AD5623RSRMZ-EP-5R7 [ADI]

Dual 12-Bit nanoDAC® with 5 ppm/°C On-Chip Reference;
AD5623RSRMZ-EP-5R7
型号: AD5623RSRMZ-EP-5R7
厂家: ADI    ADI
描述:

Dual 12-Bit nanoDAC® with 5 ppm/°C On-Chip Reference

光电二极管 转换器
文件: 总16页 (文件大小:570K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual 12-Bit nanoDAC with  
1ꢀ ꢁꢁpm/C ꢂO-Chiꢁ ꢃReRꢄROnR  
EOhaOnRd Pꢄodunt  
AD5623ꢃ-EP  
The AD5623R-EP has an on-chip 2.5 V reference giving a  
maximum full-scale output of 5 V. The on-chip reference is off  
at power-up, allowing the use of an external reference.  
FEATURES  
Low power, smallest pin-compatible, dual nanoDAC: 12 bits  
User-selectable external or internal reference  
External reference default  
On-chip 2.5 V, 10 ppmꢀ/C reference  
10-lead MSOP  
4.5 V to 5.5 V power supply  
Guaranteed monotonic by design  
Power-on reset to zero scale  
The AD5623R-EP incorporates a power-on reset circuit that  
ensures that the output of the DACs powers up to 0 V and  
remains there until a valid write takes place. The AD5623R-EP  
contains a power-down feature that reduces the current  
consumption of the device to 0.48 μA at 5 V and provides  
software-selectable output loads while in power-down mode.  
Per channel power-down  
Serial interface up to 50 MHz  
The low power consumption of this device in normal operation  
makes it ideally suited to portable, battery-operated equipment.  
LDAC  
CLR  
functions  
Hardware  
and  
The AD5623R-EP uses a versatile, 3-wire serial interface that  
operates at clock rates of up to 50 MHz, and is compatible with  
standard SPI, QSPI™, MICROWIRE™, and DSP interface  
standards. The on-chip precision output amplifier enables rail-  
to-rail output swing to be achieved. Additional application and  
technical information can be found in the AD5623R data sheet.  
ENHANCED PRODUCT FEATURES  
Supports defense and aerospace applications (AQEC)  
Extended temperature range: −55°C to +105/C  
Controlled manufacturing baseline  
One assemblyꢀtest site  
One fabrication site  
Enhanced product change notification  
Qualification data available on request  
PRODUCT HIGHLIGHTS  
1. Dual 12-Bit DAC.  
2. On-Chip 2.5 V, 10 ppm/°C Reference.  
3. Available in 10-Lead MSOP.  
APPLICATIONS  
4. Low Power. Typically consumes 1.25 mW at 5 V. 4.5 μs  
maximum settling time.  
Process control  
Data acquisition systems  
Table 1. Related Device  
GENERAL DESCRIPTION  
Part No.  
Description  
The AD5623R-EP, a member of the nanoDAC® family, is a low  
power, dual 12-bit buffered voltage output digital-to-analog  
converter (DAC) that operates from a single 4.5 V to 5.5 V  
supply and is guaranteed monotonic by design.  
AD5623R  
2.7 V to 5.5 V, dual 12-bit nanoDAC, with external  
reference  
FUNCTIONAL BLOCK DIAGRAM  
V
V
/V  
DD  
REFIN REFOUT  
2.5V  
REFERENCE  
LDAC  
INPUT  
DAC  
STRING  
DAC A  
V
V
A
B
SCLK  
SYNC  
DIN  
BUFFER  
BUFFER  
OUT  
REGISTER  
REGISTER  
INTERFACE  
LOGIC  
INPUT  
REGISTER  
DAC  
REGISTER  
STRING  
DAC B  
OUT  
AD5623R-EP  
POWER-ON  
RESET  
POWER-DOWN  
LOGIC  
LDAC CLR  
GND  
Figure 1.  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2014–2015 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
 
 
AD5623R-EP  
Enhanced Product  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Absolute Maximum Ratings ............................................................6  
ESD Caution...................................................................................6  
Pin Configuration and Function Descriptions..............................7  
Typical Performance Characteristics ..............................................8  
Applications Information .............................................................. 13  
Using a Reference as a Power Supply....................................... 13  
Outline Dimensions....................................................................... 14  
Ordering Guide .......................................................................... 14  
Enhanced Product Features ............................................................ 1  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
AC Characteristics........................................................................ 4  
Timing Characteristics ................................................................ 4  
REVISION HISTORY  
9/15—Rev. 0 to Rev. A  
Changes to Features Section............................................................ 1  
Added Enhanced Product Features Section.................................. 1  
Change to Table 5 ............................................................................. 6  
Changes to Using a Reference as a Power Supply Section and  
Figure 33 .......................................................................................... 13  
Deleted Terminology Section ....................................................... 13  
Deleted Theory of Operation Section, Digital-to-Analog  
Architecture Section, Figure 33; Renumbered Sequentially,  
Resistor String Section, Output Amplifier Section, Figure 34,  
Internal Reference Section, External Reference Section, and  
Serial Interface Section .................................................................. 15  
Deleted Input Shift Register Section, Table 7; Renumbered  
SYNC  
Sequentially, Table 8,  
Interrupt Section, Power-On Reset  
Section, Software Reset Section, Table 9, Figure 35, and  
Figure 36 .......................................................................................... 16  
Deleted Power-Down Modes Section, Table 10 to Table 13, and  
Figure 37 .......................................................................................... 17  
LDAC  
Asynchronous  
LDAC  
Deleted  
Function Section, Synchronous  
LDAC  
Section,  
Section, Table 14 to Table 16, and Internal  
Reference Setup Section................................................................. 18  
Deleted Microprocessor Interfacing Section, AD5623R-EP to  
Blackfin® ADSP-BF53x Interface Section, Figure 38, AD5623R-EP  
to M68HC11/MC68L11 Interface Section, Figure 39, AD5623R-EP  
to 80C51 Interface Section, Figure 40, AD5623R-EP to  
MICOWIRE Interface Section, and Figure 41............................ 19  
Deleted Power Supply Bypassing and Grounding Section ....... 20  
4/14—Revision 0: Initial Version  
Rev. A | Page 2 of 16  
 
Enhanced Product  
SPECIFICATIONS  
AD5623R-EP  
VDD = 4.5 V to 5.5 V; RL = 2 kΩ to GND; CL = 200 pF to GND; VREFIN/VREFOUT = VDD; all specifications TMIN to TMAX, unless otherwise noted.  
Table 2.  
Parameter1  
STATIC PERFORMANCE2  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Resolution  
12  
Bits  
Relative Accuracy, INL  
Differential Nonlinearity, DNL  
Zero-Scale Error  
Offset Error  
Full-Scale Error  
1
1.5  
1
+12  
12  
1
LSB  
LSB  
mV  
mV  
% of FSR  
% of FSR  
µV/°C  
ppm  
dB  
Guaranteed monotonic by design  
All 0s loaded to DAC register  
+2  
1
−0.1  
All 1s loaded to DAC register  
Gain Error  
1.5  
Zero-Scale Error Drift  
Gain Temperature Coefficient  
DC Power Supply Rejection Ratio  
DC Crosstalk  
2
2.5  
−100  
Of FSR/°C  
DAC code = midscale; VDD = 5 V 10%  
External Reference  
10  
10  
5
µV  
µV/mA  
µV  
Due to full-scale output change; RL = 2 kΩ to GND or VDD  
Due to load current change  
Due to powering down (per channel)  
Internal Reference  
25  
20  
10  
µV  
µV/mA  
µV  
Due to full-scale output change; RL = 2 kΩ to GND or VDD  
Due to load current change  
Due to powering down (per channel)  
OUTPUT CHARACTERISTICS3  
Output Voltage Range  
0
VDD  
V
Capacitive Load Stability  
2
nF  
nF  
Ω
mA  
μs  
RL = ∞  
RL = 2 kΩ  
10  
0.5  
30  
4
DC Output Impedance  
Short-Circuit Current  
Power-Up Time  
VDD = 5 V  
Coming out of power-down mode; VDD = 5 V  
REFERENCE INPUTS  
Reference Current  
Reference Input Range  
Reference Input Impedance  
REFERENCE OUTPUT  
Output Voltage  
170  
26  
200  
VDD  
µA  
V
kΩ  
VREFIN/VREFOUT = VDD = 5.5 V  
0.75  
2.495  
2.505  
V
At ambient  
Reference Temperature Coefficient3  
Output Impedance  
LOGIC INPUTS3  
10  
7.5  
ppm/°C  
kΩ  
Input Current  
Input Low Voltage (VINL  
2
0.8  
µA  
V
All digital inputs  
VDD = 5 V  
)
Input High Voltage (VINH  
)
2
V
VDD = 5 V  
Pin Capacitance  
3
pF  
pF  
DIN, SCLK, and SYNC  
LDAC and CLR  
19  
POWER REQUIREMENTS  
VDD  
IDD (Normal Mode)4  
4.5  
5.5  
V
VINH = VDD and VINL = GND  
VDD = 4.5 V to 5.5 V  
VDD = 4.5 V to 5.5 V  
Internal Reference Off  
Internal Reference On  
IDD (All Power-Down Modes)5  
0.25  
0.8  
0.48  
0.45  
1
1
mA  
mA  
µA  
VDD = 4.5 V to 5.5 V, VINH = VDD and VINL = GND  
1 Temperature range = −55°C to +105°C, typical at +25°C.  
2 Linearity calculated using a reduced code range: Code 32 to Code 4064. Output unloaded.  
3 Guaranteed by design and characterization, but not production tested.  
4 Interface inactive. All DACs active. DAC outputs unloaded.  
5 Both DACs powered down.  
Rev. A | Page 3 of 16  
 
AD5623R-EP  
Enhanced Product  
AC CHARACTERISTICS  
VDD = 4.5 V to 5.5 V; RL = 2 kΩ to GND; CL = 200 pF to GND; VREFIN/VREFOUT = VDD; all specifications TMIN to TMAX, unless otherwise noted.  
Table 3.  
Parameter1, 2  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
SLEW RATE  
1.8  
V/µs  
FEEDTHROUGH  
Digital Feedthrough  
Reference Feedthrough  
CROSSTALK  
0.1  
−90  
nV-sec  
dB  
VREFIN/VREFOUT = 2 V 0.1 V p-p, frequency 10 Hz to 20 MHz  
Digital Crosstalk  
Analog Crosstalk  
0.1  
1
4
1
4
nV-sec  
nV-sec  
nV-sec  
nV-sec  
nV-sec  
kHz  
External reference  
Internal reference  
External reference  
Internal reference  
DAC-to-DAC Crosstalk  
MULTIPLYING BANDWIDTH  
340  
−80  
VREFIN/VREFOUT = 2 V 0.1 V p-p  
VREFIN/VREFOUT = 2 V 0.1 V p-p, frequency = 10 kHz  
TOTAL HARMONIC DISTORTION  
OUTPUT CHARACTERISTICS  
Digital-to-Analog Glitch Impulse  
Output Voltage Settling Time  
Output Noise Spectral Density  
dB  
10  
3
120  
100  
15  
nV-sec  
µs  
nV/√Hz  
nV/√Hz  
μV p-p  
1 LSB change around major carry  
¼ to ¾ scale settling to 0.5 LSB  
DAC code = midscale, 1 kHz  
DAC code = midscale, 10 kHz  
0.1 Hz to 10 Hz  
4.5  
Output Noise  
1 Guaranteed by design and characterization, but not production tested.  
2 Temperature range = −55°C to +105°C, typical at +25°C.  
TIMING CHARACTERISTICS  
All input signals are specified with tR = tF = 1 ns/V (10% to 90% of VDD) and timed from a voltage level of (VINL + VINH)/2.  
DD = 4.5 V to 5.5 V; all specifications TMIN to TMAX, unless otherwise noted.  
V
Table 4.  
Parameter1  
Limit at TMIN, TMAX  
Unit  
Description  
2
t1  
t2  
t3  
20  
9
9
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns max  
SCLK cycle time  
SCLK high time  
SCLK low time  
SYNC to SCLK falling edge setup time  
Data setup time  
t4  
13  
5
5
t5  
t6  
Data hold time  
SCLK falling edge to SYNC rising edge  
Minimum SYNC high time  
SYNC rising edge to SCLK fall ignore  
SCLK falling edge to SYNC fall ignore  
LDAC pulse width low  
t7  
0
t8  
15  
13  
0
t9  
t10  
t11  
t12  
t13  
t14  
t15  
10  
15  
5
SCLK falling edge to LDAC rising edge  
CLR pulse width low  
SCLK falling edge to LDAC falling edge  
CLR pulse activation time  
0
300  
1 Guaranteed by design and characterization, but not production tested.  
2 Maximum SCLK frequency is 50 MHz at VDD = 2.7 V to 5.5 V.  
Rev. A | Page 4 of 16  
 
 
Enhanced Product  
AD5623R-EP  
Timing Diagram  
t10  
t1  
t9  
SCLK  
SYNC  
DIN  
t2  
t8  
t7  
t3  
t4  
t6  
t5  
DB23  
DB0  
t14  
t11  
1
LDAC  
t12  
2
LDAC  
t13  
CLR  
t15  
V
OUT  
1
2
ASYNCHRONOUS LDAC UPDATE MODE.  
SYNCHRONOUS LDAC UPDATE MODE.  
Figure 2. Serial Write Operation  
Rev. A | Page 5 of 16  
AD5623R-EP  
Enhanced Product  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Table 5.  
Parameter  
Rating  
VDD to GND  
−0.3 V to +7 V  
VOUTx to GND  
−0.3 V to VDD + 0.3 V  
−0.3 V to VDD + 0.3 V  
−0.3 V to VDD + 0.3 V  
VREFIN/VREFOUT to GND  
Digital Input Voltage to GND  
Operating Temperature Range  
Industrial  
Storage Temperature Range  
Junction Temperature (TJ max)  
Power Dissipation  
ESD CAUTION  
−55°C to +105°C  
−65°C to +150°C  
150°C  
(TJ max − TA)/θJA  
MSOP Package (4-Layer Board)  
θJA Thermal Impedance  
θJC Thermal Impedance  
Reflow Soldering Peak Temperature  
Pb-Free  
142°C/W  
43.7°C/W  
260 (+0/−5)°C  
Rev. A | Page 6 of 16  
 
 
Enhanced Product  
AD5623R-EP  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
10  
9
V
V
A
B
V
V
/V  
OUT  
REFIN REFOUT  
OUT  
DD  
AD5623R-EP  
TOP VIEW  
8
GND  
DIN  
(Not to Scale)  
7
LDAC  
CLR  
SCLK  
SYNC  
6
Figure 3. Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2
3
4
VOUT  
VOUT  
GND  
A
B
Analog Output Voltage from DAC A. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC B. The output amplifier has rail-to-rail operation.  
Ground. Reference point for all circuitry on the device.  
Load DAC. Pulsing this pin low allows any or all DAC registers to be updated if the input registers have new data.  
This allows simultaneous update of all DAC outputs. Alternatively, this pin can be tied permanently low.  
LDAC  
5
CLR  
Asynchronous Clear Input. The CLR input is falling edge sensitive. While CLR is low, all LDAC pulses are  
ignored. When CLR is activated, zero scale is loaded to all input and DAC registers. This clears the output to 0 V.  
The device exits clear code mode on the 24th falling edge of the next write to the device. If CLR is activated during  
a write sequence, the write is aborted.  
6
SYNC  
Level-Triggered Control Input (Active Low). This is the frame synchronization signal for the input data.  
When SYNC goes low, it enables the input shift register, and data is transferred in on the falling edges of the  
following clocks. The DAC is updated following the 24th clock cycle unless SYNC is taken high before this edge,  
in which case the rising edge of SYNC acts as an interrupt and the write sequence is ignored by the DAC.  
7
SCLK  
DIN  
VDD  
Serial Clock Input. Data is clocked into the input shift register on the falling edge of the serial clock input.  
Data can be transferred at rates of up to 50 MHz.  
Serial Data Input. This device has a 24-bit input shift register. Data is clocked into the register on the falling edge  
of the serial clock input.  
Power Supply Input. This device can be operated from 4.5 V to 5.5 V. Decouple the supply with a 10 μF capacitor in  
parallel with a 0.1 μF capacitor to GND.  
8
9
10  
VREFIN/VREFOUT Common Reference Input/Reference Output. When the internal reference is selected, this is the reference output  
pin. When using an external reference, this is the reference input pin. The default for this pin is a reference input.  
Rev. A | Page 7 of 16  
 
AD5623R-EP  
Enhanced Product  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.0  
0.20  
0.15  
0.10  
0.05  
V
V
= 5V  
/V  
= 25°C  
V
T
= V  
/V  
= 5V  
DD  
DD  
REFIN REFOUT  
= 2.5V  
= 25°C  
REFIN REFOUT  
0.8  
A
T
A
0.6  
0.4  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.05  
–0.10  
–0.15  
–0.20  
0
0.5k  
1.0k  
1.5k  
2.0k  
2.5k  
3.0k  
3.5k  
4.0k  
0
0.5k  
1.0k  
1.5k  
2.0k  
2.5k  
3.0k  
3.5k  
4.0k  
CODE  
CODE  
Figure 4. INL, External Reference  
Figure 7. DNL, at 5 V VDD  
0.20  
0.15  
0.10  
0.05  
0
8
6
V
= V  
= 25°C  
/V  
= 5V  
DD  
REFIN REFOUT  
T
A
MAX INL  
V
= V  
/V  
= 5V  
DD  
REFIN REFOUT  
4
2
MAX DNL  
MIN DNL  
0
–0.05  
–0.10  
–0.15  
–0.20  
–2  
–4  
–6  
–8  
MIN INL  
100  
–40  
–20  
0
20  
40  
60  
80  
120  
0
0.5k  
1.0k  
1.5k  
2.0k  
2.5k  
3.0k  
3.5k  
4.0k  
TEMPERATURE (°C)  
CODE  
Figure 5. DNL, External Reference  
Figure 8. INL Error and DNL Error vs. Temperature  
10  
1.0  
V
V
= 5V  
/V  
= 25°C  
DD  
= 2.5V  
8
6
MAX INL  
REFIN REFOUT  
0.8  
0.6  
0.4  
0.2  
T
A
V
T
= 5V  
= 25°C  
DD  
4
A
2
MAX DNL  
MIN DNL  
0
0
–0.2  
–0.4  
–0.6  
–2  
–4  
–6  
MIN INL  
4.25  
–8  
–0.8  
–1.0  
–10  
0.75  
1.25  
1.75  
2.25  
2.75  
3.25  
(V)  
3.75  
4.75  
0
0.5k  
1.0k  
1.5k  
2.0k  
CODE  
2.5k  
3.0k  
3.5k  
4.0k  
V
REF  
Figure 6. INL, at 5 V VDD  
Figure 9. INL Error and DNL Error vs. VREF  
Rev. A | Page 8 of 16  
 
Enhanced Product  
AD5623R-EP  
8
6
1.5  
1.0  
MAX INL  
ZERO-SCALE ERROR  
T
= 25°C  
A
4
2
0.5  
0
MAX DNL  
MIN DNL  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–2  
–4  
–6  
–8  
OFFSET ERROR  
MIN INL  
2.7  
3.2  
3.7  
4.2  
(V)  
4.7  
5.2  
–40  
–20  
0
20  
40  
60  
80  
100  
V
TEMPERATURE (°C)  
DD  
Figure 10. INL Error and DNL Error vs. VDD  
Figure 13. Zero-Scale Error and Offset Error vs. Temperature  
1.0  
0
–0.02  
–0.04  
–0.06  
–0.08  
T
= 25°C  
V
= 5V  
A
DD  
0.5  
0
ZERO-SCALE ERROR  
GAIN ERROR  
–0.5  
–1.0  
–1.5  
–0.10  
–0.12  
–0.14  
–0.16  
FULL-SCALE ERROR  
–2.0  
–2.5  
OFFSET ERROR  
–0.18  
–0.20  
2.7  
3.2  
3.7  
4.2  
(V)  
4.7  
5.2  
–40  
–20  
0
20  
40  
60  
80  
100  
V
TEMPERATURE (°C)  
DD  
Figure 11. Gain Error and Full-Scale Error vs. Temperature  
Figure 14. Zero-Scale Error and Offset Error vs. VDD  
1.0  
V
= 5.5V  
DD  
T
= 25°C  
A
8
6
4
2
0
0.5  
0
GAIN ERROR  
FULL-SCALE ERROR  
–0.5  
–1.0  
–1.5  
–2.0  
2.7  
3.2  
3.7  
4.2  
(V)  
4.7  
5.2  
0.230  
0.235  
0.240  
0.245  
0.250  
0.255  
V
I
(mA)  
DD  
DD  
Figure 12. Gain Error and Full-Scale Error vs. VDD  
Figure 15. IDD Histogram with External Reference  
Rev. A | Page 9 of 16  
AD5623R-EP  
Enhanced Product  
0.30  
5
T
= 25°C  
A
V
= 5.5V  
DD  
T
= 25°C  
A
0.25  
0.20  
0.15  
0.10  
4
3
2
1
0
V
= V  
/V  
= 5V  
DD  
REFIN REFOUT  
0.05  
0
–40  
–20  
0
20  
40  
60  
80  
100  
0.78  
0.80  
0.82  
(mA)  
0.84  
TEMPERATURE (°C)  
I
DD  
Figure 19. Supply Current vs. Temperature  
Figure 16. IDD Histogram with Internal Reference  
0.5  
DAC LOADED WITH  
FULL-SCALE  
SOURCING CURRENT  
DAC LOADED WITH  
ZERO-SCALE  
SINKING CURRENT  
0.4  
0.3  
0.2  
V
= V  
/V  
= 5V  
DD  
REFIN REFOUT  
T
= 25°C  
A
0.1  
FULL-SCALE CODE CHANGE  
0x0000 TO 0xFFFF  
OUTPUT LOADED WITH 2k  
AND 200pF TO GND  
0
–0.1  
–0.2  
–0.3  
V
V
= 5V  
/V  
DD  
= 2.5V  
V
= 909mV/DIV  
REFIN REFOUT  
OUT  
1
–0.4  
–0.5  
–10  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
TIME BASE = 4µs/DIV  
CURRENT (mA)  
Figure 20. Full-Scale Settling Time, 5 V  
Figure 17. Headroom at Rails vs. Source and Sink Current  
6
5
4
3
2
1
V
= V  
= 25°C  
/V = 5V  
DD  
REFIN REFOUT  
V
V
T
= 5V  
DD  
T
A
/V  
= 2.5V  
FULL SCALE  
REFIN REFOUT  
= 25C  
A
3/4 SCALE  
MIDSCALE  
1/4 SCALE  
V
DD  
1
2
MAX(CH2)*  
420.0mV  
0
ZERO SCALE  
V
OUT  
–1  
–30  
CH1 2.0V  
CH2 500mV  
M100µs 125MS/s  
A CH1 1.28V  
8.0ns/pt  
–20  
–10  
0
10  
20  
30  
CURRENT (mA)  
Figure 21. Power-On Reset to 0 V  
Figure 18. 5 V VDD Source and Sink Capability  
Rev. A | Page 10 of 16  
Enhanced Product  
AD5623R-EP  
2.496  
2.494  
2.492  
2.490  
2.488  
2.486  
2.484  
2.482  
2.480  
2.478  
2.476  
2.474  
2.472  
2.470  
2.468  
2.466  
2.464  
2.462  
2.460  
2.458  
2.456  
SYNC  
1
SCLK  
3
V
V
V
= 5V  
/V  
= 25°C  
OUT  
DD  
REFIN REFOUT  
V
= 5V  
DD  
= 2.5V  
T
A
2
5ns/SAMPLE NUMBER  
ANALOG CROSSTALK = 4.462nV  
0
50  
100 150 200 250 300 350 400 450  
SAMPLE NUMBER  
512  
CH1 5.0V  
CH3 5.0V  
CH2 500mV  
M400ns  
A CH1  
1.4V  
Figure 25. Analog Crosstalk, Internal Reference  
Figure 22. Exiting Power-Down to Midscale  
2.538  
V
= V  
/V  
= 5V  
DD  
REFIN REFOUT  
2.537  
2.536  
2.535  
2.534  
2.533  
2.532  
2.531  
2.530  
2.529  
2.528  
2.527  
2.526  
2.525  
2.524  
2.523  
2.522  
2.521  
T
= 25°C  
A
5ns/SAMPLE NUMBER  
GLITCH IMPULSE = 9.494nV  
1LSB CHANGE AROUND  
V
= V  
= 25°C  
/V  
= 5V  
DD  
REFIN REFOUT  
T
A
DAC LOADED WITH MIDSCALE  
MIDSCALE (0x8000 TO 0x7FFF)  
1
Y AXIS = 2µV/DIV  
X AXIS = 4s/DIV  
0
50  
100 150 200 250 300 350 400 450  
SAMPLE NUMBER  
512  
Figure 26. 0.1 Hz to 10 Hz Output Noise Plot, External Reference  
Figure 23. Digital-to-Analog Glitch Impulse (Negative)  
2.498  
2.497  
2.496  
2.495  
2.494  
2.493  
2.492  
2.491  
V
= V  
= 25°C  
/V  
= 5V  
DD  
REFIN REFOUT  
V
V
= 5V  
/V  
= 25°C  
T
DD  
REFIN REFOUT  
A
= 2.5V  
5ns/SAMPLE NUMBER  
ANALOG CROSSTALK = 0.424nV  
T
A
DAC LOADED WITH MIDSCALE  
1
0
50  
100 150 200 250 300 350 400 450  
SAMPLE NUMBER  
512  
5s/DIV  
Figure 24. Analog Crosstalk, External Reference  
Figure 27. 0.1 Hz to 10 Hz Output Noise Plot, Internal Reference  
Rev. A | Page 11 of 16  
AD5623R-EP  
Enhanced Product  
800  
5
0
V
= 5V  
= 25°C  
DD  
T
= 25°C  
A
T
A
MIDSCALE LOADED  
700  
600  
500  
400  
300  
200  
5  
10  
15  
20  
25  
30  
35  
–40  
V
V
= 5V  
/V  
DD  
REFIN REFOUT  
= 2.5V  
100  
0
100  
1k  
10k  
FREQUENCY (Hz)  
1M  
10M  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
Figure 28. Noise Spectral Density, Internal Reference  
Figure 31. Multiplying Bandwidth  
–20  
–30  
–40  
V
= 5V  
= 25°C  
DD  
T
A
DAC LOADED WITH FULL SCALE  
V
CLR  
3
/V  
= 2V ± 0.3V p-p  
REFIN REFOUT  
V
A
–50  
–60  
–70  
OUT  
–80  
V
B
OUT  
4
2
–90  
–100  
2k  
4k  
6k  
8k  
10k  
CH2 1.0V  
CH4 1.0V  
M200ns A CH3  
1.10V  
CH3 5.0V  
FREQUENCY (Hz)  
Figure 29. Total Harmonic Distortion  
CLR  
Pulse Activation Time  
Figure 32.  
16  
14  
12  
10  
8
V
/V  
= 25°C  
= V  
REFIN REFOUT DD  
T
A
V
= 5V  
DD  
6
4
0
1
2
3
4
5
6
7
8
9
10  
CAPACITANCE (nF)  
Figure 30. Settling Time vs. Capacitive Load  
Rev. A | Page 12 of 16  
Enhanced Product  
AD5623R-EP  
APPLICATIONS INFORMATION  
The load regulation of the ADR293-EP is typically 30 ppm/mA,  
which results in a 45 ppm (225 μV) error for the 1.5 mA current  
drawn from it. This corresponds to a 0.184 LSB error.  
12V  
USING A REFERENCE AS A POWER SUPPLY  
Because the supply current required by the AD5623R-EP is  
extremely low, an alternative option is to use a voltage reference  
to supply the required voltage to the device (see Figure 33). This  
is especially useful if the power supply is quite noisy or if the  
system supply voltages are at some value other than 5 V or 3 V,  
for example, 15 V. The voltage reference outputs a steady supply  
voltage for the AD5623R-EP. If the ADR293-EP is used, it must  
supply ~500 μA of current to the AD5623R-EP, with no load on  
the output of the DAC. When the DAC output is loaded, the  
ADR293-EP also needs to supply the current to the load. The  
total current required (with a 5 kΩ load on the DAC output) is  
5V  
ADR293-EP  
V
DD  
SYNC  
SCLK  
DIN  
V
= 0V TO 5V  
3-WIRE  
SERIAL  
INTERFACE  
OUT  
AD5623R-EP  
Figure 33. ADR293-EP as Power Supply to the AD5623R-EP  
500 μA + (5 V/5 kΩ) = 1.5 mA  
Rev. A | Page 13 of 16  
 
 
 
AD5623R-EP  
Enhanced Product  
OUTLINE DIMENSIONS  
3.10  
3.00  
2.90  
10  
1
6
5
5.15  
4.90  
4.65  
3.10  
3.00  
2.90  
PIN 1  
IDENTIFIER  
0.50 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.70  
0.55  
0.40  
0.15  
0.05  
0.23  
0.13  
6°  
0°  
0.30  
0.15  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-BA  
Figure 34. 10-Lead Mini Small Outline Package [MSOP]  
(RM-10)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Internal  
Reference  
Package  
Option  
Model1  
Temperature Range  
−55°C to +105°C  
Accuracy  
Package Description  
Branding  
AD5623RSRMZ-EP-5R7  
1.5 ꢀSꢁ ꢂIꢀ  
2.5 V  
10-ꢀead MSOP  
RM-10  
DI9  
1 Z = RoHS Compliant Part.  
Rev. A | Page 14 of 16  
 
 
Enhanced Product  
NOTES  
AD5623R-EP  
Rev. A | Page 15 of 16  
AD5623R-EP  
NOTES  
Enhanced Product  
©2014–2015 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D12105-0-9/15(A)  
Rev. A | Page 16 of 16  

相关型号:

AD5623R_15

Dual 12-/14-/16-Bit nanoDAC
ADI

AD5624

2.7 V to 5.5 V, 450 レA, Rail-to-Rail Output, Quad, 12-/16-Bit nanoDACs
ADI

AD5624BCPZ-250RL7

2.7 V to 5.5 V, 450 レA, Rail-to-Rail Output, Quad, 12-/16-Bit nanoDACs
ADI

AD5624BCPZ-REEL7

2.7 V to 5.5 V, 450 レA, Rail-to-Rail Output, Quad, 12-/16-Bit nanoDACs
ADI

AD5624BRMZ

2.7 V to 5.5 V, 450 レA, Rail-to-Rail Output, Quad, 12-/16-Bit nanoDACs
ADI

AD5624BRMZ-REEL7

2.7 V to 5.5 V, 450 レA, Rail-to-Rail Output, Quad, 12-/16-Bit nanoDACs
ADI

AD5624R

Quad, 12-/14-/16-Bit nanoDACs with 5 ppm/C On-Chip Reference
ADI

AD5624RBCPZ-3250R7

IC SERIAL INPUT LOADING, 3 us SETTLING TIME, 12-BIT DAC, DSO10, 3 X 3 MM, LEAD FREE, LFCSP-10, Digital to Analog Converter
ADI

AD5624RBCPZ-3R2

Quad, 12-/14-/16-Bit nanoDACs with 5 ppm/C On-Chip Reference
ADI

AD5624RBCPZ-3REEL7

Quad, 12-/14-/16-Bit nanoDACs with 5 ppm/C On-Chip Reference
ADI

AD5624RBRMZ-3

Quad, 12-/14-/16-Bit nanoDACs with 5 ppm/C On-Chip Reference
ADI

AD5624RBRMZ-3REEL7

Quad, 12-/14-/16-Bit nanoDACs with 5 ppm/C On-Chip Reference
ADI