDH  
tWR  
20  
35  
0
ns  
ns  
ns  
ns  
ns  
Data to WR Hold Time  
WR Pulse Width  
0
20  
VDD = 3 V  
VDD = 5 V  
VDD = 3 V  
VDD = 5 V  
VDD = 3 V  
VDD = 5 V  
VDD = 3 V  
35  
20  
35  
20  
35  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
LDAC Pulse Width  
RS Pulse Width  
tLDAC  
tRS  
WR to LDAC Delay Time  
tLWD  
0
Rev. D | Page 3 of 20  
 
 
AD5547/AD5557  
Data Sheet  
Parameter  
Symbol  
Test Conditions/Comments  
Min Typ  
Max  
Unit  
SUPPLY CHARACTERISTICS  
Power Supply Range  
Positive Supply Current  
Power Dissipation  
Power Supply Sensitivity  
AC CHARACTERISTICS4  
Output Voltage Settling Time  
VDD RANGE  
IDD  
PDISS  
PSS  
2.7  
5.5  
10  
V
μA  
Logic inputs = 0 V  
Logic inputs = 0 V  
∆VDD = 5ꢀ  
0.055 mW  
0.003 ꢀ/ꢀ  
tS  
To 0.1ꢀ of full scale, data cycles from zero scale  
to full scale to zero scale  
0.5  
μs  
Reference Multiplying BW  
DAC Glitch Impulse  
Multiplying Feedthrough Error  
Digital Feedthrough  
BW  
Q
VOUT/VREF  
QD  
VREF = 100 mV rms, data = full scale  
VREF = 0 V, midscale – 1 to midscale  
VREF = 100 mV rms, f = 10 kHz  
WR = 1, LDAC toggles at 1 MHz  
VREF = 5 V p-p, data = full scale, f = 1 kHz  
f = 1 kHz, BW = 1 Hz  
6.8  
MHz  
nV-s  
dB  
nV-s  
dB  
−3.5  
−78  
7
Total Harmonic Distortion  
Output Noise Density  
Analog Crosstalk  
THD  
eN  
CAT  
−104  
12  
−95  
nV/√Hz  
dB  
Signal input at Channel A and measures the  
output at Channel B, f = 1 kHz  
1 All static performance tests (except IOUT) are performed in a closed-loop system using an external precision OP97 I-to-V converter amplifier. The device RFB terminal is  
tied to the amplifier output. The +IN pin of the OP97 is grounded, and the IOUT of the DAC is tied to the OP97s −IN pin. Typical values represent average readings  
measured at 25°C.  
2 Guaranteed by design; not subject to production testing.  
3 All input control signals are specified with tR = tF = 2.5 ns (10ꢀ to 90ꢀ of 3 V) and are timed from a voltage level of 1.5 V.  
4 All ac characteristic tests are performed in a closed-loop system using an AD8038 I-to-V converter amplifier except for THD where the AD8065 was used.  
Timing Diagram  
tWR  
WR  
DATA  
tDH  
tDS  
tLWD  
LDAC  
tLDAC  
tRS  
RS  
Figure 3. AD5547/AD5557 Timing Diagram  
Rev. D | Page 4 of 20  
 
 
 
 
 
Data Sheet  
AD5547/AD5557  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
VDD to GND  
RFB, ROFS, R1, RCOM, and VREF to GND  
Logic Inputs to GND  
V(IOUT) to GND  
Input Current to Any Pin except Supplies  
Thermal Resistance (θJA)1  
−0.3 V to +8 V  
−18 V to +18 V  
−0.3 V to +8 V  
−0.3 V to VDD + 0.3 V  
50 mA  
Maximum Junction Temperature (TJ MAX  
Operating Temperature Range  
Storage Temperature Range  
Lead Temperature  
)
150°C  
−40°C to +125°C  
−65°C to +150°C  
ESD CAUTION  
Vapor Phase, 60 sec  
Infrared, 15 sec  
215°C  
220°C  
1 Package power dissipation = (TJ MAX − TA)/θJA  
.
Rev. D | Page 5 of 20  
 
 
 
AD5547/AD5557  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
D1  
D0  
1
2
3
4
5
6
7
8
9
38 D2  
37 D3  
36 D4  
35 D5  
34 D6  
33 D7  
32 D8  
31 D9  
30 D10  
29 VDD  
28 D11  
27 D12  
26 D13  
25 D14  
24 D15  
R
OFSA  
R
FBA  
R
1A  
COMA  
R
V
REFA  
OUTA  
I
AD5547  
AGNDA  
DGND 10  
TOP VIEW  
(Not to Scale)  
AGNDA 11  
I
12  
13  
14  
15  
16  
17  
OUTB  
V
REFB  
R
COMB  
R
1B  
23  
RS  
R
FBB  
22 MSB  
21 LDAC  
20 A1  
R
OFSB  
WR 18  
A0 19  
Figure 4. AD5547 Pin Configuration  
Table 3. AD5547 Pin Function Descriptions  
Pin No.  
Mnemonic Function  
1, 2, 24 to D0 to D15  
Digital Input Data Bits D0 to D15. Signal level must be ≤ VDD + 0.3 V.  
28, 30 to  
38  
3
ROFSA  
Bipolar Offset Resistor A. Accepts up to 18 V. In 2-quadrant mode, ROFSA ties to RFBA. In 4-quadrant mode, ROFSA  
ties to R1A and the external reference.  
4
5
RFBA  
R1A  
Internal Matching Feedback Resistor A. Connects to the external op amp for I-to-V conversion.  
4-Quandrant Resistor. In 2-quadrant mode, R1A shorts to the VREFA pin. In 4-quadrant mode, R1A ties to ROFSA. Do  
not connect when operating in unipolar mode.  
6
7
RCOMA  
Center Tap Point of the Two 4-Quadrant Resistors, R1A and R2A. In 4-quadrant mode, RCOMA ties to the inverting  
node of the reference amplifier. In 2-quadrant mode, RCOMA shorts to the associated VREFA pin. Do not connect if  
operating in unipolar mode.  
DAC A Reference Input in 2-Quadrant Mode, R2 Terminal in 4-Quadrant Mode. In 2-quadrant mode, VREFA is the  
reference input with constant input resistance vs. code. In 4-quadrant mode, VREFA is driven by the external  
reference amplifier.  
VREFA  
8
IOUTA  
DAC A Current Output. Connects to the inverting terminal of external precision I-to-V op amp for voltage output.  
9
AGNDA  
DGND  
AGNDB  
IOUTB  
DAC A Analog Ground.  
Digital Ground.  
DAC B Analog Ground.  
10  
11  
12  
13  
DAC B Current Output. Connects to inverting terminal of external precision I-to-V op amp for voltage output.  
DAC B Reference Input Pin. Establishes DAC full-scale voltage. Constant input resistance vs. code. If configured  
VREFB  
with an external op amp for 4-quadrant multiplying, VREFB becomes –VREF  
.
14  
15  
RCOMB  
Center Tap Point of the Two 4-Quadrant Resistors, R1B and R2B. In 4-quadrant mode, RCOMB ties to the inverting  
node of the reference amplifier. In 2-quadrant mode, RCOMB shorts to the VREFB pin. Do not connect if operating in  
unipolar mode.  
4-Quandrant Resistor. In 2-quadrant mode, R1B shorts to the VREFB pin. In 4-quadrant mode, R1B ties to ROFSB. Do not  
connect if operating in unipolar mode.  
R1B  
16  
17  
RFBB  
ROFSB  
Internal Matching Feedback Resistor B. Connects to external op amp for I-to-V conversion.  
Bipolar Offset Resistor B. Accepts up to 18 V. In 2-quadrant mode, ROFSB ties to RFBB. In 4-quadrant mode, ROFSB  
ties to R1B and an external reference.  
18  
WR  
Write Control Digital Input In, Active Low. WR transfers shift register data to the DAC register on the rising edge.  
Signal level must be ≤VDD + 0.3 V.  
Rev. D | Page 6 of 20  
 
Data Sheet  
AD5547/AD5557  
Pin No.  
19  
Mnemonic Function  
A0  
Address Pin 0. Signal level must be ≤VDD + 0.3 V.  
20  
A1  
Address Pin 1. Signal level must be ≤VDD + 0.3 V.  
21  
22  
LDAC  
MSB  
Digital Input Load DAC Control. Signal level must be ≤VDD + 0.3 V.  
Power-On Reset State. MSB = 0 corresponds to zero-scale reset; MSB = 1 corresponds to midscale reset. The  
signal level must be ≤VDD + 0.3 V.  
23  
29  
RS  
Active low resets both input and DAC registers. Resets to zero-scale if MSB = 0 and resets to midscale if MSB = 1.  
Signal level must be ≤VDD + 0.3 V.  
Positive Power Supply Input. The specified range of operation is 2.7 V to 5.5 V.  
VDD  
Rev. D | Page 7 of 20  
AD5547/AD5557  
Data Sheet  
NC  
NC  
1
2
3
4
5
6
7
8
9
38 D0  
37 D1  
36 D2  
35 D3  
34 D4  
33 D5  
32 D6  
31 D7  
30 D8  
29 VDD  
28 D9  
27 D10  
26 D11  
25 D12  
24 D13  
R
OFSA  
R
FBA  
R
1A  
COMA  
R
V
REFA  
I
OUTA  
AD5557  
AGNDA  
DGND 10  
TOP VIEW  
(Not to Scale)  
AGNDB 11  
I
12  
13  
14  
15  
16  
17  
OUTB  
V
REFB  
R
COMB  
R
1B  
23  
RS  
R
FBB  
22 MSB  
21 LDAC  
20 A1  
R
OFSB  
WR 18  
A0 19  
NC = NO CONNECT  
Figure 5. AD5557 Pin Configuration  
Table 4. AD5557 Pin Function Descriptions  
Pin No.  
Mnemonic Function  
1, 2  
NC  
No Connection. Do not connect anything other than the dummy pads to these pins.  
3
ROFSA  
Bipolar Offset Resistor A. Accepts up to 18 V. In 2-quadrant mode, ROFSA ties to RFBA. In 4-quadrant mode, ROFSA  
ties to R1A and the external reference.  
4
5
RFBA  
R1A  
Internal Matching Feedback Resistor A. Connects to the external op amp for I-to-V conversion.  
4-Quandrant Resistor. In 2-quadrant mode, R1A shorts to the VREFA pin. In 4-quadrant mode, R1A ties to ROFSA. Do  
not connect when operating in unipolar mode.  
6
7
8
RCOMA  
VREFA  
IOUTA  
Center Tap Point of the Two 4-Quadrant Resistors, R1A and R2A. In 4-quadrant mode, RCOMA ties to the inverting  
node of the reference amplifier. In 2-quadrant mode, RCOMA shorts to the VREFA pin. Do not connect if operating  
in unipolar mode.  
DAC A Reference Input in 2-Quadrant Mode, R2 Terminal in 4-Quadrant Mode. In 2-quadrant mode, VREFA is the  
reference input with constant input resistance vs. code. In 4-quadrant mode, VREFA is driven by the external  
reference amplifier.  
DAC A Current Output. Connects to the inverting terminal of external precision I-to-V op amp for voltage  
output.  
9
AGNDA  
DGND  
AGNDB  
IOUTB  
DAC A Analog Ground.  
Digital Ground.  
DAC B Analog Ground.  
10  
11  
12  
13  
DAC B Current Output. Connects to inverting terminal of external precision I-to-V op amp for voltage output.  
DAC B Reference Input Pin. Establishes DAC full-scale voltage. Constant input resistance vs. code. If configured  
VREFB  
with an external op amp for 4-quadrant multiplying, VREFB becomes –VREF  
.
14  
15  
RCOMB  
Center Tap Point of the Two 4-Quadrant Resistors, R1B and R2B. In 4-quadrant mode, RCOMB ties to the inverting  
node of the reference amplifier. In 2-quadrant mode, RCOMB shorts to the VREFB pin. Do not connect if operating  
in unipolar mode.  
4-Quandrant Resistor. In 2-quadrant mode, R1B shorts to the VREFB pin. In 4-quadrant mode, R1B ties to ROFSB. Do  
not connect if operating in unipolar mode.  
R1B  
16  
17  
RFBB  
ROFSB  
Internal Matching Feedback Resistor B. Connects to external op amp for I-to-V conversion.  
Bipolar Offset Resistor B. Accepts up to 18 V. In 2-quadrant mode, ROFSB ties to RFBB. In 4-quadrant mode, ROFSB  
ties to R1B and an external reference.  
18  
WR  
Write Control Digital Input In, Active Low. Transfers shift register data to the DAC register on the rising edge.  
Signal level must be ≤VDD + 0.3 V.  
19  
20  
21  
22  
A0  
A1  
LDAC  
MSB  
Address Pin 0. Signal level must be ≤VDD + 0.3 V.  
Address Pin 1. Signal level must be ≤VDD + 0.3 V.  
Digital Input Load DAC Control. Signal level must be ≤VDD + 0.3 V.  
Power-On Reset State. MSB = 0 corresponds to zero-scale reset; MSB = 1 corresponds to midscale reset. The  
signal level must be ≤VDD + 0.3 V.  
Rev. D | Page 8 of 20  
Data Sheet  
AD5547/AD5557  
Pin No.  
Mnemonic Function  
23  
RS  
Active low resets both input and DAC registers. Resets to zero-scale if MSB = 0 and resets to midscale if MSB = 1.  
Signal level must be ≤VDD + 0.3 V.  
24 to 28,  
30 to 38  
29  
D13 to D0  
VDD  
Digital Input Data Bits D13 to D0. Signal level must be ≤VDD + 0.3 V.  
Positive Power Supply Input. The specified range of operation is 2.7 V to 5.5 V.  
Table 5. Address Decoder Pins  
A1  
A0  
Output Update  
DAC A  
0
0
0
1
None  
1
1
0
1
DAC A and DAC B  
DAC B  
Table 6. Control Inputs  
LDAC Register Operation  
RS WR  
0
1
1
1
1
X
0
1
0
X
0
1
1
Reset the output to 0 with MSB = 0; reset the output to midscale with MSB = 1.  
Load the input register with data bits.  
Load the DAC register with the contents of the input register.  
The input and DAC registers are transparent.  
When LDAC and WR are tied together and programmed as a pulse, the data bits are loaded into the input register  
on the falling edge of the pulse and are then loaded into the DAC register on the rising edge of the pulse.  
No register operation.  
1
1
0
Rev. D | Page 9 of 20  
AD5547/AD5557  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.0  
0.8  
1.0  
0.8  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
8192 16,384 24,576 32,768 40,960 49,152 57,344 65,536  
CODE (Decimal)  
0
2048 4096  
6144  
8192 10,240 12,288 14,336 16,384  
CODE (Decimal)  
Figure 9. AD5557 Differential Nonlinearity Error  
Figure 6. AD5547 Integral Nonlinearity Error  
1.5  
1.0  
1.0  
0.8  
V
T
= 2.5V  
REF  
= 25°C  
A
0.6  
0.4  
0.5  
0.2  
INL  
0
0
DNL  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
–1.0  
–1.5  
GE  
2
4
6
8
10  
0
8192 16,384 24,576 32,768 40,960 49,152 57,344 65,536  
CODE (Decimal)  
SUPPLY VOLTAGE V (V)  
DD  
Figure 10. Linearity Error vs. Supply Voltage, VDD  
Figure 7. AD5547 Differential Nonlinearity Error  
1.0  
0.8  
5
4
3
2
V
= 5V  
DD  
= 25°C  
T
A
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
1
0
0
2048  
4096  
6144  
8192 10,240 12,288 14,336 16,384  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
IH  
4.0  
4.5  
5.0  
CODE (Decimal)  
LOGIC INPUT VOLTAGE V (V)  
Figure 8. AD5557 Integral Nonlinearity Error  
Figure 11. Supply Current vs. Logic Input Voltage  
Rev. D | Page 10 of 20  
 
Data Sheet  
AD5547/AD5557  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
LDAC  
1
2
0x5555  
0x8000  
0xFFFF  
0x0000  
V
OUT  
CH1 5.00V CH2 2.00V M 200ns  
A CH1 2.70V  
B CH1 –6.20V  
400.00ns  
0
10k  
100k  
1M  
CLOCK FREQUENCY (Hz)  
10M  
100M  
Figure 12. AD5547 Supply Current vs. Clock Frequency  
Figure 15. Settling Time from Full Scale to Zero Scale  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
–3.85  
–3.90  
–3.95  
–4.00  
–4.05  
–4.10  
–4.15  
V
V
= 5V ± 10%  
DD  
= 10V  
REF  
–4.20  
10  
100  
1k  
10k  
100k  
1M  
–20  
–10  
0
10  
20  
30  
40  
FREQUENCY (Hz)  
TIME (ns)  
Figure 13. Power Supply Rejection Ratio (PSRR) vs. Frequency  
Figure 16. AD5547 Midscale Transition and Digital Feedthrough  
20  
0
2
0
–2  
–4  
–20  
–40  
–60  
–80  
–6  
–8  
–10  
–12  
–14  
–16  
–100  
–120  
–140  
–160  
–18  
10k  
0
5
10  
15  
20  
25  
100k  
1M  
10M  
100M  
FREQUENCY (kHz)  
FREQUENCY (Hz)  
Figure 14. AD5547/AD5557 Analog Total Harmonic Distortion (THD)  
Figure 17. AD5547 Unipolar Reference Multiplying Bandwidth  
Rev. D | Page 11 of 20  
AD5547/AD5557  
Data Sheet  
CIRCUIT OPERATION  
The reference voltage inputs exhibit a constant input resistance  
of 5 kΩ 20%. The impedance of IOUT, the DAC output, is code  
dependent. External amplifier choice should take into account  
the variation of the AD5547/AD5557 output impedance. The  
feedback resistance in parallel with the DAC ladder resistance  
dominates output voltage noise. To maintain good analog  
performance, it is recommended that the power supply is  
bypassed with a 0.01 µF to 0.1 µF ceramic or chip capacitor in  
parallel with a 1 µF tantalum capacitor. Also, to minimize gain  
error, PCB metal traces between VREF and RFB should match.  
DAC SECTION  
The AD5547/AD5557 are 16-/14-bit, multiplying, current-  
output, parallel input DACs. The devices operate from a single  
2.7 V to 5.5 V supply and provide both unipolar (0 V to –VREF  
or 0 V to +VREF) and bipolar ( VREF) output ranges from –18 V  
to +18 V references. In addition to the precision conversion RFB  
commonly found in current output DACs, there are three addi-  
tional precision resistors for 4-quadrant bipolar applications.  
The AD5547/AD5557 consist of two groups of precision R-2R  
ladders, which make up the 12/10 LSBs, respectively. Furthermore,  
the 4 MSBs are decoded into 15 segments of resistor value 2R.  
Figure 18 shows the architecture of the 16-bit AD5547. Each of  
the 16 segments and the R-2R ladder carries an equally weighted  
current of one-sixteenth of full scale. The feedback resistor RFB  
and 4-quadrant resistor ROFS have values of 10 kΩ. Each 4-quadrant  
resistor, R1 and R2, equals 5 kΩ. In 4-quadrant operation, R1,  
R2, and an external op amp work together to invert the reference  
voltage and apply it to the VREF input. With ROFS and RFB  
Every code change of the DAC corresponds to a step function;  
gain peaking at each output step may occur if the op amp has  
limited GBP and excessive parasitic capacitance present at the  
inverting node of the op amp. A compensation capacitor, therefore,  
may be needed between the I-to-V op amp inverting and output  
nodes to smooth the step transition. Such a compensation capacitor  
should be found empirically, but a 20 pF capacitor is generally  
adequate for the compensation.  
The VDD power is used primarily by the internal logic to drive  
the DAC switches. Note that the output precision degrades if  
the operating voltage falls below the specified voltage. Users  
should also avoid using switching regulators because device  
power supply rejection degrades at higher frequencies.  
connected as shown in Figure 2, the output can swing from  
−VREF to +VREF  
.
V
REF  
2R  
2R  
2R  
2R  
80kΩ  
R2  
5kΩ  
80kΩ 80kΩ 80kΩ  
RCOM  
R1  
R1  
5kΩ  
4 MSB  
15 SEGMENTS  
R
R
R
R
R
R
R
R
40kΩ 40kΩ 40kΩ 40kΩ 40kΩ 40kΩ 40kΩ 40kΩ  
2R 2R 2R 2R 2R 2R 2R 2R 2R  
80kΩ 80kΩ 80kΩ 80kΩ 80kΩ 80kΩ 80kΩ 80kΩ 80kΩ  
8-BIT R2R  
ROFS  
RFB  
RA  
RB  
R
R
R
R
2R  
2R  
2R  
2R  
2R  
80kΩ 80kΩ 80kΩ 80kΩ 80kΩ  
10kΩ 10kΩ  
4-BIT R2R  
IOUT  
AGND  
15  
8
4
ADDRESS DECODER  
LDAC  
LDAC  
WR  
DAC REGISTER  
RS  
RS  
RS  
INPUT REGISTER  
WR  
D15 D14  
D0  
Figure 18. 16-Bit AD5547 Equivalent R-2R DAC Circuit with Digital Section, One Channel Shown  
Rev. D | Page 12 of 20  
 
 
 
Data Sheet  
AD5547/AD5557  
The voltage reference temperature coefficient (TC) and long-  
term drift are primary considerations. For example, a 5 V  
reference with a TC of 5 ppm/°C means the output changes by  
25 µV/°C. As a result, a reference operating at 55°C contributes  
an additional 750 µV full-scale error.  
DIGITAL SECTION  
The AD5547/AD5557 have 16-/14-bit parallel inputs. The devices  
are double buffered with 16-/14-bit registers. The double buffered  
feature allows the simultaneous update of several AD5547s/  
AD5557s. For the AD5547, the input register is loaded directly  
Similarly, the same 5 V reference with a 50 ppm long-term  
drift means the output may change by 250 µV over time.  
Therefore, it is practical to calibrate a system periodically to  
maintain its optimum precision.  
WR  
from a 16-bit controller bus when  
is brought low. The DAC  
register is updated with data from the input register when LDAC  
is brought high. Updating the DAC register updates the DAC  
output with the new data (see Figure 18). To make both registers  
WR  
RS  
transparent, tie  
low and LDAC high. The asynchronous  
PCB LAYOUT, POWER SUPPLY BYPASSING, AND  
GROUND CONNECTIONS  
pin resets the part to zero scale if MSB = 0 and to midscale if  
MSB = 1.  
It is a good practice to employ a compact, minimum lead length,  
PCB layout design. The leads to the input should be as short as  
possible to minimize IR drop and stray inductance.  
ESD Protection Circuits  
All logic input pins contain back-biased ESD protection Zeners  
connected to ground (DGND) and VDD, as shown in Figure 19.  
As a result, the voltage level of the logic input should not be  
greater than the supply voltage.  
The PCB metal traces between VREF and RFB should also be  
matched to minimize gain error.  
It is also essential to bypass the power supply with quality  
capacitors for optimum stability. Supply leads to the device  
should be bypassed with 0.01 µF to 0.1 µF disc or chip ceramic  
capacitors. Low ESR 1 µF to 10 µF tantalum or electrolytic  
capacitors should also be applied at the supply in parallel with  
the ceramic capacitor to minimize transient disturbance and  
filter out low frequency ripple.  
V
DD  
DIGITAL  
INPUTS  
5kΩ  
DGND  
To minimize the digital ground bounce, the AD5547/AD5557  
DGND terminal should be joined with the AGND terminal at  
a single point. Figure 20 illustrates the basic supply bypassing  
configuration and AGND/DGND connection for the  
AD5547/AD5557.  
Figure 19. Equivalent ESD Protection Circuits  
Amplifier Selection  
In addition to offset voltage, the bias current is important in  
op amp selection for precision current output DACs. A 30 nA  
input bias current in the op amp contributes to 1 LSB in the  
full-scale error of the AD5547. The OP1177 and AD8628 op  
amps are good candidates for the I-to-V conversion.  
V
DD  
+
5V  
C2  
C1  
AD5547/AD5557  
AGND  
1µF  
0.1µF  
Reference Selection  
The initial accuracy and rated output of the voltage reference  
determine the full-span adjustment. The initial accuracy of  
the reference is usually a secondary concern because it can be  
trimmed. Figure 25 shows an example of a trimming circuit.  
The zero-scale error can also be minimized by standard op amp  
nulling techniques.  
DGND  
Figure 20. Power Supply Bypassing  
Rev. D | Page 13 of 20  
 
 
 
 
AD5547/AD5557  
Data Sheet  
APPLICATIONS INFORMATION  
UNIPOLAR MODE  
2-Quadrant Multiplying Mode, VOUT = 0 V to –VREF  
In this case, the output voltage polarity is opposite the VREF  
polarity (see Figure 21). Table 7 shows the negative output vs.  
code for the AD5547.  
The AD5547/AD5557 DAC architecture uses a current-steering  
R-2R ladder design that requires an external reference and op  
amp to convert the unipolar mode of the output voltage to  
Table 7. AD5547 Unipolar Mode Negative Output vs. Code  
D in Binary  
VOUT (V)  
1111 1111 1111 1111  
1000 0000 0000 0000  
0000 0000 0000 0001  
0000 0000 0000 0000  
–VREF (65,535/65,536)  
–VREF/2  
–VREF (1/65,536)  
0
V
OUT = −VREF × D/65,536 (AD5547)  
OUT = −VREF × D/16,384 (AD5557)  
(1)  
(2)  
V
where D is the decimal equivalent of the input code.  
+5V  
2
U3 ADR03  
5
C1  
1µF  
C2  
0.1µF  
V
IN  
TRIM  
6
+2.5V  
V
OUT  
GND  
V
REFA  
4
R
R
R
R
FBA  
1A  
COMA  
OFSA  
6.8pF  
C6  
VDD  
ROFS  
RFB  
R1  
R2  
C3  
0.1µF  
2.5V  
16-/14-BIT  
I
OUTA  
V
+V  
AD5547/AD5557  
OUTA  
AD8628  
–V  
AGNDA  
U1  
–2.5V TO 0V  
16/14 DATA  
C4  
WR LDAC RS MSB A0, A1  
0.1µF  
C5  
WR  
LDAC  
RS  
2
1µF  
–5V  
MSB  
A0, A1  
Figure 21. Unipolar 2-Quadrant Multiplying Mode, VOUT = 0 to –VREF  
Rev. D | Page 14 of 20  
 
 
 
 
Data Sheet  
AD5547/AD5557  
2-Quadrant Multiplying Mode, VOUT = 0 V to +VREF  
Table 8 shows the positive output vs. code for the AD5547.  
The AD5547/AD5557 are designed to operate with either  
positive or negative reference voltages. As a result, a positive  
output can be achieved with an additional op amp, (see  
Figure 22); the output becomes  
Table 8. AD5547 Unipolar Mode Positive Output vs. Code  
D in Binary  
VOUT (V)  
1111 1111 1111 1111  
1000 0000 0000 0000  
0000 0000 0000 0001  
0000 0000 0000 0000  
+VREF(65,535/65,536)  
+VREF/2  
+VREF(1/65,536)  
0
VOUT = +VREF × D/65,536 (AD5547)  
OUT = +VREF × D/16,384 (AD5557)  
(3)  
(4)  
V
U2  
AD8628  
C8  
+5V  
C1  
2
U3  
C2  
1µF  
0.1µF  
1µF  
V
IN  
5
6
TRIM  
V
OUT  
C9  
1µF  
GND  
–5V  
–2.5V  
C7  
4
ADR03  
VDD  
+2.5V  
+5V  
1µF  
C5 0.1µF  
C4  
R
R
V
R
R
FBA  
1A  
COMA  
REFA  
OFSA  
C6  
U2B  
ROFS  
16-/14-BIT  
RFB  
R1  
R2  
C3  
0.1µF  
I
OUTA  
+V  
V
AD8628  
–V  
OUTA  
AGNDA  
AD5547/AD5557  
16/14 DATA  
0V TO +2.5V  
WR LDAC RS MSB A0, A1  
WR  
LDAC  
RS  
2
MSB  
A0, A1  
Figure 22. Unipolar 2-Quadrant Multiplying Mode, VOUT = 0 to +VREF  
Rev. D | Page 15 of 20  
 
 
AD5547/AD5557  
Data Sheet  
BIPOLAR MODE  
4-Quadrant Multiplying Mode, VOUT = –VREF to +VREF  
Table 9 shows some of the results for the 16-bit AD5547.  
Table 9. AD5547 Output vs. Code  
The AD5547/AD5557 contain on-chip all the 4-quadrant  
resistors necessary for precision bipolar multiplying operation.  
Such a feature minimizes the number of exponent components  
to only a voltage reference, dual op amp, and compensation  
capacitor (see Figure 23). For example, with a +10 V reference,  
the circuit yields a precision, bipolar –10 V to +10 V output.  
D in Binary  
VOUT  
1111 1111 1111 1111  
1000 0000 0000 0001  
1000 0000 0000 0000  
0111 1111 1111 1111  
0000 0000 0000 0000  
+VREF (32,767/32,768)  
+VREF (1/32,768)  
0
–VREF (1/32,768)  
–VREF  
V
OUT = (D/32768 − 1) × VREF (AD5547)  
OUT = (D/16384 − 1) × VREF (AD5557)  
(5)  
(6)  
V
+15V  
2
U3  
C1  
1µF  
C2  
0.1µF  
V
IN  
5
6
TRIM  
V
OUT  
GND  
U2A  
4
ADR01  
AD8512  
C8  
–10V  
+10V  
R
R
V
R
R
FBA  
1A  
COMA  
REFA  
OFSA  
+5V  
C4 1µF  
C5 0.1µF  
VDD  
ROFS  
RFB  
+15V  
U2B  
R1  
R2  
C9  
C3  
0.1µF  
I
OUTA  
AD5547/AD5557  
16-/14-BIT  
DAC A  
+V  
VOUT  
AD8512  
–V  
U1  
AGNDA  
16/14 DATA  
–10V TO +10V  
C6 0.1µF  
C7 1µF  
WR  
LDAC RS MSB A0, A1  
WR  
LDAC  
RS  
2
–15V  
MSB  
A0, A1  
Figure 23. 4-Quadrant Multiplying Mode, VOUT = –VREF to +VREF  
Rev. D | Page 16 of 20  
 
Data Sheet  
AD5547/AD5557  
AC Reference Signal Attenuator  
System Calibration  
Besides handling the digital waveform decoded from the  
parallel input data, the AD5547/AD5557 can also handle low  
frequency ac reference signals for signal attenuation, channel  
equalization, and waveform generation applications. The  
maximum signal range can be up to 18 V (see Figure 24).  
The initial accuracy of the system can be adjusted by trimming  
the voltage reference ADR0x with a digital potentiometer (see  
Figure 25). The AD5170 provides a one-time programmable  
(OTP), 8-bit adjustment that is ideal and reliable for such  
calibration. Analog Devices, Inc., OTP digital potentiometer  
comes with programmable software that simplifies factory  
calibration.  
U2A  
OP2177  
C7  
+10V  
–10V  
+15V  
C4  
C5 0.1µF  
1µF  
R
R
R
FBA  
R
V
REFA  
1A  
OFSA  
COMA  
C6  
+5V  
R1  
U2B  
VDD  
R2  
ROFS  
RFB  
C1  
1µF  
C2  
0.1µF  
I
OUTA  
16-/14-BIT  
V
+V  
AD5547/AD5557  
OUTA  
OP2177  
–V  
AGNDA  
U1  
16/14 DATA  
C8 1µF  
C9 0.1µF  
WR LDAC RS MSB A0, A1  
WR  
LDAC  
RS  
2
MSB  
–15V  
A0, A1  
Figure 24. Signal Attenuator with AC Reference  
+5V  
C1  
2
AD5170  
U4  
U3  
C2  
0.1µF  
1µF  
V
R3  
IN  
5
6
10kΩ  
TRIM  
470kΩ  
B
V
U2  
OUT  
R7 1kΩ  
GND  
AD8628  
4
ADR03  
–2.5V  
C7  
+2.5V  
+5V  
C4  
1µF  
R
R
R
FBA  
R
V
REFA  
1A  
OFSA  
COMA  
C6  
C5 0.1µF  
U2B  
R1  
VDD  
R2  
ROFS  
RFB  
C3  
0.1µF  
I
OUTA  
V
16-/14-BIT  
+V  
AD5547/AD5557  
OUTA  
AD8628  
–V  
AGNDA  
U1  
0V TO +2.5V  
16/14 DATA  
WR LDAC RS MSB A0, A1  
WR  
LDAC  
RS  
MSB  
2
REF 01/AD  
A0, A1  
Figure 25. Full-Span Calibration  
Rev. D | Page 17 of 20  
 
AD5547/AD5557  
Data Sheet  
The input bias current of an op amp also generates an offset at  
the voltage output because of the bias current flowing in the  
feedback resistor, RFB.  
REFERENCE SELECTION  
When selecting a reference for use with the AD55xx series of  
current output DACs, pay attention to the output voltage,  
temperature coefficient specification of the reference. Choosing  
a precision reference with a low output temperature coefficient  
minimizes error sources. Table 10 lists some of the references  
available from Analog Devices, Inc., that are suitable for use  
with this range of current output DACs.  
Common-mode rejection of the op amp is important in voltage-  
switching circuits because it produces a code-dependent error  
at the voltage output of the circuit.  
Provided that the DAC switches are driven from true wideband  
low impedance sources (VIN and AGND), they settle quickly.  
Consequently, the slew rate and settling time of a voltage-switching  
DAC circuit is determined largely by the output op amp. To obtain  
minimum settling time in this configuration, minimize capacitance  
at the VREF node (the voltage output node in this application) of  
the DAC. This is done by using low input capacitance buffer  
amplifiers and careful board design.  
AMPLIFIER SELECTION  
The primary requirement for the current-steering mode is an  
amplifier with low input bias currents and low input offset voltage.  
Because of the code-dependent output resistance of the DAC,  
the input offset voltage of an op amp is multiplied by the variable  
gain of the circuit. A change in this noise gain between two  
adjacent digital fractions produces a step change in the output  
voltage due to the amplifiers input offset voltage. This output  
voltage change is superimposed upon the desired change in output  
between the two codes and gives rise to a differential linearity error,  
which, if large enough, can cause the DAC to be nonmonotonic.  
Analog Devices offers a wide range of amplifiers for both precision  
dc and ac applications, as listed in Table 11 and Table 12.  
Table 10. Suitable Analog Devices Precision References  
Maximum Temperature  
Part No. Output Voltage (V) Initial Tolerance (%) Drift (ppm/°C)  
ISS (mA) Output Noise (µV p-p) Package(s)  
ADR01  
ADR01  
ADR02  
ADR02  
ADR03  
ADR03  
ADR06  
ADR06  
ADR420 2.048  
ADR421 2.50  
ADR423 3.00  
ADR425 5.00  
ADR431 2.500  
ADR435 5.000  
ADR391 2.5  
ADR395 5.0  
10  
10  
0.05  
0.05  
0.06  
0.06  
0.1  
0.1  
0.1  
0.1  
0.05  
0.04  
0.04  
0.04  
0.04  
0.04  
0.16  
0.10  
3
9
3
9
3
9
3
9
3
3
3
3
3
3
9
9
1
1
1
1
1
1
1
1
0.5  
0.5  
0.5  
0.5  
0.8  
0.8  
0.12  
0.12  
20  
20  
10  
10  
6
SOIC-8  
TSOT-5, SC70-5  
SOIC-8  
TSOT-5, SC70-5  
SOIC-8  
TSOT-5, SC70-5  
SOIC-8  
TSOT-5, SC70-5  
SOIC-8, MSOP-8  
SOIC-8, MSOP-8  
SOIC-8, MSOP-8  
SOIC-8, MSOP-8  
SOIC-8, MSOP-8  
SOIC-8, MSOP-8  
TSOT-5  
5.0  
5.0  
2.5  
2.5  
3.0  
3.0  
6
10  
10  
1.75  
1.75  
2
3.4  
3.5  
8
5
8
TSOT-5  
Table 11. Suitable Analog Devices Precision Op Amps  
OS Maximum IB Maximum 0.1 Hz to 10 Hz  
V
Part No.  
Supply Voltage (V) (µV)  
(nA)  
Noise (µV p-p)  
Supply Current (µA) Package(s)  
OP97  
2 to 20  
2.5 to 15  
5 to 18  
5 to 15  
5 to 15  
1.8 to 5  
1.8 to 5  
2.7 to 5  
2.7 to 5  
2.7 to 5  
25  
60  
75  
75  
125  
50  
50  
65  
65  
65  
0.1  
2
2
12  
0.5  
0.4  
0.1  
0.077  
0.1  
2.3  
2.3  
2.3  
2.4  
2.4  
600  
500  
2300  
3000  
2000  
40  
SOIC-8 , PDIP-8  
MSOP-8, SOIC-8  
MSOP-8, SOIC-8  
MSOP-8, SOIC-8  
SOIC-8, SOT-23-5  
TSOT-5  
MSOP-8, SOIC-8  
WLCSP-5, SOT-23-5  
TSOT-5  
OP1177  
AD8675  
AD8671  
ADA4004-1  
AD8603  
AD8607  
AD8605  
AD8615  
AD8616  
90  
0.001  
0.001  
0.001  
0.001  
0.001  
40  
1000  
2000  
2000  
MSOP-8, SOIC-8  
Rev. D | Page 18 of 20  
 
 
 
 
Data Sheet  
AD5547/AD5557  
Table 12. Suitable Analog Devices High Speed Op Amps  
Part No.  
AD8065  
AD8066  
AD8021  
AD8038  
ADA4899  
AD8057  
AD8058  
AD8061  
AD8062  
AD9631  
Supply Voltage (V) BW @ ACL (MHz)  
Slew Rate (V/µs)  
VOS (Max) (µV)  
1500  
1500  
1000  
3000  
35  
5000  
5000  
6000  
IB (Max) (nA)  
0.006  
0.006  
10,500  
750  
100  
500  
500  
350  
Package(s)  
5 to 24  
5 to 24  
5 to 24  
3 to 12  
5 to 12  
3 to 12  
3 to 12  
2.7 to 8  
2.7 to 8  
3 to 6  
145  
145  
490  
350  
600  
325  
325  
320  
320  
320  
180  
180  
120  
425  
310  
1000  
850  
650  
650  
1300  
SOIC-8, SOT-23-5  
SOIC-8, MSOP-8  
SOIC-8, MSOP-8  
SOIC-8, SC70-5  
LFCSP-8, SOIC-8  
SOT-23-5, SOIC-8  
SOIC-8, MSOP-8  
SOT-23-5, SOIC-8  
SOIC-8, MSOP-8  
SOIC-8, PDIP-8  
6000  
10,000  
350  
7000  
Table 13 lists the latest DACS available from Analog Devices.  
Table 13. ADI Current Output DACs  
Model  
Bits Outputs Interface  
Package  
MSOP-10  
MSOP-10  
TSOT-8  
TSSOP-16  
TSSOP-16  
TSSOP-20  
MSOP-10  
TSOT-8  
TSSOP-20  
TSSOP-16  
TSSOP-24  
MSOP-10  
TSOT-8  
TSSOP-20  
MSOP-10  
TSSOP-16  
TSSOP-24  
TSSOP-24  
LFCSP-40  
TSOT-8  
Comments  
AD5425  
AD5426  
AD5450  
AD5424  
AD5429  
AD5428  
AD5432  
AD5451  
AD5433  
AD5439  
AD5440  
AD5443  
AD5452  
AD5445  
AD5444  
AD5449  
AD5415  
AD5447  
AD5405  
AD5453  
AD5553  
AD5556  
AD5446  
AD5555  
AD5557  
AD5543  
AD5546  
AD5545  
AD5547  
8
1
1
1
1
2
2
1
1
1
2
2
1
1
1
1
2
2
2
2
1
1
1
1
2
2
1
1
2
2
SPI, 8-Bit Load  
SPI  
Fast 8-bit load; see also AD5426  
See also AD5425 fast load  
See also AD5425 fast load  
8
8
SPI  
8
8
Parallel  
SPI  
8
Parallel  
SPI  
10  
10  
10  
10  
10  
12  
12  
12  
12  
12  
12  
12  
12  
14  
14  
14  
14  
14  
14  
16  
16  
16  
16  
SPI  
Parallel  
SPI  
Parallel  
SPI  
SPI  
Parallel  
SPI  
SPI  
See also AD5452 and AD5444  
Higher accuracy version of AD5443; see also AD5444  
Higher accuracy version of AD5443; see also AD5452  
Uncommitted resistors  
SPI  
Parallel  
Parallel  
SPI  
SPI  
Parallel  
SPI  
SPI  
Parallel  
SPI  
Parallel  
SPI  
Parallel  
Uncommitted resistors  
MSOP-8  
TSSOP-28  
MSOP-10  
TSSOP-16  
TSSOP-38  
MSOP-8  
TSSOP-28  
TSSOP-16  
TSSOP-38  
MSOP version of AD5453; compatible with AD5443, AD5432, and AD5426  
Rev. D | Page 19 of 20  
 
 
AD5547/AD5557  
Data Sheet  
OUTLINE DIMENSIONS  
9.80  
9.70  
9.60  
38  
20  
19  
4.50  
4.40  
4.30  
6.40 BSC  
1
PIN 1  
1.20  
MAX  
0.15  
0.05  
8°  
0°  
0.50  
BSC  
0.27  
0.17  
0.70  
0.60  
0.45  
SEATING  
PLANE  
0.20  
0.09  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-BD-1  
Figure 26. 38-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-38)  
Dimension s shown in millimeters  
ORDERING GUIDE  
DNL  
INL  
Package  
Ordering  
Quantity  
Model1  
Resolution (Bits)  
(LSB) (LSB) Temperature Range  
Package Description  
38-Lead TSSOP  
38-Lead TSSOP  
38-Lead TSSOP  
38-Lead TSSOP  
38-Lead TSSOP  
38-Lead TSSOP  
38-Lead TSSOP  
38-Lead TSSOP  
Option  
RU-38  
RU-38  
RU-38  
RU-38  
RU-38  
RU-38  
RU-38  
RU-38  
AD5547BRU  
16  
16  
16  
16  
16  
14  
14  
14  
1
1
1
1
1
1
1
1
2
2
2
1
1
1
1
1
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
50  
1,000  
50  
50  
1,000  
50  
AD5547BRU-REEL7  
AD5547BRUZ  
AD5547CRUZ  
AD5547CRUZ-REEL7  
AD5557CRU  
AD5557CRU-REEL7  
AD5557CRUZ  
1,000  
50  
1 Z = RoHS Compliant Part.  
©2004–2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D04452-0-11/12(D)  
Rev. D | Page 20 of 20  
 
 
 

相关型号:

AD5557CRU-REEL7

Dual Current Output, Parallel Input, 16-/14-Bit Multiplying DACs with 4-Quadrant Resistors
ADI

AD5557CRUZ

Dual-Current Output, Parallel Input, 16-/14-Bit Multiplying DACs
ADI

AD5560

1.2 A Programmable Device Power Supply with Integrated 16-Bit Level Setting DACs
ADI

AD5560JBCZ

1.2 A Programmable Device Power Supply
ADI

AD5560JBCZ-REEL

1.2 A Programmable Device Power Supply
ADI

AD5560JSVUZ

1.2 A Programmable Device Power Supply
ADI

AD5560JSVUZ-REEL

1.2 A Programmable Device Power Supply
ADI

AD5564

IC SAMPLE AND HOLD AMPLIFIER, PBGA119, 14 X 22 MM, 1.27 MM PITCH, BGA-119, Sample and Hold Circuit
ADI

AD5564B

Industrial Control IC
ETC

AD557

DACPORT, Low-Cost Complete mP-Compatible 8-Bit DAC
ADI

AD5570

True Accuracy, 16-Bit 12 V/15 V, Serial Input Voltage Output DAC
ADI

AD5570ARS

True Accuracy, 16-Bit 12 V/15 V, Serial Input Voltage Output DAC
ADI